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ABSTRACT

Evaluation of different training strategies for motor-imagery brain-machine

interfaces

David Manetta

Last years have seen an increasing interest in the field of human-machine interaction (HMI),

especially thanks to new methods to acquire signals and new improvements on processing algo-

rithms. For people affected by deabilitant diseases that make movement difficult or impossibile

(as for paraplegic and tetraplegic patients), the interaction between human and machines is typ-

ically possible using the brain-machine interfaces (BMIs) by which, using specific patterns of

neural activity, a person is able to send a command to an external device. In order to perform a

correct utilization of BMI, users should undergo a training period during which their electroen-

cephalogram data are acquired and a classifier is created, leading them to control an external

device. Generally, most researchers neglect the importance of subject learning (e.g., both sub-

ject and decoder learn from each other) and they prefer to focus on machine learning techniques

to increase decoder performances: as it is known from literature, the brain constantly modifies

itself (neuroplasticity) and if a continuous re-calibration of decoders is performed, the subject

could not learn enough to use BMI in daily life because he could not be able to keep his neural

patterns stable; moreover despite they are considerably studied in the literature, BMIs are not

yet developed enough to be processed and used by all, especially given the high mental fatigue

and the high training period to maximize their performances. Therefore, it is necessary to set

defined standards to improve training strategies and fully exploit the potential of individuals,

thus allowing an extension of the use of BMIs outside the research field: to achieve these condi-

tions, this thesis aims to demonstrate that different typologies of training can lead to increased

performances in BMIs usage, showing at the same time how the neurophysiological patterns

evolve during this period and how subjects get used to maintaining such parameters constant.

In point of fact, the main intuition is based on the psychological evaluation of people and how
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they manage to change their characteristics depending on habits: if the main objective will be

to use, as experienced in this elaborate, a wheelchair, then those who immediately train with it,

will be better and consistent in its use, compared to others who train in different ways.

To give to the reader a general view of this environment and to provide him the keys to a

deeper understanding of the goal, this work has been divided in four principal areas: in the first

one, it is given a brief recap of the brain and how it works with a detailed description of BMIs

and the methods to create them; the second part is devoted to define the experimental protocol

of the project, highlighting the different strategies chosen for the experiment and the importance

of mutual learning during all the days of the trials; in the third part, there will be explained the

methodologies of data processing and the algorithm used for the classification; finally, in the

last chapter, all the acquired data are evaluated with multiple statistical and numeral approaches

in order to demonstrate the differences and the advantages of a training typology respect to the

other one, including also informations that are generally not covered in the literature. Indeed,

the choice of the best training protocol can increase significantly both subject and decoder

performances, decreasing the days required to master the usage of BMI and simplifying the

approach: if a new standard and easier learning protocol is defined, then this technology could

also be used by people with motor impairment, whose features are usually not stable, without

the need of an hard work. In conclusion, this thesis demonstrates the effectiveness of these

training sessions focused on end use of an external device and the role that different variables

have in the evaluation of the neural correlates, especially in a mutual learning-based approach.
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Chapter 1

Introduction

With the evolution of brain analysis technologies, there has been a growing interest in trying to

understand how this organ works, how it can be ”repaired” and how it can be used to facilitate

people’s lives and perform actions deemed difficult. In order to understand how the informa-

tion obtained from the brain can be used, it is necessary to initially study its macroscopic and

microscopic anatomical structure to make sense of what is being measured. In this first chapter

we will then make a brief anatomical and functional reference, with particular emphasis on the

characteristics most related to the experiment of this elaborate; we will then go to a review of

current brain imaging technologies, their effectiveness in the diagnosis of specific diseases and

their use in brain-machine interfaces. Finally, we will analyze the concept of Mutual learn-

ing (ML), how it is treated in the literature and how it can be a fundamental hinge for future

developments.

1.1 Brief recap of structure and functionality on the brain

Every function of the human body, starting from the interactions between organs and with the

surrounding environment, is managed and analyzed by the brain: processing the information in

the form of electrical impulses, it is able to develop a feedback that, through the spinal cord,

is sent to the affected body districts. This work is carried out by the Central Nervous Sys-

tem (CNS, composed of the brain and spinal cord) in close communication and collaboration

with the Peripheral Nervous System (PNS, group of nerve ganglia and nerves outside the brain).

The brain consists of gray matter (neural soma) and white matter (neural axons) and is di-

vided into the right hemisphere and the left hemisphere [1]; these zones are connected to each

other through the corpus callosum and, although macroscopically similar, they have microscop-



ically clear differences in structure and, consequently, in their functions. The left hemisphere

mainly controls the voluntary movements of the right part of the body, the ability of language,

logical reasoning, calculation and thinking; In contrast, the right hemisphere manages the left

part of the body and deals with the recognition of space and objects, imagination and intuition.

In general, the two hemispheres can be considered as two functionally antipodes: one governs

the pragmatic part, the other the abstract. A further subdivision, based on the location of the

various districts (Figure 1.1), sees each hemisphere divided into frontal lobe, parietal lobe, oc-

cipital lobe and temporal lobe; each of these zones deals with particular functions, although

none of them ever works as isolated and, even if only one of them is damaged, the whole brain

functioning is compromised.

Located in the anterior position of the cerebral cortex, the frontal lobe is the largest lobe in

which most of the functional areas are concentrated, especially those dedicated to movement:

in fact, here lies primary motor cortex, aimed at the actual control of voluntary movements, and

the premotor cortex that supports the previous one. In addition, the areas of spoken and written

language control and the emotional control centre also reside here.

The temporal lobe is located laterally, protected by the temporal bone, along with the amyg-

dala and hippocampus. It manages the processing of sound signals, coming from the outside

environment, through the primary and secondary auditory cortex and it deals with the creation

of visual memory and language; moreover, being the lobe dedicated to long-term memory, is

often affected by pathologies of seniority or schizophrenic disorders.

In the parietal lobe lies the somatosensory cortical area, mainly responsible for the pro-

cessing of tactile stimuli (feeling of pain, cold, roughness...); moreover, through the superior

parietal lobe, the spatial orientation is managed while the inferior parietal lobe deals with the

interpretation of the language.

Finally, the occipital lobe, the smallest of the four, guarantees through the primary and sec-

ondary visual cortex the reception and processing of all the visual information acquired and sent

by the eyes and the optic nerve. This information is then sent to the parietal lobe and temporal

lobe for further refinement of their decoding.
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Figure 1.1: Lateral 3D view of left hemisphere with its lobes. The frontal lobe is coloured in
red, the temporal in green, the occipital in purple and the parietal in orange

The information is exchanged and processed through electrical stimuli that are generated

and spread in particular cells defined neurons. These nerve cells are divided into three main

areas: the soma, generally of spherical shape, contains the nucleus and all the corpuscles nec-

essary for its survival and organization; the axon is the extension towards which the electric

stimulus (action potential) passes and propagates: it is regenerated thanks to the Ranvier nodes

(i.e. areas where the myelin sheath, the membrane that protects and electrically insulates the

axon, is absent) and then it spread throughout the body and reach the synaptic buttons through

which, by means of neurotransmitter vesicles, the signal passes to the dendrites (linking sections

between neurons) of the next neuron, along with other signals from different areas [2]. Depend-

ing on the anatomical district, neurons differ in shape, structure and function: sensory neurons

transduce and send signals from outside (sensory somatic neurons) or from inside (sensory neu-

rons visceral) to the CNS; motor neurons, on the other hand, receive signals directly from the

CNS and send them to peripheral organs such as skeletal muscles (somatic motor neurons) or

smooth muscles (visceral effector neurons); finally, associative neurons (interneurons) are those

intended for the reception and organization of external stimuli, coordinating the respective exit

information and reside internally at the CNS [3].

1.2 Signal acquisition technologies

To obtain information about the functioning and health status of the brain, particular techniques

are needed to identify specific patterns required for the end purpose. As with any biological

measurement, it is necessary to differentiate invasive techniques from non-invasive techniques:
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the first ones, which involve the use of instrumentation that comes into contact with internal

areas of the body, are able to provide more accurate information but at the same time can cause

tissue damage and other problems; instead, the latter ones, are used in contact with the outer

opening of a body area ans allow an higher level of safety for the patient but more noisy data.

1.2.1 Electroencephalography

Used for the first time in 1929 by Hans Berger, it is the most used non-invasive system for the

acquisition of brain signals in both medical and research fields and it is based on potential dif-

ferences detectable directly on the scalp [4]. In the outer part of the cortex, perpendicularly to it,

there are pyramidal cells, particular types of neurons that depolarize or polarize depending on

brain metabolism. The measurement of this activity takes place through electrodes, generally

made by gold, placed on the scalp surface: due to the macroscopic size of the instruments com-

pared to pyramidal cells, it will be possible to measure only the result of a collective activity

(temporal and spatial summation) of the neurons of the examined area, which will depend on

their degree of synchrony or asynchrony.

There are different types of equipment for EEG measurements (single electrodes, helmet...)

but most involve the use of particular electrolytic solutions to be distributed between the elec-

trode and the head, in order to maximize the conduction and reduce the skin-electrode impedance.

Depending on the study carried out, a different number of electrodes are used: generally they

are power of 2 (16-32-64-128-256 electrodes) and their position depends on the standard cho-

sen [5]; as the number increases, the sensitivity in obtaining data of smaller neural populations

increases too, but with a consequent increase in the computational weight of the data and in-

creased preparation time and dressing of the headset. The acquisition of potentials takes place

by differential measurement, calculated directly at the level of the analog structure, between the

electrodes and the ground, an electrode that is ideally fixed at potential 0 and is usually placed

in the forehead or one of the ear lobes. The data then undergo further processing both at the

analog and digital level depending on what features you want to obtain. Regarding the latter, of

particular clinical importance is not primarily the temporal evolution of signals, but more prop-
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erly their behavior in the frequency domain. It is possible to identify four main frequencies,

distinctive of certain situations of brain activity: the δ rhythm (0.5-4 Hz, 150 µv) is typical of

deep sleep, childhood or some brain diseases; the θ rhythm (4-7.5 Hz, 75 µv) appears in new-

borns and in case of strong emotional tensions; the α rhythm (8-13 Hz, 30 µv) is recorded in an

awake subject with closed eyes (in a state of mental rest), mainly in the occipital and parietal

electrodes; the β rhythm (13.5-30 Hz, 18 µv) is the most dominant in subjects awake and en-

gaged in a brain task; finally, the γ rhythm (30-42 Hz), appears infrequently and is characterized

by very deep states of attention (please see [6]).

