
Università degli studi di Padova
Department ofMathematics

Master Thesis in Data science

Dynamical low-rank training of neural
networks

Supervisor Master Candidate
Prof. Francesco Rinaldi Emanuele Zangrando 2027817

Università degli studi di Padova

Co-supervisor
Prof. Francesco Tudisco
Gran Sasso science institute

Academic Year
2021-2022

ii

Tomyparents,whoalways supportedmeduringmypath. InmemoryofmyuncleMassimo
andofmyhigh-schoolprofessorAntonio,withoutwhomIwouldnothave inheritedmy
passion for mathematics.

iv

Abstract

Neural networks have achieved tremendous success in a large variety of applications. However, their space
and time computational demand can limit their usage in resource limited devices. At the same time, over-
parameterization seems to be necessary in order to overcome the highly non-convex nature of the training
optimization problem. An optimal trade-off is then to be found in order to reduce networks’ dimension
whilemantaining high performance. Popular approaches in the current literature are based on pruning tech-
niques that look for subnetworks able to mantain approximately the initial performance.

Nevertheless, these tecniques are often not able to reduce the memory footprint of the training phase. In
this thesiswewill presentDLRT, a training algorithmthat looks for “low-rank subnetworks”byusingDLRA
theory and techniques. These subnetworks and their ranks are determined and adapted already during the
training phase, allowing the overall time and memory resources required by both training and evaluation
phases to be reduced significantly.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii
0.1 Notation . 1

1 Introduction 3

2 Theoretical background 5
2.1 Differential geometry basics . 5
2.2 Neural network basics . 9
2.3 Theory introduction . 10
2.4 Training as gradient flow . 12
2.5 Constraints and regularization . 12
2.6 Flow in the low-rank manifold . 15
2.7 Low rank manifold constraint . 16

2.7.1 Derivation of the projection operator . 16
2.7.2 Projector-splitting integrator . 21
2.7.3 Unconventional robust integrator . 22
2.7.4 Rank-adaptive unconventional integrator . 23

3 The lottery ticket hypothesis and dynamical low-rank training 25
3.0.1 Pruning and lottery tickets . 25
3.0.2 Overview of DLRTmethod [27] . 26

3.1 Efficient gradient taping . 28
3.2 Training procedure description . 31
3.3 Low-rank lottery tickets . 33

4 Comparisonwith other methods 35
4.1 Structured sparse learning . 35
4.2 Rethinking smaller-norm less-informative assumption 36
4.3 Pruning via GAL . 36
4.4 Low-rank compression of neural networks . 37
4.5 Singular Vector Orthogonality Regularization and Singular Value Sparsification 39

5 Cost analysis and experiments 41
5.1 Cost analysis . 41

5.1.1 Efficient gradient taping . 41
5.1.2 Efficient forward phase . 44

5.2 Compression effects . 45
5.2.1 Timings . 45

vii

5.2.2 Compression ratio and accuracy . 48
5.3 Lenet onMNIST . 48
5.4 Cifar10 and Cifar100 . 50
5.5 Robustness to small singular values . 51
5.6 Fine tuning effectiveness . 52

6 Implementation 55
6.1 Low-rankModule . 55

6.1.1 Populate_gradients method . 55
6.2 Optimizer class . 56

6.2.1 Preprocess steps . 57
6.2.2 Integration steps . 57
6.2.3 Postprocess steps . 57
6.2.4 Step method . 57
6.2.5 Fine tuning . 57

7 Conclusions and future improvements 59

References 61

Acknowledgments 65

viii

Listing of figures

2.1 coordinate representation of a map between manifolds. Image taken from [26]. 7
2.2 Graphical representation of Galerkin condition for projecting the vector field on the tan-

gent space of low-rank matrices. Image taken from [27]. 17

3.1 Full and low-rank representation of neural networkswith the associated gradient flowprob-
lems. 29

3.2 Lenet5 representations of theK,L and S steps for the gradient efficient implementation of
Alg.3.1. 34

5.1 Cpu timings of different operations on fullMnist as a functionof the layerwise compression
ratio. The coloured area around each line indicates one standard deviation interval. 47

5.2 Layerwise compression ratio against overall compression ratio during different phases, to
compare with Fig.5.1 . 47

5.3 layerwise compression ratio against test accuracy after trainingLenet5 onMNIST.Theblue
line represents the overall memory compression (counting the gradients). 48

5.4 Relative singular value threshold τ of the adaptive version of Alg.3.1 against test compres-
sion ratio, train compression ratio (counting the gradients) and test accuracy (with relative
full rank vanilla training baseline). Detailed numerical results are presented in Tab.5.2. . . 49

5.5 Accuracy over epochs of DLRT and and layer factorization [13] on Lenet5 architecture
trained onMnist. Decay with powers of 10 (top left), with powers of 2 (top right), and no
decay (bottom). 52

5.6 Training loss over epochs of DLRT and and layer factorization [13] on Lenet5 architecture
trained onMnist. Decay with powers of 10 (top left), with powers of 2 (top right), and no
decay (bottom). 53

ix

x

Listing of tables

5.1 Fully connected architecture was used for the timing experiment. The input is a flattened
image of Mnist, of size 784. 46

5.2 Results of the training of LeNet5 on MNIST dataset. “Params” represent the number of
parameters we have to save (in train and inference phases) using DLRT Alg.3.1. The com-
pression ratio (c.r.) is the percentage of parameter reduction with respect to the full model
(< 0% indicates that the ratio is negative), as explained in section 5.1.1 (for the train com-
pression ratio we took the gradients into account). “ft” indicates that the model has been
fine tuned. “LeNet5” line indicates the baseline, trained using stochastic gradient descent. 50

5.3 Compression results of VGG16 and AlexNet on Cifar10. The compression ratio (c.r.) is
the percentage of parameter reduction with respect to the full model (< 0% indicates that
the ratio is negative). “ft” indicates that themodel has been fine tuned. The “differencewith
baseline” column indicates thedifference infinal test accuracybetween eachmethod and the
baseline (full rank,trained with stochastic gradient descent with the same hyperparameters). 51

5.4 Compression results of on Cifar100. DLRT with τ = 0.08 is used. The “difference with
baseline” column indicates thedifference infinal test accuracybetween eachmethod and the
baseline (full rank,trained with stochastic gradient descent with the same hyperparameters). 51

5.5 Effects of fine tuning on underparametrized networks. In the table we report the final test
accuracy without fine tuning (first column), and after fine tuning (second column). In the
third column, we report the mean improvement after fine tuning. In the last column we
report the overall test compression ratio achieved during the training. In each column a
standard deviation across five independent runs is reported. 53

xi

xii

Listing of acronyms

DLRT Dynamical low-rank training

GAL Generative adversarial learning

GAN Generative adversarial network

SGD Stochastic gradient descent

SVD Singular value decomposition

xiii

xiv

0.1 Notation

1. W (α)
ij the (i, j) entry of the weight matrix in layer α;

2. for data points we used upper indices (e.g., (x(i), y(i))) to indicate the number of the sample;

3. In general, vectorswill be indicatedwith lower-case letters, whilematrices and tensorswill be indicated
with upper-case ones;

4. For any couple of matrices A,B ∈ Rn×m we will indicate with 〈A,B〉 = Tr(A⊤B) the Frobenius
inner product. Since it is symmetric, it holds 〈A,B〉 = Tr(B⊤A) = Tr(AB⊤) = Tr(BA⊤);

5. throughout the thesis, we will indicate with ‖W‖p the Lp norm for matrices W ∈ Rn×m seen as
elements ofRnm;

6. we will indicate with ×i the i − thmode product between a tensor and a matrix. If T ∈ Rn1×...nm

andM ∈ Rk×ni , the i− thmode product T ×i M ∈ Rn1×...ni−1×k×ni+1×···×nm is defined as:

(T ×i M)j1,...,ji−1,t,ji+1,...,jm =

ni∑
ℓ=1

Tj1,...,ji−1,ℓ,ji+1,...,jmMt,ℓ

7. we will indicate withGLr(R) the general linear group of order r, i.e. the set of real invertible matrices
of size r × r:

GLr(R) = {M ∈ Rr×r | det(M) 6= 0}

8. we will indicate withOn×r(R) the set of n× rmatrices with orthonormal columns:

On×r(R) = {U ∈ Rn×r |U⊤U = Ir×r}

1

2

1
Introduction

Since the development of the necessary computational tools, neural networks have been ubiquitous in soci-
ety, allowing to solve problems whose solutions were otherwise really difficult to approach algorithmically.
Despite the wealth of recent improvements, artificial neural networks and deep learning are still highly ac-
tive macro-areas of research, both due to the growing dimension of the networks in use and to the limited
theoretical understanding of their underlying functioning.
It has been known for long [1] that in the majority of cases neural networks are strongly overparametrized.
This has also been shown“constructively” in recentworks, such as [9]. In the latterwork, the authors showed
experimentally that anynetworkpossesses a heavily sparse trainable subnetworkwhoseperformance is at least
as good as the full one. This observation opens really interesting improvement scenarios: if one were able to
identify the “lottery ticket” subnetworks, it would be possible to save space and time resources both during
training and inference phases, allowing bigger architectures to run on limited resource devices and to poten-
tially avoid overfitting. Nevertheless, it is really difficult to identify good-performing sparse subnetworks
without having to train the full network, and even though this can improve a lot in the inference phase, it
does not help in reducing the need of resources to train deep networks. Moreover, sparsity is just one in-
stance of possible compression strategies. Potentially, any “well-structured” low-dimensional constraint in
the hypothesis space can give rise to a similar result. However, if one aims at reducing training costs, a key
requirement is that the constraint has to give rise to an easily treatable training optimization problem. The
specification of a nice geometric structure for the constraint is a big help, since it allows us to design efficient
algorithms that exploit the geometry. From a Bayesian perspective, this constraint is often tackled by using
strong priors in the hypothesis space, and these techniques have already been heavily explored in research
[8, 37, 40]. Despite their good performance and simplicity of usage, these techniques do not allow for di-
mensionality reduction during the training phase, and given the growing size of modern architectures this
poses strong limits of training under computationally restrictive conditions.
The general idea of our work is to assume a suitable geometrical structure on the constraint space, that in
our case will be a manifold embedded in the hypothesis space, and use the fact that we are able to put a nice

3

coordinate system on it, that in our case will be differentiable. Thus, the key of our proposal is to reinterpret
the training optimization problem as a system of tensor gradient flow problems on the manifold. Instead
of following the unconstrained gradient flow and pointwise projecting on the manifold, we can project the
vector field of the ODE to the tangent bundle. After having done that, we can “pullback”the ODE using
the charts on the manifold and follow the flow in an Euclidean space without constraints. More than this,
we would like to have a whole family of manifolds which are able to capture increasingly large constraints
covering the whole hypothesis space, and we would like our gradient flow to adapt and stabilize on the “cor-
rect” manifold of this family.
In this context, the family of manifolds under consideration is {Mr1,..,rL}r1,..,rL whereMr1,..,rL is the
product manifold of matrices of rank respectively r1, ..., rL. The goal of this thesis is to apply methods
coming from the theory of model order reduction of ODEs in order to train a neural network constrained
to a manifold of this kind. Moreover, the resulting algorithm will be able to automatically adapt the ranks
r1, .., rL and stabilize on the “right manifold”.
During this thesis’ work, I have been focusing in particular on methods specifically constructed to tackle
problems of this kind. These methods are presented in [5, 15, 18]. In our work, we applied techniques
coming from these papers in the world of neural networks, with a particular attention towards [18]. The
resulting approach allows us to significantly reduce space and time complexity both during the training and
evaluation phases. Moreover, the ranks of the layers are selected adaptively by looking at the relative weight
of the tail of singular values in each layer.
My thesis’ work was mainly focused on the implementation of a Pytorch optimizer for this training algo-
rithm. We also collaborated with other universities to produce a first version of a preprint that is meant to be
expanded in future. The preprint of our work is publicly available at [27] alongwith the implementations at
https://github.com/compile-gssi-lab/DLRT/tree/efficient_gradient (the one used in this thesis) and its first
version at https://github.com/compile-gssi-lab/DLRT.

4

2
Theoretical background

In this chapter we will introduce some theoretical background concerning the main idea behind dynamical
low-rank training (DLRT [27]).
This chapter ismeant to be an introduction to theminimumamount of tools needed to formalize the dynam-
ical low-rank training algorithm, with a particular attention on “non-standard” topics for a data scientist.

2.1 Differential geometry basics
Differential geometry is one of the cornerstones of modern science and deep learning is no exception. Its
applications in this area are wide, going from unsupervised manifold learning [12], autoencoders [20], nor-
malizing flows [14], homology inference [6] to information geometry [24].
The particular application we are interested in this context is to describe constraints in the hypothesis space
of a neural network. In this chapter we will introduce the basic notation and embedded differential geome-
try concepts that will be needed in the next sections. Because some definitions may differ from one book to
another, we will refer to the terminology used in [19] .
Themainmotivation behind the development of differential geometry was the need to extend analysis from
Euclidean “flat” spaces to “curved” ones. Since the majority of concepts in analysis is “local”, it is reasonable
to extend this theory to spaces that are locally “similar” to Euclidean ones. With no other structure added
and some other technical requirement, this lead to the general definition of topological manifold.
In simple words, a topological space is a set with the weakest possible definition of closeness between its
points. A topological manifold of dimension n is a topological space whose topological properties a locally
indistinguishable from an open set of the euclidean spaceRn, even though globally it can be quite different.
More formally:

Definition 2.1.1 (Topological manifold) AmanifoldM is a second countable T2 topological space (M, τ)

such that for every p ∈M there exists an open neighborhood of it Up and a map ϕ such that

5

ϕ : Up → ϕ(Up) ⊂ Rn

is an homeomorphism. The map ϕ is said to be a local coordinate chart around p and n is said to be the dimen-
sion of the manifold.
Moreover, the manifoldM is said to be embedded in an ambient spaceA if it is a subset of it.

Up to now there’s no notion of differentiability in this definition. In order to be able to do analysis, we
need to introduce a notion of “smoothness” in system of local coordinates.

Definition 2.1.2 (Atlas) LetM be a topologicalmanifold and let {(Uα, ϕα)}α be a set of charts such that the
union of the open sets Uα covers the whole manifold. Then the set {(Uα, ϕα)}α is said to be an atlas ofM.
Moreover, the atlas is said to be of class Cℓ if for any couples of open sets of the coveringUα,Uβ withUα∩Uβ 6= ∅,
the transition map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) ⊂ Rn → ϕα(Uα ∩ Uβ) ⊂ Rn

is a diffeomorphism of class Cℓ.

This additional requirement on the atlas can be interpreted as a smoothness in the change of coordinates
on the manifold, or as a sort of “compatibility” condition on the charts of the atlas.

Definition 2.1.3 (Differentiable manifold) A topologicalmanifoldM endowed with a C1 atlas is said to be
a differentiable manifold.

Tonot complicate the definitions, since it is of no interest for the future discussion,we are going topresent
all the next definition/results thinking about the embedded scenario.
The next definition is of huge importancewhen it comes to studying ordinary differential equations onman-
ifolds. As Definition 2.1.3 states, a differentiable manifold is essentially just a topological manifold endowed
with an additional atlas in the which change of coordinates between one patch and the other behave “well”.
As in Euclidean spaces, every curve lying on the manifold has a pointwise velocity vector, tangential to the
curve. In a flat euclidean space E, where any curve has no constraint, the space spanned by the velocities of
all curves passing through a particular point p is called tangential space ofE at the point p, and in this simple
case it is just isomorphic to the vector space underlying E. The same definition can be given for manifolds,
and the elements of the tangent space can be interpreted as the “possible directions of movement” from a
point in order to stay on the manifold. This premise leads to the following definition:

Definition 2.1.4 (Tangent space) Let E be an Euclidean space with V as underlying vector space. LetM⊂
E be a differentiable manifold and let p ∈M. The tangent space ofM at the point p, is defined as:

TpM = {γ̇(0) ∈ V | γ ∈ C1((−1, 1);M), γ(0) = p} ⊂ TpE (2.1)

It is convenient for some other definitions to introduce an equivalence relation in the set

Γp(M) := {γ | γ ∈ C1((−1, 1);M), γ(0) = p} (2.2)

6

by saying γ1 ∼ γ2 if γ̇1(0) = γ̇2(0).
With this additional definition, we can identify TpM with the quotient ΓpM/ ∼.

Observation 2.1.1 The last definition 2.1.4 is given in the context ofmanifolds embedded in Euclidean spaces.
For the general case one can either follow the same approach but using charts, or otherwise more commonly use
the derivations approach [19].

