

UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA BIOMEDICA

DESIGN OF NEUROPHYSIOLOGICAL SIGNAL
ANAYSIS SOFTWARE

GIACOMO BASSETTO

SUPERVISOR: PROFESSOR STEFANO VASSANELLI

CO-SUPERVISOR: DOTT. MUFTI MAHMUD

PADOVA, 30 SEPTEMBER 2010

ii

“Ah-ah” (Nelson — The Simpsons)

iii

ACKNOWLEDGEMENTS

My thanks to prof. Stefano Vassanelli and dott. Mufti Mahmud, for the

opportunity they gave letting me to have this experience.

Special thanks to Elisabetta, Marta, Stefano and Azzurra, because they proved

to be a valid company as long all this period, even during those days of

hardest work.

Finally, last but not for their importance, thanks with love to all my family,

who support and bear (mi sUpportano e sOpportano) me every day.

iv

INDEX

List of Figures vi

List of Symbols vii

Abstract viii

Chapter 1: Introduction 1

1.1 NeuroScope 1
1.2 NeuroQuest 2

1.3 sigTOOL 2

Chapter 2: Software Design 3

2.1 Design Patterns 3
2.1.1 What Design Patterns Are 3

2.2 Observer 4
2.2.1 Description and Applicability 4
2.2.2 Structure 4
2.2.3 Consequences 5

2.3 Iterator 6
2.3.1 Description and Applicability 6
2.3.2 Structure 6
2.3.3 Consequences 7

2.4 Bridge 7
2.4.1 Description and Applicability 7
2.4.2 Structure 8
2.4.3 Consequences 9

Chapter 3: About the Software 10

3.1 Data Display 10

3.2 Artifact Removal 11
3.3 Noise Characterization 11
3.4 File Operations 11
3.5 Latency Estimation 12

Chapter 4: Data Display and Processing 13

4.1 Analysis 13
4.1.1 Use Case Description 14

4.1.2 Domain Model 14
4.2 Design 15

4.2.1 Communication Diagram 15
4.2.2 Class Diagram 17

Chapter 5: Interacting with the User 19

v

5.1 Analysis 19
5.2 Design 20

5.2.1 Consideration About MATLAB GUI System 20
5.2.2 Communication Diagram 21

5.2.3 Class Diagram 22
5.3 Custom Control Panels 24

Chapter 6: Putting It All Together 26

6.1 Communication Diagram 27

6.2 Design of the Application Class 28

Chapter 7: Case of Study – Implementing the Software 30

7.1 Conclusions and Future Directions 40

References 41

vi

LIST OF FIGURES

Figure 2.1 Observer Pattern 4

Figure 2.2 Iterator Pattern 6

Figure 2.3 Bridge Pattern 8

Figure 3.1 System Use Case Diagram 10

Figure 4.1 “Data Display & Data Processing” Use Cases 13

Figure 4.2 Class Diagram of the Domain Model 15

Figure 4.3 Communication Diagram for Data Displaying 16

Figure 4.4 Communication Diagram including Operations on Signals 16

Figure 4.5 Initial Class Diagram 17

Figure 4.6 The Observable Interface of IModule 18

Figure 5.1 SigMate Graphical User Interface of the First Module 19

Figure 5.2 Domain Model for User Interaction 20

Figure 5.3 Communication Diagram 21

Figure 5.4 GUI Figure and GUI Logic in Detail 22

Figure 5.5 ICustomPanel Interface 22

Figure 5.6 Class Diagram for User Interaction 23

Figure 5.7 BaseGUI Class Diagram 24

Figure 5.8 Statistic Panel 25

Figure 6.1 Domain Model of the Application 26

Figure 6.2 IApplication and IPlugin Interfaces 27

Figure 6.3 Communication Diagram 27

Figure 6.4 Modules Loading Logic 28

Figure 6.5 Application Object Class Diagram 29

vii

LIST OF SYMBOLS

Class / Interface

 Use Case

 Boundary

 Physical Entity

 Program Control / Logic

 Aggregation

Composition

Association

Inheritance

viii

ABSTRACT

Advances in neuronal probe technology to record brain activity make now

possible very deep spatial and temporal resolution in signal recording. In

order to be able to infer significant conclusions from experimental recordings,

sophisticated signal processing tools have been adapted by different

laboratories. However, in the scientific community till date there is no unique

software that performs all the signal processing and analyses and is shared

among the laboratories. Though there are a few packages available

incorporating few techniques together, they rather are very specific to their

data and kind of analyses they want to perform, rather than being open for all

the laboratories. Keeping this in mind, recently, the NeuroChip Laboratory of

the University of Padova, Italy has proposed such a software (named

“SigMate”) incorporating most of the tools in one single application, in order to

render the analysis faster (avoiding time consuming file conversion to analyze

the same set of data with different tools) and more accessible, as scientists

will deal with one single application instead of with a growing number of small

and performing atomic operations programs. However, this software package

is developed in Matlab (http://www.mathworks.com/) following a functional

programming approach. To facilitate the inter-platform operability and

reusability of the software package object oriented design is required. In this

work, we have tried to provide object oriented design of some of the modules

of SigMate. Due to the lack of time all the modules could not be converted and

eventually, in the time course, as a future direction, the software would be

completely transformed to object oriented platform for being adapted by the

scientific community.

Page 1 of 41

CHAPTER 1: INTRODUCTION

Progresses in microelectrode array technology now allow simultaneous

recording from large populations of neurons, thus giving the possibility to

understand the complex relationship between neurophysiology and

behavior. The arising drawback is that each recording produces a

continuously growing amount of data. Processing these massive amounts

of data to extract critical biological information from hundreds of neurons

in noisy recording situations is a major challenge in many experimental

settings. For this reason visualizing and processing the large amounts of

data generated by modern recording systems requires efficient computer

software. Very few software tools exist to date that integrate all the

needed processing steps in one comprehensive package (a brief

description of them is given below) [2] [3] [4] [5]. This is coupled with a

significant lack standardized set of tools that enables replicating

experimental data analysis across labs to facilitate objective comparison

between scientific findings. As result, the sharing of experimental data

across the web, common in many fields of biology, is compromised.

Moreover, although many academic and commercial neurophysiological

signal processing software have been developed, almost no one of them is

comprehensive of all the steps required in extracellularly recorded signal

analysis. Therefore, it is required to use multiple packages to analyze the

same dataset, which makes the analysis cumbersome and time

consuming.