As already mentioned, EEG signals (Figure 1.2) are particularly noisy and difficult to in-

terpret for more in-depth studies, and therefore they require various processes before useful

information can be obtained; moreover, this techniques do not provide any information at the

level of anatomical structure but only of functionality, and the correct measurement is not 100%

guaranteed due to problems related to instrumentation, artifacts (which can be removed without

unduly distorting the information content) or at the bad contact between skin and electrode (for

example, the absence or scarcity of an electrolytic gel could lead to an increase in the electrode-

skin impedance, therefore originating totally wrong signals in amplitudes and trends).

Figure 1.2: Time representation of EEG signal filtered in its different frequency-components.
The amplitudes are expressed in µV.
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1.2.2 Magnetoencephalography

Magnetoencephalography (MEG) is an other non-invasive technique [7] of neuroimaging that,

unlike the previous one, exploits the magnetic fields generated by changes in electrical activity

in the cortical area of the brain. These magnetic fields are based on the hypothesis that the

neural families behave as dipoles perpendicular to the cortex and, then, they are able to generate

an outgoing magnetic field: this measurement appears very advantageous in the study of high

frequencies (unlike the EEG where they are very small in amplitude) and, in reference, in the

study of epilepsy, in which the variations in activity are very strong, even if the machinery

has big dimensions (Figure 1.3). In order to have a more complete view and higher spatial

and temporal resolutions, the two technologies are usually used simultaneously [8] with the

necessary shielding, in order to minimize the presence of electrical (EEG) and magnetic (MEG)

artifacts .

Figure 1.3: MEG structure is set around subject’s head: to avoid artifact, the patient should not
move his head or do any type of movement of facial muscles. The acquisition is painless and,
usually, used with a shielded EEG headset

1.2.3 functional Magnetic resonance imaging

Like the classical magnetic resonance imaging technique, the functional Magnetic resonance

imaging (fMRI) is based on the principle of brain district response to an external magnetic

field, adding a differential component over time that can identify voxels, whose value changes
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depending on the oxygenation level (BOLD, Blood Oxygen Level Dependent) of the studied

area [9]: hemoglobin is diamagnetic if oxygenated but paramagnetic if it is not, and this level

can be detected and developed as a visual signal. Since the two technologies are based on the

same machine, they can be used simultaneously allowing the evaluation of both anatomical and

functional information (Figure 1.4). An higher level of oxygenation indicates an increase in

neural metabolism and, therefore, shows the activation of the surrounding area compared to

the baseline conditions. The scanned images have an high spatial resolution (it reaches a size

of more than 1024x1024 pixels) but a reduced temporal resolution due to the acquisition time

dependent on the parameters chosen by the specialist (T1-T2) and the limits of the machinery;

moreover, it is not possible to determine, in the case of multiple BOLD signals, whether there

is a correlation between them (especially at what time it started) and whether such signals

originate from a change in functional metabolism or from external factors such as the use of

excipients or drugs.

Figure 1.4: fMRI can used to estimate the brain metabolism along different planes, highlighting
regions that can not be acquired with other technologies. Moreover, the anatomical information
is preserved, making it easier to study more deeply more areas

1.2.4 Positron emission tomography

Positron emission tomography (PET) is a diagnostic technique of nuclear medicine [10] that

uses labelled substances with radioactive markers to assess if there are problems in specific brain

22



districts; this evaluation depends on the injected substance (for example, glucose is used to look

for cancer areas) and its body kinetics (the time it takes to reach the desired area), making PET

a very versatile but extremely slow technology, with average times that exceed the hour. The

construction of the image (Figure 1.5) takes place thanks to sensors sensitive to the emission

of positrons following the decay of radioactive markers, and provides an anatomical-functional

vision: the marker will decay when its substrate binds to a specific receptor, enabling to quantify

not only its bond level but also the shape of the arrival structure. Like the computerized axial

tomography (CAT) scan, the presence of radioactive elements can be harmful to the health of

patients in the long term, and there are many restrictions on its use, especially in research field.

Figure 1.5: Transaxial slice of a brain acquired in 20 minutes: red areas represent high bound-
level of the tracer while blue areas are the one in which there is no enough radioactive decay

1.2.5 Electrocorticography

Just like the EEG, the Electrocorticography (ECoG) has the aim of study the neural currents

that develop as a result of brain activity too; however, it is an highly invasive technology [11],

which involves the insertion of needle-like electrodes (Figure 1.6) directly inside the cerebral

cortex. The electrodes used are significantly smaller than those of the EEG and therefore allow

to have a very high spatial resolution ( 0.35 mm) and map individual neural families with greater

precision, especially due to the reduced contact impedance; nevertheless, its use is mainly linked

to the field of neurosurgery where it is necessary to ensure that there is no damage to brain

tissues: moreover, because it is an invasive measure, there could be a very high risk of infection

and, so, it can not be used frequently.
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Figure 1.6: Example of needles used in ECoG measurements. The entire structure penetrates
into the surface of the cortex but only the tip is conductive

1.2.6 functional Near-Infrared Spectroscopy

Similar to fMRI, the functional near-infrared spectroscopy (fNIRS) [12] captures hemoglobin

levels in the cerebral arteries as a result of changes in brain metabolism through the evolution of

light absorption (such as the pulse oximeter). The different corpuscles that make up the blood

have different level of absorption and diffusion of light in specific wavelengths: hemoglobin

changes its behavior depending on whether it is charged or discharged with oxygen, varying

values within the near infrared spectrum (700 nm - 1mm); the increase in brain activity is related

to a greater supply of oxygenated blood and, therefore, increased absorption in the wavelengths

of oxyhemoglobin compared to a resting situation (values calculated according to Lambert-Beer

law). The instrumentation used, even if it is extremely slow like the fMRI, can be very compact

and portable (Figure 1.7), becoming a perfect candidate for daily use in the field of BMIs, as

reviewed in [13].

Figure 1.7: The device is extremely compact and portable. The one above is able to acquire
data from the frontal lobe
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1.3 Brain-machine interfaces

Some of the previous techniques (EEG, ECoG, fMRI), beyond to purely monitoring and an-

alyzing the pathologies, can be actively used to allow patients with physical disabilities (i.e.,

paraplegics and post-stroke patients) [14] to interact with the outside world only through the

use of their still functioning areas through the human-machine interfaces (HMI); in particular,

if the data are acquired according to the techniques mentioned before, then we will talk about

brain interaction or BMIs [15]. These technologies have undergone considerable evolution in

recent years, mainly due to new discoveries on the functioning of the brain and the increasingly

precise acquisition of biological signals. Generally it is possible to divide the BMI in two large

categories depending on the type of neural pattern that are analyzed: we will talk about exoge-

nous BMIs if the decoding is based on a response to external feedback (EP, evoked potential

and ErrP, error related potential) and endogenous if it does not depend on external events. Both

types have both positive and negative sides and have a significant component of subjectivity, as

each individual responds differently according to his health conditions, stress and fatigue.

1.3.1 Exogenous brain-machine interfaces

Exogenous BMIs exploit the responses of the brain following an impulse coming from the

external environment, like an intermittent light or a continuous click: these responses are iden-

tified with the name of EP (also used for the diagnosis of neuro-degenerative diseases such as

those described above) and they are related to different senses, that can be mainly visual [16],

auditory [17] and somatosensory [18]. Depending on the type that is used, the useful signals

are extracted from the brain areas corresponding to the task (for example, the data connected to

visual information are analyzed starting from the electrodes placed in the occipital lobe) and are

processed to derive a characteristic waveform: in fact, the EP are not immediately visible and

recognizable by EEG signals but require particular types of extraction, more or less meticulous,

depending on the purpose of the analysis.

Generally, there are specific features that allow to identify the presence of EP and they can

be obtained from the grand average, that is an averaged signal obtained by the mean of several
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window synchronized according to the start of the stimulus, under the assumption that the EEG

is affected by a white noise and, therefore, with mean equal to 0: it is evident that such analy-

sis can provide generic characteristics and it can be highly problematic in case of errors in the

choice of signals or time synchronization.

In the literature there are proposed several exogenous BMI based on different typologies of

EP: here, we talk about the P300 [19] and Errp [20], both visible along the central line of the

frontal lobe, appearing when the state of attention of the subject changes following an external

event. When the user notices something, a wave mainly characterized by a localized peak about

300 ms after receiving the stimulus is created (a considerable variation of this value may indicate

a pathological state such as the onset of ALS, Amyotrophic lateral sclerosis): this EP is mainly

used, together with ophthalmology, in the BCI Speller [21], that is a particular type of HMI that

allow verbal communication thanks to a screen containing the letters of the alphabet (Figure

1.8); this technology can be very useful for those persons that, due to pathologies or trauma, are

not able to talk properly. The Errp instead, originates following the recognition of an error (per-

sonal or other) and its use is still under study because it is not easily recognizable in all subjects.

Being based only on brain feedback to external stimuli, exogenous BMI can be used with a

minimum training, allowing its use even in a short time; on the other hand, the user could get

used to the stimuli and get tired over time, leading to a progressive reduction and disappearance

of the EP, making it extremely difficult to use succefully the BMI.

