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Abstract

With this work we want to find an efficient way to compress k-mers sets with
counters since they take up a lot of disk space but their use brings several
advantages over genomes or sets of genomes. Here some strategies are pro-
posed to explore the cdBGs in order to produce smaller files than UST and
the counts encoding has been revised. A new application has been presented
to implement the above strategies and fix a bug in UST which caused wrong
counts ordering. It has been shown that it is possible to improve the com-
pression with respect to UST based on the density of the graph. Finally, a
small value of k leads to denser graphs and therefore better results.

Con questo lavoro si vuole trovare un modo efficiente per comprimere i k-
mers set con contatori poiché occupano molto spazio su disco ma il loro uso
porta diversi vantaggi rispetto ai genomi o insiemi di genomi. Qui vengono
proposte alcune strategie per esplorare i cdBG in modo da produrre file più
piccoli rispetto a UST e si è rivista la codifica dei conteggi. È stata presentata
una nuova applicazione per implementare le suddette strategie e correggere
un bug di UST che sbagliava l’ordinamento dei conteggi. Si è dimostrato che
è possibile migliorare la compressione rispetto a UST in base alla densità del
grafo. Infine, un valore di k piccolo porta a grafi più densi e quindi risultati
migliori.
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1 | Introduction

1.1 DNA

The DNA (DeoxyriboNucleic Acid) is a macro-molecule that is found in the
nucleus of a cell. It has a characteristic double helix shape formed by two
chains of nucleotides. A nucleotide is formed by a sugar-phosphate molecule
bound to a nitrogenous base. We have four possible bases: adenine, guanine,
thymine and cytosine (A,C, T,G). They can make only two hydrogen bonds
A− T or C −G between the two chains, see figure 1.1.

The particular order in which the bases are arranged defines the information
stored in the DNA. Part of this information is transcribed by the RNA-
polymerase to the mRNA (Messenger RiboNucleic Acid), that is a single-
stranded copy1 of a portion of the DNA called gene (figure 1.2). Then it is
sent out of the nucleus to the ribosome, a special protein that builds other
proteins using amino-acids in the cytoplasm following instructions given by
the mRNA (figure 1.3).

Proteins make cells that build tissues that make organs and all forms of life.

1In this copy, thymine is replaced by uracil.
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Figure 1.1: DNA double helix structure. One strand is made by a chains of
nucleotides; each nucleotide has a bond with its complementary in the other
strand [12].
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Figure 1.2: Gene transcription by RNA-polymerase [9].

Figure 1.3: Protein synthesis starts by assembling a small chain of amino-
acids called peptide [11].
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1.2 DNA sequencing

Being able to read the DNA can be helpful in order to understand how gene
are expressed, how mutations interact with the cell and how living being
are related to each other. Therefore DNA sequencing is a key technology in
many areas of biology, medicine, anthropology and forensics too.

We call genome all genetic material of a living being, that’s what we aim to
read.

Figure 1.4: The history of sequencing technology [10].

The Sanger method [28] paved the way to sequencing technology in 1977
(figure 1.4). In 2005 Next Generation Sequencers (NGS) were born: they
are characterized by the ability of reading an high number of sample in short
time thanks to task parallelization. There are four main steps in order to
read the DNA:

1. cut : cut the sample into small pieces of fixed length;

2. copy : replicate them many times;

3. read : fragments - called reads - are read base by base by sensing light
(figure 1.5) emitted from reactions with enzymes. The information
obtained is saved in a FASTQ file with a quality score string for each
read (listing 1.1);
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4. assemble: finally reads are assembled in a single (or not) DNA sequence.
There are two type of assembly:

• comparative assembly : needs a reference genome in which reads
can be mapped. It works well even if there are errors;

• de novo assembly : needs high coverage2 and it’s computationally
harder than the previous.

1 @SRR001665 .1 071112 _SLXA -EAS1_s_4 :1:1:672:654 length =36
2 GCTACGGAATAAAACCAGGAACAACAGACCCAGCAC
3 +SRR001665 .1 071112 _SLXA -EAS1_s_4 :1:1:672:654 length =36
4 IIIIIIIIIIIIIIIIIIIIIIIIEII9IIIEIIII
5 @SRR001665 .2 071112 _SLXA -EAS1_s_4 :1:1:657:649 length =36
6 GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
7 +SRR001665 .2 071112 _SLXA -EAS1_s_4 :1:1:657:649 length =36
8 IIIIIIIIIIIIIIIIIIIIIIIIII8II=II;III
9 @SRR001665 .3 071112 _SLXA -EAS1_s_4 :1:1:708:653 length =36

10 GAGAGAGCAGTGGGCGAGGTTGGGACATGTCATGAT

Listing 1.1: FASTQ file for sequence SRR001665_1. The format implies
blocks formed by a definition line starting with @, the sequence itself, a
separator line starting with + and ASCII quality scores from ! (lowest) to ˜

(highest).

With the technology improvement we get lower and lower cost per base pair
leading to a huge growth in DNA sequence data (figure 1.6). In figure 1.7, the
National Health Institute compares the cost per genome with the Moore’s
Law: there is a huge demand of storage that actual technology struggles to
satisfy.

2It’s the number of overlapping sequences we have during alignment.
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Figure 1.5: An example of chromatogram used in a Sanger sequencer ma-
chine [8].

Figure 1.6: The cost drop is followed by a growth in DNA sequence data.
From The Economist.
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Figure 1.7: The cost per genome has become much lower than Moore’s Law:
the exponential growth of genomic data is not followed by an exponential
growth of storage.
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1.3 K-mers

In the bioinformatics literature a k-mer is a sequence of k bases represented
with the characters A, C, T, G (Adenine, Guanine, Thymine, Cytosine).

The majority of bioinformatics analysis are performed by k-mer based tools.
These tools operate primarily by transforming the input sequence data, which
may be of various lengths depending on the technology, into a k-mer set. For
example (see listings 1.2 and 1.3), an input sequence can contain many reads
of length 36 and its 31-mers set contains only the substrings of length 31

with their multiplicity, called counts. With sufficiently large k, we can guess
that, if a k-mer count is low, it is likely to be a read error while, if it is high,
it is a repeat3.

1 >SRR001665 .1 071112 _SLXA -EAS1_s_4 :1:1:672:654 length =36
2 GCTACGGAATAAAACCAGGAACAACAGACCCAGCAC
3 >SRR001665 .2 071112 _SLXA -EAS1_s_4 :1:1:657:649 length =36
4 GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
5 >SRR001665 .3 071112 _SLXA -EAS1_s_4 :1:1:708:653 length =36
6 GAGAGAGCAGTGGGCGAGGTTGGGACATGTCATGAT
7 >SRR001665 .4 071112 _SLXA -EAS1_s_4 :1:1:675:644 length =36
8 GAACATTTATTATAATCCTATTCAATTATAATAATC
9 >SRR001665 .5 071112 _SLXA -EAS1_s_4 :1:1:721:668 length =36

10 GCTGTAGATCTGGAAATCGCAACGGAGGAAGAAAGA

Listing 1.2: First ten lines of the sequence SRR001665_1 in FASTA format.
FASTA files have no quality scores.