Observation 2.1.2 (Tangent spaces are vector spaces)
The main idea of the proof can be seen by taking two tangent vectors at a point p, v1 = γ̇1(0), v2 = γ̇2(0).
Without loss of generality, we can choose a chart containing p such that ϕ(p) = 0 (or otherwise we can consider
ϕ̃(q) = ϕ(q) − ϕ(p)). Then consider the curve t 7→ σ(t) := ϕ−1

(
ϕ(γ1(t)) + λϕ(γ2(t))

)
. It is σ(0) =

ϕ−1
(
ϕ(p) + λϕ(p)

)
= ϕ−1

(
0
)
= p.

Now, any tangent vector can be represented as an equivalence class of curves up to reparametrization. It can be
shown that the map

ϕ∗ : TpM→ T0Rn

[γ] 7→ [ϕ ◦ γ]

is bijective up to equivalence class of curves. Moreover, T0Rn is naturally endowedwith a vector space structured.
There is only one possible way to endow TpM with a linear structure such that ϕ∗ is an isomorphism, and it is
done by pulling back with ϕ−1

∗ . This shows that TpM has a rather natural vector space structure, and it can
moreover be shown that this does not depend on the choice of the chart.

Example 2.1.1 LetM = Rn with the usual differentiable structure {(Rn, id)} and let p ∈ Rn. Consider
the set of coordinate curves {γ(t) = p + tei|i = 1, ..n} where ei are the canonical basis vectors. Then the
derivatives of this curves at t = 0 span the wholeRn, so we can say that TpRn ∼= Rn.

The next definition extents the definition of differential of maps between coordinate spaces.

Figure 2.1: coordinate representation of a map between manifolds. Image taken from [26].

7

Definition 2.1.5 (Pushforward) LetM,N be two differentiable manifolds and let

F :M→N

be amap. F is said to be of classCk if for anyp ∈Mandany couple of charts (Up, ϕ), (UF (p), ψ), the coordinate
representation of F , F̃ = ψ ◦ F ◦ ϕ−1, is of class Ck.
The pusforward (or differential) of F at a point p, denoted with dFp is the linear map defined as follows:

dFp : TpM→ TF (p)N

[γ] 7→ (F ◦ γ)
′
(0)

Moreover, the definition is well posed (does not depend on the representative of the class).

This last definition is important for the next two examples, in which we will present the two most com-
mon ways in which manifolds are represented.

Example 2.1.2 (Zeros of regular functions) LetV andW be twofinite dimensional real vector spaces. Without
loss of generality, we can choose basis for these two spaces and think of them as V ∼= Rn andW ∼= Rm. Let

F : Rn → Rm

be a map of class C1. DefineM := F−1(0). Then if dF (p) has the same rank r for each p ∈ F−1(0) (in this
case we call F a submersion),M is a C1 differentiable manifold of dimension n− r.
It can be seen easily that the tangent space TpM is exactly the kernel of the differential dF (p).

Example 2.1.3 (Trough parametrization) By definition 2.1.3, every differentiable manifold is endowed of a
atlas structure with local charts. Given a local chart ϕ we can consider its inverse ϕ−1, that is still a diffeo-
morphism. Since ϕ−1 is a local parametric representation of the manifold, we call the inverse of a local chart
a local parametrization. With this definition we can describe properties of the manifold locally using the
parametrization. LetΩ be an open subset of Rk and let

σ : Ω ⊂ Rk → Rn

be a diffeomorphism of class C1. DefineM := im(σ). Then if dσ(p) has the same rank r for each p ∈ Ω (in
this case we call σ an immersion),M is a differentiable manifold of dimension r insideRn. In can be shown
that the tangent space TpM is exactly the image of the differential dσ(p).

It is important tonotice that, even thoughnot allmanifolds canbe represented globally through aparametriza-
tion or as set of zeros of a regular function, this can always be done locally.

Example 2.1.4 (rank-r matrices) An example of our interest is the manifoldM of rank r matrices. As embed-
ding space, let’s consider the space of matricesRn×m and let r ≤ min{n,m}. A known characterization of the
rank is the one using the largest order of a non-vanishing minor. In particular, for any rank r matrix A, all
minors of order r + 1 are zero.

8

Defined
S :=

{
X = (A B

C D) ∈ Rn×m |A ∈ GLr(R)
}

(2.3)

we can consider the Schur complement ofA inX for amatrixX ∈ S ,X/A := D−CA−1B. Since the top left
submatrixA is invertible, the rank ofX is exactly r if and only ifX/A = 0. This can be rephrased equivalently
by saying that, defined F (X) = X/A, it holdsMr ∩ S = F−1(0).
Now, note that F is surjective fromRn×m toRn−r×m−r , since already considering the image of matrices with
C = 0, B = 0 we obtain the full codomain. Moreover, F is a submersion since ∂F

∂D = In−r×m−r , thus
the differential is surjective everywhere. Using example 2.1.2, we can conclude that F−1(0) is a manifold of
dimension nm− rank(dF) = nm− (n− r)(m− r). The union of these level sets for all the possible positions
ofA as a submatrix ofX gives the whole manifold of rank rmatrices.

2.2 Neural network basics
The historical origin of neural networks is collocated in the early 1940s, when different psychologists like
Hebb,McCulloch and Pitts were trying to formulate computational models to simulate the mechanisms of
learning. Thanks to the later developing of Automatic differentiation, backpropagation algorithm to the
advent of GPUs, these methods started becoming computationally feasible only in the late 1980s.
Nowadays neural networks are heavily used to (approximately) describe complex processes whose algorith-
mic description is not clear or too complicated. In other words, neural networks are used for model iden-
tification. As a matter of fact, the foundation of neural networks lies in statistics. Indeed, the definition
of neural network itself has a lot in common with the definition of statistical model, and the majority of
common uses of neural networks can be regarded as statistical models. Even if a precise definition of neural
network can be given in a lot of different ways, all most commonly used ones (e.g.,CNN,RNN, dense neural
networks) fall in the following definition:

Definition 2.2.1 (Parametric model) A parametric model is a parametric family of functions

f : X ×Θ→ Y
(x,W) 7→ f(x ;W)

mapping some input spaceX to some output space Y . In this contextΘ is called hypothesis space.

Typically every set in Def.2.2.1 has a vector space structure.

Example 2.2.1 (Feedforward neural networks)
Feedforwardneuralnetworks are parametricmodelswhose typical representation is obtainedwhenX = Rn,Y =

Rm. This family of neural networks are often represented as compositions of L parametric affine functions
Tα(•;W (α)) and L entry-wise non linear activations σ(α):

f(x, {W (α)}α=1,...,L) = σ(L) ◦ TL(•;W (L)) ◦ · · · ◦ σ(1) ◦ T 1(x;W (1)) (2.4)

In this contextW (α) are often represented bymatrices, thus the hypothesis space can be represented as a cartesian
product of vector spaces.

9

The pecularity of this kind of representation is that, under somehypothesis on the dimension of thematricesW (α)

and on the activation functionsσ(α), a family of functions of this kind can satisfy someuniversal approximation
property. This peculiarity guarantees that, if the neural network is big enough, it can potentially approximate
arbitrarly well an entire class of function with enough regularity.

For sake of clarity in the next we will refer to feed forward neural networks.
Let’s suppose we want to describe a complex process (e.g., the classification of a picture according to what
is represented in it), but have nothing more than a set of observations {(x(i), y(i))}i=1,...,n, where x(i) is to
be thought as the “input” of the process (the picture) and y its corresponding “output” (the content). This
kind of learning problems are called supervised. If the outputs y(i) have a discrete nature, the problem is
said to be a classification problem, if the outputs are continuous it is said to be a regression problem.
Exactly as in statisticalmodels, the goal is to exploit the “malleability” of the neural network to extract knowl-
edge about the underlying complex process just by using the observations. This procedure boils down to the
solution of a non-convex optimization problem, as better explained in the next section.

2.3 Theory introduction

In this section we introduce the main general theory of supervised learning that will be needed in the next
chapters. The notation presented in this chapter will be consistently used throughout the thesis.
As always happens in the supervised learning setting, the goal is to fit a parametric family of functions to some
datasetD = (X,Y) whereX ∈ RN×D1×...×Din is the independent variable tensor, Y ∈ RN×d1×...×dout is
the dependent variable data tensor andN is the number of samples.
The most general assumption one can do in this kind of scenario is that each couple of data points (x, y)
comes from an unknown joint probability distribution,i.e., (x, y) ∼ p(x,y). This joint probability distribu-
tition encodes both the stochasticity in the sampling of x (described by the marginal on x) and in the regres-
sion (encoded in the conditional py|x).
Typically in this scenario there’s some kind of sense in which one wants the model to approximate y from x,
and this information can be enforced in a loss function

ℓ : Y × Y → R
(y, ŷ) 7→ ℓ(y, ŷ)

Often, by doing some a priori assumptions on the functional form of the conditional distribution py|x, the
loss function ℓ can be naturally chosen as the corresponding negative log-likelihood.
Let’s suppose we want to fit this datasetD with a neural network:

f : X ×Θ→ Y

(x,W) 7→ f(x ;W)

10

In theory what one would really do is minimize the average loss with respect to the real data generating
probability distribution, i.e. one would like to solve the optimization problem:

argmin
W

E
(x,y)∼p(x,y)

[
ℓ(f(x;W), y)

]
(2.5)

In practice, there’s usually no information at all about the data generating probability distribution, apart
from the samples we have in D. A solution to this problem is trying to approximate the data generating
probability distribution, and the easiest way is to approximate it with a mixture of Dirac distributions con-
centrated in the data points, namely:

pdata(x, y) =
1

N

N∑
j=1

δ
(
(x, y)− (x(j), y(j))

)
If we thinkD is representative enough for p(x,y), we have decent pointwise estimator for the expected loss
function and solve the optimization problem:

argmin
W

E
(x,y)∼pdata

[
ℓ(f(x;W), y)

]
(2.6)

This translates into the average loss being just the mean of the loss calculated on the datasetD. Despite the
difficulty of finding a global minimum (the loss function is almost never convex apart from trivial cases),
one can try to find a good local minimum of Eq.(2.6) in different ways. One of the simplest and most used
technique, which can outperformmore complicated approaches [41], is (minibatch) gradient descent:Wt+1 =Wt − η∇ E

(x,y)∼pbatch(t)

[
ℓ(f(x,Wt), y)

]
W0 given

. (2.7)

Where at each step the expectation is taken over a small subset of the whole dataset (called batch), which
changes at each step. The rationale behind this technique is statistical: the gradients we are calculating are
estimators of the true gradients (to which we don’t have access). Using a small subsample the whole dataset
is often enough to obtain a good approximation. Also, sometimes it is computationally not feasible to use
the entire dataset, leaving no other option but to use smaller batches. Moreover, using the minibatch has
some advantages with respect to full batch gradient step:

1. the first advantage is computational. Calculating the gradient of the loss with full batch is muchmore
expensive than calculating it on a batch. Moreover, often already medium sized batches give good
estimations;

2. The second advantage can be attributed to the variance of the gradient estimator. The bigger the batch
size, the smaller the variance of the gradient estimation. Having a small variance is not often a good
choice, since a more noisy estimation can help escaping “bad” local minima [30].

3. Again, as shown in [30], a small batch size can have a regularization effect, avoiding overfit on the train
set.

11

In order to simplify notation, from now on we will indicate with J(W ;X,Y) the expectation of the loss
with respect to pdata.
In the next section we will take a more careful look at Eq.(2.7), since it’s the bridge between optimization
and ordinary differential equations.

2.4 Training as gradient flow

The full batch gradient descent version of equation (2.7) can be seen as a forward Euler step applied to the
gradient flowODE: Ẇ (t) = −∇ J(W (t);X,Y)

W (0) =W0

. (2.8)

The situation complicates a bitmorewhenwe’re usingminibatches, since the vector field inherits a stochastic
component given by the fluctuations of the estimator on each subsample of the original dataset. Neverthe-
less, if the minibatches are choosen from the dataset in a deterministic way, the problem can be rephrased in
a similar way by loosing the autonomous property of the system of ODE:Ẇ (t) = −∇ J(W (t);X(t), Y (t))

W (0) =W0

. (2.9)

where (X(t), Y (t)) is the minibatch choosen at time t.
This observation is really important, since it allows us to apply any numerical integration method in order
to solve (2.9). In fact, there’s a strong analogy between numerical integration methods for the gradient flow
and optimization methods for deep learning [28].

2.5 Constraints and regularization

In this section we discuss about constrained optimization problems and regularization. This discussion will
be a useful remainder since these approaches are used in the works we decided to compare our approach
with.
Apretty commonapproach inorder to avoidoverfitting and/or forcing thefittedmodel to live near particular
regions of the hypothesis space Θ is to use regularization. This tecnique consists of adding another term
to the loss function, λΩ(W), in order to penalize regions in the hypothesis space in which Ω(W) is large.
The regularization parameter λ controls how much one wants to penalize these particular regions of the
hypothesis space.
Almost always in supervised learning, it happens that the loss function can be regarded as the negative log-
likelihood of some conditional probability distribution on the output, p(y|x,W). In this particular cases,
if Ω(W) > 0∀W ∈ Θ, the regularized problem can be interpreted by using a Bayesian lens: we can define
an unnormalized probability distribution p(W) ∝ exp

(
−λΩ(W)

)
and by using Bayes rule we can obtain

something proportional to the posterior distribution over the hypothesis space, namely:

12

− log p(W |X,Y) = − log p(X,Y |W)− log p(W) = − log p(X,Y |W) + λΩ(W)

Oftentimes it is also the case of the so called “improper” priors, whose support is a zero-measure Lebesgue
set.

Example 2.5.1 (Improper prior)
Convolution is an example of this kind of regularization. In fact, discrete convolution with a fixed kernel is
a linear map between finite dimensional vector spaces V andW , but the set of convolutions is a zero measure
set inHomR(V,W). This can be seen easily by observing that the matrix associated with a convolution has a
Toeplitz structure, and in particular the corresponding matrix would be forced to satisfy a linear equation of
the kindM(K)tj −M(K)t+1,j+1 = 0 for some particular j. This already is sufficient to reduce the subspace

T = {M ∈ HomR(V,W)|M convolution operator}

onto an hyperplane ofHomR(V,W) that has zero Lebesgue measure. One can define an improper probability
measure onHomR(V,W) defined piecewise by:

p(M) = 1T (M)

Of course, since T is not compact for the usual topology (it is a non trivial subspace of a finite dimensional vector
space) in general, there’s no uniform probability distribution so this last function is not normalizable. One
can nevertheless avoid normalizability conditions, cause it would lead just to the adding of a constant to the
optimization problem. Notice that, a negative log-likelihood applied to p(M) would lead to a function that
is evaluated 0 on T and +∞ outside. This forces an hard type constrain on T , so training a fully connected
network whose ith layer is convolutional is equivalent to solve the optimization problem:argmin

W
J(W ;X,Y)

W (i) ∈ T
(2.10)

This idea is the main one behind penalty methods, which we will need to present methods in chapter 4.
Anhard constraint can be difficult to handle in practice if the its geometry is not that easy, so often a concentrated
prior is used instead.

In the next two examples we will present the most common examples of regularization in deep learning.

Example 2.5.2 (L2 regularization)
L2 regularization (also calledRidge regularization) is one of the most common types of regularization used in
modern deep learning, but its origin lies in statistics, where it is used to handle correlated covariates.
This approach applied to a weight matrix corresponds toΩ(W) = ‖W‖2F =

∑
i,j W

2
ij .

This regularization shrinks all the entries of the weight matrixW to be near zero. This can be seen also reinter-
preting the regularization term λΩ(W) as a negative log-likelihood: in fact, given the discussion in this section,
the prior correspoding to this penalty is p(W) ∝ exp(−λ‖W‖2F). Using the prior distribution interpretation,

13

by reparametrizing the penalization coefficient as λ = 1
2σ2 we can notice that the imposed prior has the func-

tional form of a multivariate isotropic mean zero normal distribution. Thus, this is an intuitive way through
which we can see why the weights are shrinked towards zero: the bigger λ the smaller the variance of the prior
and thus the stronger the prior information we are enforcing in the model.
The shrinkage property can also be seen with a gradient descent update:

Wij ←Wij(1− 2ηλ)− η ∂J

∂Wij
(2.11)

Example 2.5.3 (L1 regularization)
L1 regularization (also called Lasso regularization) is the most common regularization used with the purpose
of variable selection. It was firstly introduced by Robert Tibshirani in 1996 [31] as a method for performing
variable selection in Linear regression to obtain more interpretable models.
This approach applied to a weight matrix corresponds toΩ(W) = ‖W‖1 =

∑
i,j |Wij |.

