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Abstract

While Human-Robot Interaction (HRI) concepts were science fiction a few decades ago,
many of these issues are now commonplace in modern societies and have emerged as
central questions that drive studies and researches. The problem addressed in this thesis is
the development of a system capable of processing images retrieved from a simple robot
RGB camera stream in order to extract meaningful information related to body posture,
with the ultimate objective of estimating a person’s engagement propensity in scenarios
involving human-robot interaction.

In HRI, particular attention has been given to the concept of engagement as it has an
impact on the beginning, maintenance, and conclusion of the interaction, making it essen-
tial for natural and successful human-robot interaction. However, the studies presented
here focused more on detecting the presence of engagement rather than a measurement of
it, and in the ones where some measures were done, it was more related to the amount of
time that engagement was detected rather than intensity or a probability that such state of
mind was present.

The final objective of this thesis is to describe the system’s concept, present an anal-
ysis of the problem addressed and concepts utilized, describe its implementation and the
technologies used without going into great detail, and then present the results of the tests
that were carried out, highlighting the strengths and weaknesses of the system.
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Abstract

Mentre concetti di Human-Robot Interaction (HRI) erano fantascienza qualche decennio
fa, molti di questi problemi sono ora all’ordine del giorno nella società moderna e tanto
da essere trattate come questioni centrali in studi e ricerche. Il problema affrontato in
questa tesi è lo sviluppo di un sistema in grado di elaborare le immagini recuperate da una
semplice camera RGB di un robot, al fine di estrarre informazioni significative relative
alla postura del corpo, con l’obiettivo finale di effettuare una stima della propensione
all’interazione di una persona in scenari che possono prevedere un’interazione uomo-
robot.

Nella HRI, particolare attenzione è stata data al concetto di “engagement” in quanto
esso ha un impatto sull’inizio, il mantenimento e la conclusione di un’interazione, renden-
dolo essenziale per avere un’interazione uomo-robot naturale e di successo. Tuttavia, gli
studi qui presentati, si sono concentrati maggiormente sulla rilevazione della presenza di
“engagement” piuttosto che sulla sua misurazione, e in quelli in cui sono state effettuate
alcune misurazioni, esse erano più correlate alla quantità di tempo in cui è stato rilevato
“engagement” piuttosto che all’intensità o alla probabilità che tale stato d’animo fosse
presente.

L’obiettivo finale di questa tesi è descrivere l’idea che sta alla base del sistema creato,
presentare un’analisi del problema affrontato e dei concetti utilizzati, descrivere l’imple-
mentazione del sistema e le tecnologie utilizzate senza entrare nei dettagli, e in fine, pre-
sentare i risultati dei test che sono stati effettuati, evidenziando i punti di forza e di de-
bolezza del sistema.
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Introduction

How much confidence will individuals have in robots? What kind of connection is pos-
sible between a robot and a human? How will change our notions of what it means to
be human when machines will perform human-like tasks in our midst? All of these are
questions that Isaac Asimov, the man who coined the term ”robotics” in the 1940s, used as
the primary unit of analysis in his stories. Many of these issues are now commonplace in
contemporary societies and have emerged as central Human-Robot Interaction (HRI) re-
search questions, whereas a few decades ago, they were science fiction. The development
of robots that are able to interact with people in a variety of common settings is HRI’s
primary focus. As a result, human dynamics and the complexity of social environments
present technical and design challenges for robotics’ appearance, behavior, and sensing
capabilities.

The problem addressed in this thesis is the development of a system capable of process-
ing images available from a simple robot RGB camera stream in order to extract mean-
ingful information related to body posture, with the ultimate goal of estimating a person’s
engagement propensity in scenarios involving human-robot interaction.

Engagement is a complex concept, moreover when only visual information is avail-
able. To be able to detect it, nonverbal cues are essential, therefore an introduction to
nonverbal communication has been reported in the first chapter. In fact, from psychol-
ogy, human-science and HRI studies, nonverbal communication appears to be a reliable
source of information that can be consulted through the analysis of visual cues.

Engagement is a fundamental concept in HRI. Indeed, it is the essential ingredient in
any type of natural and successful interaction, moreover when a robot is part of it. In HRI
literature several studies about this topic have been published, and it is easy to notice the
presence of a relationship between engagement and nonverbal cues. This has been the key
element during the definition of the ground idea of the system. Alongside the limitations
imposed by the problem definition, the meaningful information about body posture to be
extracted has been defined, and the way to produce the final result has been proposed.
Finally, tests have been described and their results discussed, highlighting the strengths
and weaknesses of the system.

The project was developed during an internship at the R&D department of Omitech.
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There, is developed software that defines the actions and behavior of different robots ex-
ploiting only the limited amount of information available by the producers’ API. There-
fore, the project’s target was not just about creating something for its own sake but that
could be used, directly or indirectly, to increase robot functionalities.

The thesis structure is defined as follows:

• Chapter 1 gives an introduction to nonverbal communication an HRI, describing de-
tails of concepts that constitute the idea behind the created system

• Chapter 2 reports a summary of the paper of those models exploited during the cre-
ation of the system

• Chapter 3 reports the definition of the initial problem and its analysis, highlighting
the requests and limitations imposed. After that, the proposed solution is given and
finally, its implementation is described

• Chapter 4 offers a variety of tests in which different situations are pictured. Trials
check different aspects of the system as results behavior, consistency and execution
time

8



Chapter 1

Nonverbal communication

Nonverbal communication is a common denominator in social life. There is hardly any
domain of social experience that is not connected to it. Nonverbal communication can
be defined as behavior of the face, body, or voice minus the linguistic content, in other
words, everything but the words [128]. There are many ways to express nonverbal infor-
mation, for example through body motion (kinesics), posture, interpersonal space (prox-
emics), prosody-pitch-volume-intonation of voice (paralanguage), the sense of touch (hap-
tics), eye movement-behavior-gaze (oculesics) and timing of communication (chrone-
mics) [195].

Nonverbal communication is often hard to be aware of in daily life, and sometimes we
become conscious about it only when it goes amiss [280]. With only a quick look, peo-
ple can obtain a lot of important and valid information about strangers like their feelings,
thoughts, personality, sociodemographic characteristics, and much else without any ap-
parent effort. Also, people are able to take turns smoothly in conversations, an apparently
simple gesture but deriving from an amazing feat of implicitly understood coordination.
From fact like those, we can think that people have predictable implicit ideas about how
their own nonverbal behavior influences other people. Sensible interpersonal interaction
would simply not be possible if people did not share implicit understandings of what non-
verbal cues are used for and what they mean. What scholars seek to do is go beyond
these implicit understandings to create a science of nonverbal communication to describe
it and understand its meanings, functions, origins, and impact using empirical methods.
But it is important to understand that such studies are not a panacea for all problems in
interpersonal communication as if they are a kind of hieroglyphics, whose mysteries once
deciphered reveal to the skilled observer the overall knowledge of human relationships.