Figure 1.8: The subject is able to choose one letter among these that are showed in the monitor:
the choice can occurs in a very short time period with reduced false positive.
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1.3.2 Endogenous BMIs

In contrast to the previous type, endogenous BMIs are based on self-modulation (or modulation

of brain activity in the absence of external stimuli) of certain neural areas. According to the

literature, the most commonly used type of endogenous BMI (Figure 1.10) is based on motor

imagery (MI) [22], that is the ability of an individual to have a kinesthetic imagination of a

movement of his personal body part (typically hands and/or feet) and to produce a modulation

in the motor cortex, similar to what he would have with the real movement. MI BMIs employ

the user’s endogenous brain activity in the absence of any external stimuli: When imagination

occurs, there is a progressive de-synchronization of neural activity in different areas (depending

on the body part connected to the movement) in the center-frontal area of the cortex and then

a returning to the initial situation when the activity is finished. The imagination and the execu-

tion are similar in terms of brain activity, even if there are some areas that are involved only in

MI [23]: the spatial localization is mainly on the motor and sensory cortex (Figure 1.9). It is

particular interesting the way in which the neural networks change during the kinesthetic imag-

ination: although the main motor cortex was not consistently proven to be active [24], the MI

network contains various areas that are recognized to be important during real motor execution.

The type of MI tasks utilized, the modality of MI, and the body part engaged in the movements

all appear to have an impact on how consistently the overall MI network is activated. When

someone pictures the movement of his limbs, a significant fronto-parietal network is engaged

and also the subcortical and cerebellar areas are consistently activated by MI. Moreover, it is

shown that the time in which this network change is similar for real and imagination move-

ments, proving that the required computational ability of the brain is approximately the same.

Finally, the activation of these areas can drastically change if there are dehabilitant pathologies:

among people who are affected by Parkinson’s disease ([25]), there was greater difficulty in

completing MI tasks compared to health subjects due to damages on motor areas.

With a more in-depth analysis of these zones, using an acquisition system like an EEG, it

is possible to notice changes in the frequency behaviour according to the cognitive process:

by analysing the baseline (i.e., in a rest situation) of the logarithmic spectral power, all the
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information can be extracted from the attenuation in α and β bands that occurs during the

imagination task. In the areas in which MI occurs, the particular rhythm that describe better the

change of neuronal activity is the µ that has a frequency range between 7.5 Hz and 11.5 Hz and

its suppression is a typical sign of kinesthetic imagination.

To facilitate the subject’s mental effort of imagination, it is recommended that the anatomi-

cal parts thought in motion were perceived in tension and, above all, perceived as their own (not

enough to think of ”a hand” or ”a foot”).

(a) Areas dedicated to motor imagery (b) Areas dedicated to movement execu-
tion

Figure 1.9: MI task involves larger regions than movement execution due the activation of areas
dedicated to the imagination.

The conversion of the user’s intention into a mental image of a motor action is a fundamental

idea in these BMIs and provides an interface for communicating the user’s purpose without limb

movement (even if, for people with stumps, the movement is allowed). One of the most study

field in which MI BMIs could be useful is in neuro-rehabilitation, and studies have shown

that repeating MI may be beneficial in this type of treatment [26]. The MI BMI paradigm

includes training (calibration phase) and testing (evaluation phase) sessions, similar to other

BMI paradigms: during the first one, a classifier is created as a result of feature selection and

extraction while, in the second one, the user is able to control the BMI according to his features.

Another type of BMI, which no longer involves the use of an EEG but directly of an MRI,

bases the operation on BOLD signals [27]: as explained in the previous paragraph, activation of

a zone involves a change in glucose metabolism and a consequent increased need for oxygen,

which alters the magnetic field allowing so the detection by the machinery. Unlike the first one,

it is evident that the latter one, despite being able to more accurately detect changes in activity
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along the entire cortex, still does not allow an everyday contexts usage due to the machinery

dimension, the difficulty to manipulate and its slowness in data acquisition.

Figure 1.10: The subject is modulating his motor-cortex neurons by the imagination of limbs
movement, without doing the real movement

The main point in favor of these systems is their high versatility and long-term use: not

depending on any external event, there is no risk of habit (resulting in a reduction of the ap-

preciable response) and above all, there is the possibility to be used when desired, because the

user will decide when and how to activate them only with the use of his imagination [28]. This,

however, involves a considerable mental effort that not everyone can successfully carry on, so

a continuous training is required to maximize the capacity of usage that can last even months;

moreover, unlike exogenous BMIs that require information from few or even one channel to

work, MI BMIs need signals from an entire area (sensory-motor cortex): therefore a multi-

channel recording is needed in order to have clean and usable results. Finally, the current

self-paced BMI have also a reduced number of degrees of freedom, or the different actions that

can be carried out with different neural modulations: this constraint makes extremely difficult

to use complex technologies in three-dimensional spaces using only endogenous BMI (in fact,

they are always supported by other types as showed in [29]).

1.3.3 Limitations and uses

At current stage, due to the limitations mentioned above, more complex BMIs are mainly used

only in research field: today’s non-invasive capture technologies do not yet provide clean signals
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suitable for detecting more precise changes, especially for the attenuation that is found at the

level of the scalp, which involves a significant loss of information. At the same time, invasive

(using techniques such as ECoG) or partially invasive (Neuralink [30], (Figure 1.11)) BMIs can

produce very strong signals from small brain regions, which allows the reduction of processing

time and the creation of finer commands. Of course, because they can cause infections or

damage to the brain, because of their high cost and also because of the long application time,

they are used only in very narrow areas and only under the supervision of a medical team, unlike

the non-invasive that can be used by everyone at any time. In addition to device control, BMI

could been particularly effective in rehabilitation therapies for post-stroke patients, especially

when connected to robotic devices that help with limb movement.

Figure 1.11: First version of invasive BCI by Elon Musk. The electrodes are placed directly
on the cortex and the are fixed with little needle; the information is acquired and transferred to
computers with bluetooth technology.

1.4 The concept of Mutual Learning

Most of BMIs that provide to users the control of an external device, are based on closed loop

(proposed, for example, also in [31]): the interaction between subjects and computer doesn’t

work in a single way but in a request-response mechanism. In fact, when the partecipant sends

a command, the device give him a feedback which can be of various types (mechanical, vi-

sual, auditory, electrical) in order to return the information about the accomplished task: this

technique allows the user to understand how the response changes according to what he does,

leading him to engage more and understand what are the best methodologies to maximize his

intentions and reducing the effort to perform them. Generally, for classic endogenous BMIs,

the feedback generated is visual and it occurs on the last part of the loop (Figure 1.12): after the

acquisition of subject’s signals, the data are processed in order to extrapolate the best features
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(information that describes more the characteristics of a signal as highly discriminating and that

can be used for its identification) for the classification and the delivering of the command to the

external device. Moreover, the feedback can be originated from other sources outside the loop

too, like proximity sensor in case of BMI-driven wheelchairs.

Figure 1.12: Schematic view of BMI closed loop. By studying the response of brain according
to the feedback received, is possible to increase the users performances.

To achieve good results, it is necessary that every feedback must be generated in the shortest

possible time after the sending of the command, in order to maximize the user’s awareness of

what is happening and allow him to correct possible errors.

Precisely for this reason, training is an essential part for a proper usage; above all, it is ex-

tremely necessary to build the entire algorithm carefully, studying the subjective characteristics

of each user and evaluating the most important features to be analyzed: from user’s responses

to feedback, it is possible to study the evolution of his neural patterns and improve the perfor-

mances for his subsequent BMI usages.

Most researchers in the literature mainly focus on identifying methods to improve BMI

algorithms, with a focus on deep learning and machine learning and new EEG signal features,

together with newer technologies. Moreover, it is particularly useful to focus on the training and

learning methods of the subjects, evaluating new strategies and maximizing the performances

of BMIs. A relevant approach is that of Mutual learning, used and described in [32], based

on the characteristic of the three pillars of BMI (subject, machine, application layer/algorithm)

to learn from each other (Figure 1.13): in fact, researchers try to maximize the algorithm in

order to fully represent the needs of the user, without allowing the user to learn how the system

works and to adapt accordingly. This adaptation is very important because, as well as increase
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the chances of correct use of BMIs and their performances, it allows to drastically reduce the

number of re-calibrations of the classifier, or the moments when the latter must be corrected

because it can no longer decode the intentions of the subject. With a stable model, it is possible

to quantify more the degree of training of the user and, especially, it allows the creation of a

stable system over time and not dependent on unwanted fluctuations due, for example, to the

user’s mood. Therefore, the evaluation of neuro-plasticity associated with this new type of

protocol, would allow a better and immediate use of BMI in everyday life even for subjects

with motor disabilities and in more difficult situations, reducing stress and training time and

allowing them to improve their quality of life.

Figure 1.13: Representation of the ideal connection among the three pillars of BMI. The output
of the BMI can also be corrected by other external devices like proximity sensor
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Chapter 2

Motivations and Objectives

As highlighted in the introduction, currently, the use of BMIs is not very common in the areas

outside of research, fact penalized especially by the long training times needed to ensure proper

use. Moreover, the lack of a uniform protocol and a standard of operation of the algorithms,

makes the transition from one use of a device to another particularly complex, precisely because

of the absence of common guidelines that allow a cross-use or reduced adaptation time. For

these reasons, this thesis sets as its main objective the evaluation of the benefits that a training

based on ML can offer and above all, to quantify and demonstrate that the performance of

BMIs do not depend exclusively on machine learning algorithms, but are directly related to the

sensations, objectives and link with the machinery used by the user. According to this last point,

in this experiment will be evaluated the consequence of a more intense feedback (wheelchair

rotation) respect to the classical visual effect, under the condition that an improvement of closed

loop follows an increasing of the performances.

In addition, by reducing training times and improving the latter’s characteristics, it would

be possible to increase the use of this technology for different areas, from remote or dangerous

workplace tele-operations, to rehabilitation for post-operative patients stroke or with debilitat-

ing conditions such as ALS: given the time required for traditional therapy, this technology

could dramatically improve patients’ lives without, in addition, the need to have long sessions

or to create new models; this could be possible if new methodologies that aim to create a com-

promise between subject and algorithm are applied. Therefore, the question is if there is enough

differences, in the third day of training, between people that trains in different ways.



Chapter 3

Methods

This chapter is dedicated to the presentation of the methodologies and the experimental setup in

which the experiment was conducted: in the following paragraphs, particular attention will be

paid to the composition of the groups of participants and to the data acquisition and processing,

together with a timely description of the analytical metrics.