1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3208
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC 32
3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT 3
4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAACA 28
5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAACC 2
6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAATA 3
7 AAAAAAAAAAAAAAAAAAAAAAAAAAAACAA 27
8 AAAAAAAAAAAAAAAAAAAAAAAAAAAACAC 3
9 AAAAAAAAAAAAAAAAAAAAAAAAAAAACCA 2

3A repeat is a k-mer that is repeated more than one time in the genome.
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10 AAAAAAAAAAAAAAAAAAAAAAAAAAAATAA 1

Listing 1.3: First ten canonical 31-mers of SRR001665_1 with their
multiplicity, sorted in lexicographic order. Canonicalization and sorting are
necessary to prove in practice that two k-mer sets are equal.

K-mer based methods are used in a wide range of applications, including
genome assembly[1], metagenomics4[34], genotyping5[15, 32], variant call-
ing6[31], phylogenomics7[21] and database searching[17, 29, 30, 33, 16, 3, 2,
22, 14, 20].

Although they have been around for some time, k-mer based methods have
only recently begun to be applied to terabyte-sized datasets. For example,
the dataset used to test the BIGSI database search index, which is made up
of 31-mer of 450,000 microbial genomes, takes approximately 12 TB to be
stored in compressed form[25].

Reducing the size of such large k-mer set is desirable because it takes non-
negligible time to be created and takes a lot of space to be stored (therefore
time to be moved across the internet).

In practice, many people encode their k-mers in a text file and then compress
it with a file compressor, like gzip[26]. Is there a more space-efficient way to
store a k-mer set?

1.3.1 Advantages of using k-mers

Using a k-mers set can lead to important advantages with respect to using a
genome or a set of genomes and they’re not limited to computing resources
and time spent on alignment.

4Metagenomics is the study of genetic material recovered directly from environmental
sample. This imply that there is more than one genome to consider.

5Genotyping analyzes variations in genomes between individual organisms.
6Variant calling is the process that identifies single nucleotide polymorphism and small

insertion and deletion in an individual genome.
7Phylogenomics is the analysis that involves genome data and evolutionary reconstruc-

tions.
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Figure 1.8: Taxonomic distribution of saliva microbiome reads classified by
Kraken[34].

For example, assembling a metagenome can be really hard because of read
errors and contamination. Kraken[34] is a k-mers based tool that assigns
taxonomic labels (figure 1.8) to short DNA sequences. This is over 900

times faster than the state of the art MegaBLAST; the only downside is the
negligible lower accuracy.

The aforementioned BIGSI[3] (BItsliced Genomic Signature Index) database
can be used to search through the huge number of sequences stored on public
archives like SRA (Sequence Read Archive) or ENA (European Nucleotide
Archive). Compared to the BLAST database, it is able to easily scale (by
adding columns to the matrix in figure 1.9b) and does not require assembled
genomes as input which are fundamentally lossy8 unlike k-mers sets.

8An assembled genome is lossy because sequencing errors need to be corrected or re-
moved. Furthermore we can have more than one possible alignments.
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Figure 1.9: BIGSI use of k-mers compared to naive encoding. a) Datasets
are converted to k-mers sets, optionally denoised and hashed with a set of
hashing functions. b) Datasets are stored as bits columns in which there is 1
on positions given by the hash functions, known as Bloom filters. The query
q is also hashed, selecting specific rows. The positions of 1s on the resulting
∧ give the datasets in which q is found.
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2 | K-mers representation

In this chapter we will see some terminology, in particular the definition of
a de Bruijn graph in order to understand how we can explore a k-mer set,
some known methods for compressing a k-mers set and two problems found
by the author.

2.1 Terminology

As already stated, a k-mer (from ancient Greek méros, “part”) is a substring
of a sequence of nucleobases. That means that the string alphabet is

Σ = {A,C, T,G}

and a k-mer m ∈ Σk.

We call reverse complement rc(·) of a k-mer its reverse sequence in which
each nucleobase is replaced with its complement, that is: A 7→ T , C 7→ G,
T 7→ A, G 7→ C.

We will consider one k-mer and its reverse-complement as the same since we
consider both DNA strands.

We call canonical a k-mer that is the lexicographically1 smaller between
itself and its reverse complement.

Given a string t = ⟨t1, . . . , tl⟩, we define i-prefix as the first i character of t
1Some tools, like the k-mer counter DSK, use the order A < C < T < G instead [27].
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and i-suffix as the last l − i characters of t:

prefi(t) = ⟨t1, . . . , ti⟩

suffi(t) = ⟨ti, . . . , tl⟩

Given a k-mers set K = {m1, . . .m|K|}, a de Bruijn graph (figure 2.1) is a
directed graph dBG(K) = (V,A) in which:

• V = {v1, . . . , v|K|}

• each node v ∈ V has a label lab(vi) = mi

• each node v ∈ V has two different sides sv ∈ {0, 1}

• a node side (v, sv) is spelled as

spell(v, sv) =

lab(v) sv = 0

rc(lab(v)) sv = 1
(2.1)

• there is an arc between two node sides (v, sv) and (u, su) if and only if
their spellings share a (k − 1)-mer, in particular it must be

suffl−(k−1) (spell (v, 1− sv)) = prefk−1 (spell (u, su))

A path p = ⟨(vi1 , si1), . . . , (vil , sil)⟩ in dBG(K) is a sequence of node sides in
which there exist an arc between a node and its successor and both sides of
internal nodes are used (see figure 2.2).

The spelling of a path is the spelling of each node side “glued” together:

spell(p) = spell(vi1 , si1) · suffk(spell(vi2 , si2)) · . . . · suffk(spell(vil , sil))

A dBG(K) can be compacted (noted as cdBG(K), see figure 2.3) by con-
sidering non-branching paths as single nodes. A cdBG(K) consumes less
memory than non-compacted dBG(K).
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Figure 2.1: An example of dBG. Double directed arcs are merged into undi-
rected edges. Nodes are labelled with 3-mers and their multiplicity. Sides 1
are pointy.

(a) A valid path of spell AGGTAC. It uses both sides in all internal nodes.

(b) A not valid path. The tip of
node GTA is used twice!

Figure 2.2: Paths in dBG(K).
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Figure 2.3: A compacted dBG. Non-branching paths are merged into single
nodes and labelled with their spellings and concatenated counts.

The spelling of any path is called contig. The spelling of a non-branching
path is called unitig.

Spellings of a vertex-disjoint path cover of dBG(K) are called simplitigs[4].

Given a string set S, we define its weight2 as the sum of all string lengths:

weight(S) =
∑
s∈S

|s|

2.2 K-mers set compression

In principle, we can glue k-mers together in order to gain space without loss
of information: in this way we can save k − 1 characters per gluing. Counts
can be added progressively in a separate list.

For example, given the following 3-mer set K

1 AAA 4
2 AAT 2
3 CTG 3

2Also known as Cumulative Length (CL)
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4 TCT 2

Listing 2.1: This k-mer set has weight equal to 12.

we can glue the first two 3-mers and the second two, obtaining the following
sequences

1 AAAT
2 TCTG

Listing 2.2: This string set has weight 8.

and counts

1 4
2 2
3 2
4 3

Since we can derive the original 3-mers from these sequences, we can say that
they represents K.

Observe that the sequences above are contigs in dBG(K).

Among the tools that are analyzed in [5] there are Squeakr, KMC, DSK,
BCALM2, ProphAsm, ESS and UST. The first three are k-mer counters, i.e.
programs that extract and count unique k-mers given a FASTA/FASTQ file.
BCALM2 internally use DSK to extract k-mers and then creates a cdBG. The
last three are tools that explore the cdBG and glue unitigs. Since ProphAsm
and ESS do not consider counts, they are not taken into account in this work.
UST gives the best compression ratio, therefore we will see the latter more
in detail.