Even if nonverbal communication started as a communication and psychology subject,
it is necessary to recognize that the topic is not defined by discipline. Indeed, it is a truly
cross-disciplinary subject, with connections to theory and practice in adjacent fields in-
cluding sociology, anthropology, ethology, education, computer science, political science,
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medicine, and many subdisciplines within psychology.

1.1 Nonverbal communication literature
Scientific research on nonverbal communication and behavior can be said to be started in
1872 with the publication of Charles Darwin’s book “The Expression of the Emotions in
Man and Animals”. In the book, he argued that all mammals, both humans and animals,
showed emotion through facial expressions, and he start wondering why facial expressions
of emotions take the particular forms they do [179]. On this, Darwin attributed some fa-
cial expressions to serviceable associated habits, which are behaviors that earlier in our
evolutionary history had specific and direct functions. He also continued, by questioning
the reason why facial expressions persist even when they no longer serve their original
purposes, proposing as answer that humans continue to make them because they have ac-
quired communicative value throughout their evolutionary history [179]. In other words,
humans utilize facial expressions as external evidence of their internal state.

Although “The Expression of the Emotions in Man and Animals” was not one of Dar-
win’s most successful books in terms of its quality and overall impact in the field, his
initial ideas started the abundance of research on the types, effects, and expressions of
nonverbal communication and behavior [134].

Despite the introduction of nonverbal communication in the 1800s, the emergence of
behaviorism in the 1920s paused further research on nonverbal communication [134]. The
necessity of a domain for nonverbal studies occurred during the 1950s and 1960s. Its de-
velop, was facilitated by a social and academic climate in the United States that was ready
for change, a culture increasingly attracted and intrigued to visual images, a society that
had adopted a focus on personal relationships, and a segment of the academic commu-
nity that banded together with the goal of studying human communication. The combined
effect of these factors provided an inviting climate for scholars in several different disci-
plines to pursue the structure and effects of nonverbal behavior in social interaction.

There have been efforts to document highlights of the multi-disciplinary history of non-
verbal studies [72][173], but a comprehensive history would be too long to be described
here. Amore common and more manageable approach is to record the history of a particu-
lar area of nonverbal study. For example, Paul Ekman [91], Alan J. Fridlund [106], Leslie
A. Zebrowitz [326], and Robert Gifford [111] provide historical benchmarks for the study
of facial expressions and facial features. Historical contributions to the modern study of
gestures were put forward by Adam Kendon [168][167] and Jean-Claude Schmitt [279].
John Laver [189] addressed the study of vocal quality from an historical perspective. Janet
B. Bavelas and Nicole Chovil [27] provided a brief history of scholarship that analyzed
the coordination of some nonverbal behavior with words, prosody, and each other. Joseph
B. Walther [306] highlighted the relatively recent history of nonverbal signals mediated
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by various types of technology while James P. Holoka [147] and Donald Lateiner [188]
showed how some nonverbal behaviors were treated in ancient Greek and Roman litera-
ture.

1.2 What can be define as nonverbal communication?
The definition of which behaviour can be defined as nonverbal communication has pro-
voked discussion in the past. Ekman and Wallace V. Friesen [88] argued that only those
nonverbal behaviours which are intentionally made to be communicative can be intended
as nonverbal communication. Paul Watzlawick et al. [307] instead, proposed a hugely
different view. They argued that since all behaviour conveys information, all of them can
be seen as a form of communication, for example, a passenger in a train who looks straight
ahead avoiding the gaze of the other passengers can be said to be communicating just as
much as if he were talking to them, since those nearby usually get the message and leave
him alone [47]. Both these views have been challenged by Morton Wiener et al. [309].
They criticize the idea that all behaviour can be seen as communicative, based on the fact
that it should exists a distinction between signs and communication. In Wiener et al.’s
terms, information, to be regarded as nonverbal communication, needs to be shown that
is both transmitted and received through nonverbal behaviour. Following this reasoning,
signs, would only imply an observer making an inference or assigning significance to an
event or a behaviour, instead, communication would imply a socially shared signal system
or code through which an encoder makes something public, and a decoder responds in a
systematically and appropriately way [47]. By this view, all behaviours are potentially
informative, recalling a little what proposed by Watzlawick et al., but this is something
which has to be demonstrated rather than assumed, and moreover, it has also to be shown
that such information is decoded appropriately to be regarded as a form of communication.
Wiener et al. also challenges the view put forward by Ekman and Friesen based on the
fact that it is often difficult to establish exactly what a person does intend to communicate,
as a matter of fact, once it is acknowledged that a person may be unaware, mistaken or
deceitful about his intentions, there is no clue in the behaviours themselves for deciding
whether or not they should be regarded as intentional communications. Also, by Peter
Bull view, neither intention to communicate nor awareness of the significance of specific
nonverbal cues are necessary for regarding communication as having taken place, because
this may happen without any conscious intention to communicate, or indeed, even against
the express intentions of the encoder. Still for Bull view, awareness of the significance of
specific nonverbal cues is not necessary for communication, in the sense that neither en-
coder nor decoder need to be able to identify the specific nonverbal cues through which a
particular message is transmitted. So, for example, people may be left with the feeling that
someone was upset or angry about something without being able to specify exactly what
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cues were responsible for creating that impression. Indeed, it can be argued that a great
deal of nonverbal communication takes this form, and that one task of the researcher in in
this field is to try and identify more precisely the cues which are responsible for creating
such impressions [47].

1.3 Cues, Encoder and Decoder
A nonverbal cue can be defined as any nonverbal sign expressed, consciously or not, by a
person, even if it is not understandable by someone else. In nonverbal communication, an
encoder is the person that, consciously or not, express a nonverbal sign/cue. A decoder,
instead, is the person able to observe that sign even though he is not aware/capable of
understand it.

Encoding and decoding are two concepts that are trivial only in appearance, because
in some circumstances they may redefine what can be assumed to be communication in
nonverbal situations [45].

The concept expressed in section 1.2 bring to other relevant elements that must be
discussed in order to have, not only a better comprehension of nonverbal communication,
but also to recognize when nonverbal behaviors may be communicative and what and how
much information nonverbal cues bring with them.