1.1 NEUROSCOPE

NeuroScope [3] is a GNU GPL distributed software designed to help

neurophysiologists to process and view recorded data in an efficient and

user-friendly manner. This software package consists of several

applications and tools designed to assist the experimenter in extracting

and exploring data collected in experiments ranging from acute recordings

in anesthetized animals to complex chronic recordings where brain signals

are recorded from freely moving animals as they perform behavioral tasks

in automated apparatuses.

Page 2 of 41

This software is distributed both in binary and source forms. Developers

assure they have been very careful in developing high-quality and

documented code. Having this software been developed within a

neuroscience laboratory, the feature set was directly chosen and defined

by experimenters. Moreover, constant and direct user feedback made

easy and efficient user interfaces.

1.2 NEUROQUEST

The program [4] is a Matlab developed package studied to give support

for spike detection and analysis on experimental data. This tool is very

user friendly, and a typical use can be summarized as follows. The user

examines the dataset and then can select segments of the data for further

analysis. The following stage consists in denoising the data to enhance the

neural yield. After that, spikes are detected. Detected spikes are extracted

from the data and sent to the spike sorting algorithm. Several parameters

can be specified in the spike sorting GUI such as spike length, type of the

array, clustering method, and type of feature for spike sorting.

The obtained spike trains are then further analyzed using the primary

spike train analysis tools such as ISIH, PSTH, and cross-correlogram.

1.3 SIGTOOL

The package runs in the MATLAB programming environment and has been

designed to promote the sharing of laboratory-developed software across

the worldwide web. It provides features as spike and waveform analysis

for recorded neural signals.

Waveform analysis exposes useful and common functionssuch as

waveform averaging (mean and median), auto- and cross-correlation,

power spectral analysis, coherence estimation, digital filtering (feedback

and feedforward) and resampling. Spike-train analyses include interspike

interval distributions, Poincaré plots, event auto- and cross-correlations,

spike-triggered averaging, stimulus driven and phase-related peri-event

time histograms. Developers let users the freedom of writing their own

extensions that will be added to the sigTOOL interface on-the-fly, without

the need to modify the core sigTOOL code.

Page 3 of 41

CHAPTER 2: SOFTWARE DESIGN

2.1 DESIGN PATTERNS

 Designing object-oriented software is hard, and designing reusable object-

oriented software is even harder. For this reason we adopted some of the

design patterns described by the gang of four [1] while projecting our

software.

2.1.1 WHAT DESIGN PATTERNS ARE?

In software engineering, a design pattern is a reusable general solution to

a commonly occurring problem. It is not a library or a software reusable

component. Rather it is a model to apply to solve a problem that might

take place in different situations when designing and developing software.

Object oriented design patterns show interactions and relationships

among classes or objects, without specifying final classes involved in the

application.

 In general, a pattern has four essential elements:

1. The pattern name is a handle we can use to describe a design

problem, its solutions, and consequences in a word or two. It lets

us design at a higher level of abstraction.

2. The problem describes when to apply the pattern. It explains the

problem and its context. It might describe specific design problems

such as how to represent algorithms as objects. It might describe

class or object structures that are symptomatic of an inflexible

design. Sometimes the problem will include a list of conditions that

must be met before it makes sense to apply the pattern.

3. The solution describes the elements that make up the design, their

relationships, responsibilities, and collaborations. The solution

doesn't describe a particular concrete design or implementation,

because a pattern is like a template that can be applied in many

different situations. Instead, the pattern provides an abstract

description of a design problem and how a general arrangement of

elements (classes and objects in our case) solves it.

Page 4 of 41

4. The consequences are the results and trade-offs of applying the

pattern. The consequences for software often concern space and

time trade-offs. They may address language and implementation

issues as well. Since reuse is often a factor in object-oriented

design, the consequences of a pattern include its impact on a

system's flexibility, extensibility, or portability.

2.2 OBSERVER

2.2.1 DESCRIPTION AND APPLICABILITY

The Observer Pattern [1] is a design pattern used when we need to

control the state of different objects mainly when one of the following

situations occurs:

• an abstraction has two aspects one dependent on the other, thus

encapsulating these aspects in separate objects makes the code

more reusable.

• a change to one object requires changing others, and the number

of how many objects need to be changed is not known priory.

• an object should be able to notify other objects without making

assumptions about who these objects are.

2.2.2 STRUCTURE

Fig. 2.1 Observer Pattern

• Subject

◦ knows its observers. Any number of Observer objects may

Page 5 of 41

observe a subject.

◦ provides an interface for attaching and detaching Observer

objects.

• Observer

◦ defines an updating interface for objects that should be notified

of changes in a subject.

• ConcreteSubject

◦ stores state of interest to ConcreteObserver objects.

◦ sends a notification to its observers when its state changes.

• ConcreteObserver

◦ maintains a reference to a ConcreteSubject object.

◦ stores state that should stay consistent with the subject's.

◦ implements the Observer updating interface to keep its state

consistent with the subject's.

2.2.3 CONSEQUENCES

The Observer pattern lets programmers vary subjects and observers

independently. Subjects can be reused without reusing their observers,

and vice versa. Observers can be added without modifying the subject or

other observers.

Further benefits and liabilities of the Observer pattern include the

following:

1. Abstract coupling between Subject and Observer. All a subject

knows is that it has a list of observers. As the subject doesn't know

the concrete class of any observer, the coupling between subjects

and observers is abstract and minimal.

Because Subject and Observer aren't tightly coupled, they can

belong to different layers of abstraction in a system.

2. Support for broadcast communication. Unlike an ordinary request,

the notification that a subject sends needn't specify its receiver.

The notification is broadcast automatically to all interested objects

Page 6 of 41

that subscribed to it. This gives the freedom to add and remove

observers at any time. It's up to the observer to handle or ignore a

notification.

3. Unexpected updates. Because observers have no knowledge of each

other's presence, they can be blind to the ultimate cost of changing

the subject.

This problem is aggravated by the fact that the simple update

protocol provides no details on what changed in the subject. For

this reason we added additional information on the update methods

in our design.

2.3 ITERATOR

2.3.1 DESCRIPTION AND APPLICABILITY

This pattern allows programmers to traverse through all the element of a

collection, regardless its specific implementation [1].

Use the Iterator pattern

• to access an aggregate object's contents without exposing its

internal representation.

• to support multiple traversals of aggregate objects.

• to provide a uniform interface for traversing different aggregate

structures (that is, to support polymorphic iteration).