2.2.1 Unitig Stitch (UST)

The authors of UST, Rahman and Medvedev, claim that, given a string set
S representing a k-mer set K, in order to minimize weigth(S), we need to
minimize the number of sequences that it contains, in particular it holds

weight(S) = |K|+ (k − 1) · |S| (2.2)
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Furthermore, they claimed that there exist a non-tight lower bound on 2.2
that can be computed using cdBG(K) topology (see [26] for details).

In order to find a small string set made up of contigs, they wanted to solve
the vertex-disjoint path cover problem on cdBG(K) but, since it is known to
be NP-Hard3 for general graphs, they designed a greedy algorithm (named
UST) focusing more into speed than optimality.

However, based on their datasets of 31-mers, UST worked well having a gap
with the lower bound within 3%. What about different datasets? What
about different k-mer lengths?

They used BCALM2 [6] in order to compute all the unique k-mers and counts
from the dataset and to create cdBG(K). Their algorithm can be abstracted
with algorithm 1: it arbitrarily chooses a node, called seed, it extends the
seed in one direction until there is no unvisited node and then restart. When
there is no seed, it try to merge paths. Finally, it extracts spellings and
counts from paths.

Algorithm 1 UST
Require: G = (V,A) = dBG(K); lab(·); count(·)
Ensure: S represents K
1: P ← ∅
2: while V ̸= ∅ do
3: extract v from V ▷ choose a seed
4: p← ⟨(v, 0)⟩
5: while p has a successor (u, su) not visited do ▷ extend p
6: p← p · (u, su) ▷ forward
7: end while
8: P ← P ∪ {p}
9: end while

10: while ∃p1, p2 ∈ P | p1 is linked to p2 do ▷ merge paths
11: replace p1 and p2 with prev1 · p2
12: end while
13: S ← {spell(p) | p ∈ P}

3Actually, we don’t know if the restriction of the vertex-disjoint path cover problem to
dBGs can make the problem polynomial.
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What if we choose the seeds and the successors more wisely?

Contigs and counts are saved on different files and then compressed separately
with MFCompress[24] and LZMA respectively.

2.2.2 Counts encoding

Another author[5] claims that we can improve the compression ratio of counts
by choosing the right encoding. In particular, he obtained an improvement
from 55% to 60% with respect to the original counts file sizes.

The technique consists on ordering contigs and counts based on contigs av-
erage counts and then applying a modified run length encoding (RLE) in
which 1-runs are implicit. We call RLE* this modified RLE. For example,
given the cdBG in figure 2.3, running UST we get

1 >
2 ATACCT
3 >
4 TAC
5 >
6 CGAC

1 1
2 5
3 3
4 3
5 2
6 7
7 7

Then sorting counts vectors per average:

1 2
2 1
3 5
4 3
5 3
6 7
7 7
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and applying RLE* it becomes

1 2
2 1
3 5
4 3-2
5 7-2

The ordering step can potentially help on nearing equal counts that will be
compacted with RLE.

2.2.3 Problems found

Wrong counts

The author found that UST does not list counts correctly. It can be easily
shown with a counterexample4.

Consider the following input (visually, cdBG in figure 2.4)

1 >0 LN:i:4 ab:Z:2 3 L: -:1:+ L:-:2:-
2 ACCT
3 >1 LN:i:3 ab:Z:5 L:-:0:+
4 GTA
5 >2 LN:i:3 ab:Z:7 L:+:0:+
6 GAC

Listing 2.3: UST input as cdBG(K) with BCALM2 headers that encode
counts and unitigs links.

This outputs the following files

1 >
2 AGGTA
3 >
4 GAC

Listing 2.4: UST contigs output.

4Aside from this ad-hoc counterexample, it is proved evenly wrong in real sequences
using a k-mer counter.
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1 2
2 3
3 5
4 7

Listing 2.5: UST counts output.

From there we can derive the k-mer set

1 AGG 2
2 GGT 3
3 GTA 5
4 GAC 7

Listing 2.6: Derived k-mer set.

and, by applying the reverse-complement to the first two k-mers, we obtain

1 CCT 2
2 ACC 3
3 GTA 5
4 GAC 7

Listing 2.7: Final k-mer set.

where clearly the first two counts should be swapped.

This happens because UST does not reverse the counts vector when it takes
a node with side 1, entering the node from the tip.

Fixing this behaviour may make counts more compressible.

Figure 2.4: This cdBG forces UST to output wrong counts. It arbitrarily
takes the first node AACT , it computes the reverse-complement, AGGT , and
it glues it with GTA. But it does not reverse the counts associated to the first
node, leading to incorrect results!
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Bugged encoding

There is another problem regarding how the encoding was applied in [5]. The
idea was implemented in Python using a NumPy function to read the counts
file. The function, named loadtxt(), had a known bug[13] that changes
numbers under certain conditions. In particular, it reads chunks of 50000

strings and it establishes the maximum string length on the first chunk. The
bug arises when following chunks contain strings longer than the maximum
string length previously found.

Therefore, it can happen that, when reading numbers like
10, 11, . . . , 20, 21, . . . , 30, 31, . . . , it reads instead 1, 1, . . . , 2, 2, . . . , 3, 3, . . . ; then
counts clearly becomes very compressible using RLE*.

This idea looks promising but needs to be tested with a correct implementa-
tion.
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3 | Methods

After founding the problem described on subsection 2.2.3, UST was com-
pletely rewritten and changed its name to USTAR. It can be found on the
author repository https://github.com/enricorox/USTAR.

3.1 The pipeline

We are going to stick to the following pipeline (figure 3.1): we build cdBG(K)
with BCALM2, we run USTAR choosing the strategy to pick the seed and
its successors, we sort in some way counts and sequences, we apply RLE* to
the counts and finally we compress sequences with MFCompress and counts
with bzip3 1.

The algorithm 2 differs a bit since it extends the seed forward and backward
instead of merging paths later as in algorithm 1. This is more similar to
what ProphAsm does and may help find longer contigs. In the next section
we will see how we can explore the cdBG.

1We use bzip3 instead of LZMA as in [26, 5] because it provides better compression
ratios.
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Figure 3.1: K-mers set compression using USTAR.
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Algorithm 2 USTAR
Require: G = (V,A) = dBG(K); lab(·); count(·)
Ensure: S represents K
1: P ← ∅
2: while V ̸= ∅ do
3: extract v from V ▷ wisely choose a seed
4: p← ⟨(v, 0)⟩
5: while p has a successor (u, su) not visited do ▷ wisely extend p
6: p← p · (u, su) ▷ forward
7: end while
8: while p has a predecessor (u, su) not visited do ▷ wisely extend p
9: p← (u, 1− su) · p ▷ backward

10: end while
11: P ← P ∪ {p}
12: end while
13: S ← {spell(p) | p ∈ P}

3.2 Strategies

3.2.1 Exploring cdBG

There are different strategies to choose the seed and to extend the path.

Starting with choosing the seed, we can choose the unitig that is

• more (or less) long

• more (or less) connected

• with the higher (or lower) average (or median) abundance

When choosing successors (or predecessors), we can do exactly the same
things as before plus choosing the unitig u with the nearest abundance com-
puted as

• shorter distance between averages (or medians) vectors elements
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code description
s choose the Seed
x eXtend the path
+ more/higher
- less/lower
= closer
f choose the First node available
c Connections
l unitig Length
a Abundance
aa Average Abundance
ma Median Abundance

Table 3.1: Mnemonic codes used to create methods short names.