For Bull communication requires both encoding and decoding, but encoding may take
place without decoding, while decoding may also be inaccurate [47]. This allows three
different kinds of distinctions for nonverbal cues based on the decoder’s ability to correctly
read the situation.

Firstly, nonverbal cues may be a valuable source of information about others which, in
general, is neglected. For example, this may happen when an emotion is encoded by par-
ticular nonverbal cues but is not decoded appropriately by others. This scenario has been
documented by Felix Deutsch [73][75][74], concluding that the awareness of postural ex-
pression is of great value in psychoanalysis, both for the analyst in providing him with
clues to psychodynamics, and for the patient in helping him to become aware of his own
repressed feelings through the analyst’s interpretation of the particular postures adopted.
According to this view, nonverbal cues are significant not because they constitute a gen-
eralized system of communication, but as a source of valuable information which only a
skilled perceiver can learn to understand through careful observation.

A second possibility is that nonverbal cues are perceived as conveying ameaningwhich
they do not in fact possess, bringing decoders to commit what can be called as decoding
error. In this case, the social significance of nonverbal cues would be quite different, they
might in fact be of considerable social importance, but in a negative way, because they
may lead people to make erroneous attributions about others, and possibly to act upon
those mistakes. An example of this, could be the common assumption that nonverbal
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cues tell us a great deal about personality, but empirical research [231] has provided little
support for this belief. Others factors to be considered in this specific case are the individ-
ual differences in people’s ability to decode nonverbal cues, which has been shown to be
substantial [240] at the point that the extent to which nonverbal cues operate as a commu-
nication system can be assumed to vary according to the perceptiveness of the decoder.

The third possibility is that nonverbal cues may be both encoded and decoded appropri-
ately, and that in this case their importance lies in their role as a means of communication.

The importance of the previous discussion is that the social significance of nonverbal
behaviour does not necessarily lie in communication and hence the importance of the
encoding/decoding distinction always needs to be considered in evaluating research on
nonverbal behaviour.

1.4 Global, Innate or learned?
Nonverbal cues can be said to communicate various information as about emotion, speech,
individual differences and interpersonal relationships, for this reason, their significance
has to be considered in the specific social contexts [45].

Particular importance is commonly attribute to nonverbal cues in the communication
of emotion. This fact, derive from the observations of Charles Darwin [69], who argued
that the facial expressions of emotion constitute part of an innate, adaptive, physiological
response. If the facial expressions of emotion are innate, then this would suggest that they
constitute a particularly important means of communicating information about emotion.
Therefore, if a person is attempting to conceal the fact that he is experiencing a particular
emotion, he might not succeed in suppressing all the expressive movements associated
with that particular state, ending up showing in any case, some cues about it. Also, if a
person tries to convey an emotion he is not experiencing, he may fail to reproduce the
spontaneous expression by omitting certain important features or by mismanaging the
timing with which to show them.

Relevant evidence to the innate hypothesis can be summarized as follows. Firstly, there
is the evidence from cross-cultural studies which shows that facial expressions associated
with six emotions (happiness, sadness, anger, fear, disgust, surprise) are decoded in the
same way by members of both literate and pre-literate cultures [90]. However, as Ekman
acknowledges, the demonstration of universals in decoding does not necessarily prove
that the facial expressions of emotion are inherited, it simply increases the probability
that this explanation is valid [85]. The only hypothesis necessary to account for universal
decoding in facial expression is that whatever is responsible for common facial expressions
is constant for all mankind, thus, common inheritance is one such factor, but learning
experiences common to all mankind could equally well be another.

Secondly, there is the evidence from the study of children born deaf and blind. The
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ethologist Irenâus Eibl-Eibesfeldt has filmed a number of such children and claims that
they show the same kinds of basic facial expressions in appropriate situational contexts
as do children born without such handicaps [83]. Again, a likely explanation for these
observations is that such expressions are inherited, but it is still possible that they may be
learned through some form of behaviour shaping [47].

Thirdly, there is evidence from studies of non-handicapped children which shows that
the facial musculature is fully formed and functional at birth. Harriet Oster and Ekman,
using Ekman and Friesen’s Facial Action Coding System [86], have shown that all but one
of the discretemuscle actions visible in the adult can be identified in new-born infants, both
full-term and premature [226]. Again, however, this does not prove that the association
of particular facial expressions with particular emotions is innate. Smiling can be called a
universal gesture in the sense that it is an expression which human beings are universally
capable of producing, but this does not mean that it is innately associated with the emotion
of happiness, nor that it has a universal meaning [47].

Thus, although the evidence is consistent with the hypothesis that certain facial expres-
sions of emotion are innate, it is by no means conclusive. But, if the innate hypothesis is
accepted as valid, then it suggests that facial expression is of particular importance in com-
municating information about certain emotions. However, it should be stated that this is
not meant to imply that all facial expressions of emotion are innate. The learned and innate
aspects of emotional expression have been neatly reconciled by Ekman in what he calls
his neuro-cultural model of emotional expression [84], according to which he assumes
the existence of at least six fundamental emotions with innate expressions which can be
modified by the learning of what he calls display rules. These refer to norms govern-
ing the expression of emotion in different contexts and may take the form of attenuation,
amplification, substitution or concealment of particular expressions.

The proposal that facial expressions of emotion may be both innate and learned has
important implications for the significance which Bull attribute to facial expression in the
communication of emotion [44]. For example, if this view is accepted, it would mean that
no simple answer is possible to the question of the relative importance of different cues
in communicating information about emotion, since it may depend on whether deliberate
or spontaneous expressions have been considered. For this reason, Ekman and Friesen
put forward the concept of “non-verbal leakage”, for which, information about deception
may be revealed more through bodily than facial cues [87]. This is based on the hypothesis
that, because of the greater repertoire of facial movement, people may be more careful to
control their facial movements when trying to deceive others and hence are more likely to
give themselves away inadvertently through bodily movements. But, if we are comparing
different types of spontaneous expression, it still seems likely that the face constitutes the
prime non-verbal source of information about emotion.