The remarkable property of this regularizer is due to the geometry of the level curves. Suppose we have a starting
weightW that has all positive entries for simplicity (the penalty function is not differentiable in all points in
which an entry is zero, but it is a set of measure zero), then it is easy to see that the gradient of Ω(W) does not
depend on the magnitude of the entries. This shows that contrary to Ridge regression, in which the shrinkage
is proportional to the magnitude, all entries are shrinked towards zero of the same amount, regardless their
magnitude.
From a Bayesian perspective, the prior associated to the Lasso is a Laplace probability distribution p(W) ∝
exp(−λ‖W‖1), that is sharper around zero than the Ridge’s Gaussian.
Different variations of this regularization has been proposed, from graphical Lasso (Lasso on graphicalmodels),
Fused Lasso (exploiting spatial information in the weights), adaptive Lasso to group Lasso. This last one in
particular has been used in one of the papers presented in chapter 4. The main idea of group Lasso is to select
groups of variables instead of single ones. This is attained by partitioning a weightW in disjoint sets of indeces
{Gk}k. The penalty used in group Lasso is the following:

∑
k

√ ∑
i,j∈Gk

W 2
ij (2.12)

This penalty function serves as a “group variable selection”, setting to zero entire groups of variables mutually.
Intuitively, this is happening because Eq.(2.12) can be seen as a Lasso on the vector containing the norms of the
groups. More details about group Lasso can be found in [33].

Example 2.5.4 (L1/L2 regularization)
L1/L2 regularization (also called elastic net) is obtained as a convex combination of Ridge and Lasso regular-
izations. This approach was introduced to solve some problems of Lasso. In fact,thinking about the linearmodel
in the high dimensional scenario (number of regressors p bigger than number of samples n), Lasso selects only n
variables before it saturates. Moreover, if different regressors are correlated, Lasso tends to select only one and
discart the other. These two problems are actually the two main reasons for which Ridge regression was intro-
duced. In fact, in the linear regression case, the quadradic penalty makes the loss strongly convex, ensuring the
uniqueness of the local minima. Moreover, the quadratic penalty also allows to tackle the problem of correlated

14

regressors.

2.6 Flow in the low-rank manifold
Let’s suppose we have a neural network f(x;W) and that we’re interested in fitting it with some dataset
(X,Y) while keeping the weights in a particular subsetM ⊂ Θ. For the sake of clarity, we will for the
moment think about fully connected neural networks.
Let’s suppose moreover thatM has the structure of a differentiable manifold embedded in the parameters
space. In particular, the case in which we are interested is the one in which

Mr := {W | rank(W) = r}

M =Mr1,..,rL = {(W (1), ..,W (L)) |W (k) ∈Mrk ∀ k}
(2.13)

As already said, the training phase tries to solve the constrained optimization problem:argmin
W

E
(x,y)∼pdata

[
ℓ(f(x,W), y)

]
W ∈M

. (2.14)

The challenges in trying to solve this problem are multiple:

• This optimization problem is non convex in general, both due to the nature of the neural network or
to the complex geometry of the constraint;

• Even assuming convexity of the loss, themanifold constrain poses different problems in trying to build
algorithms;

As explained in section 2.4, we would like to have a similar flow formulation for this kind of constrained
problem, in order to be able to apply all integration methods to optimize the function.
The first idea could be to pointwisely project the flow on the low-rank manifold by solving at any time step
the following optimization problem:

WLR(t) = argmin
B∈M

‖B −W (t)‖ (2.15)

This approach has some disadvantages:

1. if the used norm is Frobenius, the singular value decomposition has to be calculated at each epoch to
project;

2. this approach is not taking full advantage of the low rank constraint since full weights need to be saved,
so there is no computational saving with this approach.

A more natural approach would be to keep the whole flow on the manifold, for the following reasons:

• It is the exact analogue formulation of equation (2.8);

15

• If one wants to constrain neural network weights to be low rank, it would be nice to be able not to
save full weights during training. This would give both benefits in training and inference complexity.

In order to modify the ODE and solve it directly on the manifold, the vector field has to be projected
pointwise onto the tangent bundle, leading to

ẆLR = −P (WLR)∇WJ(X,Y ;WLR) (2.16)

where
P :M⊂ Θ→

∐
q∈M

HomR(TqΘ, TqM)

W 7→ P (W)

and P (W) is the orthogonal projection operator onto TWM.
In thenext sectionwewill present the derivationof theprojectionoperator in closed formandwewill present
a numerical method for solving Eq.(2.16), following the presentations in [15, 34].

2.7 Low rank manifold constraint
The main idea in order to solve Eq.(2.16) directly on the manifold is to construct a simpler parametrization
ofM and pullback the ODE on the charts. In particular, the parametrization constructed is:

ϕ : Om,r(R)×GL(Rr)×On×r(R)→Mr

(U, S, V) 7→ ϕ(U, S, V) = USV ⊤

whereOm,r(R) is the set ofm×r realmatriceswith orthonormal columns andGL(Rr) is the space of r×
r invertiblematrices. Let’s remark that thismap is surjectivebutnot injective, sinceϕ(UP⊤, PSQ⊤, V Q⊤) =

ϕ(U, S, V) for every P,Q ∈ Or,r(R) and thus is not a proper parametrization in the sense of section 2.1.
Supposing to have a time dependent decompositionW (t) = ϕ(U(t), S(t), V (t)), we can reconstruct

the differential equation in terms of U, S and V by differentiating ϕwith respect to time:

Ẇ = ϕ̇ = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ = F (ϕ(U, S, V), t) (2.17)

where F (W, t) = −∇J(W, t;X,Y) is the vector field of the ODE.

Next section is dedicated to a detailed derivation of a system of ODEs on U, S and V starting from the
construction of the orthogonal projection operator.

2.7.1 Derivation of the projection operator

Since the tangent space of the manifold is naturally embedded in the tangent space ofΘ, in order to obtain
a functional form for the projection operator, we can use the minimization condition, i.e.:

Π(F (W, t)) = argmin
Ẇ∈TWM

‖Ẇ − F (W, t)‖F (2.18)

16

This last condition translates into the fact that the difference between the field and the minimizer of
Eq.(2.18) has to be orthogonal to TWM, more precisely:

〈Ẇ − F (W, t), δW 〉 = 0 ∀δW ∈ TWM (2.19)

Figure 2.2: Graphical representation of Galerkin condition for projecting the vector field on the
tangent space of low‐rank matrices. Image taken from [27].

The main effort now is to understand how the elements of the tangent space TWM are made, and to do
this we need to use a bit of differential geometry.
Remembering that the tangent space of a product manifold is isomorphic to the product of the tangent
spaces, let’s consider the pushforward of ϕ to the tangent spaces in the point (U, S, V) :

dϕ(U, S, V) : TUOm,r(R)×TSGL(Rr)× TVOn×r(R)→ Tϕ(U,S,V)Mr

(δU, δS, δV) 7−→ dϕ(U, S, V)(δU, δS, δV)

In particular, since GL(Rr) is an open set, its tangent space at every point is isomorphic to Rr×r. An
explicit description of TUOm,r(R) is instead given by remembering that the definition of Om,r(R) is the
counterimage of zero through the mapG(A) = A⊤A− I (that is smooth). The tangent space is defined as:

TUOm,r(R) = {γ̇(0) | γ ∈ C1((−1, 1);Om,r(R)), γ(0) = U} (2.20)

Now, sinceOm,r(R) = G−1(0), it is know (check example 2.1.2) that TUOm,r(R) ∼= Ker(dG(U)), thus :

TUOm,r(R) ={γ̇ ∈ Rm×r | dG(U)(γ̇) = U⊤γ̇ + γ̇⊤U = 0} =

={γ̇ ∈ Rm×r |U⊤γ̇ ∈ SO(r)}
(2.21)

where SO(r) is the space of r × r skew-symmetric matrices.

17

To obtain a closed form for dϕ(U, S, V)(δU, δS, δV)we need to calculate the directional derivative of ϕ
in the direction of the tangent vector:

dϕ(U, S, V)(δU, δS, δV) =
∂ϕ(U, S, V)

∂(δU, δS, δV)
=

= lim
ϵ→0

ϕ(U + ϵδU, S + ϵδS, V + ϵδV)− ϕ(U, S, V)

ϵ
=

= lim
ϵ→0

(U + ϵδU)(S + ϵδS)(V + ϵδV)⊤ − USV ⊤

ϵ
=

= lim
ϵ→0

ϵ(δUSV ⊤ + UδSV ⊤ + US(δV)⊤) + o0(ϵ)

ϵ
=

= δUSV ⊤ + UδSV ⊤ + USδV ⊤

(2.22)

In order to guarantee unicity of representation for tangent vectors of Tϕ(U,S,V)Mwe have to impose some
additional conditions. As suggested in [15], we consider the extended tangent map:

dϕ̃(U, S, V) : TUOm,r(R)×TSGL(Rr)× TVOn×r(R)→ Tϕ(U,S,V)Mr × SO(r)× SO(r)(
δU, δS, δV

)
7−→

(
dϕ|(U,S,V)(δU, δS, δV), U⊤δU, V ⊤δV

)
This last linear map has a trivial kernel.It can be seen by using the fact that U⊤δU = 0 = V ⊤δV :

dϕ|(U,S,V)(δU, δS, δV) = 0 =⇒ U⊤δUSV ⊤V + U⊤UδSV ⊤V + U⊤US(δV)⊤V =

= δS = 0
(2.23)

By using this last condition, we obtain that :

δUSV ⊤ + US(δV)⊤ = 0 =⇒ U⊤δUSV ⊤ + U⊤US(δV)⊤ = S(δV)⊤ = 0

=⇒
S∈GL(Rr)

δV = 0
(2.24)

In the samewaywe can obtain (multiplying byV on the right) that δU = 0, hence the extended tangentmap
has a trivial kernel. Moreover, by a dimensionality count we can observe that the dimension of the domain
is :

dimR

(
TUOm,r(R)× TSGL(Rr)× TVOn×r(R)

)
= dimR

(
TUOm,r(R)

)
+

+ dimR

(
TSGL(Rr)

)
+dimR

(
TVOn×r(R)

)
= (mr − r(r + 1)

2
) + r2+

+ (nr − r(r + 1)

2
) = r(m+ n− 1)

(2.25)

In the same way the dimension of the codomain is :

18

dimR

(
Tϕ(U,S,V)Mr × SO(r)× SO(r)

)
= dimR

(
Tϕ(U,S,V)Mr

)
+

+ 2 dimR

(
SO(r)

)
= (m+ n− r)r + 2

r(r − 1)

2
= r(m+ n− 1)

(2.26)

Since domain and codomain have the same dimension, the extended linear map dϕ̃ is an isomorphism
of vector spaces. This implies in particular, that any matrix in TWM is image of a particular (δU, δS, δV)

through dϕ(U, S, V) and moreover that the representation is unique if we impose the Gauge conditions:

U⊤δU = 0

V ⊤δV = 0
(2.27)

In fact, from the relation δW = δUSV ⊤ + UδSV ⊤ + USδV ⊤, by multiplying on the left with U⊤, on
the right by V and using Eq.(2.27) we arrive to:

δS = U⊤δWV (2.28)

In a similarway,multiplying on the right byV andusingEq.(2.28) allows us to solve for δU explicitly, leading
to :

δU = (I − UU⊤)δWV S−1 (2.29)

Multiplying on the left by U⊤ and using Eq.(2.28) yields:

δV = (I − V V ⊤)(δW)⊤US−T (2.30)

By observing equations (2.29),(2.30) we notice that UU⊤ and V V ⊤ are respectively the ortogonal pro-
jections onto the space spanned by the columns of U and V . So (I − UU⊤) = (I − PU) = P⊥

U is the
orthogonal projection onto im(U)⊥ and the same holds for V .

Going back to Eq.(2.19) after this discussion, we can rewrite Ẇ using the chain rule and imposing or-
thogonality with all tangent vectors, which will lead to a system of ODEs for the factors U, S and V . In
particular, it is sufficient to choose a basis of the tangent space.

Respectively, for δW = UδSV ⊤, δW = δUSV ⊤, δW = USδV ⊤, imposing orthogonality conditions
for all tangent vectors (Eq.(2.19)), we obtain:

〈U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ − F (W, t), UδSV ⊤〉 = 0

〈U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ − F (W, t), δUSV ⊤〉 = 0

〈U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ − F (W, t), USδV ⊤〉 = 0

(2.31)

Using properties of Frobenius inner product (reported in section 0.1), we can rewrite Eq.(2.31) as :
〈U⊤U̇SV ⊤V + U⊤UṠV ⊤V + U⊤USV̇ ⊤V − U⊤F (W, t)V, δS〉 = 0

〈U̇SV ⊤V S⊤ + UṠV ⊤V S⊤ + USV̇ ⊤V S⊤ − F (W, t)V S⊤, δU〉 = 0

〈S⊤U⊤U̇SV ⊤ + S⊤U⊤UṠV ⊤ + S⊤U⊤USV̇ ⊤ − U⊤F (W, t), δV ⊤〉 = 0

(2.32)

19

Now, using Gauge conditions (2.27) on Eq.(2.32) and the orthogonality of U and V we obtain:
〈Ṡ − U⊤F (W, t)V, δS〉 = 0

〈U̇SS⊤ + UṠS⊤ − F (W, t)V S⊤, δU〉 = 0

〈S⊤ṠV ⊤ + S⊤SV̇ ⊤ − S⊤U⊤F (W, t), δV ⊤〉 = 0

(2.33)

Since first equation of (2.33) has to hold for all δS, we obtain the first differential equation for S. More-
over, the third equation can be rewritten again by transposing both matrices in the inner product. Finally,
by inserting the first equation of (2.33) in the other two, we obtain:

Ṡ = U⊤F (W, t)V

〈U̇SS⊤ + UU⊤F (W, t)V S⊤ − F (W, t)V S⊤, δU〉 = 0

〈V V ⊤F (W, t)⊤US + V̇ S⊤S − F (W, t)⊤US, δV 〉 = 0

(2.34)

By the Gauge conditions (2.27), the range of δU and δV are orthogonal to the ranges ofU and V respec-
tively, thus it is possible to rewrite δU = P⊥

U α, δV = P⊥
V β for somematricesα,β. Using this reparametriza-

tion in Eq.(2.34) and using symmetry of the projection operator we get:
Ṡ = U⊤F (W, t)V

〈P⊥
U U̇SS

⊤ − P⊥
U F (W, t)V S

⊤, α〉 = 0

〈P⊥
V V̇ S

⊤S − P⊥
V F (W, t)

⊤US, β〉 = 0

(2.35)

Recalling Eq.(2.35) has to hold for all α, β, and since P⊥
U U̇ = U̇ (same analogue for V), we finally get:

Ṡ = U⊤F (W, t)V

U̇ = P⊥
U F (W, t)V S

−1

V̇ = P⊥
V F (W, t)

⊤US−⊤

(2.36)

Equations (2.36) represent the flow of the starting ODE on the manifold of rank r matrices, in terms of
the factors U, S and V .
Using these three last equations we can also obtain a closed form for the projection onto the tangent space
at a particular pointW = USV ⊤:

Ẇ = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ =
[(2.36)]

FPV + PUF − PUFPV = P (W)F (W, t)

with P (W)M =M − P⊥
U MP⊥

V

(2.37)

The system of ODEs (2.36) can be solved numerically throught the use of any numerical integration
tecnique. It is important to notice that in the context of neural networks, a numerical approximation of
Eq.(2.36) never requires the reconstruction of the full weight matrices.
It is also important to notice that a straightforward numerical integration of Eq. (2.36) can lead to problems
due to the inversion of S, that can be almost singular in the case of an overestimation of the rank. A suited

20

numerical integrator for this kind of problem was first proposed in [23], the projector-splitting integrator.
Due to its importance, we report here a result regarding the regularity of the projection operator proven in

[15]. This results clarifies that the stiffness of Eq.(2.36) does not depend on the decomposition, it is intrinsic
of the problem:

Lemma 2.7.1 (Lemma 4.2 [15]) LetW1 ∈ Mr be such that its smallest nonzero singular value σr(W) ≥
ρ > 0 and letW2 ∈Mr with ‖W1 −W2‖ ≤ ρ

8 . Then, for allB ∈ Rn×m the following bounds hold:

‖
(
P (W2)− P (W1)

)
B‖ ≤ 8ρ−1‖W2 −W1‖‖B‖2

‖P⊥(W2)(W2 −W1)‖ ≤ 4ρ−1‖W2 −W1‖2
(2.38)

In particular, remembering that ‖B‖2 ≤ ‖B‖, the first inequality of (2.38) gives us a bound onLipschitz
constant of P (locally onMr ∩B(W1,

ρ
8)) for the Frobenius norm. In particular, it holds:

‖P‖Lip ≤ 8ρ−1 (2.39)

This observation is clarifying also the fact that if the matrix σr(W1) ≈ 0, then the local Lipschitz constant
of the projection can potentially be really big, and thus requiring a smaller time integration step.