• or shorter distance between first or last vectors elements, based on
nodes sides:

d (v, 0) (v, 1)
(u, 0) | counts(v).f irst− counts(u).f irst | | counts(v).last− counts(u).f irst |
(u, 1) | counts(v).f irst− counts(u).last | | counts(v).last− counts(u).last |

Strategies on table 3.2 have mnemonic short names and use codes on table
3.1.

We will see that there are two strategies that work better than the others:

• s+aa x=a: choose the seed with highest average abundance and its
successors with nearest average abundance. With this method we aim
to obtain consecutive counts as similar as possible in order to full exploit
RLE* later (see figure 3.2a).

• s+aa x-c: choose the seed with highest average abundance and its
successors with less connections. Here we aim to optimize counts as
before, starting ordering seeds by average abundance, but we want to
avoid congested nodes leaving them as a last resort (see figure 3.2b).
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methods description

sf xf
choose the first available node as seed

and extend the path with the first available neighbour

s-ma x=a
choose the node with lower median abundance as seed

and extend the path with the node with the nearest k-mer abundance

s-aa x=a
choose the node with lower average abundance as seed

and extend the path with the node with the nearest k-mer abundance

s+l x-l
choose the node with higher unitig length as seed

and extend the path with the node with the lower unitig length

s-l x+l
choose the node with lower unitig length as seed

and extend the path with the node with the higher unitig length

s+aa x=ma
choose the node with higher average abundance as seed

and extend the path with the node with the nearest median abundance

s-ma x-ma
choose the node with lower median abundance as seed

and extend the path with the node with the lower median abundance

s+aa x=a
choose the node with higher average abundance as seed

and extend the path with the node with the nearest k-mer abundance

s+aa x-c
choose the node with higher average abundance as seed
and extend the path with the node with less connection

Table 3.2: Methods used to explore cdBGs. All methods have their counter-
part with counts encoding.

(a) Method s+aa x=a. (b) Method s+aa x-c.

Figure 3.2: Methods for exploring dBGs. a) It starts from ACCT, then
choose GTA (|8− 8| < |8− 7|) and TAC (|8− 8| < |8− 1|), the unitigs with
nearest abundance. b) It start from ACCT, then choose GCAC that has less
connections.
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3.2.2 Counts encoding

We need to sort count vectors (and then sequences!) in order to fully exploit
RLE*. A good idea is, as done in [5], sorting vectors by average so that
similar-average vectors, that likely have similar counts, are close to each
other. We can do better: instead of computing the whole vector average,
we can compute the average of first and last element that are the ones that
are adjacent to other vectors. Another step is to flip vectors and reverse-
complement sequences if we see that there are equal extremes that can be
adjacent.

Let’s explain it with an example. Consider the cdBG(K) in figure 3.2a and
apply s+aa x=a. We get

1 >
2 AGGTAC
3 >
4 CGAC
5 >
6 ATA

and

1 9
2 8
3 8
4 8
5

6 7
7 8
8

9 1

Listing 3.1: Blank lines between contigs are added for clarity.

They are already sorted by average; now we can flip the second contig in
order to bring the eights closer:

1 >
2 AGGTAC
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3 >
4 GTCG
5 >
6 ATA

and

1 9
2 8
3 8
4 8
5

6 8
7 7
8

9 1

Listing 3.2: Blank lines between contigs are added for clarity.

Finally we can compact eights with RLE* saving 2 · 3 − 2 = 4 characters
(new lines included):

1 9
2 8-4
3 7
4 1

This encoding is called avg_flip_rle.

3.3 Validation

At the end of each USTAR run, the output files are validated, using a k-
mers counter like in [25], to be sure that there is no implementation errors
but, unlike [25], we also need to verify counts. Thus, the validation requires,
for each k-mer extracted from simplitigs, to: compute their canonical and
append the counts on the same line, sort the lines and compare them to
the ones generated from a well known k-mers counter like Jellyfish[19] (see
algorithm 3).
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Algorithm 3 Output validation.
Require: dataset
Ensure: USTAR output is correct
1: cdBG ← *output of BCALM given the dataset*
2: simplitigs, counts ← *output of USTAR given cdBG*
3: line ← ∅
4: extracted_kmers ← *new file*
5: while line ̸= EOF do
6: line ← *read simplitigs line*
7: for i ← 1; i = |line| - k + 1; i++ do
8: kmer = line[i:i+k-1] ▷ extract a substring of length k
9: count = *next count from counts file*

10: *write canonical(kmer) and count to extracted_kmers*
11: end for
12: end while
13: extracted_kmers ← *sort extracted_kmers*
14: kmers ← *outputs of Jellyfish given the dataset*
15: kmers ← *sorted kmers*
16: if kmers ̸= extracted_kmers then
17: return FAILURE
18: end if
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4 | Experimental setup

In this chapter we will see the experiment setup as the tools used, the chosen
datasets, the metrics we considered and the machine that did the computa-
tions.

4.1 Tools

All the tools used are summarized in table 4.1. Let’s take an example about
how to use them for the sequence SRR001665. We need to: download it from
the NCBI’s server1, convert it to FASTA format splitting if it is paired-end2,
feed it to BCALM2 that output the cdBG, run UST/USTAR and finally
compress the sequences and counts. See listings 4.1, 4.2 and 4.3 for the
specific commands.

1 $ prefetch --progress SRR001665
2 $ fasterq -dump --progress --threads 8 --fasta \
3 --split -files SRR001665
4 $ bcalm -max -memory 16000 -nb-cores 8 -kmer -size 31 \
5 -abundance -min 2 -in SRR001665_1.fasta \
6 -all -abundance -counts -out SRR001665_1.a2.k31

Listing 4.1: Download, convert and build cdBG(K). SRR001665_1 is the
first strand of the sequence SRR001665.

1The National Center for Biotechnology Information provides public access to biomed-
ical and genomic information as the SRA archive.

2A FASTA/FASTQ file is paired-end if it contains labelled sequences from both DNA
strands.
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name description version multi-thread
prefetch download SRA files from NCBI v3.0.1 no

fasterq-dump convert SRA files to FASTA/FASTQ v3.0.1 yes
BCALM2 build cdBG in low memory v2.2.3 yes

UST compress k-mers sets v1.0 only unitigs sorting
USTAR compress k-mers sets v1.0 no

MFCompress compress FASTA files v1.01 yes
bzip3 file compressor v1.2.1 yes

Table 4.1: Summary of the tools used.

1 $ ust -k 31 -i SRR001665_1.a2.k31.unitigs.fa -a 1
2 $ MFCompressC -t 8 -3 -o \
3 SRR001665_1.a2.k31.unitigs.fa.ust.fa.mfc \
4 SRR001665_1.a2.k31.unitigs.fa.ust.fa
5 $ bzip3 SRR001665_1.a2.k31.unitigs.fa.ust.counts

Listing 4.2: Run UST and compress output files.

1 $ ustar -k 31 -i SRR001665_1.a2.k31.unitigs.fa -s+aa -x=a \
2 -e avg_flip_rle
3 $ MFCompressC -t 8 -3 -o SRR001665_1.a2.k31.ustar.fa.mfc \
4 SRR001665_1.a2.k31.unitigs.fa.ust.fa
5 $ bzip3 SRR001665_1.a2.k31.ustar.counts

Listing 4.3: Run USTAR and compress output files.