2.3.2 STRUCTURE

Fig. 2.2 Iterator Pattern

Page 7 of 41

• Iterator

◦ defines an interface for accessing and traversing elements.

• ConcreteIterator

◦ implements the Iterator interface.

◦ keeps track of the current position in the traversal of the

aggregate.

• Aggregate

◦ defines an interface for creating an Iterator object.

• ConcreteAggregate

◦ implements the Iterator creation interface to return an instance

of the proper ConcreteIterator.

2.3.3 CONSEQUENCES

The Iterator pattern has three important consequences:

1. It supports variations in the traversal of an aggregate. Complex

aggregates may be traversed in many ways: just replace the

iterator instance with a different one. Iterator subclasses can be

defined to support new traversals.

2. Iterators simplify the Aggregate interface. Iterator's traversal

interface obviates the need for a similar interface in Aggregate,

thereby simplifying the aggregate's interface.

3. More than one traversal can be pending on an aggregate. An

iterator keeps track of its own traversal state. Therefore more than

one traversal in progress can exist at once.

2.4 BRIDGE

2.4.1 DESCRIPTION AND APPLICABILITY

Decouple an abstraction from its implementation so that the two can vary

independently.

When an abstraction can have one of several possible implementations,

the usual way to accommodate them is to use inheritance. An abstract

Page 8 of 41

class defines the interface to the abstraction, and concrete subclasses

implement it in different ways. But this approach is not always flexible

enough. Inheritance binds an implementation to the abstraction

permanently, which makes it difficult to modify, extend, and reuse

abstractions and implementations independently [1].

Use the Bridge pattern when

• it is desired to avoid a permanent binding between an abstraction

and its implementation. This might be the case, for example, when

the implementation must be selected or switched at run-time.

• both the abstractions and their implementations should be

extensible by subclassing. In this case, the Bridge pattern lets

programmers combine the different abstractions and

implementations and extend them independently.

• changes in the implementation of an abstraction should have no

impact on clients; that is, their code should not have to be

recompiled.

• there is a big proliferation of classes. Such a class hierarchy

indicates the need for splitting an object into two parts.

• an implementation is shared among multiple objects, and this fact

should be hidden from the client.

2.4.2 STRUCTURE

Fig. 3.3 Bridge Pattern

• Abstraction

◦ defines the abstraction's interface.

Page 9 of 41

◦ maintains a reference to an object of type Implementor.

• RefinedAbstraction

◦ Extends the interface defined by Abstraction.

• Implementor

◦ defines the interface for implementation classes. This interface

doesn't have to correspond exactly to Abstraction's interface; in

fact the two interfaces can be quite different. Typically the

Implementor interface provides only primitive operations, and

Abstraction defines higher-level operations based on these

primitives.

• ConcreteImplementor

◦ implements the Implementor interface and defines its concrete

implementation.

2.4.3 CONSEQUENCES

1. Decoupling interface and implementation. An implementation is not

bound permanently to an interface. The implementation of an

abstraction can be configured at run-time. It's even possible for an

object to change its implementation at run-time.

Decoupling Abstraction and Implementor also eliminates compile-

time dependencies on the implementation. Changing an

implementation class doesn't require recompiling the Abstraction

class and its clients.

Furthermore, this decoupling encourages layering that can lead to a

better-structured system. The high-level part of a system only has

to know about Abstraction and Implementor.

2. Improved extensibility. Abstraction and Implementor hierarchies

can be extended independently.

3. Hiding implementation details from clients. Clients can be shield

from implementation details, like the sharing of implementor

objects.

Page 10 of 41

CHAPTER 3: INTRODUCTION TO
THE SOFTWARE

SigMate [2] is designed to perform various processing and analysis on the

neuronal data files. The use case diagram of the software package can be

seen in Figure 3.1. The main functionalities included at present are: data

display (2D and 3D) with zooming, panning and data cursor options,

artifact removal (including baseline correction), noise characterization

with noise estimation, file operations (including file splitting, file

concatenating and file column rearranger), latency estimation with the

possibility to detect the cortex layer activation order automatically, and

the spike train analysis package. The rest of the features are in-house

developed algorithms, rigorously tested on datasets recorded using

standard micropipette and EOSFETs from anesthetized rats.

Fig 3.1: System Use Case Diagram

3.1 DATA DISPLAY

This is the main functionality of the application, the first module presented

to the user once he launches the application. Providing the user with the

flexibility in viewing the data in 2D and 3D, it also gives the possibility to

perform averaging of single sweeps, estimate the noise, perform +/-

averaging, and calculate the mean square and root mean square. The

Page 11 of 41

noise estimation information is used in further signal operation and when

saving the signal.

3.2 ARTIFACT REMOVAL

This module performs artifact removal as well as baseline correction. It

expects the control signals (recorded without providing stimulation) and

signals with response upon stimulation. Peaks-and-valleys in the signal

are detected using an in-house algorithm and uses their average to

determine an estimation of the signal. The average of the estimation is

used for the baseline correction. Artifact removal is obtained by

subtracting the estimation of the control signal from the signal itself.

3.3 NOISE CHARACTERIZATION

Quality of recorded signals and quantification of the noise present in the

signal are assessed using this module, designed for this purpose. It uses

in-house algorithms to detect the first steady-state (the part of the signal

before the evoked response), the second steady-state (the part of the

signal from the end of response until the end of signal) and fit

mathematical model to calculate the measurement error (ME) present in

the signal. First order statistical information such as mean and standard

deviation of the ME are used to quantify the noise. Moreover the module

performs calculations to retrieve the distribution of the noise and its

estimation, which are finally shown to the user.

3.4 FILE OPERATIONS

Few basic file operations are being incorporated in the software package

that are often time consuming for the scientists who use different

software for signal recording and performing signal processing and

analysis. These operations include: file splitter, that splits a multi-sweep

file into single sweeps based on the recording sampling frequency, file

concatenator, that merges multiple single-sweep files into a multi-sweep

file, and file column rearranger, whose purpose is to retain only the

selected channels discarding the unselected ones.

Page 12 of 41

3.5 LATENCY ESTIMATION

With the latency estimation module scientists can select a set of files and

then detect events present in the signals contained in these files and

calculate the latencies from the starting of the evoked response. The

module first detects the response-onset, then the latencies are calculated

from this response by detecting the various signal events present in each

signal. Automated detection of the layer of recording is determined based

on the signal characteristics and events just detected. Finally the order of

activation of different cortical layers in the barrel column due to the

whisker stimulation is determined by sorting the layer-wise average of the

calculated latencies of the second event.