2.7.2 Projector-splitting integrator

Asmentioned at the end of last section, a straightforward integration of the systemofODEs derived in (2.36)
may be problematic in the case in which the rank is overestimated, and thus the inversion of S may cause
issues. The main idea behind the projector-splitting integrator is to use Lie-Trotter splitting on (2.37). The
authors’ proposal consists in using the following representation of the projection operator

P (W)M =MPV − PUMPV + PUM (2.40)

and then sequentially performing a numerical integration of three differential equations:

1. As a first step, integrate between t0 and t1 the ODE{
ẆI = F (W, t)PV

WI(t0) =W (t0)
(2.41)

2. Then, integrate between t0 and t1 {
ẆII = −PUF (W, t)PV

WII(t0) =WI(t1)
(2.42)

3. Lastly, integrate between t0 and t1 {
ẆIII = PUF (W, t)

WIII(t0) =WII(t1)
(2.43)

21

and useWIII(t1) as an approximation forW (t1).

In all of the three steps any numerical integrator can be used. It is important to notice also that the vector
fields on the right hand side of all three differential equations are tangent to the manifold. In fact, by using
Eq.(2.40) and the fact that projection are idempotent we get:

P (W)F (W, t)PV = F (W, t)PV

P (W)PUF (W, t)PV = PUF (W, t)PV

P (W)PUF (W, t) = PUF (W, t)

(2.44)

This ensures that the flow will stay in the correct manifold if the integration is exact. Remarkably, all of the
three steps can be solved exactly in terms of the factorization(Lemma 3.1, [23]). This last lemma basically
rewrites Eq.(2.37) as a systemof differential equations in terms of the factorizationW (t) = U(t)S(t)V (t)⊤,
that can be numerically solved with any kind of integrator.

Algorithm 2.1 Projector-splitting integrator [23]
Input :Initial svd factorizationW (t0) = U(t0)S(t0)V (t0)

⊤ with S(t0) ∼ r × r; U(t0) ∼ n× r;V (t0) ∼
n× r;
DefineK(t) = U(t)S(t), L(t) = V (t)S(t)⊤ and let η = t1 − t0

1 Integrate between t0 and t1 the differential equation:
K̇(t) = F (K(t)V (t)⊤, t)V (t)withK(t0) = U(t0)S(t0); /* K-step */

2 FactorizeK(t1) = U1Ŝ1 using either QR or SVD;

3 Integrate between t0 and t1 the differential equation:
˙̃
S(t) = −U⊤

1 F (K(t)V (t)⊤, t)V (t)with S(t0) = Ŝ1; /* S-step */
4

5 Integrate between t0 and t1 the differential equation:
L̇(t) = F (K(t)V (t)⊤, t)⊤U1 with L(t0) = V (t0)S̃0; /* L-step */

6 Factorize L(t1) = V1S1 using either QR or SVD;

7 W1 = U1S1V
⊤
1 now approximatesW (t1).

We point out that in Alg.2.1 as in all the next algorithms, we implicitly suppose that in any SVD the sin-
gular values are ordered in decreasing order.

2.7.3 Unconventional robust integrator

An alternative improvement of [23] is proposed in [5]. More than solving the instability problem given by
the presence of S−1 in the system of ODEs, this approach is able to be partially parallelized and it avoids
numerical integrations backward in time (that can be instable and it is not suitable for a training algorithms

22

since it changes the direction of the gradient flow).
As in algorithm 2.1, the notationK := US and L := V S⊤ is used. Starting from Eq. (2.36) with a bit of
calculation using Leibnitz rule, we can arrive to:

K̇ = ˙(US) = F (KV ⊤, t)V

L̇ = ˙(V S⊤) = F (UL⊤, t)⊤U

Ṡ = U⊤F (USV ⊤, t)V

. (2.45)

Application of the unconventional integrator to this system of differential equations leads to update rule
presented in algorithm 2.2.

Algorithm 2.2 Unconventional robust integrator [5]
Input :Initial svd factorizationW (t0) = U(t0)S(t0)V (t0)

⊤ with S(t0) ∼ r × r; U(t0) ∼ n× r;V (t0) ∼
n× r;
DefineK(t) = U(t)S(t), L(t) = V (t)S(t)⊤

8 Integrate from t0 to t1 the ode K̇ = F (K(t)V (t0)
⊤, t)V (t0), withK(t0) = U(t0)S(t0) /* K-step */

9 FactorizeK(t1) = U1R1 using either QR or SVD and defineM := U⊤
1 U0;

10 Integrate from t0 to t1 the ode L̇ = F (UL(t)⊤, t)⊤U(t0), with L(t0) = V (t0)S(t0)
⊤ /* L-step */

11 Factorize L(t1) = V1R̃1 using either QR or SVD and defineN := V ⊤
1 V0;

12 Integrate from t0 to t1 the ode Ṡ = U⊤
1 F (U1S(t)V

⊤
1 , t)

⊤V1, with S(t0) =MS(t0)N
⊤ /* S-step */

13 Set S1 := S(t1);

14 W1 = U1S1V
⊤
1 now approximatesW (t1).

In particular, in all the three steps of Alg. 2.2 any numerical integrator can be used. In the case of neural
networks, we will use mostly forward Euler.
A remarkable property is that this integrator mantains the exactness properties of Alg.2.1, as shown in the-
orems 3,4 of [5]. Moreover, an advantage of this integrator with respect to the Projector-Splitting is that
it exploits the ruled structure of the low-rank manifold, moving along flat subspaces during the K and L
integration steps.
Despite the effectiveness of this integrator, it is often not easy in applications to choose the rank by hand.
This is exceedingly more important in our application case, since choosing a good rank for each layer of a
deep neural network can be prohibitive. Fortunately, a rank-adaptive version of the unconvetional integrator
had been developed in [18].

2.7.4 Rank-adaptive unconventional integrator

Apart from stability problems solved by approaches algorithms 2.1,2.2, it is not easy in general to choose
the rank of the state of the system a priori. A solution to this problem had been proposed in [18]. In partic-
ular, the latter determines the rank adaptively at discrete times during the numerical integration of theODE.

23

The main idea behind the modification of the unconventional integrator provided in [18] is to integrate
a basis augmented version of the differential equation for S and then perform a rank-adaption step.
The rank-adaptive system of ODEs can be sinthetically resumed by the following:

K̇ = ˙(US) = F (USV ⊤, t)V

L̇ = ˙(V S⊤) = F (USV ⊤, t)⊤U
˙̂
S = Û⊤F (Û ŜV̂ ⊤, t)V̂

, (2.46)

where the hat is put on quantities that have beenmodified by the basis augmentation, so they make refer-
ence to a doubled rank, as explained in the original work. A detailed algorithmic description of this method
is presented in algorithm 2.3.

Algorithm 2.3 rank-adaptive unconventional integrator [18]
Input :Initial svd factorizationW (t0) = U(t0)S(t0)V (t0)

⊤ with S(t0) ∼ r × r; U(t0) ∼ n× r;V (t0) ∼
n× r;
DefineK(t) = U(t)S(t), L(t) = V (t)S(t)⊤;
rank tolerance ϑ; Quantities with the hat make reference to rank 2r

15 Integrate from t0 to t1 the ode K̇ = F (K(t)V (t0)
⊤, t)V (t0), withK(t0) = U(t0)S(t0) /* K-step */

16 Factorize (K(t1), U0) = ÛR ∼ n× 2r using either QR or SVD and define M̂ := Û⊤U0 ∼ 2r × r;

17 Integrate from t0 to t1 the ode L̇ = F (UL(t)⊤, t)⊤U(t0), with L(t0) = V (t0)S(t0)
⊤ /* L-step */

18 Factorize (L(t1), V0) = V̂ R̃ ∼ m× 2r using either QR or SVD and define N̂ := V̂ ⊤V0 ∼ 2r × r;

19 Integrate from t0 to t1 the ode
˙̂
S = Û⊤F (Û Ŝ(t)V̂ ⊤, t)⊤V̂ , with Ŝ(t0) = M̂S(t0)N̂

⊤ /* S-step */
20

21 Compute the SVD Ŝ(t1) = P̂ Σ̂Q̂⊤; /* truncation step */
22 Choose the minimal r1 ≤ 2r such that: (2r∑

j=r1

Σ2
jj

) 1
2 ≤ ϑ (2.47)

Let S1 :=
∑r1

j=1 Σj,jeje
⊤
j and let P1,Q1 be the matrices containing the first r1 columns of P̂ , Q̂ respec-

tively;
Set U1 := ÛP1 and V1 := V̂ Q1

23 W1 = U1S1V
⊤
1 now approximatesW (t1).

This version of the integrator is the most suitable for neural network training, since the ranks are chosen
automatically and there is only one hyperparameter that controls the amount of cutting.
In the next section we will formalize the application of these integrators in the context of neural network
training.

24

3
The lottery ticket hypothesis and dynamical

low-rank training

Duringmy thesis’ work I implemented a version of the rank adaptive robust integrator in the context of neu-
ral networks. The work produced is publicly available [27] along with the repository of the implementation
at https://github.com/compile-gssi-lab/DLRT/tree/efficient_gradient.

3.0.1 Pruning and lottery tickets

Model compression had been a very active area of research in the last several years. These techniques range
from pruning, weight quantization, layer factorizations and low-rank compression.
Especially in the recent years, the development of pruning tecniques has been leading this area. The main
rationale is that themodel under consideration is probably overfitting “by construction”, and thus it is safe to
“prune” nodes or connections in the neural network without loosing much performance. In order to prune
in amethodicway, different tecniques have beenproposed. Someof themusemeasures of importance on the
nodes (both of zero and first order) [3], other use randomization [22], other approaches focus on structured
pruning [21, 36, 39]. The resulting neural network is often of much smaller size, allowing to reduce both
memory consumption and inference time complexity.
Despite the popularity and the effectiveness of these approaches, there are still issues they leave unsolved:

1. They’re sometimes based on heuristics;

2. Training has often to be done on the full architecture before pruning, not reducing training costs;

3. Even if the pruning is done during train time, graphical processing units are not able to exploit arbi-
trarily sparse structures efficiently [25];

4. Fine tuning is often required after pruning;

25

5. In general, even if the pruned neural network is able to produce comparable metrics with the full
version, there is no guarantee it will be able to be trained from scratch and reach the same performance.

An attempt to find a solution to the last problemwas first proposed in [9], introducing the “Lottery ticket
hypothesis”: fully-connected, randomly initialized networks contain subnetworks that when trained in iso-
lation are able to achieve approximately the same performance of the original model. Themethod proposed
in [9] aims to find winning lottery tickets through iterative pruning during the train phase and reinitializa-
tion to a masked version of starting weights. Despite its effectiveness to find winning tickets, this approach
leaves some of the above-cited problems unsolved. In particular, the cost reduction during training is not
the main concern of this algorithm. Moreover, arbitrarily sparse structures cannot be exploited efficiently
by graphical processing units.
Other recently explored possibilities are low-rank compression strategies, in which the main idea is to factor-
ize layers’ weights into an SVD like decomposition as in [11, 13, 38]. Also these kind of approaches raise
different problems:

1. In some cases they require the reconstruction of the full weight matrices during training (like [11, 21,
36, 39]), leading to no space complexity improving during that phase;

2. some other methods (like [38, 39]) are pruning singular values after a first training, leading no space
complexity reduction during training;

3. Some approaches require the use of alternating optimization or fine tuning in order to reach the full
network performance (like [11]).

4. In layer decomposition approaches like [13] there may be stability problems concerning the optimiza-
tion;

InDLRT [27] we propose amethod able to tackle some of the issues presented for both pruning and low-
rank compression methods. In particular, our proposal is able to reduce space and time complexity both
during training and inference phases.
The next sections are organized as follows: first, the method is described formally with all the mathemati-
cal details. After that, an experiment section follows. Lastly, implementation details with a cost analysis is
presented.

3.0.2 Overview of DLRTmethod [27]

As already introduced in the last chapter, the starting idea is to reinterpret the optimization of a neural net-
work as a gradient flow problem. In particular, it can be interpreted as a system of matrix (or tensor in the
case of convolution) ordinary differential equations:

Ẇ
(α)
ij = − ∂J

∂W
(α)
ij

(3.1)

Wedecided to apply [18] in a layerwisemanner. More precisely, we grouped the systemofODEs layerwise
and used algorithm 2.3 on each of them. This boils down to projecting each layer’s vector field onto the
tangent space of the low-rank manifold, leading to the following ODE:

26

Ẇ (α) = −Pr(α)(Wα)∇W (α)J, ∀α = 1, . . . , L (3.2)

where Pr(α)(Wα) is the orthogonal projection operator onto TW (α)Mrα (and the index α indicates the
layer of the neural network).

Each of these matrix ODEs is exactly in the scenario in which algorithm 2.3 can be applied. By using the
adaptive version of the integrator we can reparametrize each layer α using the variablesK(α),L(α) and Ŝ(α)

to obtain from Eq.(3.2) the following system of ODEs:

K̇(α) = −∇W (α)J({K(β)V (β)⊤}β=1,..,L)V

(α)

L̇(α) = −∇W (α)J({U (β)L(β)⊤}β=1,..,L)
TU (α)

˙̂
S
(α)

= −Û (α)⊤∇W (α)J({Û (β)Ŝ(β)V̂ (β)⊤}β=1,..,L)V̂
(α)

. (3.3)

This first group of differential equation can be already exploited as a first implementation. From now on,
we will refer to it as “efficient forward”. The reason for this nomenclature is that the implementation based
on equation 3.3 requires only one forward and one backpropagation for every optimization step, as opposed
to the one we will present next.

It is important to remark that the right hand side of Eq.(3.3) are the gradients with respect toK, L and
Ŝ, in fact:

∂J

∂K
(α)
ij

=
∂J

∂W
(β)
km

∂W
(β)
km

∂K
(α)
ij

=
∂J

∂W
(β)
km

∂

∂K
(α)
ij

(K
(β)
kl V

(β)
ml)

=
∂J

∂W
(β)
km

δikδjlδαβV
(β)
ml =

∂J

∂W
(α)
im

V
(α)
mj =

[
∇WJV (α)

]
ij

(3.4)

where we used Einstein summation convention. Similarly, we obtain:

∂J

∂L
(α)
ij

=
∂J

∂W
(β)
km

∂W
(β)
km

∂L
(α)
ij

=
∂J

∂W
(β)
km

∂

∂L
(α)
ij

(U
(β)
kl L

(β)
ml)

=
∂J

∂W
(β)
km

δimδjlδαβU
(β)
kl =

∂J

∂W
(α)
ki

U
(α)
kj =

[
∇WJ⊤U (α)

]
ij

(3.5)

Lastly, for Ŝ we have:

∂J

∂Ŝ
(α)
ij

=
∂J

∂W
(β)
km

∂W
(β)
km

∂Ŝ
(α)
ij

=
∂J

∂W
(β)
km

∂

∂Ŝ
(α)
ij

(Û
(β)
kl Ŝ

(β)
lt V̂

(β)
mt)

=
∂J

∂W
(β)
km

δilδjtδαβÛ
(β)
kl V̂

(β)
mt =

∂J

∂W
(α)
km

Û
(α)
ki V̂

(α)
mj =

[
Û (α)⊤∇WJV̂ (α)

]
ij

(3.6)

Knowing this, Eq.(3.3) can be rewritten as:

27

K̇(α) = −∇K(α)J({K(β)V (β)⊤}β=1,..,L)

L̇(α) = −∇L(α)J({U (β)L(β)⊤}β=1,..,L)

˙̂
S
(α)

= −∇Ŝ(α)J({Û (β)Ŝ(β)V̂ (β)⊤}β=1,..,L)

. (3.7)

This last observation can be exploited in order to tape also the gradients in an efficient way, so the imple-
mentation that will follow from Eq.(3.7) will be called “efficient gradient”. The reason of the name is that
this second approach is also space efficient in handling the gradients, since they are also represented using a
low-rank structure.
More details about this efficient taping are presented in the next section. A careful cost analysis of the two
different versions is presented in section 5.1.

3.1 Efficient gradient taping

We can exploit equations (3.4),(3.5),(3.6) in the implementation in order to avoid the calculation of the full
gradient with respect to the weights. We exploited Pytorch’s automatic differentiation to tape the gradients
with respect toK,L and Ŝ without never constructing the full gradients with respect toW (visual represen-
tation in Fig.3.1,3.2). This potential computationally saving approach comes togetherwith the need of three
forward propagations at each optimization step (and one backpropagation, as shown in Eq.(6.2)). Suppose
we have a neural network

f(x;W) = z(L)(x;W)

x(α+1) = T (α+1)(z(α);W (α+1))

z(α) = σ(α)
(
x(α)

)
z(0) = x, z(L) = y

(3.8)

where σ(α) are nonlinear entrywise activation functions and T (α) are parametric (with matrix parameters)
linear operators acting on the embeddings z(α). It is worth to notice that both fully connected and convo-
lutional neural networks are included in this representation. Suppose moreover we have a dataset (X,Y)

along with a loss function J = J(W ;X,Y).
Suppose again we are using the same parametrization as in Eq.(2.46). We can efficiently tape the gradients
needed to integrate the system (3.3) by calculating the gradients with respect to K(α)

ij , L
(α)
ij and S(α)

ij . In
particular:

∂J

∂K
(α)
ij

=
∂J

∂z(α)
∂z(α)

∂x(α)
∂x(α)

∂K
(α)
ij

(3.9)

In order for this phase to be efficient we exploited the backpropagation algorithm already implemented in
Pytorch. In this way we were able to recover the partial gradients ∂J

∂x(α) and so to compute ∂J

∂K
(α)
ij

efficiently.