4.2 Datasets

The datasets consist of sequences downloaded from NCBI’s server listed on
table 4.2. Since there is a huge variability between sequences, the choice is
not easy. However, they are chosen from some papers ([23, 27, 18, 7, 4, 26])
paying attention on sequences variability with respect to read length and
number of reads (therefore dataset size). Furthermore, we choose other four
metagenomes to see if there are differences between genome and metagenome
compression.

Beside the read length and the number of reads, when the k-mer size is
fixed and the cdBG(K) (need to fix the k-mer size) is computed, some of
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name description notes read length #reads size [GB]
SRR001665 Escherichia coli genome, paired 36 20,816,448 9.304
SRR061958 Human Microbiome 1 metagenome, paired 101 53,588,068 3.007
SRR062379 Human Microbiome 2 metagenome, paired 100 64,491,564 2.348

SRR10260779 Musa balbisiana RNA-Seq genome, paired 101 44,227,112 2.363
SRR11458718 Soybean RNA-seq genome, paired 125 83,594,116 3.565
SRR13605073 Broiler chicken DNA genome 92 14,763,228 0.230
SRR14005143 Foodborne pathogens genome, paired 211 1,713,786 0.261
SRR332538 Drosophila ananassae genome, paired 75 18,365,926 0.683
SRR341725 Gut microbiota metagenome, paired 90 25,479,128 1.254
SRR5853087 Danio rerio RNA-Seq genome 101 119,482,078 3.194
SRR957915 Human RNA-seq genome, paired 101 49,459,840 3.671

Table 4.2: Downloaded sequences in SRA format. In the column “note”
it is specified if it is a genome or a metagenome and if it is a collection of
paired-end sequences that can be splitted in two files.

the sequences intrinsic properties are: number of k-mers and nodes (unitigs),
number of arcs (links between unitigs), graph density, number of isolated
nodes, the GC content3 and counts variance. In particular, graph density is
computed as the number of arcs divided by the maximum number of arcs (8
times the number of nodes, 4 arcs for each side):

density =
#arcs

8 ·#nodes

Let’s fix k = 31 and remove all the 31-mers with abundance less than 2

assuming they’re errors as the majority of k-mers based tools do. Properties
of cdBGs of the above datasets are on table 4.3. We have cdBGs of 54K-7M
nodes and 12%-28% density. Counts variance is even more diverse, spanning
from 36 to 8M.

We will see that graph density is a key property that significantly changes
USTAR improvement over UST. In order to increase it, we will use also k-
mers with multiplicity 1 (see table 4.4): as a side effect, it also decreases the
number of isolated nodes and counts variance.

3The GC content is the percentage of Gs and Cs in a DNA sequence.
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name #31-mers #unitigs isolated nodes [%] density[%] GC content [%] counts variance
SRR001665_1 4,842,286 161,403 23.55 18.98 51.03 37.74
SRR001665_2 4,953,108 238,840 22.34 19.27 51.00 36.62
SRR061958_1 75,557,725 3,456,486 24.21 14.67 40.20 6,106.83
SRR061958_2 76,041,929 3,725,295 17.05 23.46 40.62 1,824.95
SRR062379_1 46,108,438 1,604,652 22.12 21.51 41.56 6,972.12
SRR062379_2 45,569,938 1,465,409 24.89 21.57 41.55 3,219.37

SRR10260779_1 52,952,684 1,509,151 16.54 25.09 45.91 92,422.70
SRR10260779_2 53,639,306 1,635,926 16.39 25.56 46.06 88,979.70
SRR11458718_1 72,180,320 2,052,425 14.18 26.99 42.87 8,103,010.00
SRR11458718_2 74,367,059 2,134,438 14.36 27.79 43.28 8,670,680.00
SRR13605073_1 31,639,418 1,222,560 22.53 20.35 53.85 4,260,880.00
SRR14005143_1 5,247,490 54,246 10.51 24.54 51.22 404.285
SRR14005143_2 5,494,520 102,283 12.75 23.42 51.51 356.679
SRR332538_1 5,292,049 261,333 29.39 24.45 48.22 7,478,630.00
SRR332538_2 6,648,069 726,475 19.72 26.73 48.44 4,084,150.00
SRR341725_1 94,897,526 1,526,427 55.31 12.09 43.43 120.059
SRR341725_2 94,264,606 1,514,990 56.18 11.90 43.38 119.054
SRR5853087_1 124,740,993 7,775,719 12.55 28.02 42.09 6,123,300.00
SRR957915_1 63,418,496 3,338,082 12.97 28.25 46.80 82,318.00
SRR957915_2 63,293,138 3,745,996 17.63 26.88 46.86 54,692.70

Table 4.3: Properties of cdBG(K) where K is the specified dataset with 31-
mers with multiplicity 1 removed.

name #31-mers #unitigs isolated nodes [%] density[%] GC content [%] counts variance
SRR001665_1 10,343,472 1,671,602 37.75 15.68 52.52 46.20
SRR001665_2 12,058,109 2,239,012 35.00 16.45 52.49 39.75
SRR061958_1 404,149,685 20,669,968 9.58 26.44 43.97 1,172.84
SRR061958_2 495,804,915 24,188,615 11.44 25.94 44.34 301.76
SRR062379_1 160,692,477 9,429,828 3.64 27.17 45.61 2,079.89
SRR062379_2 159,905,793 8,774,002 5.42 27.31 45.65 998.27

SRR10260779_1 123,624,245 7,700,639 2.93 29.17 46.25 39,770.60
SRR10260779_2 139,633,894 8,839,865 3.08 29.35 46.87 34,348.90
SRR11458718_1 137,995,280 6,523,514 3.94 30.85 43.66 4,239,080.00
SRR11458718_2 150,549,990 7,152,027 3.62 32.37 44.74 4,283,690.00
SRR13605073_1 55,764,573 3,018,512 6.51 26.46 54.87 2,417,560.00
SRR14005143_1 15,005,192 658,011 0.09 31.26 53.32 375.67
SRR14005143_2 31,850,681 1,353,300 0.96 30.77 53.90 170.25
SRR332538_1 11,382,816 687,166 11.01 26.71 48.81 3,478,370.00
SRR332538_2 28,880,136 2,240,104 11.67 29.32 49.41 940,744.00
SRR341725_1 185,618,107 4,511,197 18.17 21.64 44.75 70.67
SRR341725_2 192,133,588 4,891,154 18.39 21.52 44.85 67.62
SRR5853087_1 382,773,071 25,382,771 2.80 32.27 40.67 1,995,640.00
SRR957915_1 239,200,400 17,651,052 2.10 31.45 47.88 21,936.10
SRR957915_2 364,597,018 22,045,191 7.08 29.58 47.94 9,552.82

Table 4.4: Properties of cdBG(K) where K is the specified dataset with all
31-mers.
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4.3 Metrics

Since we are interested in obtaining a good compression ratio and UST alone
reaches good results (even if counts are wrong), we will compute the im-
provement over UST. In this way we can also understand the error entity
that wrong counts have introduced.

Given the output set of sequences S, we will consider the following metrics:

• weight: the weight of S as defined in section 2.1;

• fasta: the compressed sequence file size;

• counts: the compressed counts file size;

• overall: the sums of compressed file sizes of sequences and counts.