Page 13 of 41

CHAPTER 4: DATA DISPLAY AND
PROCESSING

During our analysis of the system, we noticed that data visualization is

one of the major and common operations that the scientists want to

perform regardless whatever operation they want to perform later on their

data set. For this reason we found logical to begin our design from this

aspect of the application, and then expand the design to include the

various functionality.

4.1 ANALYSIS

First of all, we have to understand what the user expects and what he/she

has to do to visualize a recorded signal.

Our analysis brought us defining the following points:

• We incorporated two different kinds of recording techniques to

obtain neuronal signals from the brain (by a micropipette or by a

transistor chip) in our design due to the diverse characteristics of the

recorded signals.

• Based on the recording method signals can be recorded through

multiple channels. The number of these channels can be very high,

hundreds or thousands in the case of a transistor chip, and for this reason

the user would like to decide which of them have to be visualized (and

even processed).

• The user must be able to set a directory path and to choose file,

since data are stored in physical files. Eventually, he/she can load many

files and keep them in memory for later analysis or operation over the

whole set of data.

Fig. 4.1 “Data Display & Data Processing” Use Cases

Page 14 of 41

4.1.1 USE CASE DESCRIPTION

Use Case: Data Display

Description: the user selects a recording to visualize

Pre-Conditions: the user must have set the type of the recordings, which

channel he wants to see and specified a directory path where to find the

files

Post-Conditions: the selected signal can be seen on the screen

Main Flow: select a recording type, choose channels of interest, set the

directory path and finally select a specific signal file

Exception Flows: user could have made a wrong selection on channels,

meaning no channel has been selected or the selected channel is not

present in the signal file. If this situation occurs, a message is shown to

the user to inform him/her that he/she must correct his/her settings

before continuing.

Use Case: Process/Analyze Signal

Description: after having selected a signal to visualize, the user can

perform an analysis or some process operation on data.

Pre-Conditions: same as Data Display

Post-Conditions: same as Data Display, with the addition of saving

and/or displaying the result to the user

Main Flow: same as Data Display, and then select the preferred operation

Alternative Flow: before selecting the preferred operation, the user may

choose to use a single file or multiple files

Exception Flow: same as Data Display.

4.1.2 DOMAIN MODEL

Now that we have a description of the use case we can analyze what kinds

of objects compose our domain. For the moment we focus only on the

main flow of the “Data Display” use case, and leave exceptions handling

and “Process/Analyze Signal” for a later phase of our design.

As the purpose of the application is dealing with multichannel signals, we

Page 15 of 41

begin with defining two entities: “Signal” that is composed of “Data

Channels”. Signals are saved into physical files, thus in some way

recordings are loaded by the application from the hard drive into system

memory – “File Reader” is responsible of this operation. We also need an

object capable of displaying data to the user – this is the aim of “Data

Plotter”. “Recording Type” is an enumeration of constants, while “Data

File” represents an existing file.

Fig. 4.2 Class Diagram of the Domain Model

4.2 DESIGN

4.2.1 COMMUNICATION DIAGRAM

The use case description helps us to define the way objects interact each

other. As a matter of fact we realize from our previous analysis that the

problem can be solved in three temporally subsequent steps, as explained

in the main flow description of the use case. We added a boundary object

UI (User Interface) to model the interaction between the user and the

application. By now it is intended to be something that allows this

exchange of information. We will focus on it in the next chapter (Figure

4.3).

Page 16 of 41

Fig. 4.3 Communication Diagram for Data Displaying

Paths 3 and 4 are exceptional flows when an error occurs in options

validation or while loading a file.

The diagram in figure 4.4 extends the previous one in order to include

also data processing/analysis logic.

Fig 4.4 Communication Diagram including Operations on Signals

Page 17 of 41

4.2.2 CLASS DIAGRAM

The chronological order of the operations that emerges from the

Communication Diagram also underlines a logical subdivision of the

problem, thus suggesting one possible solution about what classes and

what objects we need to reach our target.

In chapter 4 we said that SigMate consists in many modules, each one

responsible of one (or one set of similar) operation(s). For this reason we

created an interface named IModule. Each concrete module that composes

the whole application must implement this interface.

Through interfaces IFileReader, IOptionSelector and IFileBrowser the

different application properties can be selected. The basic output, i.e.

signal visualization, is responsibility of IDataDisplay interface. IModule is

an aggregation of these interfaces all together.

Fig. 4.5 Initial Class Diagram

We adopted the Observer Pattern to extend functionality of IModule. This

way, a class implementing this interface, only has to care about task logic,

leaving to external observers the duty of showing or saving results. This

way we avoid heavy coupling between classes, since each IModule knows

its observers only through their interfaces.

There are mainly two events that occur during the life cycle of a module:

• Data Selection

• Task Completed

Page 18 of 41

Thus we created two interfaces that allow a module to be observed by

other objects in order to respond properly at those events.

Fig. 4.6 The Observable Interface of IModule

Page 19 of 41

CHAPTER 5: INTERACTING WITH
THE USER

User interface behaves like a bridge between the user and the application

logic. Through it, commands given by users can be dispatched to the

underlying classes that perform application tasks. Figure 5.1 has already

illustrated this concept.

5.1 ANALYSIS

SigMate interacts with the user through a simple to understand graphical

interface. Following, there is a brief description (Figure 5.1).

Fig. 5.1 SigMate Graphical User Interface of the first module (for signal visualization and

performing basic operations)

1. Signal options panel: recording type and channels can be selected

by the user;

2. Data display panel: when a file is chosen, it is displayed on this

panel. The four buttons allow the user to zoom, to translate, and to

show a cursor. One resets the graph to its default behavior;

3. File navigation panel: folder navigation and file selection can be

done here. Two buttons allow moving a file inside the list. Another

Page 20 of 41

button allows file removing;

4. A button to load all the files in the list into the memory, to perform

tasks over the whole amount of data;

5. Module logic panel: this section varies from each module to the

other. It contains buttons and other kinds of controls to perform

operations depending on the module.

Use Cases for this problem emerges from points 1, 3, 4 and 5 of the

previous list. Our domain model simply consists in four classes

representing those features, plus one class that coordinates and manages

the whole user interface.

Fig. 5.2 Domain Model for User Interaction

5.2 DESIGN

5.2.1 CONSIDERATION ABOUT MATLAB GUI SYSTEM

Matlab provides programmers a nice tool, GUIDE, to create GUI (Graphical

User Interface(s)), but it is not intended to be used in an object oriented

programming logic. This is a strong limitation as other objects cannot see

the resulting GUI as a whole, but rather as a collection of static functions.