3.1 Partecipants

Eight subjects participated in this study (average age 25.5 ± 1.5years, 4 males and 4 females)

without any pathology and without any previous experience in the use of BMIs. Each of them

was pseudo-randomly assigned to one of two groups: the first(group ”on desk”, a8-b9-b1-

a5), carried out a training at BMI according to standard methodologies, with a visual feedback

given by a monitor; the second (group ”on wheelchair”, c1-a3-c4-c6), instead, used since the

first sessions a robotic wheelchair that rotated on itself depending on the output of BMI. All

participants, before starting the first day of experiment, have viewed and signed an informed

consent in which all information for the treatment of privacy and the use of recorded data were

illustrated (for this purpose, each user has been anonymized to ensure greater security). All

subjects were asked to be in the laboratory for a total of three discontinuous days.

3.2 Signal acquisition

Throughout the duration of the experiments, EEG signals were extracted and used to develop

non-invasive BMI algorithms. To acquire the EEG signals, the AntNeuro eego sport helmet is

used: although there was a total of 64 electrodes available, only 32 have been used for mea-

surements, arranged according to the standard 10-20 placements (Figure 3.1). To reduce the



electrode-skin impedance, an electrolyte solution was applied to each electrode several times

during the same session in case there was a strong presence of noisy signals; the reference

electrode was Cz and the sampling frequency was 512 Hz. The EEG signals were then saved

in standard .gdf format along with task labels and other information (such as the duration of a

task, the beginning of the session) by using the Ros-Neuro system [33] [34] which would also

deal with the online phases (i.e., the evaluation mentioned above).

(a) AntNeuro eego sport setup (b) Electrodes used

Figure 3.1: The headset is fully portable and all the data processing and storing is inside the
pink amplifier. Among all the 64, only the most useful group of 32 electrodes (highlighted in
green color) is chosen for the experiment

In order to evaluate the correct acquisition of signals, they have been plotted (after a filtering

between 1 Hz and 40 Hz to reduce the noise and possible artifact) and the user was asked to

perform three simple tasks, with the aim to show recognizable patterns to quantify the degree

of cleanliness of the signal: the subject had to blink and, then, repeatedly move the jaw to

highlight muscle artifacts first in the electrodes Fp1 and Fp2 and then in the surrounding area,

that area affected by the movement of the facial muscles. Finally, to look more closely at the

frequency components, the user had to close his eyes and relax as much as possible to highlight

the α waves in the occipito-parietal area. If only one of these variables had not been displayed

correctly, it would have gone to a better arrangement of the headset and gel.
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3.3 Experimental protocol

The sessions of the experiment were distributed in three days, spaced on average of 3 ± 2.58

days from each other to allow individual subjects to have a period of pause between uses, thus

allowing a better evaluation of their neuro-plasticity. Of these three days, the first two were

dedicated to calibration (i.e., creation and subsequent improvement of the classifiers to be used

in BMI) and the subjects underwent training and evaluation sessions with the methods dictated

by the group (in front of a computer for the first group, directly in the wheelchair for the sec-

ond) (Figure 3.3); during the third day it was not possible to change the classifier created in the

previous days (with some exceptions that will be described in the final discussions and consider-

ations) and both groups performed that session in the wheelchair (Figure 3.2). If some subjects

failed to use the BMI in the first two days of calibration: among the metrics used to decide

the transition to the evaluation phase were the stability of the subject’s features over time, the

speed at which it was able to perform the task, the percentage of correct tasks and the level of

fatigue. Each session had a variable average duration of about two hours, a quantity strongly

dependent on the fitting of the headset, the application of the gel, the evaluation of the cleaning

of the signals and, especially, the time taken by the subjects to complete the evaluation (8 runs

were completed every day, with some exceptions for subjects who controlled the BMI perfectly

and for those who could not).

Figure 3.2: Schematic view of experimental setup. D means ”session on desk” and W ”session
on wheelchair”. This letter indicate the modality according to the first and the second group.

During the first day, we started with the creation of the classifier: the number of runs needed
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varied from subject to subject but generally, three were enough to identify stable features that

could guarantee good performances. Once the model was created, we moved on to an evaluation

phase that, according to the metrics listed above, allowed us to understand if we could move

on to the next day; in the case of the first day, if the BMI had not had the expected outcome,

however, we passed to the second day building the sessions as if it were the first (in fact, the

second day would be used mainly to check if the features of the subject had remained stable

and, to the limit, to further refine the model).

(a) Training on desk (b) Training on wheelchair

Figure 3.3: Two types of training according to the group. In both situation, subjects have to
keep their hands and their feet as much relaxed as possible; the feedback on desk is just visual
while the one on wheelchair is both visual and of movement

3.4 Motor Imagery and visual paradigm

The runs, divided between offline (calibration) and online (evaluation) were composed by 20

tasks, each depending on the type of kinesthetic imagination (10 for ”both-hands” and 10 for

”both-feet”, proposed in random order to minimize the risk of habit and therefore decrease in

features) that the user should have performed: for the calibration session, the completion period

was about 5 minutes while for the evaluation it varied depending on the performance of the

classifier and the subject. During the experiment, to the user was presented on the screen, alter-

nately in the form of figures and colors, the task to be accomplished (Figure 3.4): the presence

of a green/purple circle suggested the user to start imagining to move both feet/hands contin-
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uously until the complete filling of the corresponding bar placed at the top. Before starting,

it was proposed to the user to move the hands or feet rhythmically with an increasingly slow

pace until the movement was completely absent but there was still the feeling of contraction

and relaxation: because of the fundamental requirement of this experiment, that is not to have

any previous experience with BMI, this exercise was fundamental to better prepare participants

for what they should have done. In order to reduce as much as possible movement and ocular

artifacts, it was required not to blink or move the head while filling the bars; moreover, before

each cue (start of the task, 1 second), a fixation cross (1 second) appeared in the centre of the

screen, alerting the user to the start of the test and acting as a fixed point on which to look for

greater concentration and less distraction due to external movements in the room, which still

had to be as quiet as possible. If in offline runs the bars rose automatically (continuous feed-

back, 5 second) correctly compared to the proposed cue, in online runs was the user to control

them and therefore could rise at different speeds, up and down or, one could not climb at all

despite the effort of the subject, accordingly to the output of the BMI decoder. In order not to

decrease the level of concentration, between one task and another there was a period when the

user could relax and prepare for the next cue: being randomly proposed, limb relaxation was

mandatory to prevent the muscle contractions of one area from corrupting the acquired data for

the other. In case of fatigue, subjects could make small breaks between the runs, especially to

cool their eyes, but without touching or removing the EEG headset due to the presence of the

gel (if different electrode areas had come into contact, a short circuit would have been created

and the resulting signals would have been totally wrong). Finally, to facilitate the evaluation

approach, two threshold parameters, one for the both-hand task and the other for both-feet,

could be modified according to the needs: if in fact the user had difficulty in picking up the

bars, these parameters were lowered and tested in the next run; conversely, if a bar rose too fast

without being checked, then its threshold parameter was increased. It is clear that increasing

or decreasing these values represents a highly subjective trade-off that had to be evaluated on a

case-by-case basis: if the value had been too high, it would have taken more time to complete

the task but there would have been more control by the user; vice versa, if the value had been

too low, the bar would have risen very quickly escaping the real intention.
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(a) Inter-stimulus in-
terval

(b) Fixation cross (c) Cue (d) Continuous feed-
back

Figure 3.4: Pipeline of visual paradigm proposed to users. After the inter-stimulus interval, a
fixation cross is proposed and, then, the cue: now starts the imagination of movement (continous
feedback) until the bar is filled. In this image the cue corresponds to the task ”both-feet” with
consequent rotation of the wheelchair to the right. This paradigm is equal for both groups.

3.5 Signal processing

As a first step for the creation of the classifier, EEG signals were filtered using two Butterworth

filters (order 4 to speed up filtering for online applications) to minimize noisy and unnecessary

components: in fact, the frequencies actually useful for the purpose of the experiment and

corresponding to those modulated during motor imagery are those belonging to µ waves and

the first β waves.

3.5.1 Laplacian montage

During the first days it was necessary to create classifiers able to identify the discriminators

between the two classes of BMI and, to do this, it was necessary to focus on the brain regions

involved in the action, namely those of the motor-sensory cortex. According to the standard 10-

20 and the headset used, we mainly refer to the front-central-parietal electrodes (Fz, FC3, FC1,

FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP1, CP2 ), that is those in which the differences between

hands can be noticed most (mainly the areas of the electrodes C3-C4) and feet (zones of Cz).

Being of their nature damped and noisy, it is necessary to increase the information content of

the EEG signals by applying a spatial filter (that is a sharpening filter able to increase the signal-

noise ratio and consequently the signal sharpness level) and highlight more the changes in field

potential along the scalp surface. In the case of this experiment, a Laplacian filter was created

and used [35] (matrix 32x32, size corresponding to the number of channels used) (Figure 3.5):

this is a filter based on the second order differences of the electrode chosen with respect to its
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surroundings for each of the individual samples of each temporal moment. The absence of this

particular application would have caused the presence of too much noise that then would have

poured on the spectral analyses, which will be described in the following paragraphs, making

the model and the BMI practically unusable.

Figure 3.5: Colored image of diagonal Laplacian matrix. The main diagonal is referred to single
electrodes while different blue tonalities shows the areas were spatial filtered is applied

3.5.2 Power spectral density

The analysis of signals directly in the time domain does not allow to identify features suitable to

maximize the discrimination between the two tasks of MI BMI. According to what is proposed

in the literature [36], cognitive processes related to the motor aspect not only generate responses

similar to event related potentials (ERP), but present a particular response in the combination of

neural work: by the analysis of the signal spectrum, it can be noticed that at the motor imagery,

a desynchronization (ERD), that is a phase in which the cells no longer work in unison, pro-

ducing a power change detectable especially in the entire alpha band with a sharp decrease in

amplitudes with respect to the resting situation, of the neurons of the primary and somatosen-

sory cortex is generated; when the task ends, it appears again a synchronization (ERS), with a

consequent returning to the rest situation (Figure 3.6). However, this configuration is extremely

variable among people and generally recognizable only if we consider the individual bands as

a whole, mediated for all the frequencies of which they are composed: such situation can be
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useful only in a case of study and not in a real use of BMI because most subjects using MI BMI

do not modulate the entire band but only some sub-bands, unlike what described by ERS/ERD.