The only distinction that has to be done is depending on the functional form of the linear operator T (α).

28

X Y

Backpropagation of

W 1
ij
() W 2

ij
()

W = -∇ J1()
W 1() W = -∇ J2()

W 2()

J

J W;X,Y()

X Y

Backpropagation of

K 1
ij
()

L 1
ij
()

S
1

ij

()

K = -∇ J1()
K 1()

L = -∇ J1()
L 1()

= -∇ JS
1()

S
1()

J

J W;X,Y()

K 2
ij
()

L 2
ij
()

S
2

ij

()

K = -∇ J2()
K 2()

L = -∇ J2()
L 2()

= -∇ JS
2()

S
2()

Figure 3.1: Full and low‐rank representation of neural networks with the associated gradient flow
problems.

In the next section we will present the main kind of linear transformations used in neural networks.

Fully-connected layers

This is the most general case, and any other affine transformation can be (with some constraints) reinter-
preted in this setting. In particular, this is the general case in which:

x(α) = T (α)(z(α−1);W (α)) =W (α)z(α−1) + b(α) (3.10)

For the three different forward phases, this affine transformation is parametrized as follows:

x(α) = K(α)V (α)⊤z(α−1) + b(α) K-step
x(α) = U (α)L(α)⊤z(α−1) + b(α) L-step
x(α) = Û (α)Ŝ(α)V̂ (α)⊤z(α−1) + b(α) S-step

. (3.11)

With the respective partial derivatives for the chain rule:

29

∂x
(α)
ℓ

∂K
(α)
ij

= δiℓ

[
V (α)⊤z(α−1)

]
j

K-step

∂x
(α)
ℓ

∂L
(α)
ij

= U
(α)
ℓj z

(α−1)
i L-step

∂x
(α)
ℓ

∂Ŝ
(α)
ij

= Û
(α)
ℓi

[
V̂ (α)⊤z(α−1)

]
j

S-step

(3.12)

2D Convolution layers

Despite the fact that convolution with a fixed kernel can be interpreted as a linear transformation, its matrix
representation would be much bigger in size, and moreover it would be constrained to be a Toeplitz matrix.
Since this matrix structure is not preserved by the unconventional integrators, other solutions need to be
used.
A simple solution is to flatten the convolution kernel on some dimensions and to use a low-rank decompo-
sition of the obtained matrix. This is the approach we used in all the experiments.

A convolution kernel can be represented as a four-mode tensorW ∈ RF×C×J×K consisting of F filters
of shapeC×J×K, which is applied to abatchofN inputC− channels image signalsZ of spatial dimensions
U × V as the linear mapping,

(Z ∗W)(n, f, u, v) =

J∑
j=1

K∑
k=1

C∑
c=1

W (f, c, j, k)Z(n, c, u− j, v − k) . (3.13)

As already mentioned, the goal is to flatten the kernel in a meaningful way and treat it as it were a fully
connected layer. The reshape ofW comes with shapesW resh ∈ RF×CJK . This reshaping is also considered
in [11].

With this kind of flattening, the convolution can be seen as the contraction between an three-mode tensor
Zunf of patches and the reshaped kernel matrixW resh (Pytorch’s fold-unfold function was used in the imple-
mentation). We constructed the unfold by stacking the vectorized version of sliding patterns of the kernel
on the original input, obtaining in this way a tensorZunf ∈ RN×CJK×L, whereL denotes the dimension of
flatten version of the output of the 2-D convolution. With this notation, equation (3.13) can be rewritten
as a tensor mode product:

x(α) =(Z ∗W (α))(n, f, u, v) =

J∑
j=1

K∑
k=1

C∑
c=1

W (α)resh(f, (c, j, k))Zunf(n, (c, j, k), (u, v))

=

r∑
p=1

U (α)(f, p)

r∑
q=1

S(α)(p, q)

J∑
j=1

K∑
k=1

C∑
c=1

V (α)((c, j, k), q)Zunf(n, (c, j, k), (u, v))

(3.14)

Last step is to rewrite the three different step for this last operation. Rewriting Eq.(3.14) using the three
parametrizations, we get:

30

x(α) =

rα∑
q=1

K(α)(f, q)
∑
j,k,c

V (α)((c, j, k), q)Zunf(n, (c, j, k), (u, v)) K-step

x(α) =

rα∑
p=1

U (α)(f, q)
∑
j,k,c

L(α)((c, j, k), p)Zunf(n, (c, j, k), (u, v)) L-step

x(α) =

2rα∑
p=1

Û (α)(f, q)

2rα∑
q=1

Ŝ(α)(p, q)
∑
j,k,c

V̂ (α)((c, j, k), p)Zunf(n, (c, j, k), (u, v)) S-step

(3.15)

or more compactly, using tensor mode products (definition in the notation section 0.1):

x(α) = [Zunf ×2 V
(α)⊤]×2 K

(α) K-step
x(α) = [Zunf ×2 L

(α)⊤]×2 U
(α) L-step

x(α) =
[
[Zunf ×2 V̂

(α)⊤]×2 Ŝ
(α)

]
×2 Û

(α) S-step

(3.16)

As pointed out in the section, in order to be able to backpropagate through this layer we need to compute
the derivatives of each one of the steps in Eq. (3.15) with respect to their parameters. This calculation gives:

∂x(α)(n, f, u, v)

∂K(α)(µ, ν)
= δ(f, µ)

[
Zunf ×2 V

(α)⊤
]
(n, ν, (u, v)) K-step

∂x(α)(n, f, u, v)

∂L(α)(µ, ν)
= U (α)(f, ν)Zunf(n, µ, (u, v)) L-step

∂x(α)(n, f, u, v)

∂Ŝ(α)(µ, ν)
= Û (α)(f, µ)

[
Zunf ×2 V

(α)⊤
]
(n, ν, (u, v)) S-step

(3.17)

3.2 Training procedure description

In this section we present in detail the adaptation of the unconventional integration for the training of neu-
ral networks. A detailed description of the algorithm is contained in Alg.3.1.
As already mentioned in this chapter, it is possible to train a neural network using dynamical low-rank in
different ways. It is in fact possible to train some layers using the rank-adaptive unconventional integrator,
others with the fixed rank unconventional integrator and others without any kind of compression in their
full rank representation (using any desired optimizer). In particular the algorithmic description 3.1 is noth-
ing more than iterating through the layers and for each one either use one between rank-adaptive,full rank
unconventional integrators or (if the layer is not to be compressed) a standard optimizer. It is worth to notice
that the numerical integration steps in Alg.3.1 are left as generic as possible, since in theory any numerical
integrator can be used. Although this pecularity opens to a lot of possibilities coming from numerical analy-
sis, the choice has to be restricted to methods leading to computationally feasible trainings. In particular, in
all the experiment of chapter 5 we used forward Euler integration.

31

Algorithm 3.1Dynamic Low Rank Training Scheme (DLRT) [27]

Input :Initial low-rank factors S(α)
0 ∼ r(α)0 × r(α)0 ;U (α)

0 ∼ nα× r(α)0 ;V (α)
0 ∼ nα−1× r(α)0 forα = 1, . . . , L;

iter: maximal number of descent iterations per epoch;
adaptive: Boolean flag that decides whether or not to dynamically update the ranks;
C: list of layers to be compressed;
ϑ: absolute singular value threshold for adaptive procedure;
τ : relative singular value threshold for adaptive procedure (either this or ϑ is required)

24 for each epoch do
25 for t = 0 to t = iter do
26 for each layer α do
27 if α ∈ C then
28 K

(α)
t ← U

(α)
t S

(α)
t /* K-step */

29 K
(α)
t+1 ←

{
K̇(t) = −∇KL(K(t)(V (α)(t))⊤z(α−1) + b(α)(t)),K(0) = K

(α)
t

}
30 L

(α)
t ← V

(α)
t (S

(α)
t)⊤ /* L-step */

31 L
(α)
t+1 ← one‐step‐integrate

{
L̇(t) = −∇LL(U (α)(t)L(t)⊤z(α−1) + b(α)(t)),L(0) = L

(α)
t

}
32 if adaptive then /* Basis augmentation step */
33 K

(α)
t+1 ← [K

(α)
t+1 | U

(α)
t] L

(α)
t+1 ← [L

(α)
t+1 | V

(α)
t]

34 U
(α)
t+1 ← orthonormal basis for the range ofK(α)

t+1 /* S-step */
35 M (α) ← (U

(α)
t+1)

⊤U
(α)
t

V
(α)
t+1 ← orthonormal basis for the range of L(α)

t+1

N (α) ← (V
(α)
t+1)

⊤V
(α)
t

S̃
(α)
t ←M (α)S

(α)
t N (α)⊤

S
(α)
t+1←

{
Ṡ(t)= −∇SL

(
U

(α)
t+1S(t)(V

(α)
t+1)

⊤z(α−1)+b(α)(t)
)
, S(0)= S̃

(α)
t

}
36 if adaptive then /* Rank compression step */
37 P,Σ, Q← SVD(S

(α)
t+1)

if absolute threshold then
38 r

(α)
t+1 ← min{0 ≤ r ≤ 2r

(α)
t |

∑2r
(α)
t

s=r+1 Σ
2
jj ≤ ϑ2}

39 else if relative threshold then
40 r

(α)
t+1 ← min{0 ≤ r ≤ 2r(α)(t) |

∑2r
(α)
t

s=r+1 Σ
2
jj ≤ τ2

∑2r
(α)
t

s=1 Σ2
jj}

41 S
(α)
t+1 ← truncateΣ using the singular value threshold ϑ
U

(α)
t+1 ← U

(α)
t+1P̃ where P̃ = [first r(α)t+1 columns of P]

V
(α)
t+1 ← V

(α)
t+1Q̃where Q̃ = [first r(α)t+1 columns ofQ]

42 else if α /∈ C then
43 W

(α)
t+1←

{
Ẇ (t)= −∇WL(W (α)

t z(α−1)+b(t)),W (0)=W
(α)
t

}
/* Bias update step */

44 b
(α)
t+1←

{
ḃ(t)= −∇bL(U (α)

t+1S
(α)
t+1(V

(α)
t+1)

⊤z(α−1)+b(t)), b(0)=b
(α)
t

}
32

3.3 Low-rank lottery tickets
Once the training procedure described in Alg.3.1 is completed, by using theU, S, V representation for each
layer it is possible to fix U and V and fine-tune only S using any optimizer.
Fixing U and V for each layer can be interpreted as the pruning analogue of fixing the sparse structure and
train on the remaining weights. As in the original paper [9], we would expect an improvement of perfor-
mance by analogy. Computationally, this procedure allows to reduce even more the memory complexity
needed in DLRT, since only the gradients of S needs to be accumulated (and they have dimension r × r,
where r is the rank at the end of DLRT training). Moreover, fine-tuning requires only one forward and not
three anymore. Although this approach was not used in all experiments, its effectiveness is shown in the
experiment in section 5.6.

33

 (1, 10)

AddmmBackward0

AccumulateGrad

layer.9.bias
 (10)

ReluBackward0

AddBackward0

MmBackward0

MmBackward0

UnsafeViewBackward0

CloneBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

BmmBackward0

ReshapeAliasBackward0

ExpandBackward0

TransposeBackward0

Im2ColBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

TBackward0

SliceBackward0

AccumulateGrad

layer.0.K
 (20, 10)

AccumulateGrad

layer.0.bias
 (20)

TBackward0

SliceBackward0

AccumulateGrad

layer.3.K
 (50, 25)

AccumulateGrad

layer.3.bias
 (50)

PermuteBackward0

SliceBackward0

AccumulateGrad

layer.7.K
 (500, 250)

AccumulateGrad

layer.7.bias
 (500)

TBackward0

AccumulateGrad

layer.9.weight
 (10, 500)

 (1, 10)

AddmmBackward0

AccumulateGrad

layer.9.bias
 (10)

ReluBackward0

AddBackward0

MmBackward0

MmBackward0

UnsafeViewBackward0

CloneBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

BmmBackward0

ReshapeAliasBackward0

ExpandBackward0

TransposeBackward0

Im2ColBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

BmmBackward0

ReshapeAliasBackward0

ExpandBackward0

SliceBackward0

AccumulateGrad

layer.0.L
 (25, 10)

AccumulateGrad

layer.0.bias
 (20)

ReshapeAliasBackward0

ExpandBackward0

SliceBackward0

AccumulateGrad

layer.3.L
 (500, 25)

AccumulateGrad

layer.3.bias
 (50)

SliceBackward0

AccumulateGrad

layer.7.L
 (800, 250)

AccumulateGrad

layer.7.bias
 (500)

TBackward0

AccumulateGrad

layer.9.weight
 (10, 500)

 (1, 10)

AddmmBackward0

AccumulateGrad

layer.9.bias
 (10)

ReluBackward0

AddBackward0

MmBackward0

MmBackward0

MmBackward0

UnsafeViewBackward0

CloneBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

BmmBackward0

ReshapeAliasBackward0

ExpandBackward0

TransposeBackward0

Im2ColBackward0

MaxPool2DWithIndicesBackward0

ReluBackward0

ViewBackward0

TransposeBackward0

AddBackward0

UnsafeViewBackward0

MmBackward0

ReshapeAliasBackward0

UnsafeViewBackward0

MmBackward0

TBackward0

AliasBackward0

AccumulateGrad

layer.0.S_hat
 (20, 20)

AccumulateGrad

layer.0.bias
 (20)

TBackward0

AliasBackward0

AccumulateGrad

layer.3.S_hat
 (50, 50)

AccumulateGrad

layer.3.bias
 (50)

PermuteBackward0

AliasBackward0

AccumulateGrad

layer.7.S_hat
 (500, 500)

AccumulateGrad

layer.7.bias
 (500)

TBackward0

AccumulateGrad

layer.9.weight
 (10, 500)

Figure 3.2: Lenet5 representations of theK ,L and S steps for the gradient efficient implementa‐
tion of Alg.3.1.

34

4
Comparison with other methods

In this section we give a synthetic overview on the other methods proposed in the literature with which we
are comparing DLRTwith in the experiments in chapter 5.

4.1 Structured sparse learning

Structured sparse learning is the compression technique presented in [36]. As the name suggests, the pro-
posal of this paper is focusing on a structured sparsification of convolutional kernels using group Lasso (ex-
ample 2.5.3) regularization. Group Lasso penalization can be applied to convolutional kernels in different
ways, depending how the variables inside the tensor are grouped. In [36], threemain groupings are presented.
Following the notation used in section 3.1, the three grouping penalties are summarized as follows:

• Channelwise and filterwise grouping: in this first one the penalty is applied to the convolution kernel
both filterwise and channelwise. More precisely, the regularization terms added to the total loss are:

λf

L∑
α=1

Fα∑
fα=1

‖W (α)
fα,:,:,:‖F + λc

L∑
α=1

Cα∑
cα=1

‖W (α)
:,cα,:,:‖F (4.1)

where the first term refers to the filterwise pruning, and the second to the channelwise one. With this
grouping, entire filters or channels of the convolution kernel are set to zero by the Lasso.

• Shapewise: this second approach prunes local “stripes” of the convolutional filter. The regularization
is:

λs

L∑
α=1

Cα∑
fα=1

Jα∑
jα=1

Kα∑
kα=1

‖W (α)
:,cα,jα,kα

‖F (4.2)

• Depthwise: this last approach selects and prunes entire kernels in the neural network architecture.

35

The penalty is given by:

λd

L∑
α=1

‖W (α)‖F (4.3)

4.2 Rethinking smaller-norm less-informative assumption

This second approach is presented in [39].
The main point of the author’s work is to question the common assumption that a smaller magnitude of
a weight means a less informative feature. This assumption originally came as an induction from simpler
models’ observations, like linear regression. The authors also point out some problems in using penalization
on deep architectures to choose the important predictors (e.g., Lasso or Ridge), mainly attributable to the
need of feature normalization to not bias the regularization.
The proposal in this work is to enforce sparsity on the scale parameter of batch normalization layers by using
a variation of iterative shrinkage thresholding proposed in [2].
Following notation from section 3.1, suppose we have a batch normalization following the convolutional
layer number α. Suppose Z is the input of the convolution, a tensor of shapesN × C × J ×K, whereN
is the batch size, C is the number of channels and J × K are the spatial dimensions. Batch normalization
after this convolutional layer is defined as:

BN(W (α) ∗ Z)ncjk = γ(α)c

(W (α) ∗ Z)ncjk − E[(W (α) ∗ Z)n,:,:,:]√
var((W (α) ∗ Z)n,:,:,:) + ϵ

+ β(α)
c (4.4)

The action of a batch normalization layer is to rescale the statistic of equation (4.4) in order to be optimal for
the next layer activation, by controlling mean and variance of the batch through the learnable parameters γ
and β. By imposing a sparse structure on each γ(α), some output channels are forced to be constantly equal
to the corresponding entry of β(α) (Eq.(4.4) with γ(α)c = 0 is constantly equal to β(α)

c). This observation is
important, since in the case of no padding the output of a batch normalization layer will have some constant
channels, so of no practical usage. The authors numerically showed that it is safe to prune the corresponding
channels in the convolution kernel with approximately no functional changes from the original network.
This approach allows versatility, allowing to choose among different kinds of structured pruning, having also
the advantage of using a relatively easy regularization. However, as discussed in section 3.0.1, this method
does not reduce training costs.