We can think to adapt the various objects that compose our system to

interact with a single figure, but this implies that for each different figure

we must create a different version of the same objects. It would result in

the creation of a lot of similar classes and would make both design and

code hard to understand. More, if we wish to write this software in

another programming language but Matlab, we would need to restructure

Page 21 of 41

the whole design, and many classes designed for a Matlab implementation

will become useless.

Our solution consists in the creation of general interface classes, basing on

our domain model. Implementations of these abstractions deal with the

specific entities the platform we are writing these classes for uses to paint

a GUI. This way, GUI logic is independent and its physical implementation

results completely transparent to the user.

5.2.2 COMMUNICATION DIAGRAM

Fig. 5.3 Communication Diagram

GUI logic is realized following the observer pattern, where the observable

object is the GUI front end. It is responsible of raising events or of

forwarding requests towards the underlying module. It can also trigger

events, for example, when a task is completed. Events are observed by a

Event Responding Logic, which updates the GUI if necessary (for example

disabling or enabling buttons or displaying results).

In the next figure (Figure 5.4) we underline how entities found in domain

model are one to one mapped to our design. We notice that both GUI

Frontend and GUI Logic are made up of five subsystems each.

Page 22 of 41

Fig. 5.4 GUI Figure and GUI Logic in Detail

Each one of the components of GUI Logic raises specific events and

notifies messages to Module Control, forwarding user's requests.

5.2.3 CLASS DIAGRAM

Once we have planned both the Domain and Communication Diagrams,

the class design for this part of the application descends naturally from

them.

We have already defined the behavior of the logic in chapter 5, providing

the interfaces IFileBrowser, IOptionSelector, IDataDisplay accessible from

the IModule interface. Instead of creating classes for the GUI logic that

eventually would interact with implementations of these interfaces, we

preferred adopt the Adapter Pattern to solve this problem.

We first defined an IUserPanel interface, shown in the next figure:

Fig. 5.5 IUserPanel interface

The only method init(object[] controls) : void is called when the panel has

to be initialize. Controls variable contains references to the objects

present in the window, like buttons, lists, check boxes etc.

In our MATLAB version, this method is called every time a figure is

created, since every handle of the figure is destroyed when the figure is

Page 23 of 41

closed and recreated when it is opened. In a Windows Forms

implementation, the method would be called only when the window is

created, and not every time it is hidden and shown.

Each base panel of our application (numbers 1, 2 and 3) is managed by a

class implementing both IUserPanel and one of the above cited interfaces

(Figure 5.6). An IModule using these classes doesn't matter how they are

realized, since it can access them only through their interface, as defined

in the previous chapter.

Methods which name sounds like on_something() are handles to events

triggered by objects of the GUI. Updating logic (changes of the enable

state of a control, update of a list etc.) is specified in their bodies.

Fig. 5.6 Class Diagram for User Interaction

Figure 5.7 shows a base implementation of IUserInterface. It defines

variables and behavior shared among all the GUIs of our program. Each

graphical user interface must inherit from this abstract class.

Page 24 of 41

In our logic each subclass maintains a reference to the particular module

it is the boundary for and not vice versa, because modules are at a

medium layer between the user interface and the file system and they are

not intended to know how interact with the user. This way the final

application deals only with GUI objects, being them responsible of the

communication with the underlying layer.

Fig. 5.7 Base GUI Class Diagram

5.3 CUSTOM CONTROL PANELS

We also included the design of some panels that often occurs in SigMate.

The first one is the Statistic Panel, which contains commands to execute

statistical operations like averages, mean squares and noise estimation. It

is primarily used in the main module of the program, but we can find it

also when using LFP analyzer. Moreover, the underlying logic is shared

among every module of the program. This is the reason because it is our

first implementation as we will see in the case of study.

Page 25 of 41

Fig. 5.8 Statistic Panel

Page 26 of 41

CHAPTER 6: PUTTING IT ALL
TOGETHER

SigMate consists of multiple modules, each one performing a specific set

of operations. By now six of these modules already exist, but their

number is going to grow in the next future. For this reason we need to

design our software in order to be flexible enough to allow easy

integration of new modules into the existing system. In this chapter there

won't be the analysis step, since it only consists in one single Domain

Diagram. The Use Case Diagram has already been explained in chapter 4.

Fig. 6.1 Domain Model of the Application

From this domain model we can infer two interfaces, which are our

starting point during the design phase.

As the application is nothing more than a set of features coded in different

modules, we modeled it as a collection of plug-ins. From this interface we

can register a plug-in or choose which one we want to be executed.

Page 27 of 41

The second one is an interface we named, as the reader can expect,

IPlugin. We kept it as simpler as possible, because our goal is to make

SigMate a very flexible tool able to adapt to the many different needs of

scientists working on the branch of neuronal signal analysis. It exposes

three methods, two of which are simple access methods. The remaining

one is responsible of the execution of the plug-in.

Fig. 6.2 IApplication and IPlugin Interfaces

6.1 COMMUNICATION DIAGRAM

In the last chapter we said that the application can interact with logic only

through user interfaces. Now, since each plug-in is a sort of little program,

we can say that interaction with logic is reached only through user

interface and the responsible of the good cooperation between these two

entities in carried by a plug-in.

Fig. 6.3 Communication Diagram

The role of the application is managing the coordination of the various

features, accepting user's input and giving him/her back the module

requested.

In our MATLAB implementation we directly mapped these concepts into

classes, making the application a collection of plug-ins.

Page 28 of 41

This class exposes a method to load them in which the loading routine is

hard coded. The drawback of this solution is that every time we add a new

module we must update the code of our program. This is not a real

problem since MATLAB is a script language and code is compiled for every

execution of the program. If we wish port our application in another

language, we would have to think of a different way to solve the problem.

Solutions are different if the module is released with a compiled library or

with a script text file. This is not the place where discuss about this

matter, but our suggestion is to maintain a file where names and locations

of modules are registered. This solution requires an careful design of the

plug-in loading engine, but once the code has been written and compiled

no more modifications are needed.

Fig. 6.4 Modules Loading Logic

6.2 DESIGN OF THE APPLICATION CLASS

There are many ways to realize the application class and we chose to

adopt objects polymorphism common between almost the object oriented

program languages existing at the time. This choice was due by the fact

that the main window of the program is the only one having a menu bar

for the navigation through the various features. Implementing both

IApplication and IUserInterface in one class everything is strictly bounded

inside an already existing object.