Therefore improvements are computed as percentage differences so that pos-
itive values imply smaller USTAR files:

∆M =
MUST −MUSTAR

MUST

where M is the metric considered.

In particular we will take care to separate the encoding from the exploring
strategies for two main reasons:

• since encoding changes sequence ordering, fasta can vary;

• since encoding changes counts ordering and format, counts can vary.

4.4 Machine

These tools are executed on the Department’s Blade cluster.

The cluster consists of many nodes equipped with
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• runner-[01-03] Three nodes with 48 CPUs (4x Intel(R) Xeon(R) Gold
5118 CPU @ 2.30/3.20GHz), 1.5TB RAM

• runner-[04-06] Three nodes with 72 CPUs (4x Intel(R) Xeon(R) Gold
5220 CPU @ 2.20/3.90GHz), 2TB RAM, one Nvidia Quadro P2000
GPU

• runner-[07-09] Three nodes with 96 CPUs (4x Intel(R) Xeon(R) Gold
6252N CPU @ 2.30/3.60GHz, 3TB RAM

• gpu-1 24 CPUs (2x Intel(R) Xeon(R) Gold 5118 CPU @ 2.30/3.20GHz),
1TB RAM, six Nvidia Titan RTX GPUs

• gpu-[2-3] Two nodes with 32 CPUs (2x Intel(R) Xeon(R) Gold 5218
CPU @ 2.30/3.90GHz), 1.5TB RAM, eight Nvidia RTX 3090 GPUs

Slurm is used to submit each job and to request resources to the cluster.

We used 16GB of RAM for nearly all cdBGs, but up to 100GB for particularly
big ones when k-mers are not filtered.
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5 | Results

In this chapter we will see the results presented step by step, as done in
the experiments. There are so many data that it is impossible to show
them all here: file sizes are in the author repository (https://github.com/
enricorox/USTAR) while improvement tables are in appendix A.

5.1 Filtered k-mers

First, k-mers was filtered using BCALM2 so that the ones with only one
count are removed.

Eighteen different methods (the ones on table 3.2 with and without counts
encoding) was tested: the two methods that worked the best1 overall are s+aa
x=a (choose the seed with highest average abundance and choose the next
node with closest abundance) and s+aa x-c (choose the seed as before and
choose the next node with less connection), average results are on table 5.1.
Surprisingly, counts encoding worked well only for counts compression but
it can increase the compressed sequence size because of different ordering or
reverse-complementing. It’s worth noting that all methods have improved the
sequence weight but this does not imply an improved compressed sequence
size.

Since from tables A.1,A.2 and A.3 we can observe that improvements vary
depending on the dataset, we want to find some properties that lead to better

1Here we are counting the number of times a particular method scores the best. Then
we take the one with the highest value.
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improvements s+aa x=a s+aa x=a avg_flip_rle s+aa x-c
∆weight [%] 0.54 0.54 0.54
∆fasta [%] -1.57 -1.89 0.03
∆counts [%] 10.13 10.62 5.48
∆overall [%] 1.72 1.59 1.47

Table 5.1: Average improvement over UST, three methods that works the
best.

Figure 5.1: Improvement on weight using method s+aa x=a. The denser
the graph, the better the weight improvement.

compression, if they exist. We find that, for method s+aa x=a, some corre-
lation between graph density and improvements may exists, see figure 5.1.
Furthermore, it seems that counts improvement depends on counts variance
(figure 5.2).

39



Figure 5.2: Improvement on counts using method s+aa x=a with filtered
k-mers. Higher variance corresponds to higher counts improvement.
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5.2 Unfiltered k-mers

In order to confirm the density trend, denser graphs must give better results.
Therefore in this experiment, in which it was used the previous winning
methods, all k-mers are kept. It turns out that counts encoding greatly
helped counts compression but also can worsen sequences compression, see
table 5.2 and appendix A. Method s+aa x-c gave better overall improvement
on average. We can see that the link between graph density and weight
improvement is even stronger and there is a negative correlation between
isolated nodes and weight (figures 5.3 and 5.4).

improvements s+aa x=a s+aa x=a avg_flip_rle s+aa x-c
∆weight [%] 0.97 0.97 0.97
∆fasta [%] -4.31 -4.13 0.24
∆counts [%] 31.06 32.97 12.70
∆overall [%] 1.45 1.92 2.30

Table 5.2: Average improvement over UST, three winning methods are
tested with all k-mers in the datasets.

Figure 5.3: Improvement on weight using s+aa x-c with unfiltered k-mers.

41



Figure 5.4: Improvement on weight using s+aa x-c with unfiltered k-mers.
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5.3 Different k-mer size

Changing k-mer size modifies the number of k-mers and the number of arcs
between them, thus changing the density.

The following plots (figures 5.5, 5.6, 5.7, 5.8) describe how metrics changes
with respect to density, isolated nodes, counts variance and number of nodes,
applying s+aa x-c, the best method found, on the unfiltered datasets with
k ∈ {15, 21, 31, 41}.

Plot 5.5a shows that improvement on weight definitely depends on graph
density and we can guess why: density is a scaled version of the average
number of arcs per node. The greater the average number of arcs, the harder
is for UST to make a good arbitrary choice letting USTAR to make a good
one. With this result, we proved that a good choice is the node with less
connections.

Plot 5.6a shows that we get higher improvements on weight when we have
less isolated nodes. The reason may be that we can only choose isolated
nodes as seeds and not as path extension, thus we have less opportunities to
use them in such a way that helps compression.

Plots 5.7 show that counts variance does not influence improvements on the
metrics considered.

Finally, figure 5.8a shows that the improvements on weight is correlated to
the number of unitigs but only for k = 15, probably hiding something in an
higher dimension that we cannot see in the plot.

On figure 5.9 we can see that improvements on all metrics except counts

increase decreasing the k-mer size, while counts remains almost constant.
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(a) Weight improvement.

(b) Counts improvement.

(c) Overall improvement.

Figure 5.5: Improvements varying density and using s+aa x-c. In 5.5a we
can see a very definite curve that highlights the dependence on graph density.
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(a) Weight improvement.

(b) Counts improvement.

(c) Overall improvement.

Figure 5.6: Improvements varying isolated nodes and using s+aa x-c. It’s
clear that the fewer isolated nodes, the better.
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(a) Weight improvement.

(b) Counts improvement.

(c) Overall improvement.

Figure 5.7: Improvements varying counts variance and using s+aa x-c.
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(a) Weight improvement.

(b) Counts improvement.

(c) Overall improvement.

Figure 5.8: Improvements varying #unitigs and using s+aa x-c.
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k-mer size ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
15 33.64 31.16 12.07 26.40
21 2.10 1.95 14.17 4.20
31 0.97 0.24 12.70 2.30
41 0.66 -1.23 11.90 0.75

Table 5.3: Average improvements using s+aa x-c, unfiltered k-mers.