4.3 Pruning via GAL

This approach is proposed in [21].
The proposal of the authors is to use generative adversarial learning to identifywhich structures in the neural
network can be pruned. This approach considers three neural networks: a baseline model fB(x;WB), a
generator fG(x;m,WG) and a discriminator fD(y;WD). Following the notation of the original paper,W

36

are the neural network’s weights are m is a soft mask after each structure (as explained in [21], different
kinds of masking can be adopted,e.g, for entire blocks of the network, channels,…). The baseline model is
a non-pruned version of the model we want to compress, already trained on the dataset of interest. The
discriminator acts on the last layer embedding features of the generator and the baseline, with the objective
of recognizing if it comes from one or the other.
This approach boils down to the minimization of a loss function composed of different terms, namely:

J(WD,WG,m) = max
WD

Jadv(WG,m,WD) + Jdata(WG,m) + Jreg(WG,m,WD)

Jadv(WG,m,WD) = E
fB(x)∼pB(x)

[
log(fD(fB(x);WD))

]
+ E

x,z

[
log(1− fD(fG(x, z;WG);WD))

]
Jdata(WG,m) =

1

N

N∑
i=1

‖fG(x;WG)− fB(x)‖22

Jreg(WG,m,WD) = λG‖WG‖2F + λD‖m‖1 + λDR(WD)

(4.5)
where pB(x) is the output distribution of the baseline network for an input distributed as pdata. The second
expectation is taken with respect to x, z, with z ∼ pz(z) (distribution of the noisy input of the generator)
and fG(x, z) ∼ pG(x, z). For more details about generative adversarial learning, we refer to [10].
The first term of Eq.(4.5) is the adversarial loss, that is trying to enforce the generator’s output to produce
outputs whose distribution is similar to the one of the baseline and at the same time is trying to enforce the
discriminator to recognize from which neural network the output is coming from (generator or baseline).
Intuitively, this loss is trying to enforce the masked generator to “mimic” the behaviour of the baseline net-
work. The second term is a regression loss (typicallymean squared error), encouraging themasked generator
outputs to be as near as possible to the ones of the baseline for the same input. The third part is an additive
regularization term (the sum of three functions, each one depending on only one group of variables), for
which they proposed an L2 regularization on the weights of the generator, a L1 (cause it enforces sparsity)
on themaskm and another loss on the weights of the discriminator to prevent it from dominating the train-
ing. In particular, L1 regularization on the maskm is the one that is truly sparsifying the network.
Despite the versatility of this approach, some of the issues presented in section 3.0.1 are present. In particu-
lar, this method can be described as a sort of compressed knowledge distillation, since it requires an already
trained non-compressed model. Thus, the compressed neural network training is not meant to give space
advantages during the training phase, but it is only useful for a compression a posteriori. The versatility of
masking m allows to sparsify the underlying network in many ways, but it also introduces a choice to be
done a priori before training.

4.4 Low-rank compression of neural networks

This approach is proposed in [11].
In this work, the authors propose amethod to include the automatic choice of the ranks for each layer in the

37

optimization problem. In particular, the optimization problem they proposed to solve is:

argmin
rα,rank(W (α))≤Rα

J(W (1), . . . ,W (L)) + λC(r1, . . . , rL) (4.6)

Given the combinatorial nature of this optimization problem, they propose a functional form for the reg-
ularization C and an optimization algorithm that makes it computationally approachable. The constraint
on the rank can be handled with a layer decompositionW (α) = U (α)V (α)⊤ with U (α) ∈ Rnα+1×rα and
V (α) ∈ Rnα×rα . Moreover, they assume thatC is a separable function of the ranks, more precisely a positive
linear combination of them:

C(r1, . . . , rL) = C(r1) + · · ·+ C(rL)

C(rα) = (nα + nα+1)rα
(4.7)

The regularization they proposed (Eq.(4.7)) can be interpreted as a “memory regularization”, since C(rα)
represented the number of weights that has to be saved for layerα. This functional form forC allows the op-
timization problem to be numerically solvedwith linear cost in the number of layers (instead of exponential),
and moreover it is trying to enforce a lower rank on the layers that are heavier from a memory complexity
point of view.
As the authors suggest, problem (4.6) can be rewritten using auxiliary variablesΘ(α) as follows:

argmin
rα,W (α),Θ(α)

J(W (1), . . . ,W (L)) + λC(r1, . . . , rL)

rank(Θ(α)) ≤ Rα

W (α) = Θ(α)

(4.8)

This reformulation takes the form of “model compression as constrained optimization”, presented in [4].
In the latter, the authors suggest to combine a penalty method with alternating optimization. The penalty
leads to the following loss function:J(W, r,Θ) = J(W) + λC(r) + µ

2

∑L
j=1‖W (α) −Θ(α)‖2F

rank(W (α)) ≤ Rα

(4.9)

The alternating optimization approach divides the problem in two steps: the learning and the compression
step. In the learning step, the objective is to minimize the expression in Eq.(4.9) as a function of only the
weightsW (α) with all the other variables fixed, leading to:

argmin
W (α)

J(W) +
µ

2

L∑
j=1

‖W (α) −Θ(α)‖2F (4.10)

38

Moreover, thanks to the separability ofC, the compression step can be rewritten layerwise as follows:
argmin
rα,Θ(α)

λC(rα) +
µ
2 ‖W

(α) −Θ(α)‖2F

rank(Θ(α)) ≤ Rα

(4.11)

Since the norm used in the compression step is the Frobenius one, Eq.(4.11) can be interpreted as a standard
penalized low-rank approximation problem, that can be solved exactly through a singular value decomposi-
tion ofΘ(α), using Eckhart-Young theorem.
This approach again does not solve one of the problemspresented in section 3.0.1: it does not reduce training
memory costs.

4.5 SingularVectorOrthogonalityRegularizationandSin-
gular Value Sparsification

This approach is proposed in [38].
Contrary to all other works we presented, in this paper the main focus is to introduce a low-rank training
algorithm that is able to be performed directly on the factors, without the need of the full-rank representa-
tion of the weights. The authors proposal consists on two main points: first, the neural network with layer
decomposition is trainedwith full-rank, then a singular value pruning on the resulting network is performed
(togetherwith a fine tuning, if necessary). Tomaintain the SVD-like structure during the training procedure,
the authors propose a regularization approach to preserve the orthogonality constraint on the columns of
the factors U and V . The training boils to down to the following loss:

J({Uα, V (α), S(α)}α) =Jdata(U (α)
√
S(α), V α

√
S(α)⊤)+

+ λo

L∑
α=1

1

rα

(
‖U (α)⊤U (α)‖2F + ‖V (α)⊤V (α)+‖2F

)
+ λs

L∑
α=1

ℓs(S
(α))

(4.12)

where the first term is the data loss written in terms of the layer factorization, the second one is to enforce
orthogonality on the columns of the factors U and V of each layer, and the last one is meant to enforce
sparsity in the singular value diagonal matrix.
The authors argue about the choice of the sparsity enforcing loss, sinceL1 regularization has the property of
not being invariant to a scale transformation (since it is a norm), thus every singular value is shrinked towards
zero in the same manner, regardless of its magnitude (Example 2.5.3). This property makes this kind of
regularization less appealing tobeused togetherwithpruning, since thefinalmagnitudeof the singular values
after training cannot be used as a robust indicator of their importance. The authors propose to substitute
L1 regularization with Hoyer’s regularization, that is scale invariant. This regularization has the following
expression:

ℓs(S
(α)) =

‖diag(S(α))‖1
‖diag(S(α))‖2

=

∑
i |S

(α)
ii |√∑

i S
(α)
ii

2

(4.13)

39

Hoyer’s regularizationEq.(4.13) allows tomaintain all the optimization friendly properties ofL1 normwhile
having the advantage of being scale invariant. This allows to maintain the majority of the importance in the
singular values with the bigger magnitude, and so to prunemore safely the lowest magnitude singular values.
After the first training, a pruning of the singular values is performed by using an energy threshold. A fine
tuning can be also performed if the performance drops significantly.

40

5
Cost analysis and experiments

5.1 Cost analysis

In this section, a theoretical cost analysis is presented. It is important to remark the fact that even though
all forward matrix multiplications are associative, the cost is not. In particular, by being careful with the
implementation, it is possible to reduce inference cost.
The analysis is organized as follows: first, we present space and time complexity of the efficient gradient
taping procedure. This discussion can be compared with the efficient forward phase implementation.

5.1.1 Efficient gradient taping

The advantage of this first implementation is its ability to save space even for the gradients during the train
phase, leading to a potentially more appealing algorithm for memory limited devices. This advantage comes
together with the disadvantage of having to perform three forwards instead of one before backpropagating.
In the following calculations, we will assume that we have a fully connected architecture with L layers and
that the dimension of layer α is nα, with rank rα. Moreover, we assume that the input has shape n1 × b,
where b is the batch size. We will not consider bias and nonlinear activation costs (in any case the cost of
these operations is the same of the one in full forward).

Space complexity during training

In this section we present a space complexity analysis of [27]. As described in section 3.2, dynamical low-
rank training requires the construction of additional matrices during the training phase.
Layer α has stored inside: K(α) ∼ nα+1 × rα (gradient required), L(α) ∼ nα × rα (gradient required),
Û (α) ∼ nα+1×2rα, V̂ (α) ∼ nα×2rα, Ŝ(α) ∼ 2rα×2rα (diagonal,gradient required), M̂ (α) ∼ 2rα×rα
and N̂ (α) ∼ 2rα × rα. Thus, the overall memory complexity of one step in the training phase of our

41

approach compared with the standard weight representation (without counting the gradients) is:

Cmemory, no grad =

L∑
α=1

O
(
rα(3nα+1 + 3nα + 4rα + 2)

)
Cmemory full, no grad =

L∑
α=1

O
(
nαnα+1

) (5.1)

Taking also the space consumption of the gradients, the last comparison becomes:

Cmemory, with grad =

L∑
α=1

O
(
4rα(nα+1 + nα + rα + 1)

)
Cmemory full,with grad =

L∑
α=1

O
(
2nαnα+1

) (5.2)

As a measure of compression to compare the two approaches, we decided to use the compression ratio.
It is defined as the fraction of parameters DLRT is able to save compared to the vanilla approach. More
formally, it is defined as:

CR = 1−
Cmemory

Cmemory full
(5.3)

Thismeasure canbeusedboth taking andnot taking into account the gradients. Inparticular, since gradients
occupy a non-negligible space in the memory during training, we can compute the compression ratio taking
this into account. Moreover, to be able to find a closed form upper bound for the maximal rank in order for
our approach to be advantageous, we consider compression ratio for just one layer:

CRα, with grads = 1− 4rα(nα+1 + nα + rα + 1)

2nαnα+1
(5.4)

Having a particular network, one can calculate themaximumneeded rank of a layer to achieve a compression
ratio bigger than a fixed threshold by solvingCRα, with grads ≥ β for rα. In particular, a theoretical space gain
layerwise counting also the gradients is obtained for all rα that satisfy the inequalityCRα, with grads ≥ 0, and
this happens if:

0 ≤ rα ≤
√
n2α + (1 + nα+1)2 + 2nα(2nα+1 + 1)− (nα + nα+1 + 1)

2
≤
√
2nαnα+1

2
(5.5)

Time complexity during training

(K-forward) In this first forward, each low-rank layer is represented using K(α) and V (α). For a single layer, the
costs areO(bnαrα) for themultiplication between z(α) and V (α)⊤. This newmatrix has shape rα×b,
so its multiplication withK(α) has costO(bnα+1rα). Summing these costs in all layers, we obtain an
overall cost of

∑L
α=1O

(
brα(nα + nα+1)

)
;

(L-forward) This cost analysis is identical to the one just presented, sinceL has the same shape of V andK has the
same shape of U , leading to the same overall cost;

42

(S-forward) In this forward phase each layer is represented using variables Û , Ŝ, V̂ . The cost of the multiplication
between V̂ (α)⊤ and z(α) has a cost O(2brαnα). The result of this multiplication has shape 2rα × b,
so its multiplication with Ŝ (that is diagonal) has a cost of O(2brα). The result now has again shape
2rα × b, and its multiplication with Û has costO(2bnα+1rα). The overall cost of this last forward is
thus

∑L
α=1O

(
2brα(nα + nα+1 + 1)

)
;

The total cost of one of our forward phases during training (the sum of the costs of K,L and S steps)
compared to the vanilla approach (indicated as full) is:

Ctime =

L∑
α=1

O
(
2brα(2nα + 2nα+1 + 1)

)
≲

L∑
α=1

O
(
4brα(nα + nα+1 + 1)

)
Cfull,time =

L∑
α=1

O
(
bnαnα+1

) (5.6)

Since all operations are performed in reverse during backpropagation, its cost analysis is similar to this
one.
In this case, a theoretical layerwise time advantage is attained if:

0 ≤ rα ≤
nαnα+1

4(nα + nα+1 + 1)
(5.7)

Space complexity during inference

During inference, it is sufficient to keep in memoryK(α) and V (α) for each layer. This leads to a memory
consumption comparison given by:

Cmemory =

L∑
α=1

O
(
rα(nα+1 + nα)

)
Cmemory full =

L∑
α=1

O
(
nαnα+1

) (5.8)

The layer-wise compression ratio in this case is positive if and only if:

0 ≤ rα ≤
nαnα+1

nα + nα+1
(5.9)

Time complexity during inference

Aswe said earlier, during inference it is sufficient to considerK(α) andV (α). In particular, following section
5.1.1, we obtain a comparison given by:

43

Ctime =

L∑
α=1

O
(
brα(nα+1 + nα)

)
Ctime full =

L∑
α=1

O
(
bnαnα+1

) (5.10)

leading to a layer compression ratio equal to the one in Eq.(5.9).

5.1.2 Efficient forward phase

In this section we present a complexity analysis of Alg.3.1 in the case where the full gradients with respect
toW are taped. In contrast to the gradient-efficient approach, this requires only one forward phase for each
optimization step (compared to three), but the space complexity is greater because of the representation
of the full derivatives, leading to a trade-off in memory and time complexity. In this implementation, the
representation of each layer is different: compared to K(α) ∼ nα+1 × rα, L(α) ∼ nα × rα and Ŝ(α) ∼
2rα × 2rα we represent each layer using U (α) ∼ nα+1 × rα, S(α) ∼ rα × rα and V (α) ∼ nα × rα.

Space complexity during training

For each layer, we have to keep in memory U (α), S(α) and V (α), so following section 5.1.1 we obtain the
comparison:

Cspace,no grads =

L∑
α=1

O
(
rα(nα+1 + nα + 1)

)
Cspace full,no grads =

L∑
α=1

O
(
bnαnα+1

) (5.11)

By taking into account also the gradients, we obtain instead:

Cspace,no grads =

L∑
α=1

O
(
nα+1nα + rα(nα+1 + nα + 1)

)
Ctime full,no grads =

L∑
α=1

O
(
2nαnα+1

) (5.12)

It is worth to notice that if we care about asymptotic results, this second approach has nomemory advantage
since the dominating term is nαnα+1 in each layer.

Time complexity during training

The forward for each layer consists in sequentially multiplying the batch input with the three matrices. The
computational cost comparison with the vanilla approach is the following:

44

Ctime =

L∑
α=1

O
(
brα(nα+1 + nα + 1)

)
Ctime full =

L∑
α=1

O
(
bnαnα+1

) (5.13)

Space complexity during inference

During inference, the only approach we can use to reduce space complexity is to multiply U (α) and S(α),
leading to a cost of:

Cspace =

L∑
α=1

O
(
rα(nα+1 + nα)

)
Cspace full =

L∑
α=1

O
(
nαnα+1

) (5.14)

Time complexity during inference

As we said earlier, the only advantage in the inference time that we can obtain here is to multiply againU (α)

and S(α). The comparison with vanilla forward is:

Ctime =

L∑
α=1

O
(
brα(nα+1 + nα)

)
Ctime full =

L∑
α=1

O
(
bnαnα+1

) (5.15)

5.2 Compression effects
In this section, we present some experiments concerning the effects of compression on timing and accuracy.
All these experiments are performed using the gradient efficient implementation algorithm 3.1.