Page 29 of 41

Although it may seem these behaviors are heavily coupled, the application

logic is very simple to manage, and we think that this solution is simpler

and makes the design more understandable, rather than the creation of

lots of micro classes.

Fig. 6.5 Application Object Class Diagram

The selection of a specific module is communicated to the application by

menu items callbacks present in the figure file. This is the only one case in

which one figure stores a reference to its GUI class in order to notify

changes in selections. As a matter of fact the creation of a graphical panel

responsible of the management of the menu bar input would result hard

to maintain because of the continuously growing number of SigMate's

features. This approach implies the insertion of a new method in the

interface of such object every time a new module is developed, making its

interface variable over time (thus arising incompatibility problems with

previous versions of the program).

With our solution, instead, we only makes changes on the main window of

the program, in order to insert new menu items, and on the body of the

onSelectionChanged method of the application object.

Page 30 of 41

CHAPTER 7: CASE OF STUDY –
IMPLEMENTATION OF
THE MAIN MODULE

In this case of study we will show a matlab implementation of the main

module of the application. Orange italic sentences represent parts of code

we omitted because not essential to understand the working logic of our

design. Each class is preceded by a short comment.

DataFile

This class is responsible of keeping in memory data just loaded from file

and retrieves them when needed.

classdef DataFile < handle

 properties (Access = private)

 data %matrix containing data from file

 channels %channels description

 data_pts %number of samples

 sample_f %sample frequency

 end

 methods

 %PROPERTIES GETTERS

 function f = getSampleFreq(obj)

 f = obj.sample_f;

 end

 function N = getNumSamples(obj)

 N = obj.data_pts;

 end

 function d = getChannelsDesc(obj)

 d = obj.channels(2:length(obj.channels));

 end

 %ACCESS METHODS

 function time = getTime(obj)

 time = obj.data(:,1);

 end

 function data = getData(obj,varargin)

 ch = varargin{1};

 id = zeros(1,length(ch));

 for i = 1:length(ch)

 id(i) = find(obj.channels == ch(i));

 end

 data = obj.data(:,id);

 if length(varargin) == 3

 s = varargin{2};

 c = varargin{3};

Page 31 of 41

 data = data(s:(s + c - 1),:);

 end

 end

 %CONSTRUCTOR

 function obj = DataFile(time,data,channels)

 obj.data_pts = size(time,1);

 obj.sample_f = (time(2) - time(1)) / obj.data_pts;

 obj.data = [time, data];

 obj.channels = [0 channels];

 end

 end

end

ISelectionEvent

We reported the code only for this interface, as IProcessedEvents behaves

exactly in the same way.

classdef ISelectionEvent < handle

 properties (Access = protected)

 handlers %array of pointers to event handlers associated with this

object

 end

 methods

 function attach(obj,handler)

 obj.handlers = [obj.handlers(:), handler];

 end

 function detach(obj,handler)

 x = find(obj.handlers == {handler});

 if (x) %the specified handler observes this object

 for i = x:length(obj.handlers)-1

 obj.handlers{i} = obj.handler{i+1};

 end

 obj.handlers = [obj.handlers(1:length(obj.handlers)-1)];

 end

 end

 function selectionChanged(obj, sender)

 for i = 1:length(obj.handlers)

 h = obj.handlers{i};

 h.onSelectionChanged(sender);

 end

 end

 %CONSTRUCTOR

 function obj = ISelectionEvent()

 obj.handlers = {};

 end

 end

end

StatisticMOD

This module performs various operations, like averaging or estimating

noise on data signals. The code for these operations has been omitted,

but the reader must keep in mind that when an operation is completed a

Page 32 of 41

ProcessedDataEvent is triggered, thus the application can display results

to the user.

Notice that the DataSet class appearing in load method is an extension of

the DataFile class. It can perform operation of merging multiple data files

and handles all of them in a single structure.

classdef StatisticMOD < IModule

 properties (Access = protected)

 eavg, oavg, avg,

 nest, rms, ms

 end

 %

 methods

 %CONSTRUCTOR

 function obj = StatisticMOD(selector, browser, viewer)

 obj = obj@IModule();

 obj.selector = selector;

 obj.browser = browser;

 obj.viewer = viewer;

 %

 obj.reader = FileReader();

 end

 %STATISTIC OPERATION

 function average(obj)
 function invertedAverage(obj)
 function estimateNoise(obj)
 function meanSquare(obj)
 function rootMeanSquare(obj)
 %LOAD

 function load(obj)

 files = obj.browser.files;

 ch = obj.selector.channels;

 dataset = DataSet(ch);

 for i = 1:length(files)

 f = files{i};

 M = obj.reader.load(obj.browser.directory, f, ch);

 dataset.vertcat(M);

 end

 end

 end

end

FileBrowser, DataSelector and FileViewer

These three classes are both GUI panels and implementations of the

respective interfaces.

classdef FileBrowser < IFileBrowser & IUserPanel

 properties (Access = private)

 btnBrowse, btnRemove, btnMoveD, btnMoveU,

 lstContent, lblPath, path

Page 33 of 41

 end

 properties (Dependent, Access = public)

 directory

 end

 properties (Dependent, SetAccess = private)

 files

 index

 end

 methods

 %IUSERPANEL

 function init(handles)

 % initialization routine initializes each private property with
 % a corresponding handler of one figure object
 end

 %IFILEBROWSER

 function files = get.files(obj)

 files = get(obj.lstContent, 'String');

 end

 function index = get.index(obj)

 index = get(obj.lstContent, 'Value');

 end

 function path = get.directory(obj)

 path = obj.path;

 end

 function set.directory(obj, value)

 obj.path = value;

 text = ['Selected Directory Path: ', value];

 set(obj.lblPath,'String', text);

 newpath = strcat(regexprep(obj.path,'\','/'),'/*.txt');

 dir_struct = dir(newpath);

 file_names = sortrows({dir_struct.name}');

 set(obj.lstContent, 'String', file_names);

 set(obj.lstContent, 'Value', 1);

 % GUI objects update

 end

 function remove(obj)

 selected = obj.index;

 prev_str = get(obj.lstContent, 'String');

 if ~isempty(prev_str)

 prev_str(selected) = [];

 set(obj.lstContent, 'String', prev_str);

 set(obj.lstContent, 'Value',

min(selected,length(prev_str)));

 end

 % GUI objects update

 end

 function moveU(obj)

 if (~isempty(obj.files) && (obj.index > 1)&&(obj.index <=

length(obj.files)))

 listbox_contents = obj.files;

 temp = listbox_contents{obj.index};

 listbox_contents{obj.index} = listbox_contents{obj.index-1};

 listbox_contents{obj.index - 1} = temp;

 set(obj.lstContent, 'String', listbox_contents);