To overcome this limit, methods have been studied to increase, as was the case for the spatial

domain, the spectral resolution to have data linked as much as possible to multiple groups of

frequencies and not to entire bands. Based on this, the variation of the power spectrum is ana-

lyzed (that describes, using discrete frequency component, the distribution of power that signal

have in a specific time period) in various time blocks in order to obtain a spectrogram that links

temporal information to spectral information.

Figure 3.6: Temporal evolution of general ERD/ERS wave. When an imagination occurs (0 -
500 ms), the neurons start to fire alone generating less amplitude in the EEG signal (there is no
more temporal summation, ERD) compared to the reference period. When there is a return to
the rest state, neurons work again together (temporal summation, ERS)

Since it is pratical impossible to construct a perfect spectrum (since an infinite period of time

is required in order to calculate the fast Fourier transform (FFT), we try to create an estimation

as close to the correct version using methods of spectral mean as can be that of Welch [37] (the

algorithm used for the creation of the features is based on this method and it generates the PSD,

power spectral density). The signal is divided into a finite number of windows whose length

(we chose, for best results, 1 second) is chosen according to the requirements of the algorithm

and such windows are further separated into overlapping segments for each shorter period of

time (62.5 ms): for each of these, the spectrum is calculated by FFT for each desired frequency

and then these values are then averaged representing the average value of the spectrum in that
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signal portion; the same windows must be overlapped to maximize spectral resolution.

R
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At the end of the process, there will be a three-dimensional matrix (windows x channels x fre-

quencies) containing all the spectrum information needed to evaluate, window by window, the

mental state of the subject and to identify the start and end periods of the task: in addition to pro-

viding a significantly higher resolution than that of ERD/ERS, the Welch method, being based

on the average of segments, allows to reduce the noisy component (if, even after preliminary

filtrations, high-power components remain, the average with the rest of the segments would

lessen their influence) and above all, make the spectral calculation faster than other methods

such as Bartlett’s [38] because the previous FFTs can be reused to calculate the following ones,

allowing an online use of this algorithm.

Finally, a base-ten logarithmic transformation is applied to linearize the spectrum, to have a

simpler view of its trend and to facilitate the creation of the model as will be described in the

following paragraphs. Ultimately, therefore, a PSD-based approach allows not only to analyze

more in detail the evolution of sub-bands (in this experiment was set a vector that starts from 2

Hz and reaches 48 Hz with resolution of 2 Hz) but also to clean up the spectra and have more

precise information for the various periods of time, allowing to identify the individual windows

of interest: once calculated, through a similar algorithm, the windows are separated according

to the task (both hand, both feet and rest) thus moving from a three-dimensional matrix to a

four-dimensional matrix that allows the identification of differences between the PSD, with the

aim to create a classifier based on them.

3.5.3 Features extraction

In order to create a model useful for the control of the BMI, it is necessary to identify the

features that discriminate in the most correct way the execution of a task respect to the other

one: one of the objectives of this process is the analysis of the evolution of neural correlates
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due to neuro-plasticity of subjects brain; moreover, it is necessary to reduce the over-fitting

phenomenon and the computational heaviness of algorithms in the online usage by creating a

classifier based on a limited number of features. As defined in the previous paragraph, the PSD

calculated from the signals has a rather high dimensional and provides a very high number of

usable data, most of which, however, are not discriminatory and, despite that, they could lead

the model to make wrong predictions about the outcome at that time: there is therefore a need

for statistical selection methods based mainly on the neuro-physiological notions listed in the

literature [39]. Although the PSD is built on a very high frequency scale, only small subgroups

of them are useful to decode the intention of movement, as it is characterized by changes in

the spectral power in µ waves and in the first β waves on specific areas [40], that are those

typical of the motor cortex; known this, the number of the features is drastically reduced to few

channel-frequency pairs: for this experiment six frequencies (according to the resolution chosen

for the algorithm) and about 13 of the original 32 channels (corresponding to those in which the

difference of PSD between one task and the other is more evident, information values greatly

increased also by the laplacian applied in the first processing) will be considered.

Of course, each subject will have a different neural response from the others (as evidenced

by [41]) and, therefore, this point must be taken into account in the calibration phase: this is

the main reason why a single generic model can not be created. To identify the frequencies and

channels most affected by the difference between the two tasks of the MI, it is possible to use

different statistical approaches, even if the most used, especially for its application speed, is the

Fisher Score (FS) [42]

FS(k) =
abs(µ2(k)− µ1(k))√

(σ2
2 + σ2

1)
(3.2)

For each calibration run carried out, this value is calculated for every channel/frequency pair and

a map is generated: in this case, it will have a size of 32 x 26 (channels x selected frequencies).

This map provides a first visible result of the pairs that are most discriminating for the two

tasks and that are represented by an higher coefficient than the others. Once the corresponding
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matrices for the runs are available, it is necessary to obtain a single one through an average

of the single pairs, making more evident those features that have remained constant during all

the runs and reducing the discontinuous ones, in order to identify their stability, aim of this

study (Figure 3.7). This statistical index is able to show the time evolution (run after run)

of channel-frequency pairs in which the activity difference (PSD) between the both-hand task

and the both-feet task is stronger: of course, these values are strongly dependent on current

modulations and can change in intensity, despite their representation in the same way (same

colors) in several maps.

Figure 3.7: Example of Fisher maps generated by the averaging of every calibration runs. In
the right there is the masked version where the chosen features are highlighted

3.5.4 Classification

Once obtained the average map of the FS between classes (its creation is not necessarily based

on the use of successive runs or only offline, but varies according to the needs that the scholar

considers most appropriate), we move on to the selection of the most significant features: the

choice of them depends not only on the highest values found, but requires a thorough knowledge

of the theory a priori. As explained above, only the central and front channels and only the µ

frequencies and the first β waves are typical of the MI; in case there are evident indices outside

this group, they should not be taken into account because they originate from random situations

outside the self modulation, as can be eye movements (acquired by the two electrodes Fp1 and
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Fp2 placed on the front of the subject that play the role of the classic eog electrode present

in many helmets for EEG analysis), distraction from external events, changes in the level of

attention [43] or stress, and muscular artifacts (30-40 Hz) [44]. In addition, the features to be

selected should be the same, or at least in part, for each run analyzed, both for a matter of study

on the evolution of neuro-physiological patterns, both to have a model as stable as possible, not

dependent on temporary fluctuations and with high performance, insurable only by continuous

properties (Figure 3.8).

(a) Good features (b) Bad features

Figure 3.8: Figure a shows an example of correct features: the higher values are in the sensory-
motor cortex electrodes and in the µ and first β bands. Conversely, in the figure b the higher
values are only in Fp1 and Fp2 electrodes: this can mean that the subject moved his eyes during
the experiment. The first map can be used for classification unlike the second one.

Having ascertained the existence of all these requirements, we move on to the actual selec-

tion, which takes place mainly based on the intensity and repetition of the channel-frequency

pairs involved in the study: to avoid burdening the computational load in the online phases (as

will be explained, we will have to calculate an high number of covariance matrices ) and mainly

to reduce the over fitting, a reduced number of features is used, typically from three to maxi-

mum ten, focusing more on the stronger ones.

With all the features recorded, we move on to the creation of a feature vector (matrix size:
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windows x number features) containing all the values and the corresponding indices that identify

the task to be provided to the machine learning algorithm for the construction of the classifier:

this one should be able to establish a set of parameters that maximise the statistical distance

between the distributions of the two classes in order to minimise the levels of indecision over

one assignment rather than another (Figure 3.9). From several studies [45] [46], the LDA in

its linear variant (in case of covariance matrix of the features of the two equal classes) and

quadratic (matrices of different covariance) effective especially for the quasi-gaussianity of the

PSD of the two classes (hypothesis necessary for the application of the algorithm), are proved

particularly useful in MI classification.

(a) Good distributions (b) Bad distributions

Figure 3.9: Figure a shows an example of well-separated distributions differently from b. A
nice division leads to better classification from the model.

Of course, the performances, however good a single model is, are not enough to define its

usefulness for a correct use of BMI and for this we resort to validation methods for the iden-

tification of the best possible parameters: when a classifier is created, the algorithm computes

the statistical distribution of the two classes and plot them in a graph; moreover, the rejection

in each calibration run is evaluated. This parameter shows a brief review of the way in which

the classifier predict, with an accuracy lower than 55%, the sample outcome: this probability

has a very low evidence (quasi-random classification) and, consequently, the model can not be

used for a correct real-time prediction. Among all the classifier that can be created with the

calibration run, the best is the one that shows the greater separation between classes and the less

level of rejection. Other important metrics to define the degree of goodness of a classifier can be

summarized and represented through the confusion matrix: inside it are listed the percentages

of correct (respectively TP for the first class and TN for the second) and wrong (FP-FN) classi-
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fications: these values can be used to understand the ability of the algorithm to differentiate the

two tasks and to be able to make a correct classification; from these four parameters it is then

possible to calculate the accuracy, or the overall capacity of the model to implement a correct

classification.

Concerning this last point, it is necessary to pay particular attention to the phenomenon of

the over-fitting: if the accuracy of the classifier is very high (over 90%, never achieved with

the models created in this experiment), there is the risk that the model is highly dependent

only on the data with which it has been created and, therefore, this would result in a very high

miss-rating, resulting in errors in decoding the user’s intentions in the online BMIs [47].