An extensive literature has also been developed on individual differences both in the
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encoding and decoding of nonverbal behaviour. With regard to encoding, Bull has argued
that nonverbal cues may not only encode information about individual differences but that
there may also be individual differences concerning the extent to which people transmit
information through nonverbal cues, highlighting that, some people may transmit a great
deal of information through nonverbal cues while others relatively little [46]. For example,
Judith A. Hall has reviewed twenty-six studies in which comparisons were made of sex
differences in encoding [127]. Nine of them showed a significant gender difference and
eight of these showed that women were clearer encoders. Hence, in this sense women can
be seen as more expressive, e.g., they transmit more information through nonverbal cues.
Men and women also differ in the nonverbal behaviour they use as shown by Hall [126].

Individual differences in decoding nonverbal cues constitute a second important theo-
retical issue. An extensive research has been carried out by Robert Rosenthal et al. based
on a test of decoding nonverbal cues called the Profile of Nonverbal Sensitivity (PONS)
[240]. Results using the PONS show a number of significant effects due to age, sex, culture
and psychopathology. The importance of these findings with regard to the communica-
tive status of nonverbal behaviour is that although nonverbal cues may encode information
about, emotion, speech or individual differences, such information may not always be ac-
curately decoded. If certain groups of people fail to decode nonverbal cues appropriately,
then the significance of those cues as a form of communication must inevitably vary ac-
cording to the sensitivity of the decoders [47].

1.5 Information expressed by nonverbal communication:
Emblems Illustrator and Regulators

The importance of nonverbal cues in conveying emotions has led to think to nonverbal
communication as an alternative system to speech, given that it may offer a more reliable
indicator of people’s true feelings. This thought is reflected in the popular literature on
body language, like in “Body language” by Julius Fast [101], in which it seems to be sug-
gested that nonverbal communication represents a kind of “royal road to the unconscious”,
providing a vital source of information about people’s “real” feelings and attitudes. From
the innate hypothesis of facial expression it can certainly be argued that nonverbal cues
may be a particularly important guide to people’s emotions and interpersonal attitudes, but
it must not be neglected the extent to which speech and nonverbal communication operate
as complementary systems of communication, because, it may be the case that occurrences
in which nonverbal communication conflicts with speech are the exception rather than the
rule [47]. A number of researchers have in fact claimed that nonverbal behaviour is closely
related to speech in terms of syntax [194], vocal stress [234] and meaning [277][276]. It
has also been argued that nonverbal behaviour serves a variety of functions in relation to
speech, which can be divided on the basis of a classification system proposed by Ekman
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and Friesen into three main types: emblems, illustrators and regulators [88]. The term
“emblems” derived from David Efron [81] to refer to those nonverbal acts which have
a direct translation, such as nodding the head when meaning “Yes” or shaking the head
when meaning “No”, their function is communicative and explicitly recognized as such.
Illustrators are movements which are directly tied to speech, and it is maintained that they
facilitate communication by amplifying and elaborating the verbal content of the message.
Regulators are movements which guide and control the flow of conversation, influencing
both who is to speak and how much is said.

The latter type, have typically been discussed in relation to how people take turns
to speak in conversation (turn-taking) and how they could try to keep it (turn-yielding)
[78][80][79]. It is also possible to include under them, heading signals like greetings
and farewells (also referred as access rituals by Erving Goffman [115]), which indicate a
change in the amount of interaction that people have with each other’s.

In relation to emblems instead, can be said that they are generally assumed to be specific
to particular cultures or occupations, but some do appear to be pancultural, such as the
“eyebrow flash” [82], where a person raises his eyebrows for about a sixth of a second
as a greeting. Desmond Morris et al. attempted to map the geographical distribution of
twenty emblems in a wide variety of locations spread across western and southern Europe
and theMediterranean, finding that some of the emblems they describe are specific only to
particular cultures [214]. Kendon has also argued that, because in certain communicative
contexts there may be distinct advantages in using gesture, people may also prefer to use
emblems rather than speech to communicate [166]. Indeed, gesture is faster than speech,
hence might be preferred where quick action is required, it is silent, hence it may be used
at the same time as speech to avoid breaking in on a conversation, or to make comments
on the interaction or on the participants, it is much closer to physical actions, and so it
may be selected when greater impact of utterance is required, and finally, it can also be
effectively received at greater distances than speech.

A number of the examples Kendon gives are of instances where emblems are used in
conjunction with speech, in this case they could be said to serve the functions of illus-
trators. The role of illustrators as facilitators of communications is supported by many
experiments. William T. Rogers, shown that the comprehension of the decoders was sig-
nificantly better in a modified audio-visual condition rather than in an audio only one
[259]. Reasons why this happens could be that visual information can be conveyed more
easily through visual means, but also, because some gestures are like representative pic-
tures in that they attempt to portray the visual appearance of an object, spatial relationship
or bodily action (“physiographic” [81]). Jean A. Graham and Michael Argyle, in fact,
tested the hypothesis that visual information is communicated more easily through hand
gestures [118]. Showing that the results of the decoders were judged as significantly more
accurate in the condition where gesture was permitted. Margaret G. Riseborough has
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carried out a number of studies to test whether physiographic gestures facilitate commu-
nication, showing that decoders responses of what an object was, were more quickly when
the description was accompanied by gesture [255]. She also argued that recall of words
accompanied by gesture was significantly better than recall of words accompanied by ei-
ther vague movements or no movements at all, or when noise was introduced at the same
time.

Not all illustrators are physiographic in the sense described by Efron. For example,
the relationship between bodily cues and vocal stress documented by Robert E. Pittenger,
Charles F. Hockett and John J. Danehy suggests that body movement also supplements
the information on stress communicated by changes in intonation [234]. The relationship
between body movement and the syntactic and semantic structure of speech documented
by Jacqueline Lindenfeld [194] and Albert E. Scheflen [277][276] would also suggest that
illustrators may be useful in communicating information about the structure of speech.
Efron described certain movements as “ideographic”, in that they traced the logical stages
or direction of a line of thought [81].

Rogers discusses a number of other possible explanations for ways in which illustra-
tors may facilitate the comprehension of speech [259]. One possibility is that they simply
increase the listener’s level of attention by providing greater stimulation. Another possi-
bility is that they create a richer bimodal sensory image which better stimulates memory
processes during the decoding of speech. Rogers also suggests that illustrators may serve
as a visual tracking signal for the flow of speech. An alternative hypothesis is that the
prime function of illustrators is not to make the message more comprehensible, but to
convey information about the speaker’s emotions and attitudes, both towards the content
of his own message and towards other people. Indeed, Kendon has argued that gesture
does not so much “illustrate” what is being said, but adds to what is being said, conveying
aspects of meaning that cannot readily be conveyed in words [165].