Page 34 of 41

 set(obj.lstContent, 'Value', min(index -

1,length(listbox_contents)));

 end

 % GUI objects update

 end

 function moveD(obj)

 if (~isempty(obj.files) && (obj.index >= 1)&&(obj.index <

length(obj.files)))

 listbox_contents = obj.files;

 temp = listbox_contents{obj.index};

 listbox_contents{obj.index} = listbox_contents{obj.index +

1};

 listbox_contents{index + 1} = temp;

 set(obj.lstContent, 'String', listbox_contents);

 set(obj.lstContent,'Value', min(index +

1,length(listbox_contents)));

 end

 % GUI objects update

 end

 end

end

classdef DataSelector < IDataSelector & IUserPanel

 properties (Access = private)

 pumRecType

 chkChannels

 my_module

 end

 properties (Dependent, SetAccess = private)

 channels

 rec_type

 end

 methods

 %IUSERPANEL

 function init(obj, handles)

 obj.pumRecType = handles{1};

 obj.chkChannels = handles{2:length(handles)};

 end

 %IDATASELECTOR

 function channels = get.channels(obj)

 channels = [];

 for i = 1:length(obj.chkChannels)

 ch = obj.chkChannels{i};

 if (get(ch, 'Value') == get(ch, 'Max'))

 channels = [channels, i];

 end

 end

 end

 function rec_type = get.rec_type(obj)

 t = get(obj.pumRecType, 'Value');

 switch (t)

 case 2

 rec_type = 'micropipette';

 case 3

 rec_type = 'transistor';

Page 35 of 41

 end

 end

 %HELPER

 function enable(obj, flag)

 if flag

 state = 'On';

 else

 state = 'Off';

 end

 for i = 1:length(obj.chkChannels)

 ch = obj.chkChannels{i};

 set(ch, 'Visible', state);

 end

 end

 end

end

classdef FileViewer < IUserPanel & IFileViewer

 properties (Access = private)

 axes, btnCur, btnPan

 btnReset, btnZoom

 end

 properties (Access = public)

 my_module

 end

 methods

 %IUSERPANEL

 function init(obj,varargin)

 % initialization routine initializes each private property with
 % a corresponding handler of one figure object
 end

 %IFILEVIEWER

 function cursor(obj)

 button_state = get(obj.btnCur,'Value');

 if button_state == get(obj.btnCur,'Max')

 % Toggle button is pressed, take appropriate action

 datacursormode on;

 % GUI objects update

 elseif button_state == get(obj.btnCur,'Min')

 % Toggle button is not pressed, take appropriate action

 datacursormode off;

 end

 end

 function pan(obj)

 button_state = get(obj.btnPan,'Value');

 if button_state == get(obj.btnPan,'Max')

 % Toggle button is pressed, take appropriate action

 pan on;

 % GUI objects update

 elseif button_state == get(obj.btnPan,'Min')

 % Toggle button is not pressed, take appropriate action

 pan off;

 end

 end

 function reset(obj)

Page 36 of 41

% GUI objects update

 datacursormode off;

 zoom off;

 pan off;

 axis('tight');

 end

 function zoom(obj)

 button_state = get(obj.btnZoom,'Value');

 if button_state == get(obj.btnZoom,'Max')

 % Toggle button is pressed, take appropriate action

 zoom on;

 % GUI objects update

 elseif button_state == get(obj.btnZoom,'Min')

 % Toggle button is not pressed, take appropriate action

 zoom off;

 end

 end

 function view(obj,file_name)

 % load the file
 % display data on the axes panel
 end

 function onSelectionChanged(obj, sender)

 if (isa(sender,'IBrowser'))

 index = sender.index;

 name = sender.files{index};

 path = sender.directory;

 file_name = [path, name];

 obj.view(file_name);

 obj.view(data);

 end

 end

 end

end

MainGUI and IApplication

IApplication is implemented as dictionary storing key-value pairs, where

keys are plugins’ names and values are plugins themselves.

classdef IApplication < handle

 properties

 % dictionary containing all plugins.

 plugins

 end

 methods

 function regPlugin(plugin, name)

 % register plugins in a dictionary

 end

 function runPlugin(name)

 % find the selected plugin and run it

 end

 end

end

Page 37 of 41

This is the main class of the application, being it the first GUI displayed to

the user. The application starts from the static method main. A new

instance of the application is created, then the program looks for the

existent plugins and load them. Finally, the main window is displayed to

the user.

classdef MainGUI < IApplication & GUI.BaseGUI

 properties (SetAccess = private)

 my_module % the specific module associated with this GUI

 end

 methods

 %CONSTRUCTOR

 function obj = MainGUI()

 obj@IApplication();

 obj@GUI.BaseGUI();

 % panels creation

 selector = GUI.DataSelector();

 browser = GUI.FileBrowser();

 viewer = GUI.FileViewer();

 obj.panels = {selector, browser, viewer};

 % module creation

 obj.my_module = StatisticMOD(selector, browser, viewer);

 end

 %IUSERINTERFACE

 function open(obj)

 hfig = MainFIG();

 handles = guidata(hfig);

 %create references to the GUI manager and the module

 handles.my_GUI = obj;

 handles.my_module = obj.my_module;

 %store handles in the figure

 guidata(hfig, handles);
 %
 % initialize every panel with its object handles
 %
 obj.hfig = hfig;

 end

 function close(obj)

 selection = questdlg('Do you really want to exit?',...

 'Exit Request Confirmation',...

 'Yes','No','Yes');

 switch selection,

 case 'Yes',

 delete(obj.hfig)

 case 'No'

 return

 end

 end

 end

 methods (Static)

 function main()

 app = FirstGUI();

 % load all plugins in the application

 app.open();

 end

 end

end

Page 38 of 41

As the user can have notice, many of our interfaces contains themselves

some implementation code. This is due to MATLAB, since it does not have

a specific construct to represent pure abstract interfaces. They are simply

abstract classes. For this reason, instead of create lots of interface-base

class pairs, we preferred to fuse these two entities in a single object.