3.5.5 Accumulation framework

The output of the model when data are passed to the algorithm are samples, i.e., the classi-

fication takes place on the individual time samples of each window of the PSD: the outcome

performed by the model is usually not continuous, generating task’s prediction not suitable

with the frequency of kinesthetic imagination. This event happens due the bias of the classifier

caused by the small differences between classes distribution generated from poor informative

features or by the presence of high amplitude artifacts that were not removed correctly; more-

over, the prediction does not take into account its results in previous time instants. It is clear

that this type of discontinuous classification is not suitable for an online BMI use. To solve

these problems, it is therefore necessary a method that is able to accumulate evidence, or iden-

tify with an high probability the will of the subject to execute a task or the other based on the

information a posteriori: this methodology is defined accumulation framework (AF), and it is

generally based on one or more mathematical functions, dependent on parameters directly mod-

ulated by the researcher in order to optimize the classification performance as much as possible.

Different types of AFs can be used to perform the online classification, but in this experiment an

algorithm based on Exponential Smoothing function was used: specifically, the outcome varies

its value in dependence on the chosen smoothing parameters and from the value of probability

in output from the classifier in the current and previous times(Figure 3.10).
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Figure 3.10: Example of the output of the exponential smoothing during time: from 1.31 s it is
possible to notice the unstable behaviour of the prediction.

It is frequently important to find a balance to current prediction and those made in the dis-

tant past. Exponential smoothing, which uses previous calculated decision to create predictions,

modulates its outcome according to value α: this specific parameter (that can be chosen accord-

ingly to the performance of the subject) modulates the ”speed” by which the system accumulates

evidence. When the output of the accumulation framework will have reached or exceeded the

selected threshold (changeable by the scientist) to determine the class, the chances of the tasks

will be reduced to 50%, the minimum value within which the percentage can not descend due

to the duality of the classes, and the command will be sent to the BMI (for example, turn right

or left depending on whether the progression completed is both hand or both-feet). The choice

of such parameters can greatly influence the user experience in the control of BMI, facilitating

the completion of a task compared to another (in case of difficulty) or instead making it more

difficult, both to give the subject more control in the timing, and to reduce the effect of miss-

classifications.

D(t) = D(t− 1) ∗ α + pp(t) ∗ (1− α) (3.3)

This last consideration is a sore point for BMI: in fact, if the user’s neuro-physiological patterns

are not stable during the experience, then the model fails to identify a correct discriminator

between a class and another, producing a bias dependent on a priori parameters originated in

its formulation, which leads to a considerable difficulty in completing one task and consequent

shift to the other, albeit wrong. Moreover, the exponential smoothing can be particular unstable
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when there are many miss-classified samples and it can not process correctly the absence of

motor imagery. These fluctuations can be curbed both by choosing a more robust framework

(e.g., [48]), with the progressive analysis of the features and with a subsequent re-calibration:

if the model appears no longer able to follow the user’s intentions, it must be re-calibrated, or

correct it on the basis of the new information obtained, by keeping the old or recreating it from

scratch.

Among the three days decided for the experiment, the first will then serve for the preliminary

evaluation of the neural correlates of the subject and for the creation of a first classifier; during

the second day we will proceed to test the model created, re-calibrating it if necessary with the

features coming from the online test (update) or directly from new offline (creation of a new

one); the third day will finally serve only as a test and the classifier will not suffer, except for

cases that will be described in the next sections, no changes, even if its performance will be

worse than previous uses.

3.6 Data analysis

Since neural correlates are one of the most important characteristics for the correct use of BMI,

it is necessary to evaluate not only the performance of the classifier, related to the machine

learning field, but mainly the parameters related to brain responses and its neuro-plasticity.

Therefore, two mathematical methodologies linked to this neuro-physiological process have

been considered, with the primary aim of understanding how the brain responds to the imag-

ination of one task compared to another, with particular attention to how a different type of

training, can affect the ability of the subject.

3.6.1 BMI performances

In the first instance, the training level of the subjects was evaluated directly with the numerical

data obtained by the classifier and the performances of the individual days in the use of BMI. It

has been analyzed the trend, run per run and day after day, of the sample accuracy (the percent-

age of correct classification of the single samples, dependent only on the classifier, SA), of the
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command accuracy (percentage of tasks completed correctly, depending on both classifier and

parameters chosen for the accumulation framework) and the required action completion time.

These values were obtained for both types of training using the models and their evolutions

during the three days. The SA has been analyzed for both offline and online, while the other

two only for online.

3.6.2 Features stability

The usefulness of a ML approach can be quantified by analyzing the stability of the selected

features to create or re-calibrate the classifier: the presence of one or more equal frequency-

channel pairs for different runs indicates that the user prefers the modulation of those specific

features and is therefore able to activate the brain areas in the same way despite the use of BMI

for discontinuous periods of time. These values were not entrusted with a precise study in this

paper, because the whole experiment is based on them and the assessments were made during

the first two days of training as a metric to understand whether or not a subject would be able to

control BMI. In fact, the subjects who managed to complete all three days were also those with

stable features.

3.6.3 Fisher score and Riemann space

The ability to differentiate one class from another was mainly quantified through the study of the

FS coefficient, described in detail in the previous sections, and by the Riemann distances[49]:

this parameter studies the distances (in a new geometric space) between class using the covari-

ance matrices. The EEG data of the channels involved in the MI were filtered into the useful

bands and, similarly to what happened for the PSD, divided into the same number of windows

according to the same mode described above; then, for each of these windows, a covariance

matrix was created: in this way, through the Covariance Toolbox of MATLAB, it was possible

to calculate the average distances for the classes in each run by first identifying the barycenters

of the classes in the geometric space of Riemann (riemman mean) and the distance of these
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values (distance riemann, RD) according to the formula

RD =
√∑

log λ(a, b)2 (3.4)

where λ represents the eigenvalues of the covariance matrix, a and b the two barycenters of

the classes.

The FS was calculated with a double average between frequencies and channels involved in

the study, in order to obtain a value per run of µ band and β band.

To assess the evolution of the neuro-physiological patterns of the users, and to quantify the

differences among them, we have not only based on the two indices just described, but also on

their alternative versions that went to consider, respectively as a statistical difference and as a

distance in the Riemann plane, the individual classes and their change during the sessions with

respect to their very first value obtained for each subject: a total of six variables, two between

classes, were analysed (classic versions of Riemann and Fisher) and four intra-class.
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Chapter 4

Results

In this section we will discuss the results obtained through previous analyses: to get a better

understanding about the main differences between one group and another, each consideration

will be accompanied by non-parametric statistical Wilcoxon test (that analyzes the medians of

distributions), to assess its reliability.

4.1 BCI-related metrics

The statistical metrics of trial accuracy, sample accuracy and delivering time are reported in the

Figure 4.1 together with the coefficients obtained by statistical tests for each of the days. The

data of each subject were clustered together according to the group (on desk and on wheelchair):

then, the statistical differences among them were evaluated according to the Wilcoxon test with

a threshold of evidence set to pvalue < 0.05. The median of wheelchair trial accuracy are slightly

superior respect to the other one and also the means are different (pvalue1 = 0.797, pvalue2 =

0.303, pvalue3 = 0.945, no statistical difference found among the two groups): actually, these

value see a difference, between the two training types, of 10.8% ± 19.5% % during the first

day, 1.48% ± 11.46% during the second day and of 2.5% ± 15.74% on the last day. For the

sample accuracy, all the values that are less than 55% are not considered (classifier rejection):

nevertheless, it is possible to see a difference between the averages of 2.2%± 3.21% in the first

day, 4.3%± 4.38% in the second and 3%± 5.2% in the third but still no statistical evidence in

any of the days. Finally, analyzing the average time of delivering commands, we see a statistical

difference in favor of the on desk group on the first day (pvalue = 0.035) but absent in the second

and third day: unlike the other two variables, the members of the group in the wheelchair have

higher values that undergo an improvement in the following days (37% ± 3.41% − 2.34% ±

1.77% − 7% ± 7.80%). For all the metrics, it can be assess that the group on the wheelchair



generally has fewer outliers than the other.

(a) Sample accuracy (b) Trial accuracy

(c) Delivering time

Figure 4.1: Boxplots representing data distribution of the two groups, during the three days,
according to the metrics previously defined.

4.2 User learning

4.2.1 Between classes

The learning abilities of the subjects were evaluated mainly through the analysis of the FS and

RD, both referring to the two MI classes. Since the typical frequencies of this mental task corre-

spond to the µ and β bands, all the considerations have been made about them, highlighting the

main difference between the two, especially in terms of features used to calibrate the classifiers.

As with the BCI metrics, also in this case the variations of the Fisher and Riemann coefficients

were evaluated as the days varied for both frequencies and study groups.
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The Riemann distance in the µ-band (Figure 4.2) evolved over the three days, showing

that the distributions were statistically equal between the two groups in the first two days

(pvalue1 = 0.1521, pvalue2 = 0.4765) but were different in the third day (pvalue3 = 0.02) with

higher values for those who started training directly in the wheelchair. On the other hand, the

evolution of the coefficients in the beta band was quite different, since on each day the distri-

butions were statistically different (pvalue1 = 0.0021, pvalue2 = 0.0011, pvalue3 = 0.0136) with

very high evidence and significantly higher values in the wheelchair group. Analyzing the FS in

the mu band, it is possible to notice a slight increase in the discrimination between the first and

the second day for both classes (about 5%) with a pairing of the group on wheelchair compared

to the group on desk on the third day (difference between them of 0.8%): under a statistical

analysis, only the second day showed evidence of difference, with a pvalue = 0.0351. In the

beta band, instead, there is a decrease in the values of the second group and an increase in those

of the first, with only the first day with an high statistical difference (pvalue = 0.0344), although

visually it is still possible to notice higher average values in the first two days and equal in the

third.
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(a) Riemann distance BC µ band (b) Fisher score BC µ band

(c) Riemann distance BC β band (d) Fisher score BC β band

Figure 4.2: Boxplots representing data distribution of the two groups, during the three days,
according to the differences between classes.