5.2.1 Timings

In this first experiment, we compared a layerwise compression ratiowith theCPUexecution time of different
operations. In particular, we considered a pass on the full MNIST dataset [7] of the following operations:

1. “forward train”: a forward pass during training phase ofDLRTon the fullMNIST (so three forwards
forK,L and S representations):

2. “backward train”: a forward and backward pass during training phase of DLRT (so three forwards
and one backward);

3. “forward test”: a forwards pass during inference phase of DLRT (so only on one representation, we
used theK,V one).

45

This experiment has been conducted on a fully connected architecture represented in table 5.1 with the
fixed rank version of algorithm 3.1. A grid of compression ratios between zero and one (with a step of 0.05)
had been created, and for each one of these the first three layers were compressed by that amount (e.g., with
compression ratio zero the ranks are full and with one they are set to a minimum of 2). For each compressed
network, the timings had been recorded 5 times to obtain ameasure of the standard deviation. Moreover, we
took 5measurements also for each one of the baselines. The results of this experiment are reported in Fig.5.1.
These results are meant to show the relation between memory and time complexity of different operations,
compared with a standard full rank Pytorch’s implementation baseline. It is worth to notice that inference
time of our approach is advantageous (on average) over a 20% layerwise compression rate, but as expected
the difference is already not significant since the beginning. However, inference time of our approach starts
to become significantly smaller than the baseline approach after a 45% layer-wise compression ratio.
For what concerns backpropagation time, the difference in execution time starts to be less significant around
75% layerwise compression ratio, and our approach starts to become more significantly advantageous after
85%. Comparing these results with figure 5.2, we observe that even though the timing is not advantageous
before a 75% layer-wise compression ratio, an overall advantage in memory complexity during training is
already achieved after 45%.
Finally, our forward during training phase starts becoming advantageous in terms of time after 80% layer-
wise compression ratio. This is expected as in the backwardmeasure, since the difference in inference time is
not decreasing fast enough to compensate the fact that our forward phase consists in three steps. However,
as shown in Fig.5.2, memory advantage of our approach is already detectable after a 55%without counting
the gradients in the compression ratio (45% if we also count the gradients in the memory complexity).
Aswewill see in sections 5.3,5.2.2, even though in this experiment the time advantage starts to be visible after
large layer-wise compression ratios, the performance of the neural network drops very slowly as a function
of compression.
Moreover, we would expect better results regards timings on larger networks and datasets, since the over-
parametrization may be more pronounced than in this example. However, to not bias results we decided to
test only this architecture, since Pytorch’s convolution is using compiled routines.

Layer type activation output shape # parameters
Linear Relu 500 392500
Linear Relu 300 150300
Linear Relu 100 30100
Linear Softmax 10 1010
Total parameters 573910

Table 5.1: Fully connected architecture was used for the timing experiment. The input is a flat‐
tened image of Mnist, of size 784.

46

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
layerwise compression ratio

0

2

4

6

8

10

12
tim

in
g

[s
]

forward train
backward train
forward test
baseline backward train
baseline forward

Figure 5.1: Cpu timings of different operations on full Mnist as a function of the layerwise com‐
pression ratio. The coloured area around each line indicates one standard deviation interval.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
layerwise compression ratio

200

150

100

50

0

50

100

ov
er

al
l c

r [
%

]

cr test
cr train
cr train grads
baseline full-rank

Figure 5.2: Layerwise compression ratio against overall compression ratio during different phases,
to compare with Fig.5.1

47

5.2.2 Compression ratio and accuracy

In this second experiment, we experimentally investigated quantitatively how quickly a neural network’s
performance deteriorates depending on the compression rate. In particular, for this test we used Lenet5
evaluated on the MNIST dataset and as in section 5.2.1, we used the fixed rank version of Alg.3.1 in order
to control the amount of compression precisely.
We created a grid of layer-wise compression ratios and for each one of thesewe trainedfive times a compressed
Lenet5 onMNIST using early stopping with validation loss. Results are reported in Fig.5.3 along with the
baseline (Lenet5 trained with stochastic gradient descent, early stopped).
As we can see, the accuracy drops really slow as a function of the layer-wise compression ratio until around
90% of the weights of each layer is thrown away. In particular, for 90% layer-wise compression the accuracy
drop with respect to the baseline is of 2%, with a memory saving of 88% during training.
This result can be also compared with the ones presented in section 5.2.1: even though the time advantage
during training is noticeable for big compression rates, it is also true that it seems that big compression rates
do not influence the resulting accuracy by a big amount.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
compression ratio layer-wise

90

92

94

96

98

100

[%
]

DLRT test accuracy(%)
overall compression ratio gradients(%)
baseline test accuracy(%)

Figure 5.3: layerwise compression ratio against test accuracy after training Lenet5 on MNIST. The
blue line represents the overall memory compression (counting the gradients).

5.3 Lenet onMNIST
In this experiment, we tested the adaptive version of DLRT on Lenet5 (architecture represented in Fig.3.2)
using again MNIST dataset. In particular, we created a grid of relative thresholds τ (following notation of
Alg.3.1) and for each one of this we performed five independent runs. In each one of the runs, the starting
weight is reinitialized as random normal and the dataset is re-splitted to perform a sort ofMonte Carlo cross

48

validation. We compared the results both with a baseline (full rank trained with standard Pytorch stochastic
gradient descent, same dataset preparation) and with other compression approaches discussed in section
section 3.0.1. Detailed numerical results are reported in Tab.5.2, along with some visual representations of
the results reported in Fig.5.4.
In Fig.5.4 is reported the average accuracy as a function of the relative threshold, together with test and
train compression ratios. As expected, the best compression is achieved with the highest τ = 0.45, and it
amounts tousing98.4% lessweights than the originalmodel, with a space savingduring training of95.4%on
average. Furthermore, the accuracy drop with respect to the baseline with this compression rate is 4.7% on
average. Without looking for the biggest compression, a good compromise between performance drop and
compression is attained already with τ = 0.2, which gives a 0.7% accuracy drop with respect to the baseline
with a compression ratio of 96.9% during inference (83.4% memory saving during training), comparable
also with all other approaches in Tab.5.2.

0.09 0.11 0.13 0.15 0.2 0.3 0.4 0.45
relative threshold

88

90

92

94

96

98

100

[%
]

test accuracy dlrt (%)
test accuracy baseline (%)
compression ratio test(%)
compression ratio train(%)

Figure 5.4: Relative singular value threshold τ of the adaptive version of Alg.3.1 against test com‐
pression ratio, train compression ratio (counting the gradients) and test accuracy (with relative
full rank vanilla training baseline). Detailed numerical results are presented in Tab.5.2.

49

NNmetrics Inference Train
method mean test acc. ranks params c.r. params c.r.
LeNet5 98.8%± 0.06 [20, 50, 500, 10] 430500 0% 861000 0%

D
LR

T

τ = 0.09 98.2%± 0.26 [10, 23, 62, 10] 37445 90.9%± 0.3 532176 35.5%± 1.8
τ = 0.11 98.2%± 0.44 [10, 20, 48, 10] 30278 93.1%± 0.45 412898 53.3%± 3.5
τ = 0.13 97.9%± 0.49 [9, 16, 37, 10] 24542 94.3%± 0.17 316997 63.2%± 1.1
τ = 0.15 98.1%± 0.33 [9, 16, 28, 10] 20033 95.4%± 0.23 251477 71.4%± 1.83
τ = 0.2 98.1%± 0.34 [8, 8, 15, 10] 13091 96.9%± 0.16 135536 83.4%± 1.21
τ = 0.3 97.5%± 0.48 [4, 6, 8, 10] 9398 97.9%± 0.08 80792 91.2%± 0.59
τ = 0.4 96.0%± 0.94 [2, 4, 4, 10] 7250 98.3%± 0.06 47882 94.4%± 0.3
τ = 0.45 94.1%± 0.49 [2, 2, 3, 10] 6647 98.4%± 0.07 35654 95.4%± 0.4

SSL [36] (ft) 99.18% 110000 74.4% < 0%
NISP [39] (ft) 99.0% 100000 76.5% < 0%
GAL [21] 98.97% 30000 93.0% < 0%
LRNN [11] 98.67% [3, 3, 9, 9] 18075 95.8% < 0%

SVD prune [38] 94.0% [2, 5, 89, 10] 123646 71.2% < 0%

Table 5.2: Results of the training of LeNet5 on MNIST dataset. “Params” represent the number of
parameters we have to save (in train and inference phases) using DLRT Alg.3.1. The compression
ratio (c.r.) is the percentage of parameter reduction with respect to the full model (< 0% indi‐
cates that the ratio is negative), as explained in section 5.1.1 (for the train compression ratio we
took the gradients into account). “ft” indicates that the model has been fine tuned. “LeNet5” line
indicates the baseline, trained using stochastic gradient descent.

5.4 Cifar10 and Cifar100

In this experiment, we tested Alg.3.1 on AlexNet [17] and VGG16 [29], adapted to both Cifar10 and Ci-
far100 datasets [16]. We compared our results bothwithmethods proposed in the recent literature andwith
a full rank baseline. All runs had been performed using the same hyperparameters, in particular we used a
batch size of 64, learning rate of 0.05, momentum 0.1 and a threshold τ = 0.08. For this experiment, we
decided to test a partial compression: more precisely, all convolutional layers are trained in their full rank
representation, and only the final linear layers of each network are trained with DLRT.
Results are presented in Tabels 5.3, 5.4.
In the Cifar10 table 5.3 we can notice that every model attained a worse accuracy with respect to the full-
rank baseline. It is also to remark that our approach is comparable to the baselines, despite only the final
fully connected layers had been compressed.
The performance deteriorates by a maximum of 3.88% with respect to the baseline, but together with an
85.1% space compression during inference and 79.2% during training (on Cifar100). The maximum com-
pression ratio we obtained is 86.3% during inference (84.2% during training) for AlexNet on Cifar10, with
a loss in test accuracy of 1.79%with respect to the full-rank baseline.
For Cifar100, VGG16 reported an improvement in test accuracy of 1.52%with respect to the baseline, but
with a smaller compression ratio (51% during inference and 72% during training).

50

method network difference with baseline c.r. [eval] c.r. [train]

DLRT τ = 0.1 VGG16 −1.89% 56% 77.5%
GAL [21] VGG16 −1.87% 77% < 0%
LRNN [11] VGG16 −1.9% 60% < 0%

DLRT τ = 0.1 AlexNet −1.79% 86.3% 84.2%
NISP [39] (ft) AlexNet −1.06% n.a. < 0%

Table 5.3: Compression results of VGG16 and AlexNet on Cifar10. The compression ratio (c.r.) is
the percentage of parameter reduction with respect to the full model (< 0% indicates that the
ratio is negative). “ft” indicates that the model has been fine tuned. The “difference with baseline”
column indicates the difference in final test accuracy between each method and the baseline (full
rank,trained with stochastic gradient descent with the same hyperparameters).

method difference with baseline c.r. [eval] c.r. [train]
VGG16 1.52% 51% 72%
AlexNet −3.88% 85.1% 79.2%

Table 5.4: Compression results of on Cifar100. DLRT with τ = 0.08 is used. The “difference
with baseline” column indicates the difference in final test accuracy between each method and
the baseline (full rank,trained with stochastic gradient descent with the same hyperparameters).

5.5 Robustness to small singular values
As alreadymentioned in section 2.7.1, a straighforward numerical integration of the gradient flow equations
of the factors in the case of an U, S, V factorization would lead to stability problems due to the inversion of
S. Unfortunately, this issue is not to be imputed to the particular parametrization, but it is intrinsic due to
curvature of the manifold of low-rank matrices [15, 32] (explained in lemma 2.7.1). As pointed out in the
same section, the unconventional integrator (and its rank-adaptive counterpart) are able to exploit the ruled
structure of the constraint manifold and to move along flat subspaces during theK andL integration steps,
“avoiding to see the curvature”. This robustness to small singular values is not shared with other numerical
integrators in general.
In this experiment, we show numerically the difference of training by using DLRT (the fixed rank version to
have a fair comparison) and a truncated UV ⊤ layer decomposition trained with stochastic gradient descent
in the scenario in which the starting singular value distribution has a fast decaying tail.

This type of approach is used for example in [13, 35]. Results of the experiment are presented in Figures
5.5,5.6.
We initialized Lenet5 weights as normally distributed, we computed a singular value decomposition layer-
wise, and we scaled singular values by making them decay with powers of two, ten and with no decay as a
baseline. In the case of layer factorization, we multiplied together U and S in order to have a UV ⊤ decom-
position for each layer.
After this initialization, we trained ten times these neural networks on MNIST for ten epochs (each time
with a different weight initialization and a different split of the dataset), to compare DLRT with a vanilla
layer factorization approach (same hyperparameters, batch size of 128 and learning rate of 0.01,ranks fixed

51

0 2 4 6 8 10
epoch

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
[%

]

DLRT
UVT factorization

0 2 4 6 8 10
epoch

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
[%

]

DLRT
UVT factorization

0 2 4 6 8 10
epoch

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
[%

]

DLRT
UVT factorization

Figure 5.5: Accuracy over epochs of DLRT and and layer factorization [13] on Lenet5 architecture
trained on Mnist. Decay with powers of 10 (top left), with powers of 2 (top right), and no decay
(bottom).

to [20, 20, 20, 10]).
As shown the results, at parity of integration step, if the starting point is around a high curvature region in
the manifold, the convergence to equilibrium of a non tailored numerical integration is slower (Fig.5.6). In
terms of the final performance of the model, in Fig.5.5 the same effect is also visible in the test accuracy. It is
also worth to notice that the faster the decay of the singular values, the slower the convergence of stochastic
gradient descent on the layer factorization (red lines). This effect is not so visible by using the unconventional
integrator (black lines).

5.6 Fine tuning effectiveness

In this experiment, we tested the effectiveness of the fine tuning strategy proposed in section 5.6. For this
purpose, we decided to test different networks onCifar10 in an overcompression setting. More precisely, we
trained different models by overcompressing on purpose, to see how effective is fine tuning for improving
the performance. For each architecture, we trained for 20 epochs (with a batch size of 64 and a learning rate
of 0.05) and then we fine tuned for other 20. Results are reported in Tab.5.5.
The results show that the fine tuning procedure introduced in section 5.6 is able to significantly improve the

52

1 2 3 4 5 6 7 8 9 10
epoch

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

 lo
ss

DLRT
UVT factorization

1 2 3 4 5 6 7 8 9 10
epoch

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

 lo
ss

DLRT
UVT factorization

1 2 3 4 5 6 7 8 9 10
epoch

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

 lo
ss

DLRT
UVT factorization

Figure 5.6: Training loss over epochs of DLRT and and layer factorization [13] on Lenet5 archi‐
tecture trained on Mnist. Decay with powers of 10 (top left), with powers of 2 (top right), and no
decay (bottom).

performance even when the compressed neural network is underparametrized, with a maximum improve-
ment in the final test accuracy of 28.11% for VGG16 and a minimum of 14.63% for Lenet.

Model Test accuracy After fine tuning improvement c.r. [eval]

VGG 39.54%± 6.33 67.65%± 1.42 28.11%± 6.21 97.58%± 0.08
AlexNet 42.89%± 3.64 58.61%± 1.47 15.72%± 3.04 97.12%± 0.044
Lenet 44.04%± 5.24 58.67%± 1.83 14.63%± 4.46 94.84%± 0.11

Resnet20 45.84%± 7.61 64.24%± 0.61 18.40%± 8.02 92.88%± 0.16

Table 5.5: Effects of fine tuning on underparametrized networks. In the table we report the fi‐
nal test accuracy without fine tuning (first column), and after fine tuning (second column). In the
third column, we report the mean improvement after fine tuning. In the last column we report
the overall test compression ratio achieved during the training. In each column a standard devia‐
tion across five independent runs is reported.

53

54

6
Implementation

This chapter contains some details about the actual Pytorch [25] implementation of Alg.3.1.

6.1 Low-rankModule
As mentioned in section 3.0.2, we implemented custom versions of linear and convolutional layers to be
trained using Alg.3.1. To construct a neural network trainable using our implementation it is necessary that
each neural network module contains:

• our custom layers;

• a layer attribute, an iterable object containing the layers of the neural network;

• a populate_gradientsmethod (provided in our implementation, it doesn’t change among different
architectures);

• a update_stepmethods, that updates each low-rank layer variable representation.