1.6 Nonverbal information
The term “nonverbal information” is inspired by Claude E. Shannon’s mathematical in-
formation theory [282]. According to Shannon, A is a signal if its states covary with the
states of a source, B. A nonverbal-information research program should consist in seek-
ing specific covariations between the states of source and signal. In Shannon’s theory, an
informational link between two observable behaviors or environmental changes is a mere
correlation. In Shannon’s sense, when a variable (e.g., observed states of a behavior) cor-
relates with a second variable (e.g., an environmental change), we can say that the signal
carries information about the source. A signal, in Shannon’s sense, is informative if the
state of the signal helps to predict the state of the source. Information is contingency and
correlation, but it is not causal explanation nor, most importantly, meaning.
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If human behavior is approached as information, the study of nonverbal information
is restricted to the findings of consistent correlations between some observable range of
states from the source and some observable states of signals such as bodily postures and
movements. This quantitative, probabilistic approach could be useful as a tool for predict-
ing well defined patterns of behavior, but it does not indicate the functions and causes of
such behavior. Signals do not provide, by themselves, a causal or a functional explanation
of an event, just as smoke is a signal of fire but does not explain combustion.

1.7 Nonverbal communication types
Nonverbal communication cues are expressed in various ways, but mostly through, single
or groups of, body parts or conveyed through the voice.

Paralanguage can express or alter the meaning of what has been said, or even, convey
emotion, by using vocal related techniques such as prosody, pitch, volume and intonation.

Kinesics is the study and interpretation of body parts and of their movements asmedium
of nonverbal information. It is also commonly referred as body language, a term that Ray
Birdwhistell, considered the founder of this area of study, neither used nor liked [68].
Indeed, body language does not have a grammar system and must be interpreted broadly
instead of having an absolute meaning corresponding with a certain movement, and so, it
does not meet the linguist’s definition of a language. Without ending up in specific areas
that will be expressed at a later time, it is easy to make examples of howmuch information
can be retrieved from the observation of some of the most visible parts of our body: the
head and torso.

When focused on the head, facial expression interpretation is an important analysis that
allows the understanding of body language and the emotions expressed. In order to form
an impression of a person’s mood and state of mind, it analyzes multiple facial signs as
the movement of the eyes, eyebrows, lips, nose and cheeks. Also, while the presence of
facial signs can be interpreted as an indication of authentic emotion, an absence of it may
suggest a lack of sincerity.

The body language of the head should be considered in conjunction with that of the
neck. When considering it from the point of view of posture, the head should be posi-
tioned in a way which feels natural, neither stretched nor compressed. It has been shown
a relationship between prolonged poor posture of the head and neck, and negative mental
states [250]. When considering it in relation to motion, the neck is the basic component
for a lot of common head gestures, for example nodding (considered as a sign of saying
“yes” or to acknowledge a person in a respectful manner), shaking (usually interpreted
as meaning “no”), and tilting (considered in different way in conjunction with eyes and
context as interest, uncertainty/questioning, thinking, being suspicious) [192].

Also when focused on the torso, kinesics signs can provide information about a per-
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son’s state of mind. The relative fullness or shallowness of the chest, especially around
the sternum, can be a key indicator of both mood and attitude, for example when fuller
and positioned relatively forward, it can be interpreted as a sign of confidence, on the op-
posite, when it is pulled back it indicate insecurity [63]. Touching the chest can indicate
different things, for example, if done with two hands, a person may want to emphasize
that they are being sincere, instead rubbing the chest, especially over the heart, can be a
sign of discomfort [93]. Shoulders can be another important medium of nonverbal cues
as from them, particular information can be retrieved, as: confidence (back with the chest
forwards), anxiety or tension (held in a raised position), depression (weak and lacking in
mobility), and if a person does not know something (shrugging).

Almost every body part can express some type of nonverbal cue, and sometimes, com-
bination or interaction of some of them can express very precise and complex signs. For
these reasons is not surprising seeing the existence of a lot of sub-area of nonverbal com-
munication focused on the analysis of some specific parts or interactions.

1.7.1 Posture
Posture is defined as the attitude assumed by the body either with support during the course
of muscular activity, or as a result of the coordinated action performed by a group of
muscles working to maintain the stability [237]. Posture is conventionally understood as
referring to bodily positions as distinct from bodily movements, which are usually referred
to as gestures.

There have been many claims for the psychological significance of posture. It provides
a lot of information about a person’s emotions and attitudes [73][75][74] and it can tell
much about social relationships and the structure of social interaction [277][276]. It both
expresses personality and constitutes a major influence on personality formation, such that
manipulation of posture can be used as a valuable therapeutic technique [251][202][203].

Several are the specific information that can be obtained from posture analysis. One of
the many is the posture openness. Closed posture is a posture in which parts of the body
most susceptible to trauma, as throat, abdomen and genitals, are protected or concealed
using other body parts, clothing, or objects [256]. Hands’ back is shown, and fingers can
be clenched to form a fist. Also, because it can give the impression of hiding something
or resistance to closer contact, concealing the hands may be interpreted as a sign of closed
posture even though the front is exposed. Closed posture has been shown to give the
impression of detachment, disinterest, and hostility and usually convey unpleasant feelings
[261]. On the opposite, open posture is a posture in which the vulnerable parts of the body
are exposed. The head is raised, the shirt may be unbuttoned at the neck, a bag is held on
the shoulder or at the side. Hands and palms are shown and relaxed, usually with palms
up and fingers spread. Open posture is often perceived as communicating a friendly and
positive attitude.
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Other information can be understood from the inclination of the body. During conver-
sation, a person may lean slightly toward another person or tilt slightly away from him/her.
This behavior is usually unconscious. An inclination towards can be an expression of sym-
pathy and acceptance. Inclining away can signal dislike, disapproval, or a desire to end
the conversation. Decoding studies of forward lean shown that people generally perceive
it as indicating a positive attitude and as more empathic than backward lean [122]. This
behavior, for example, has been noticed when people were conversing with someone they
liked [207], trying to persuade [122], to increase the intimacy with, [38] and when there
was a good relationship with others [26].

Another source of information is the body orientation, defined as the angle of a body
to another interactants. In conversation, the participants’ bodies are usually turned to-
ward each other at an angle. When a person ignores someone else, they tend to ignore
or avoid contact by showing the other person their side or back. Like actions such as
leaning inward or towards the other individual signal more involvement, a direct or face
to face orientation communicates greater warmth and immediacy [11]. In fact, it is not
a coincidence that powerful people are perceived to more directly position their body to-
ward others [55][125][207] and that, when communicating in groups, the individual who
is faced by the most people, typically has the most influence [50]. Body orientation can
also be used to protect ourself from threat and vulnerability in uncertain situations such as
public spaces [56].