To study more accurately the evolution of these indices, it is advisable to focus not only

on the three days, but also on the individual runs, so as to understand which regression model

learning it follows and whether the presence of outlier data can lead to a shift in statistical

considerations. To do this you can rely on the population analysis method Naive Average:

its use is recommended only when the data available are of the same number for all subjects

(here the mean is biased towards subjects, like a8, that had more runs for days respect to the

others) and, for this reason, it is used just to have a representation of the general evolution. The

trend of the linear regression (Figure 4.3) is very close to the real data, showing an averaged

difference wheelchair-desk of 9.3% ± 0.32% − 3.4% ± 0.70% − 28.6% ± 0.65% in µ band

and of 34.9%± 0.14%− 27.6%± 0.23%− 60.1%± 1.12% in β band (Riemman). Moreover,

the outlier are almost totally disappeared for wheelchair dataset while for desk there are still
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four that make interpolation more optimistic. As you can see, the regression of the group

on wheelchair follows very faithfully the data, especially on the third day, differently from

what happens to the other group whose data have a certain variance between them, much more

drastically remarked during the last training session. In addition, you can see that the data of

the second group are highly correlated to single runs for the second day in µ band (pvalue =

0.04 - ρ = 0.65) and for β band in the third day (pvalue = 0.04 - ρ = 0.83), which is not

the case for the first group. Different considerations appear for the same analyses performed

on the FS: the standard group does not show any high statistical evidence correlation on any

of the days except for first day in β (pvalue = 0.04 - ρ = 0.64), while the other group only

have it on the first day in µ (pvalue = 0.03 - ρ = 0.82); moreover, the data have no linear

behavior (if not for the first day of wheelchair); in general you can see an average difference

between groups of 12.7% ± 0.67% − 12.3% ± 0.78% − 11.6% ± 0.66% in the µ band and

27.7%± 0.69%− 17.0%± 0.55%− 2.1%± 0.39% in the β band.

(a) Averaged Riemann distance BC (b) Averaged Fisher score BC

Figure 4.3: From this graphs the information on the evolution of indices can be noted. The total
number of point is different between the two groups due to different number of runs acquired
during the days.

4.2.2 Within classes

Another analysis that can be carried out is based on the evolution of the coefficients referred

to the individual classes taken separately: for a correct vision and evaluation, the same tech-

niques for the analysis between classes will be used . The evolution of the classes according

to the Riemman metric, is quite different between the two groups in the two frequencies, as
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the distances of the group on wheelchair tend to grow considerably on the second day and then

decrease in the third, while those of the control group have a much slower but continuous in-

crease, resulting, compared on the final day, average equal in all cases except for the class feet

in the beta band (difference of 11.5%). By the application of the Wilcoxon test, it appears that

for the hand class, there is a significant statistical difference between the two groups for the

second day in both bands (pvaluemu = 0.027, pvaluebeta = 0.002) and for the third only in the mu

band (pvalue = 0.026), while for the feet class, the third day is only significant for the mu band

(pvalue << 0.05) and the second only for the beta (pvalue << 0.05). In addition, both groups

have a large number of outliers, especially in the beta band (Figure 4.4).

(a) Riemann distance WC hand µ band (b) Riemann distance WC feet µ band

(c) Riemann distance WC hand β band (d) Riemann distance WC feet β band

Figure 4.4: Boxplots representing data distribution of the two groups, during the three days,
according to the differences between classes.

Analyzing the average trend with respect to the runs, we note a continuous growth of the
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coefficients of the control group and instead a decrease, for the two bands, regarding the third

day of the second group; for the desk group, the data are highly correlated to the runs in µ

(pvalue1 << 0.05 - ρ1 = 0.88, pvalue2 < 0.05 - ρ2 = 0.8) and in β (pvalue1 << 0.05 - ρ1 =

0.78, pvalue2 = 0.04 - ρ2 = 0.72) for the first two days for hand class; in the feet class, there

are the same correlation with same values. The second group instead have only a third day

correlation (pvalue = 0.047 - ρ = -0.82) in the beta band for class feet. In addition, the data

appear very disordered and the regression line is therefore not very informative on the correct

trend, assumption that is also deduced from the correlation values. The evolution of these

coefficients seems to follow a crescent-plateau trend in the first two days (Figure 4.5).

(a) Averaged Riemann distance WC hand (b) Averaged Riemann distance WC feet

Figure 4.5: From this graphs the information on the evolution of indices can be noted. The total
number of point is different between the two groups due to different number of runs acquired
during the days.

In relation to the FS, it is possible to note that for the µ band the FS within hand do not

have any statistical difference between groups (averaged pvalue = 0.45 ± 0.27) while, for the

β band, there is a difference only during the second day (pvalue << 0.05). Instead, according

to the feet class, the two groups differ statistically only for β band in the second e third day

(pvalue2 << 0.05, pvalue2 = 0.037) (Figure 4.6).
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(a) Fisher score WC hand µ band (b) Fisher score WC feet µ band

(c) Fisher score WC hand β band (d) Fisher score WC feet β band

Figure 4.6: Boxplots representing data distribution of the two groups, during the three days,
according to the differences within classes.

Finally, the averaged evolution (Figure 4.7) seems much worse than Riemman: the data, for

desk group and both bands, at the start of every day follow a semi-linear trend but towards the

end of the day they decrease their value, especially for the second and third days. For the hand

of desk group, the data on µ band are correlated with the runs on the third day (pvalue = 0.02

- ρ = -0.78) and in second and third day for β (pvalue2 = 0.08 - ρ2 = 0.64, pvalue3 =<< 0.05 -

ρ3 = - 0.87); for feet class happens the same behaviour with a correlation in µ band on the third

day (pvalue = 0.02 - ρ = -0.78) and on beta for second and third day (pvalue2 = 0.07 - ρ2 = 0.66,

pvalue3 << 0.05 - ρ3 = - 0.85). Regarding the second group, class hands is highly correlated in

µ band for the last two days (pvalue2 = 0.02 - ρ2 = -0.72, pvalue3 = 0.05 - ρ3 = - 0.81) but only

in the first day for β band (pvalue = 0.02 - ρ = 0.85) .
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(a) Averaged Fisher score WC hand (b) Averaged Fisher score WC feet

Figure 4.7: Data follow a general linear trend but with some problems in desk group, visible on
second and third days.

4.2.3 ERD/ERS topoplots

From a topographical analysis of the average activity of the subjects in the three days, it is

possible to have a general view of the differences between the group on desk and the group

on wheelchair: in particular, it is interesting to observe how the electrodes that register the

desynchronization (indicating the neural activity), vary depending on the task (both hand, both

feet) considered in the two bands.

From the Figure 4.8, it can be assess that the ERD in µ, for the wheelchair group, is generally

more marked, especially in the electrodes C5-C3 for both taskes but, at the same time, also

Cz is highlighted in hand task for this group, even if it refers to feet movement; moreover,

also the parietal areas show an high desinchronization. For β band, the map shows higher

desinchronization for wheelchair group, especially on the parietal areas; moreover, in this case,

Cz is present only in feet task and only in the wheelchair group.
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(a) µ band topoplot

(b) β band topoplot

Figure 4.8: ERD/ERS maps for the two groups and the two task. The data are expressed in dB
and they are the results of interpolation from 32 to 64 electrodes to enhance the quality. The
blue color means ERD, the red ERS.

The statistical differences, according to t-test, are shown in Figure 4.9: for both tasks, in µ

band, the electrodes C5-CP5-C3-CP3 are statistical different with a pvalue = 0.01 while, for feet

class, it is possible to see a difference also in the F1 electrodes (pvalue = 0.03). Instead, in the

β band, the statistical different area are that of electrodes CP3-C5 for hand task (pvalue = 0.01)

and of FC3-C3-CP3-C5-P5 for feet task (pvalue = 0.01); even in this case, for feet task it is

possible to see a difference with pvalue = 0.02 in the F1 electrode.
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(a) pvalue map for µ band (b) pvalue map for β band

Figure 4.9: p-map of the active electrodes. The statistical difference is set when the pvalue is
lower than 0.05 and it is represented with the blue color.

4.2.4 Spectrograms

As explained above, most subjects modulate only certain sub-bands in the MI and, for this rea-

son, it is recommended to use the PSD as a discriminating feature. In addition to the topographic

maps, the average spectrograms of the two groups were analysed during the two MI tasks: on

average, the task ”both hand” lasted 1.7 ± 1.2s for the group on desk and 2.1 ± 0.85s for the

group on wheelchair, while the task ”both feet” 1.48 ± 0.56s against 1.88 ± 0.63s. Such time

windows are different from each other, and therefore it was chosen to analyze the mean spectro-

grams in the time intervals of 1.9s for the class ”both hands” and 1.7s for the class ”both feet”;

moreover, the graphs are those obtained by averaging the information from the same channels

used in the RD e FS. In the Figure 4.10, the spectrograms of the two groups for the two tasks

can be shown: it is possible to notice that generally, for the wheelchair group, the averaged PSD

is lower in the β band, according to the features used for the classifiers, and it is discontinuous

with gaps of 0.2s in both tasks.
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Figure 4.10: Averaged PSDs in the selected channels. The frequency bins have a resolution of
2 Hz and this value match with the PSD created for the classification.

Remarkably, even if the dissimilarities among the maps are not completely notables, the

application of t-test shows extremely high differences for most of the frequency-time pairs

(Figure 4.11): the almost totality of the map of ”both hand” shows statistical difference between

the two groups, with an average pvalue = 0.003 ± 0.007; also the task ”both feet” shows the

rejection of null hypothesis, especially in the range 6-22 Hz (average pvalue = 0.002± 0.006),

Figure 4.11: Hypothesis rejection map according to t-test: the yellow pairs shows its rejection
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4.2.5 Features maps

From the analysis of the selected features for the creation of the classifier, it is possible to un-

derstand the differences between the most discriminant channel-frequency pairs for the subject:

those maps, showed in Figure 4.12, are the results of the average of calibration run used for

the creation of the classifier. The more discriminant features appear on the correct frequency-

channel pairs on the desk group while, for the wheelchair group, there are features in the right

channels but for extremely high frequencies.

Figure 4.12: Averaged Fisher Maps of calibration files for group on desk and on wheelchair.

Moreover, a t-test can be applied to verify the statistical differences between the two groups

(Figure 4.13): actually, the h for the most part of MI channels and frequency show some differ-

ences (pvalue = 0.024± 0.01), especially in the µ band.
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Figure 4.13: Hypothesis rejection map according to t-test: the yellow pairs shows its rejection
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Chapter 5

Discussion

In this study we focused, for the first time, on analyzing the effect that a different training than

the standard one of BMI can have on the ability of an individual to control an external device.