Figure 5.9: Average improvements using s+aa x-c with unfiltered k-mers,
with k ∈ {15, 21, 31, 41}. Since ∆counts is almost constant, ∆overall is
driven by ∆weight.
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5.4 Metagenomes

Since we got good improvements with cdBGs with a lot of unitigs (figure 5.8),
we want to see whether with a big metagenome we achieve denser cdBGs
(with k = 31) and thus good results. Therefore other four metagenomes
were downloaded from the NCBI’s server and they are listed on table 5.4.

name description notes #bases size [GB]
SRR10849012 Switchgrass phillosphere metagenome, paired 25G 6.9
SRR14556465 Goat digestive tract metagenome, paired 6G 1.7
SRR6869040 Marine biofilm metagenome, paired 26G 9.3
SRR13608728 River microbiome metagenome, paired 26G 7.8

Table 5.4: Additional metagenome datasets of greater size.

From plots on figures 5.10, we can say that metagenomes do not enjoy spe-
cial benefits but, on the contrary, they’re the ones with the worst overall
improvement.
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(a) Weight improvement.

(b) Counts improvement.

(c) Overall improvement.

Figure 5.10: Differences between genomes and metagenomes using s+aa
x-c.

50



6 | Conclusions

In order to find a way to save storage for the use of k-mers set and counters,
we review UST, a tool that uses compacted de Bruijn graphs to remove
redundancies basically gluing k-mers.

We presented some new strategies to explore cdBGs and found wrong counts
produced by UST. Then a new tool named USTAR was created to solve
the bug and to implement the exploring strategies: we have shown that it
is possible to improve UST making smaller sequences and counts file. In
particular the denser the graph, the smaller the files; we have a similar trend
with the fewer isolated nodes, the better. Counts encoding can be used to get
smaller counts files but it can enlarge sequences files leading to suboptimal
results. Smaller k-mer sizes lead to denser graphs and then better results.

Specifically, we found that with filtered k-mers sets and k = 31 there is an
average overall improvement of 1.72% with method s+aa x=a and an im-
provement on counts of 10.13%. Using unfiltered k-mers we can do generally
better: the best method becomes s+aa x-c with an overall improvement of
2.30% and with counts improvement of 12.70%. If we focus on counts, we can
get much better counts compression (32.97%) using s+aa x=a avg_flip_rle

instead. We got the best compression with k = 15 with an overall improve-
ment of 26.40%. With greater k-mer size, the overall improvement drop to
0.75% but counts remains at 11.90%.
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A | Additional tables
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 -0.04 3.22 1.57
SRR001665_2 0.02 -0.85 4.55 1.62
SRR061958_1 0.42 -3.06 10.35 0.88
SRR061958_2 0.40 -3.86 11.05 0.32
SRR062379_1 0.21 -2.30 8.94 1.07
SRR062379_2 0.31 -2.76 8.27 0.61

SRR10260779_1 0.40 -0.43 7.23 2.17
SRR10260779_2 0.47 -0.36 7.62 2.31
SRR11458718_1 0.71 -1.31 13.42 3.10
SRR11458718_2 0.84 -1.14 12.83 3.12
SRR13605073_1 0.19 -2.25 27.31 3.32
SRR14005143_1 0.06 -0.24 3.06 1.04
SRR14005143_2 0.06 -0.96 5.05 1.25
SRR332538_1 1.18 -0.38 12.32 2.42
SRR332538_2 2.27 -1.83 15.30 1.99
SRR341725_1 0.05 -1.59 5.46 0.12
SRR341725_2 0.05 -0.73 5.49 0.77
SRR5853087_1 1.27 -3.02 16.04 2.35
SRR957915_1 0.92 -2.18 12.25 2.18
SRR957915_2 0.93 -2.02 12.77 2.12

Average 0.54 -1.57 10.13 1.72

Table A.1: Method s+aa x=a applied to filtered k-mers.

54



dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 -0.67 1.91 0.60
SRR001665_2 0.02 -1.34 2.94 0.62
SRR061958_1 0.42 -3.60 7.41 -0.36
SRR061958_2 0.40 -4.22 8.13 -0.76
SRR062379_1 0.21 -2.66 7.25 0.32
SRR062379_2 0.31 -3.14 6.72 -0.13

SRR10260779_1 0.40 -1.18 4.90 0.89
SRR10260779_2 0.47 -0.96 5.20 1.10
SRR11458718_1 0.71 -1.84 11.67 2.20
SRR11458718_2 0.84 -2.14 11.20 1.92
SRR13605073_1 0.19 -2.05 27.03 3.42
SRR14005143_1 0.06 -0.35 2.95 0.93
SRR14005143_2 0.06 -1.48 4.63 0.77
SRR332538_1 1.18 -0.14 9.09 1.90
SRR332538_2 2.27 -0.20 9.72 2.02
SRR341725_1 0.05 -2.23 5.40 -0.38
SRR341725_2 0.05 -1.31 5.43 0.31
SRR5853087_1 1.27 -2.21 12.08 1.82
SRR957915_1 0.92 -1.78 9.05 1.49
SRR957915_2 0.93 -1.20 9.34 1.75

Average 0.54 -1.73 8.10 1.02

Table A.2: Method s+aa x=a avg_flip_rle applied to filtered k-mers.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 0.81 1.32 1.06
SRR001665_2 0.02 -1.16 2.65 0.58
SRR061958_1 0.42 -3.26 5.00 -0.83
SRR061958_2 0.40 -4.02 5.54 -1.34
SRR062379_1 0.21 -2.38 4.57 -0.29
SRR062379_2 0.31 -2.82 4.19 -0.68

SRR10260779_1 0.40 -1.27 3.30 0.28
SRR10260779_2 0.47 -0.26 3.62 1.03
SRR11458718_1 0.71 -1.55 6.34 0.81
SRR11458718_2 0.84 -1.87 6.43 0.66
SRR13605073_1 0.19 -1.48 15.42 1.70
SRR14005143_1 0.06 -0.07 1.97 0.72
SRR14005143_2 0.06 -1.04 3.47 0.62
SRR332538_1 1.18 -0.11 3.26 0.63
SRR332538_2 2.27 -0.49 4.80 0.69
SRR341725_1 0.05 -1.83 1.72 -0.97
SRR341725_2 0.05 -0.94 1.82 -0.28
SRR5853087_1 1.27 -1.95 8.31 0.94
SRR957915_1 0.92 -1.15 6.89 1.27
SRR957915_2 0.93 -0.83 7.06 1.38

Average 0.54 -1.38 4.88 0.40

Table A.3: Method s+aa x-c applied to filtered k-mers.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 -7.53 16.14 -3.48
SRR001665_2 0.03 -7.80 19.91 -3.73
SRR061958_1 0.55 -8.07 38.51 -2.58
SRR061958_2 0.55 -7.82 40.58 -2.91
SRR062379_1 0.57 -6.14 34.62 0.20
SRR062379_2 0.70 -6.53 33.71 -0.24

SRR10260779_1 0.94 -1.81 29.64 4.93
SRR10260779_2 0.99 -2.25 31.66 4.53
SRR11458718_1 1.48 -3.04 29.05 4.02
SRR11458718_2 1.90 -2.62 29.33 4.43
SRR13605073_1 0.58 -0.14 38.37 5.77
SRR14005143_1 1.23 -1.45 30.30 5.43
SRR14005143_2 1.18 -2.57 42.52 3.98
SRR332538_1 1.05 -1.26 24.45 3.13
SRR332538_2 2.42 -1.72 29.44 2.35
SRR341725_1 0.14 -3.30 17.58 0.47
SRR341725_2 0.14 -3.94 18.41 -0.06
SRR5853087_1 2.06 -6.07 34.30 1.21
SRR957915_1 1.62 -5.22 40.24 2.30
SRR957915_2 1.32 -6.84 42.47 -0.75