In general, behaviors including forward leans, direct body orientation, and interaction
on the same vertical plane decrease physical and psychological distance and increase im-
mediacy [11][145].

By the fact that mood influences muscle tone, energy level, and one’s internal sense
of well-being, body posture often reflects a person’s current state of mind [66]. Well-
being affects posture by giving it a sense of energy and balance. A person’s spine will
be straight, the head raised, and in general the posture appears confident [225][256]. On
the opposite, malaise affects posture with a sense of tiredness. A person’s shoulders may
droop, and the head may be bowed down or tilted to the left or right. Stress can also affect
posture subconsciously by the fact that it increases the amount of muscle tension in the
body. Muscle tension or rather muscular block can also indicate the will to repress certain
emotion [201], for example, when someone does not want to cry, they can tighten the jaws,
which suppresses tears.

1.7.2 Gesture
A gesture, in general, is a form of nonverbal or nonvocal communication in which visible
bodily actions communicate particular messages, either in place of, or in conjunction with
speech, exploiting movement of the hands, face, or other parts of the body. When re-
ferred to nonvocal communication, through the use of sign language, gesture can express
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the same information of a spoken language [116]. From now on instead, gesture will be
described only in the context of nonverbal communication.

When someone speaks, in addition to words, his gestures allow them to communicate a
variety of feelings and thoughts, often along with their body language. Gesticulation and
speech work independently of each other but join to provide emphasis and meaning.

Informative gestures are a passive type of gestures that mostly provide information
about the person exhibiting them rather than what he is trying to communicate [179].
As they are not a part of active communication, these gestures can occur during speech,
but they may also occur independently of communication [1]. Communicative gestures,
instead, are gestures that are produced intentionally or not, as a way of intensifying or
modifying speech produced [1].

In the context of communicative gestures, another distinction to be done is between
gestures made with the hands and arms (manual), and gestures made with other parts of
the body (non-manual). Examples of non-manual gestures may include head nodding and
shaking, shoulder shrugging, and facial expressions, but because they have not been the
primary focus of most research regarding co-speech gesture [1], they will not be processed
further.

Manual gestures are most commonly broken down into four distinct categories: Sym-
bolic (Emblematic), Deictic (Indexical), Motor (Beat), and Lexical (Iconic) [178]. The
most common are the symbolic gestures, they can be used as replacement for words. These
are conventional, culture-specific gestures that can be used as replacement for words and
for this reason they can occur either concurrently or independently of vocal speech. Some
of them are widely recognized, fixed, and have conventionalized meanings [178], while
others can have a very different significance in different cultural contexts, ranging from
complimentary to highly offensive [214].

Deictic gestures are gestures that consist of indicative or pointing movements, they can
occur at the same time as vocal speech or in its place, and they often function in the same
way as demonstrative words and pronouns such as “this” or “that” [178].

Motor or beat gestures usually consist of short, repetitive, rhythmic movements that
are closely related to prosody in verbal speech. Unlike symbolic and deictic gestures,
beat gestures cannot occur independently of verbal speech and do not convey semantic
information. These gestures are closely coordinated with speech to keep time with the
rhythm and to emphasize certain words or phrases [206].

Iconic gestures are a type of gestures full of content and can echo or process the mean-
ing of speech occurring together. They describe aspects of spatial images, actions, people
or objects [205]. Such gestures are used in conjunction with speech and tend to be univer-
sal [167].

Lexical gestures, like motor gestures, cannot occur independently of verbal speech.
Their purpose is still widely contested in the literature with some arguing that they serve to
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amplify or modulate the semantic content of lexical speech [167], or that it serves a cogni-
tive purpose in aiding in lexical access and retrieval [178] or verbal workingmemory [112]
but more recent research suggests that lexical gestures serve a primarily socio-pragmatic
role [146].

1.7.3 Proxemics
Edward T. Hall, the cultural anthropologist who coined the term “proxemics” in 1963,
defined it as “the interrelated observations and theories of humans use of space as a spe-
cialized elaboration of culture” [129] but, if a more explicit definition would be provide it
should be that proxemics is the study of human use of space and the effects that population
density has on behaviour, communication, and social interaction.

In fact, according to Hall, the study of proxemics is valuable in evaluating not only the
way people interact with others in daily life, but also “the organization of space in [their]
houses and buildings, and ultimately the layout of [their] towns” [123].

The value of proxemics is not only based on its use as an evaluation criterion, but can
also be actively used, it has been shown that the implementation of appropriate proxemic
signals improves success in monitored behavioral situations such as psychotherapy, in-
creasing confidence of the patient towards the therapist [164].

Hall divided the interpersonal distances between people in four distinct zones: intimate
(from some cm to 46cm), personal (from 46cm to 122cm), social (from 1.2m to 3.7m),
public (from 3.7m to 7.6m and more).

The distance surrounding a person forms a space. Personal space is the region that
surrounds a person that he considers psychologically his own. Most people value their
personal space and feel discomfort, anger, or anxiety when their personal space is vio-
lated [129]. Allowing a person to enter the personal space and enter someone else’s are
indicators of the relationship of those people, indeed, the further a relationship with a per-
son is, the further the zone that will be tried to be used to communicate with him will be
[95].

Entering someone’s personal space is normally an indication of familiarity and some-
times intimacy, however, there are situations in when space is limited between people,
and this can affect them psychologically. Research on crowding shows that increasing
population density has pathological effects on individuals’ physiological functioning and
behavior [5][53][62]. Is common in modern society, especially in crowded urban commu-
nities, to not be able to maintain our own personal space, for example when in a crowded
train, elevator or street. Though it is accepted as a fact of modern life, many people find
such physical proximity to be psychologically disturbing and uncomfortable [129]. In an
impersonal, crowded situation like that, other nonverbal signs are commonly manifested
as the tendency to avoid eye contact to try to avoid interaction with other people [7].

Another important concept in proxemics is the territory. While personal space de-
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scribes the immediate space surrounding a person, territory refers to the area which a
person may claim to and defend against others [211]. Scholars maintain that territoriality
is partly an innate biological drive rooted in human nature [19]. Altman conceptualized
three types of territories [9]. Primary, where people have executive rights to the space such
as one’s home (home territory). Secondary, where people interact with acquaintances in
semipublic places such as a neighborhood bar (interactional territory). Public territories,
where everyone has temporary access such as the beach (public territory).