We moved GUI objects’ callbacks out from classes contained in the GUI

package. For the sake of simplicity we created them with the GUIDE

programming tool, which automatically sets objects’ callbacks to static

methods contained in the figure’s corresponding m-file, and, moreover

callback methods themselves cannot be instance methods but only static

ones.

By storing a reference to the module in the figure handles object, the

figure itself can dispatch methods directly to the underlying module with a

single line of code, avoiding this problem at all.

Figure File

function varargout = MainFIG(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @FirstGUI_OpeningFcn, ...

 'gui_OutputFcn', @FirstGUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

%%

%
% code generated by GUIDE
%
function FirstGUI_OpeningFcn(hObject, eventdata, handles, varargin)

function varargout = FirstGUI_OutputFcn(hObject, eventdata, handles)

% --- Executes on button press in btnClose.

function btnClose_Callback(hObject, eventdata, handles)

 handles.my_GUI.close();

%%

% --- Executes on button press in btnBrowse.

function btnBrowse_Callback(hObject, eventdata, handles)

 path = uigetdir('D:\MatlabWorks','Select a Directory');

 if(path)

 mod = handles.my_module;

 mod.browser.directory = strcat(path,'\');

Page 39 of 41

 else

 msgbox('Please Select a Directory for Analysis', 'Directory Not

Selected','Error');

 end

%%

function pumRecType_Callback(hObject, eventdata, handles)

 mod = handles.data_selector;

 t = get(hObject, 'Value');

 switch t

 case 2

 mod.selector.enable(1);

 case 3

 mod.selector.enable(1);

 otherwise

 msgbox('Please Select a Signal Source', 'Signal Source Not

Selected','Error');

 mod.selector.enable(0);

 end

%%

% --- Executes on selection change in lstboxContent.

function lstboxContent_Callback(hObject, eventdata, handles)

 mod = handles.my_module;

 mod.selectionChanged(mod.browser);

%%

function btnLoad_Callback(hObject, eventdata, handles)

 handles.my_module.load();

%%

% --- Executes on button press in btnAverage.

function btnAverage_Callback(hObject, eventdata, handles)

 handles.my_module.average();

%%

% --- Executes on button press in btnNoiseEstimation.

function btnNoiseEstimation_Callback(hObject, eventdata, handles)

 handles.my_module.estimateNoise();

%%

% --- Executes on button press in btnInvertedAverage.

function btnInvertedAverage_Callback(hObject, eventdata, handles)

 handles.my_module.invertedAverage();

%%

% Same thing for all the other callbacks

function btnMeanSquare_Callback(hObject, eventdata, handles)
function btnRootMeanSquare_Callback(hObject, eventdata, handles)
function btnRemoveFile_Callback(hObject, eventdata, handles)
function btnMoveUp_Callback(hObject, eventdata, handles)
function btnMoveDown_Callback(hObject, eventdata, handles)
function tbZoom_Callback(hObject, eventdata, handles)
function tbDataCursor_Callback(hObject, eventdata, handles)
function btnResetGraph_Callback(hObject, eventdata, handles)
function tbPan_Callback(hObject, eventdata, handles)

function sigPlotter_Callback(hObject, eventdata, handles)
function plot3D_Callback(hObject, eventdata, handles)
function fileOperators_Callback(hObject, eventdata, handles)

% Menu callbacks call IApplication.runPlugin(plugin_name) on the object
handles.my_module, passing as plugin_name the name of the plugin
corresponding to the specified menu item

function lfpCharacterization_Callback(hObject, eventdata, handles)
function estimateLatency_Callback(hObject, eventdata, handles)
function characterizeNoiseMenu_Callback(hObject, eventdata, handles)
function manualMenu_Callback(hObject, eventdata, handles)

Page 40 of 41

function aboutMenu_Callback(hObject, eventdata, handles)
function creditsMenu_Callback(hObject, eventdata, handles)
function menuSpike_Callback(hObject, eventdata, handles)
function spikeDetectionAndSorting_Callback(hObject, eventdata, handles)
function csdAnalysis_Callback(hObject, eventdata, handles)
function lfpmnuShapeCharacterization_Callback(hObject, eventdata, handles)
function fastArtifactRemover_Callback(hObject, eventdata, handles)
function slowArtifactRemover_Callback(hObject, eventdata, handles)

7.1 CONCLUSIONS AND FUTURE DIRECTIONS

From the case of study, this design has proved to be implementable. We

choose MATLAB for our implementations because the existing code is

written in this language, since it offer a simple way even to code complex

algorithms. Scientists and researchers find this language friendlier than

other just because it allows them to focus on the mathematical solution of

a problem rather than on other aspects typical of programming languages.

However, we think we will port SigMate on another platform in the future.

Our ideal target is C#, since this language combines software speed with

a well documented library provided with the development environment. As

a matter of facts speed is very important in such applications, since they

have to deal with large amount of data and computations take often a lot

of time.

Consequently, we are also planning to develop a math library, designed

with particular care for our purposes, able to exploit parallel computation

capabilities of modern hardware. Thus, as computational times would

reduce of several magnitude orders, great advantages would be possible

for analyzing and understanding recordings.

Page 41 of 41

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, “Design

Patterns: Elements of Reusable Object-Oriented Software,”

Addison-Wesley, New Jersey, 1995.

[2] M. Mahmud, A. Bertoldo, S. Girardi, M. Maschietto, S.

Vassanelli “SigMate: A MATLAB-based Neuronal Signal Processing

Tool,” in: Proceedings of the 32nd Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (IEEE

EMBC2010), Buenos Aires, Argentina, September 2010, pp. 1352-

1355.

[3] L. Hazan, M. Zugaro, G. Buzsáki, “Klusters, NeuroScope,

NDManager: A free software suite for neurophysiological data

processing and visualization”, Journal of Neuroscience Methods,

155, 2006, pp. 207–216.

[4] K. Y. Kwon, S. Eldawlatly, K. G. Oweiss, “NeuroQuest: A

Comprehensive Tool for Large Scale Neural Data Processing and

Analysis”, Proceedings of the 4th International SaD1.18 IEEE EMBS

Conference on Neural Engineering, Antalya, Turkey, April 29 - May

2, 2009, pp. 622-625.

[5] M. Lidierth, “sigTOOL: A MATLAB-based environment for

sharing laboratory-developed software to analyze biological

signals”, Journal of Neuroscience Methods, 178, 2009, 188–196.

[6] ________, “UML Applied – Object Oriented Analysis and

Design using the UML,” Training Material, ariadnetraining.co.uk

(www.ariadnetraining.co.uk)