From the results listed above, a good difference appears between the two groups not so much in

the performance of the algorithm itself, as in the neural correlates of the individual subjects: in

fact, the RD BC showed how the members of the group on wheelchair were able, already from

the second day, to differentiate themselves positively from the other group in the distinction of

the two classes, mostly in the β band. In this regard, during the study, it was noted that 3/4 of

the group on desk showed features in the first β bands while those of the second group used

only the µ bands, indicative situation of greater control over brain modulation. On the other

hand, however, the FS does not lead to the same considerations: from the plots in the runs,it can

be assess that the data are quite unstable and with an high scatter for both groups, especially

for the presence of outliers that, even with the use of averaging approach, do not completely

disappear. These trends are in line with the variation of the accuracy of the subjects: in fact, the

performances of the classifier are quite fluctuating, showing very low values (50%) even if the

subject has shown excellent skills in previous runs; moreover, despite the channel-frequency

pairs remained the same, sometimes it was necessary to re-calibrate the classifier on the same

features because the intensity of brain modulation varied day after day.

An excellent functional analysis can be made mainly for the evolution of within indices

for both Fisher and Riemann: although they are not directly considered to understand how to

improve BMI and their algorithms, this information is very important to understand how brain

activity changes with training and, above all, how the user approaches the same task over time.

Even with a simple visual analysis it is possible to notice that the two classes have similar evolu-



tions (meaning that, considering Riemman Space, they move parallel and with always constant

distance between them) both in the distributions, as can be deduced from the boxplots, and dur-

ing the runs. Moreover, the second group on the last day tends to return to values similar to

the initial ones. This factor actually has an important bearing on ML theory since it states what

was proposed in the previous sections: after all, one of the goals was to assess whether it was

possible to focus on user patterns and not only on the algorithm itself. A return to initial val-

ues could indicate a significant increase in the ability of the individual to better modulate brain

activity and, above all, an effort to maintain these features constant over time, also for a long

period beyond that proposed for the experiment; moreover it can be found that the differences,

even if minimal in all the variables, favor the training directly with the final goal (whether it’s

the wheelchair as in this experiment or another machine as a robotic arm) as the results show

greater control of BMI, especially in the absence of the first beta waves.

Finally, from the topoplots, an important evaluation of the ability of learning of the subjects

can be evaluated. First of all, it can be seen that the group on wheelchair shows high ERD

values in the P electrodes, while they are not present in the group on desk: actually, the pari-

etal lobe has the function to process the information of outside movement ([24]) and, due to

the rotation of wheelchair, this area can be activated during the last period of each correct task

(desinchronization are more evident for the µ band, and this is consistent with the preferred

band for the wheelchair group). An other important characteristic is the presence of ERD in the

Cz electrode, only for the group on wheelchair, meaning that its subjects are able to modulate

their activity also for ”both feet” task that is generally difficult for most of the users; addition-

ally, the statistically different areas are those related to the motor cortex on the left hemisphere

(all the subjects were right-handed).

In conclusion, we must also take a look at the characteristics and performance of individual

subjects mainly in the third day: among the 8 subjects, only 5 have completed the training

effectively, 3 of them (a8, a5, c1) belonged to the first group and the remaining 2 (c5, c4) to

the second group, although this number is in line with the typical percentages of BMI use,
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it is appropriate to consider the bias of the results (also because in many days, there was not

enough silence to allow subjects to concentrate sufficiently, a sign visible even from the high

frequencies highlighted by Fisher’s maps). This bias is extremely evident on the Fisher maps

because the averaging of the wheelchair group considered only the two subjects that made just

one calibration, and for this reason the values are not cleaned enough. All users who did not

arrive at the end of the experiment encountered difficulties from day one in the control, many

of them stating that they could not fully have the feeling of ”presence” arts or find it difficult

to imagine the same task continued for longer. This limit, however, is not fully detectable

(see individual graphs in the appendix) and needs some clarification in order to have a better

understanding of how the closed loop user-computer-machine works. First, the data of the FS

are obtained from the average of the values in each run of frequencies/sub-bands and channels

chosen and therefore, the presence of features with very high values overestimates the final

index: the value considered in the graphs in the results, not only takes into account the features

used for calibration but all those that, from literature, could be involved in the MI and this

implies that, even if a subject has the ability to use the BMI, his features are not constant over

time, making it impossible to build a classifier but still resulting in good values for general

analysis. Additionaly, for a8 and c1 it was necessary a calibration also on the third day because

their performances were worst respect to the other days. Finally, we must also take into account

the confidence levels that have been taken despite the first approach to BMI: starting directly in

the wheelchair, the members of the second group were able to learn more about how it worked

and thus minimise the surprise effect of rotations.
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Chapter 6

Conclusion and outlooks

The main objective of this paper was to show how a training based on ML and with a direct

approach to the device to be controlled, can bring countless benefits in the use of BMI and in

its role outside the research field. The results shown and discussed so far confirm that a training

based on ML and organized with the approach, from the first day, with the wheelchair, improve

the ability of the users to use BMIs compared to the ones that trained in the standard way. The

main contribution of my thesis work was to provide further insight into the inter-individual char-

acteristics that control brain modulations, highlighting how users are able to adapt gradually to

what is proposed, thus making faster and more efficient decoding of their intentions, even after

a prolonged period of time. This ability to keep the features constant is extremely important,

especially in order to minimize possible temporary fluctuations that, otherwise, would not allow

a proper usage; identifying the suitable areas is therefore also possible to increase the range of

individuals (also affected by diseases) that can access BMI, thanks to a clear reduction in the

time needed for training and, consequently, mental fatigue.

It was then shown that many of the differences between the groups resided in RD (reviewed

in literature [50] to be a method for channel selection), although this parameter was not taken

as a possible feature for the classifier: this suggests that a further step forward could be to com-

bine the PSD-based methodologies used in this experiment, with the information obtained from

temporal covariance matrices, identifying algorithms that can reduce the online computational

weight for such calculations. The possibility to exploit features coming from different spaces

could allow greater flexibility in the creation of the classifier and, above all, would allow to

include the information obtained from this study on the effect of ML in the neuro-physiological

evolution.



Most importantly, although not all subjects were able to complete the experiment, they all

showed comparable interesting values: this is a further sign that you could increase the pool of

users able to use BMI simply by incorporating new information, both in the creation of mod-

els, both in the ways of teaching them to maximize the experience. However, some subjects

showed better performances than others, and in particular two of them, b1 and c4. Both showed

noteworthy peculiarities: while the first, belonging to the first group, was able to complete al-

most perfectly every run (with some drops) only through the very first created classifier, the

second, belonging to the second group, has gone through more re-calibrations of the same fea-

tures but he was able to complete the runs faster than all the others, still achieving excellent

performances. It is clear that these results, despite being the best of the groups, confirm the

importance of the stability of the features, neverthless without reducing the control capabilities.

Of course, for the purpose of practical use, the three days of training proposed for the ex-

periment may not be enough for everyone and therefore a long-term study would be necessary,

taking into account also the differences that could exist further diversifying the devices used, in

order to see if the performances also depend on the degree of appreciation and interest that the

user has in it. In addition, it would be appropriate to have a much larger number of subjects,

in order to be able to assess the large-scale impact of these methodologies and to evaluate in a

better way the population study, to identify common patterns and have more data available on

which make more comparisons and observe if the success rates of the control tend to remain

constant compared to this study or it may vary: regarding this, it should be noted that, despite

the excellent results listed above, only two (40%) members of the wheelchair group had access

to the final phase, compared to the three (60%) of the on desk group.

Finally, it would be of great interest to observe how the results of training for people with

disabilities could vary from those proposed in this paper and introduce, in case of optimal

results, such technology in the various levels of rehabilitation, depending on the needs of each

individual subject [51].
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I. Riemann distances

(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.1: Riemann graphs for a8



(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.2: Riemann graphs for b9
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(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.3: Riemann graphs for b1
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(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.4: Riemann graphs for a5
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II. Fisher scores

(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.5: Fisher graphs for a8
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.6: Fisher graphs for b9
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.7: Fisher graphs for b1
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.8: Riemann graphs for a5

III. ERD/ERS

Figure 6.9: ERD/ERS topoplot for a8
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Figure 6.10: ERD/ERS topoplot for b9

Figure 6.11: ERD/ERS topoplot for b1

Figure 6.12: ERD/ERS topoplot for a5
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IV. Spectrograms

Figure 6.13: Spectrograms for a8

Figure 6.14: Spectrograms for b9
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Figure 6.15: Sepctrograms for b1

Figure 6.16: Spectrograms for a5
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V. Calibration-Fisher maps

Figure 6.17: Calibration map for a8

Figure 6.18: Calibration map for b1
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Figure 6.19: Calibration map for a5
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VI. Riemann distances

(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.20: Riemann graphs for c1



(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.21: Riemann graphs for a3
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(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.22: Riemann graphs for c4
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(a) RD between classes (b) RD within classes (hands)

(c) RD within classes (feet)

Figure 6.23: Riemann graphs for c6
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VII. Fisher scores

(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.24: Fisher graphs for c1
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.25: Fisher graphs for a3
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.26: Fisher graphs for c4
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(a) FS between classes (b) FS within classes (hands)

(c) FS within classes (feet)

Figure 6.27: Riemann graphs for c6

VIII. ERD/ERS

Figure 6.28: ERD/ERS topoplot for c1
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Figure 6.29: ERD/ERS topoplot for a3

Figure 6.30: ERD/ERS topoplot for c4

Figure 6.31: ERD/ERS topoplot for c6
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IX. Spectrograms

Figure 6.32: Spectrograms for c1

Figure 6.33: Spectrograms for a3
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Figure 6.34: Spectrograms for c4

Figure 6.35: Spectrograms for c6
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X. Calibration-Fisher maps

Figure 6.36: Calibration map for c1

Figure 6.37: Calibration map for c4
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