Personal space is highly variable, due to cultural differences and personal preferences
[292] [129]. Also, several relationships may allow for personal space to be modified,
including familial ties, romantic partners, friendships and close acquaintances, where there
is a greater degree of trust and personal knowledge.

1.7.4 Oculesics
Oculesics, is the study of eye movement, eye behavior, gaze, and eye-related nonverbal
communication cues.

For humans, the eyes are particularly useful in establish mental and emotional states of
others. The same structures that surround and protect the eyes (lids, brows, conjunctiva,
lachrymal glands) have been widely implicated as social cueing mechanisms facilitating
nonverbal communication [89]. Thus, the analysis of these structures in terms of social
and emotional expression has been focused on the complex muscle patterning around the
eyes.

The two eye behaviors receiving the most empirical and theoretical attention in the
literature include eye gaze, and pupil dilation/constriction.

1.7.4.1 Eye gaze

Information from the eye region has proven particularly critical to nonverbal communica-
tion and to correctly identifying basic emotions such as sadness, fear, and anger expres-
sions [4]. Where the eye region alone has been found to be as informative as the whole
face, the former is even more important when trying to deduce complex mental states [25]
or to accurately infer complex emotions when presented separately from other regions of
the face [21].

Eyes analysis does not stop to that, they are capable of their own socially meaningful
behaviors. Researchers who, early on did suggest that gaze might exert an influence on
emotion processing, tended to agree that direct eye gaze might increase the intensity of
all emotional facial displays [170][169]. However, the first studies considered important
only one dimension of emotional experience, the “valence” (positive versus negative).
This perspective assumes that if an effect can be shown for both a positive (e.g. joy) and a
negative (e.g. anger) emotional display, then it is likely that such an effect will generalize
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across all instances of specific emotions. Other meaningful dimensions along which to
differentiate emotions exist, as the approach/avoidance motivational orientation, used as
base for the “shared signal hypothesis” [3][2]. By this aspect, for example, anger and fear
share a negative valence, but are distinguished by behavioral motivation: fight/approach,
fight/avoidance. Although research related to gaze and emotion had been quite limited in
the past, what had been previously done generally supports the shared signal hypothesis
[21][102][92][172][265][35][270][143]. Indeed, direct eye gaze is known to signal an
increased likelihood of approach and social engagement [94]. Conversely, gaze aversion
is a signal of avoidance and at times considered itself an act of hiding [249][57]. Shifting
of eye gaze can be also a powerful moderator of emotional distress [319].

The direction of another person’s gaze can modulate the looking behavior of the de-
coder as well. When another person looks at you, you may reciprocate with eye contact, or
you may look away. If you see this person looking off at some object in the environment,
however, you are likely to follow that gaze towards the object in order to see what is being
looked at [107].

Cooperative behavior can also be impacted by the perception of direct gaze. For exam-
ple, simply displaying posters with pictures of eyes with direct gaze in a cafeteria reduced
the amount of littering behavior that ensued [97] even without any anti-littering message.
The mere reminder that one is being watched, via presentation of direct eye gaze, is suf-
ficient enough to promote prosocial behaviors.

1.7.4.2 Pupil dilation

The pupil is the opening at the center of the iris that admits light into the eye. The con-
striction and dilation of the pupillary aperture is produced primarily through autonomic
nervous system control exerted on the muscles of the iris, the sphincter papillae, and the
dilator pupillae. These movement patterns form the basis of several optical reflexes, in-
cluding the pupillary light reflex (a change in pupil diameter in response to luminance
levels) and pupillary reflex dilations (pupillary responses to psychosensory stimulation).

Charles Darwin pointed out the relation of pupillary responses to autonomic nervous
system activity in his book “The Expression of the Emotions in Man and Animals”, noting
a possible relationship between pupil dilation and fear [69].

Early work conducted by Eckhard Hess and his colleagues popularized the study of the
pupillary response as feedback to social stimuli and as a signal of social responsivity [142],
concluding that pupil size could be used to index level of interest in a visual stimulus. Hess
subsequently extended these findings to include “bi-directional” responses, for which,
pupil exhibit extreme dilation for interesting or pleasing stimuli and extreme constriction
for material that is unpleasant or distasteful to the viewer [140][141]. This contention was
supported in a number of other studies [144][235][208], however, a number of subsequent
academic work have attempted to replicate Hess’s “bi-directional” effect to no avail. The
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preponderance of them found pupil dilation for emotionally engaging stimuli, regardless
of valence [159].

In a more recent review concerning pupil size and mental activity, Jackson Beatty and
Brennis Lucero-Wagoner concluded that the amplitude of pupillary dilation is an index
of brain activity in response to the cognitive demands of memory, language processing,
reasoning, and perception [29]. Further, pupil dilation is commonly listed as a component
of the physiological orienting response, an alerting mechanism elicited by unexpected,
novel, and significant stimuli [260]. Because of these aspects, it follows that pupillary
dilation in response to psychosensory stimulation reflects attention to and analysis of the
stimulus. Consequently, the amplitude of the reaction depends upon the degree of arousal
that the stimulus causes.

1.8 Haptic
Haptic communication refers to the ways in which people and animals communicate and
interact via the sense of touch. Touch is the most sophisticated and intimate of the five
senses [49].

Touch occurs in numerous forms. Matthew J. Hertenstein noted that touch can vary
in its location, frequency, duration, action, intensity, and extent [136]. As there are many
ways in which one person can touch another, it is important to note how aspects such as
position can affect how touch is understood and evaluated and what kind of relationship
it involves [104].

Richard Heslin separated touch into five categories based on usage, function, and in-
tensity. These categories are functional-professional, social-polite, friendship-warmth,
love-intimacy, and sexually arousing touch [139]. Functional-professional or instrumen-
tal touch, the least intense or personal category, occurs in institutional settings constrained
by rules of professional conduct [139]. Social-polite touch occurs in first-meetings, busi-
ness, and formal occasions often in the form of a handshake [13]. This function of touch
signals respect and inclusion as well as conveying some degree of equality [139]. The
friendship-warmth function of touch is both the most important and the most relationally
negotiated between partners. Touch in private bodily areas or excessive touch may convey
sexual interest, whereas too little touch may suggest detachment or indifference and may
hinder friendship or the potential for relational development. The love-intimacy touch is
personal and distinctive because only people in relationships such as romantic partners,
good friends, and close family members can exchange these touches. Kisses and hand-
holding are examples of intimate and generally mutual touches that convey immediacy,
affection, trust, and equality [48]. The most passionate, physically intimate, and private
form of touch is sexually arousing touch. Mutual consent is desired when this type of
touch occurs due to its stimulating, personal, and anxiety-arousing effects. Sexual arousal
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can occur through many channels including words, sight, and even smell and taste, but the
core of sexuality is conveyed through touch at very close interpersonal distances.