Average 0.97 -4.31 31.06 1.45

Table A.4: Method s+aa x=a applied to unfiltered k-mers.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 -7.05 15.87 -3.12
SRR001665_2 0.03 -7.48 19.67 -3.50
SRR061958_1 0.55 -8.00 39.65 -2.39
SRR061958_2 0.55 -7.72 41.90 -2.69
SRR062379_1 0.57 -5.30 36.16 1.15
SRR062379_2 0.70 -5.94 35.40 0.52

SRR10260779_1 0.94 -1.87 30.31 5.02
SRR10260779_2 0.99 -2.09 32.51 4.83
SRR11458718_1 1.48 -2.43 31.48 5.03
SRR11458718_2 1.90 -1.92 32.02 5.57
SRR13605073_1 0.58 -0.66 45.36 6.40
SRR14005143_1 1.23 -1.55 31.38 5.58
SRR14005143_2 1.18 -2.49 43.89 4.24
SRR332538_1 1.05 -1.16 28.07 3.83
SRR332538_2 2.42 -1.82 32.53 2.67
SRR341725_1 0.14 -3.80 20.71 0.63
SRR341725_2 0.14 -4.31 21.52 0.17
SRR5853087_1 2.06 -5.67 36.10 1.86
SRR957915_1 1.62 -4.59 41.11 2.97
SRR957915_2 1.32 -6.67 43.71 -0.45

Average 0.97 -4.13 32.97 1.92

Table A.5: Method s+aa x=a avg_flip_rle applied to unfiltered k-mers.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.02 0.62 5.13 1.39
SRR001665_2 0.03 2.06 6.03 2.65
SRR061958_1 0.55 -1.16 14.45 0.68
SRR061958_2 0.55 -0.99 14.40 0.57
SRR062379_1 0.57 0.23 12.22 2.09
SRR062379_2 0.70 0.42 12.09 2.24

SRR10260779_1 0.94 -0.10 12.40 2.58
SRR10260779_2 0.99 0.61 12.75 3.04
SRR11458718_1 1.48 0.52 14.09 3.50
SRR11458718_2 1.90 0.17 14.52 3.33
SRR13605073_1 0.58 0.37 24.42 4.06
SRR14005143_1 1.23 1.76 9.59 3.46
SRR14005143_2 1.18 0.93 9.94 2.24
SRR332538_1 1.05 0.84 10.86 2.55
SRR332538_2 2.42 1.48 13.14 3.01
SRR341725_1 0.14 -0.51 9.88 1.37
SRR341725_2 0.14 -0.50 9.94 1.31
SRR5853087_1 2.06 -0.80 16.58 2.33
SRR957915_1 1.62 0.07 15.94 2.69
SRR957915_2 1.32 -1.13 15.54 0.93

Average 0.97 0.24 12.70 2.30

Table A.6: Method s+aa x-c applied to unfiltered k-mers.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 11.50 8.89 12.20 9.76
SRR001665_2 12.26 11.03 12.98 11.51
SRR061958_1 46.32 41.36 12.27 35.23
SRR061958_2 48.31 43.51 11.77 37.12
SRR062379_1 38.31 35.27 13.24 30.08
SRR062379_2 38.48 35.58 13.20 30.29

SRR10260779_1 36.50 33.98 12.10 27.76
SRR10260779_2 37.22 34.32 12.34 28.31
SRR11458718_1 38.70 36.45 11.34 28.99
SRR11458718_2 39.12 35.57 11.33 28.43
SRR13605073_1 32.00 30.67 11.58 25.34
SRR14005143_1 17.80 16.55 12.37 15.43
SRR14005143_2 24.04 22.91 16.64 21.66
SRR332538_1 13.87 15.32 10.13 14.14
SRR332538_2 22.41 21.41 11.29 19.32
SRR341725_1 42.91 39.48 10.82 31.98
SRR341725_2 43.04 39.63 11.01 32.24
SRR5853087_1 43.55 40.92 10.91 32.94
SRR957915_1 41.19 38.04 11.90 31.54
SRR957915_2 45.23 42.38 11.92 35.87

Average 33.64 31.16 12.07 26.40

Table A.7: Method s+aa x-c applied to unfiltered k-mers with k = 15.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.09 1.64 5.53 2.45
SRR001665_2 0.12 1.72 5.81 2.47
SRR061958_1 1.77 1.78 18.78 4.26
SRR061958_2 1.82 1.81 19.38 4.11
SRR062379_1 1.55 1.70 15.52 4.15
SRR062379_2 1.87 1.94 15.18 4.31

SRR10260779_1 1.87 1.94 15.18 4.31
SRR10260779_2 1.68 1.75 13.67 4.52
SRR11458718_1 2.51 2.43 14.77 5.35
SRR11458718_2 2.97 2.11 14.91 5.14
SRR13605073_1 1.20 1.32 23.24 4.98
SRR14005143_1 1.73 0.93 10.60 3.10
SRR14005143_2 1.97 1.75 12.84 3.53
SRR332538_1 1.43 0.54 10.66 2.42
SRR332538_2 5.96 4.92 12.34 6.12
SRR341725_1 0.71 0.85 10.48 2.79
SRR341725_2 0.72 0.89 10.75 2.82
SRR5853087_1 6.07 4.63 17.10 7.24
SRR957915_1 2.94 1.80 17.64 4.79
SRR957915_2 2.98 2.63 18.94 5.12

Average 2.10 1.95 14.17 4.20

Table A.8: Method s+aa x-c applied to unfiltered k-mers with k = 21.
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dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR001665_1 0.23 -2.75 10.28 -1.43
SRR001665_2 0.22 -3.23 9.86 -2.11
SRR061958_1 0.29 -0.66 9.46 0.78
SRR061958_2 0.30 -0.47 9.29 0.92
SRR062379_1 0.56 -0.05 10.50 2.07
SRR062379_2 0.58 -0.16 10.58 1.84

SRR10260779_1 1.05 -0.57 13.50 2.39
SRR10260779_2 1.33 -0.49 13.75 2.51
SRR11458718_1 0.35 -0.93 25.52 2.83
SRR11458718_2 0.93 1.23 8.40 2.74
SRR13605073_1 0.75 0.28 7.53 1.25
SRR14005143_1 0.79 -0.42 11.65 1.45
SRR14005143_2 1.05 -1.38 13.52 0.19
SRR332538_1 0.05 -1.08 10.00 0.76
SRR332538_2 0.05 -1.06 10.10 0.71
SRR341725_1 1.85 -2.93 15.05 -0.08
SRR341725_2 0.88 -4.55 13.07 -1.94
SRR5853087_1 0.68 -2.91 12.07 -1.36
SRR957915_1 2.94 1.80 17.64 4.79
SRR957915_2 2.98 2.63 18.94 5.12

Average 0.66 -1.23 11.90 0.75

Table A.9: Method s+aa x-c applied to unfiltered k-mers with k = 41.

dataset ∆weight[%] ∆fasta[%] ∆counts[%] ∆overall[%]
SRR10849012_1 2.15 -1.41 16.26 2.07
SRR14556465_1 0.22 -0.84 21.56 1.06
SRR6869040_1 485.10† -0.23 20.84 1.67
SRR13608728 -663.63† -0.69 19.86 1.14

Table A.10: Method s+aa x-c applied to unfiltered k-mers, additional
metagenome datasets. † UST integer overflow error.
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