6.1.1 Populate_gradients method

To handle the fact that DLRT requires three forward phases at each optimization step, each custom layer
of the neural network has a step attribute that can be K,L or S. This attribute can be updated during
the training with the update_stepmethod, and it changes the layer representation to the chosen group of
variables (e.g, if theK step is chosen, the forward will use theK,V representation for that layer). To tape all
the gradients needed for the optimization step, it is therefore necessary to perform three forwards for each
input batch (one for each step value). As described in Alg.3.1, the gradients with respect to the variable Ŝ
have to be recorded after having updatedK and L, thus requiring the use of a closure function to be passed

55

to the optimizer. This kind of trick is standard in Pytorch, since it allows to performbackpropagation during
the optimization step.
In our implementation eachneural networkhas topossess apopulate_gradientsmethod, that takes as input
a batch of data, a loss function and the step variable for which wewant to record the gradients. This method
updates the step variable of each low-rank layer to the desired one, computes the loss, and backpropagates.
There is a simple trick that allows one to perform only one backpropagation for theK and L steps together
instead of two. This boils down to considering the sum of the losses for the three phases:

J = JK + JL (6.1)

where JK is the loss calculated using theK,V representation for each layer (the same for L). Since no vari-
able is shared among these representations, calculating the derivative of the sumwith respect to a parameter
reduces to calculating the derivative of the corresponding individual loss. More precisely:∇KJ = ∇KJK

∇LJ = ∇LJL
(6.2)

This observation shows that it is possible to compute the derivatives of the total loss J , and thus it is possible
to call Pytorch’s method backward only once.

Algorithm 6.1 Pseudo code for gradient taping
Input : f : torch.nn.Module object with custom low-rank layers and needed methods;

(x, y): batch of data;
ℓ: Pytorch’s loss function;
opt : Custom dynamical low-rank optimizer object;

45 loss = f.populate_gradients(x,y,ℓ); /* tape gradients for K and L */
46 def closure(): /* closure function to tape S gradients. */
47 loss_S = f.populate_gradients(x,y,ℓ,step = S);

return loss_S;
opt.step(closure = closure) /* optimization step */

6.2 Optimizer class
The most convenient way to implement DLRT in Pytorch was to build a custom optimizer class. In the
implementation, our optimizer takes as input a torch.nn.Module instance (implemented with our custom
low-rank layers, as explained in 6.1), the threshold τ for the ranks, and a Pytorch optimizerwith its additional
arguments. In particular, since forward Euler was used in the unconventional integrators, in all experiments
we used stochastic gradient descent. The choice of using an already implemented optimizer to perform
the integrator step has advantages, since it allows one to easily modify the training procedure by adding
techniques such as momentum, learning rate schedulers, or regularization. In the next section, we will give

56

a brief explanation of the main methods of this class.

6.2.1 Preprocess steps

These methods (K_preprocess_step,L_preprocess_step and S_preprocess_step) correspond to the up-
date ofK,L and S before each integration step (as indicated in Alg.3.1). As described in the pseudocode of
the training algorithm, each one of these methods has to be called before its relative integration step.

6.2.2 Integration steps

As described in the original paper, the integration steps forK and L are completely parallelizable. For this
reason, after having recorded the gradients for each K and L variable, a unique optimizer step is needed
to integrate both differential equations (by calling K_and_L_integration_step inside the optimizer step
method).
Forwhat concerns the integration step forS, it is performed after recording the gradients through the closure
function and excluding all the other ones.

6.2.3 Postprocess steps

Lastly, for each representation there is a corresponding postprocess method. This corresponds to the up-
dating of U, V,M andN after theK and L integration steps. The S postprocess step corresponds instead
to the update after integration and to the eventual rank adaption in the corresponding layers.

6.2.4 Step method

Step is the main method of the custom optimizer. As input, it accepts a closure function to record the gra-
dients of S after the integration of the other variables.
When called, it automatically performs the integration step forK andL in each layer, then it tapes the gradi-
entswith respect toS to perform the last integration step. Inpractice, the stepmethod executes all operations
described in alg.3.1.

6.2.5 Fine tuning

In order to fine tune an already trained model, the optimizer contains a method activate_S_fine_tuning.
This method deactivates the gradients of all variables except S in each layer, and it updates the default step
to the S one. Moreover, it fixes the rank of each adaptive layer to the current one. After calling this method,
the neural network can be trained using standard Pytorch’s syntax.

57

58

7
Conclusions and future improvements

In this thesis, we presentedDLRT, an end-to-end approach to compress neural networks that exploits theory
of ordinary differential equations together with recent improvements in dynamical low-rank theory. This
founding theory serves as a theoretical justification for our approach, allowing to exploit the remarkable prop-
erties of the unconventional integrators, as reported in the main papers [5, 18]. Moreover, rank adaptivity
allows to leave each layer choose its rank dynamically during the training, without the need of an a priori
choice about it. The advantage of our proposal lies in the memory complexity during the training: unlike
othermethodswithwhichwe compared (briefly presented in chapter 4), beyond thememory advantage dur-
ing the test phase, DLRT is also able to give a memory reduction during the training phase. This peculiarity
can be exploited in situations in which it is not an option to do a full-memory training, for example if there
is the need to train on a limited memory device.
In the experiment section, we quantitatively investigated some advantages of this approach. In the first ex-
periment section 5.2.1 we compared the timing of our approach with a full-rank baseline (with standard
Pytorch implementation) on some critical operations performed both during the training and inference us-
ing a neural network. The results show that our implementation can be advantageous in time during the
training phase given that the ranks are sufficiently small. Nevertheless, in this experiment we also showed
that even in the regime in which our approach is not advantageous in terms of timing, DLRT is already sav-
ing more than 70% of the required memory for training with respect to the baseline. Concerning inference,
DLRT shows both memory and time advantage already in the small compression regime.
The first experiment may raise some questions, since the compression ratio needed to achieve a time advan-
tage in terms of training step was high. The second section of the experiment 5.2.2 is meant to investigate
that: even if the amount of compression needed to achieve this time advantage is high, the performance of
the neural network is almost not decreasing until a compression ratio of 80%. Going further, the accuracy
dropped on average of a 4% with approximately a 96% compression ratio. This shows that it is possible to
reach the regime inwhich our approach,more than beingmemory advantageous during training, is also time
advantageous, and all this with a relatively low performance degradation.

59

In the third and fourth experiments sections 5.3,5.4 we testedDLRTon some benchmark datasets (MNIST,
Cifar10 and Cifar100) and neural networks (Lenet5, VGG16, AlexNet and Resnet20). We compared our
results with both a full rank baseline and with some other literature (briefly presented in chapter 4). Results
showed that our approach is comparable to our baseline in terms of performance, and it is even comparable
with the other methods for what concerns the compression ratio during inference time.
In the last two experiments sections 5.5,5.6 we showed respectively the robustness of our approach with re-
spect to small singular values and the effectiveness of the fine tuning we proposed.
As shown in section 5.2.1, DLRT has also some limitations: a memory and time complexity reduction dur-
ing the training phase is obtained only if the ranks are sufficiently small. If this problem is not concerning
for medium-sized neural networks with medium complexity datasets, this advantage may be not so pro-
nounced for bigger neural networks fitted on bigger datasets, where the overparameterization may be not
so pronounced, leading to final higher ranks.
Future work may be focused on testing DLRT on other benchmark datasets, like Imagenet. More than this,
it would be interesting to implement and test DLRT in different ways for convolutional layers, and maybe
to extend it for other layers like three-dimensional convolution.

60

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. In Advances in Neural Information Processing
Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
62dad6e273d32235ae02b7d321578ee8-Paper.pdf.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm with application
to wavelet-based image deblurring. In 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 693–696, 2009. doi: 10.1109/ICASSP.2009.4959678.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In I.Dhillon,D. Papailiopoulos, andV. Sze, editors,Proceedings ofMachine
Learning andSystems, volume2, pages 129–146, 2020. URLhttps://proceedings.mlsys.org/
paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

[4] Miguel Á. Carreira-Perpiñán. Model compression as constrained optimization, with application to
neural nets. part I: general framework, 2017. URL https://arxiv.org/abs/1707.01209.

[5] GianlucaCeruti andChristian Lubich. An unconventional robust integrator for dynamical low-rank
approximation. BIT NumericalMathematics, 05 2021. doi: 10.1007/s10543-021-00873-0.

[6] Frédéric Chazal and Bertrand Michel. An introduction to Topological Data Analysis: fundamental
and practical aspects for data scientists. Frontiers in Artificial Intelligence, September 2021. doi:
10.3389/frai.2021.667963. URL https://hal.inria.fr/hal-01614384.

[7] LiDeng. Themnist database of handwritten digit images formachine learning research. IEEE Signal
ProcessingMagazine, 29(6):141–142, 2012.

[8] Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch,
Richard ETurner,Mark van derWilk, and LaurenceAitchison. Bayesian neural network priors revis-
ited. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=xkjqJYqRJy.

[9] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

61

https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://arxiv.org/abs/1707.01209
https://hal.inria.fr/hal-01614384
https://openreview.net/forum?id=xkjqJYqRJy
https://openreview.net/forum?id=xkjqJYqRJy
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[11] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán. Low-rank compression of neural nets: Learning
the rank of each layer. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8046–8056, 2020. doi: 10.1109/CVPR42600.2020.00807.

[12] Alan Izenman. Introduction to manifold learning. Wiley Interdisciplinary Reviews: Computational
Statistics, 4, 09 2012. doi: 10.1002/wics.1222.

[13] Mikhail Khodak, Neil A. Tenenholtz, Lester Mackey, and Nicolò Fusi. Initialization and regulariza-
tion of factorized neural layers. In ICLR, 2021. URL https://openreview.net/forum?id=
KTlJT1nof6d.

[14] IvanKobyzev, Simon J.D. Prince, andMarcusA. Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE Transactions on Pattern Analysis andMachine Intelligence, 43(11):
3964–3979, nov 2021. doi: 10.1109/tpami.2020.2992934. URL https://doi.org/10.1109%
2Ftpami.2020.2992934.

[15] Othmar Koch andChristian Lubich. Dynamical low‐rank approximation. SIAM Journal onMatrix
Analysis and Applications, 29(2):434–454, 2007. doi: 10.1137/050639703. URL https://doi.
org/10.1137/050639703.

[16] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, vol-
ume 25, 2012. URL https : / / proceedings . neurips . cc / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[18] Jonas Kusch, Gianluca Ceruti, and Christian Lubich. A rank-adaptive robust integrator for dynam-
ical low-rank approximation. BIT. Numerical Mathematics, 2022. doi: 10.48550/ARXIV.2104.
05247.

[19] John M. Lee. Introduction to smooth manifolds. Springer New York, NY, 2002. doi: https://doi.
org/10.1007/978-1-4419-9982-5.

[20] Na Lei, Dongsheng An, Yang Guo, Kehua Su, Shixia Liu, Zhongxuan Luo, Shing-Tung Yau, and
Xianfeng Gu. A geometric understanding of deep learning. Engineering, 6(3):361–374, 2020.
ISSN 2095-8099. doi: https://doi.org/10.1016/j .eng.2019.09.010. URL https://www.
sciencedirect.com/science/article/pii/S2095809919302279.

[21] Shaohui Lin, Rongrong Ji, ChenqianYan, BaochangZhang, LiujuanCao,Qixiang Ye, FeiyueHuang,
and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

62

https://openreview.net/forum?id=KTlJT1nof6d
https://openreview.net/forum?id=KTlJT1nof6d
https://doi.org/10.1109%2Ftpami.2020.2992934
https://doi.org/10.1109%2Ftpami.2020.2992934
https://doi.org/10.1137/050639703
https://doi.org/10.1137/050639703
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S2095809919302279
https://www.sciencedirect.com/science/article/pii/S2095809919302279

[22] ShiweiLiu, TianlongChen,XiaohanChen, Li Shen,DecebalConstantinMocanu, ZhangyangWang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=VBZJ_3tz-t.

[23] Christian Lubich and IvanOseledets. A projector-splitting integrator for dynamical low-rank approx-
imation. BIT, 54, 01 2013. doi: 10.1007/s10543-013-0454-0.

[24] Frank Nielsen. The many faces of information geometry. Notices of the American Mathematical
Society, 69:36–45, 01 2022. doi: 10.1090/noti2403.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[26] Antonio Romano and Mario Mango Furnari. Introduction to Differentiable Manifolds, pages 39–
82. Springer International Publishing, Cham, 2019. ISBN 978-3-030-27237-1. doi: 10.1007/
978-3-030-27237-1_2. URL https://doi.org/10.1007/978-3-030-27237-1_2.

[27] Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco Tudisco.
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations,
2022. URL https://arxiv.org/abs/2205.13571.

[28] Damien Scieur, Vincent Roulet, Francis Bach, and Alexandre d'Aspremont. Integration
methods and optimization algorithms. In Advances in Neural Information Processing Sys-
tems, volume 30, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2015.
html#SimonyanZ14a.

[30] Samuel L. Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. InProceedings of the 37th InternationalConference onMachineLearning, ICML’20,
2020.

[31] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
(Series B), 58:267–288, 1996.

[32] André Uschmajew and Bart Vandereycken. Geometric Methods on Low-Rank Matrix and Tensor
Manifolds, pages 261–313. Springer International Publishing, Cham, 2020.

63

https://openreview.net/forum?id=VBZJ_3tz-t
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1007/978-3-030-27237-1_2
https://arxiv.org/abs/2205.13571
https://proceedings.neurips.cc/paper/2017/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a

[33] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/
9781108627771.

[34] Hanna Walach. Time integration for the dynamical low-rank approximation of matrices and
tensors. In 7 Mathematisch-Naturwissenschaftliche Fakultät, 2019. doi: DOI : 10 . 15496/
PUBLIKATION-31613.

[35] HongyiWang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine
Learning andSystems, volume3, pages 365–386, 2021. URLhttps://proceedings.mlsys.org/
paper/2021/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf.

[36] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 2082–2090, 2016. ISBN 9781510838819.

[37] Peter M. Williams. Bayesian regularization and pruning using a laplace prior. Neural Computation,
7(1):117–143, 1995. doi: 10.1162/neco.1995.7.1.117.

[38] Huanrui Yang,MinxueTang,WeiWen, FengYan,DanielHu,AngLi,Hai Li, andYiranChen. Learn-
ing low-rank deep neural networks via singular vector orthogonality regularization and singular value
sparsification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR)Workshops, June 2020.

[39] Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative as-
sumption in channel pruning of convolution layers. In International Conference on Learning Repre-
sentations, 2018. URL https://openreview.net/forum?id=HJ94fqApW.

[40] Han Zhao, Yao-Hung Hubert Tsai, Russ R Salakhutdinov, and Geoffrey J Gordon. Learning
neural networks with adaptive regularization. In Advances in Neural Information Processing Sys-
tems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
2281f5c898351dbc6dace2ba201e7948-Paper.pdf.

[41] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, and Weinan
E. Towards theoretically understanding why sgd generalizes better than adam in deep
learning. In Advances in Neural Information Processing Systems, volume 33, pages 21285–
21296, 2020. URL https : / / proceedings . neurips . cc / paper / 2020 / file /
f3f27a324736617f20abbf2ffd806f6d-Paper.pdf.

64

https://proceedings.mlsys.org/paper/2021/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf
https://openreview.net/forum?id=HJ94fqApW
https://proceedings.neurips.cc/paper/2019/file/2281f5c898351dbc6dace2ba201e7948-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2281f5c898351dbc6dace2ba201e7948-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf

Acknowledgments

I would like to thank everyone that supported me in the process of writing this thesis. In particular, I would
like to express my gratitude to my supervisor Prof. Francesco Rinaldi, my co-supervisor Prof. Francesco
Tudisco and to Dr. Gianluca Ceruti, whose suggestions had been crucial for the writing.
I would also like to thank all people I had the occasion to collaborate with during my internship, without
whom this stimulating experience would not have been possible.

65

66

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Notation

	Introduction
	Theoretical background
	Differential geometry basics
	Neural network basics
	Theory introduction
	Training as gradient flow
	Constraints and regularization
	Flow in the low-rank manifold
	Low rank manifold constraint
	Derivation of the projection operator
	Projector-splitting integrator
	Unconventional robust integrator
	Rank-adaptive unconventional integrator

	The lottery ticket hypothesis and dynamical low-rank training
	Pruning and lottery tickets
	Overview of DLRT method dlrt

	Efficient gradient taping
	Training procedure description
	Low-rank lottery tickets

	Comparison with other methods
	Structured sparse learning
	Rethinking smaller-norm less-informative assumption
	Pruning via GAL
	Low-rank compression of neural networks
	Singular Vector Orthogonality Regularization and Singular Value Sparsification

	Cost analysis and experiments
	Cost analysis
	Efficient gradient taping
	Efficient forward phase

	Compression effects
	Timings
	Compression ratio and accuracy

	Lenet on MNIST
	Cifar10 and Cifar100
	Robustness to small singular values
	Fine tuning effectiveness

	Implementation
	Low-rank Module
	Populate_gradients method

	Optimizer class
	Preprocess steps
	Integration steps
	Postprocess steps
	Step method
	Fine tuning

	Conclusions and future improvements
	References
	Acknowledgments