Touch conveys much more than simply warmth, it can also express specific posi-
tive and negative emotions such as anger, fear, happiness, sympathy, love, and gratitude
[12][160][137]. Moreover, the accuracy with which subjects were capable of communi-
cating the emotions were commensurate with facial and vocal displays of emotion [138].

Touch can also be used in persuasion exploitingwhat can be called “compliance touches”.
Abundant research shows touch is a potent persuasive tool in interactions with strangers
in many settings. When touched appropriately, people are more willing to sign petitions
[311], fill out questionnaires [120][221], positively assess service encounters [103] etc.
[171][96][148][149] [291][228][163].

As for other nonverbal cues, touch has to be considered in relation with other factors
because individuals vary considerably in the degree to which they like or dislike it. Con-
siderable research has examined touch avoidance, which indicates people’s liking and ap-
proach or dislike and avoidance of same-sex or opposite-sex touch [161][10][14]. Touch
avoiders are less open and expressive, lower in self-esteem, but more religious than touch
approachers [13]. Touch avoiders have more negative perceptions of people who touch
them than do touch approachers and stay “out of touch” by utilizing larger personal dis-
tances and touching less, leading to less intimacy overall [10][14][121].

1.9 Human-Robot interaction
The study of interactions between humans and robots is known as human–robot interaction
(HRI). The concept of HRI has been around for as long as the concept of robots themselves,
despite the fact that it is frequently referred to as a new and developing field. Indeed, how
much faith will people have in robots? What kind of connection can a robot have with
a human? When machines will be doing human-like things in our midst, how do our
conceptions of what it means to be human change? Are all questions that Isaac Asimov,
the one who coined the term robotics in the 1940s, used as the main unit of analysis to
write his stories. While these concepts were science fiction a few decades ago, many of
these issues are now commonplace in modern societies and have emerged as central HRI
research questions.

HRI’s primary focus is on creating robots that can interact with people in a variety
of common settings. This creates technical difficulties as a result of human dynamics
and social environment complexities, and it also presents design challenges pertaining to
the appearance, behavior, and sensing capabilities of robotics. By necessity and nature,
HRI is a problem-based, multidisciplinary field. The development of robotics hardware
and software, the analysis of human behavior when interacting with robots in various
social contexts, the creation of the aesthetics of the robot’s embodiment and behavior, and
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the necessary domain knowledge for specific applications all necessitate collaboration
from a variety of fields in order to create a successful interaction between human and
robot. For this reason, HRI brings together researchers and practitioners from engineering,
psychology, design, anthropology, sociology, and philosophy, as well as researchers and
practitioners from other application and research fields.

In this multidisciplinary sense, HRI is comparable to Human-Computer interaction
(HCI) and robotics. Clearly, what makes HRI unique is that the interaction of humans
with social robots is at the core of this research field. These interactions usually include
physically embodied robots, and their embodiment makes them inherently different from
other computing technologies. HRI is concerned with the ways in which robots interact
with people in the social world, whereas robotics is concerned with the creation of physi-
cal robots and the ways in which these robots manipulate the physical world. The former,
on the other hand, is something that is constantly evolving, may differ depending on the
location and context in which the robot is placed, and is defined by the widespread accep-
tance of both explicit and implicit rules. Humans might be aware of these social rules, like
saying “you’re welcome” when someone says “thank you”. However, all of these social
norms and rules are unknown to a robot and necessitate the robot designer’s attention.

In HRI, this is not the only issue that needs to be taken into consideration, in fact,
not only the logic and algorithm underlying the robot’s behavior are crucial, but also the
way the robot can perform and express its behaviors and how it looks. A robot that is
embodied does not merely consist of a computer on wheels or legs. Instead, it is necessary
to comprehend how to design that embodiment, both in terms of software and hardware
and in terms of how it affects people and the interactions they can have with it.

In the end, HRI is more complicated than it appears, and Moravec’s paradox holds
true decades after it was first expressed: Anything that appears difficult to humans is
relatively simple to machines, and anything that a young child can do is nearly impossible
to a machine [213].

1.9.1 Noverbal communication in Human-Robot interaction

1.9.1.1 Proxemics

Humans and robots frequently share physical space. Some robots can move through the
air or over the ground. In order to interact with users and objects, some of them have
manipulators and arms. When designing interactions between humans and robots, it is
necessary to take into account where and how these robotsmove in relation to people [117].
Negative reactions, as well as rejection and withdrawal from the user, will be elicited by
robots that do not respect the user’s personal space. Therefore, it is essential to take into
consideration people’s preferences and social norms regarding robot placement in relation
to others when planning its placement in space. If robot designers can code the robot so
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that it knows what the appropriate distance is at a given point in time and space, they can
try to get people to accept the robot by keeping it at an appropriate distance and adjusting
its position to provide an appropriate interaction experience.

Localization, navigation and detection

An odometer is a sensor that keeps track of how far a typical robot has traveled by its
wheels. However, as the robot moves, these lose accuracy, necessitating the robot’s cor-
rection of the odometry’s location information. The typical approach to this problem is
to let the robot create a map of its surroundings and then use information from other sen-
sors, such as a laser range finder or camera, to cross-reference information on the robot’s
location and orientation from the odometry to locate itself on the map. Simultaneous lo-
calization and mapping, or SLAM, is the name given to this procedure [70][258].

Localization can assist the robot in determining the kind of space it is in, such as
whether it is in the living room or the bathroom, in addition to reporting the robot’s lo-
cation, however, it will not reveal any information about any individuals’ whereabouts in
that area.

In HRI another challenge is determining where and how people are interacting with
the robot. The robot will carry sensors such as two-dimensional (2D) cameras and depth
cameras that enable it to identify nearby individuals in order to detect people at a short
distance. The software that processes the images from the camera not only can be able to
identify and follow people, but it can also be used to report the location of body parts like
arms, legs, and heads. In addition, laser range finders, also known as LIght Detection And
Ranging (LIDAR), are used in some methods for tracking people over longer distances.

Occasionally, a motion-capture system is utilized. Motion capture can be used to iden-
tify and locate markers (and, by extension, the people or objects they were initially at-
tached to) by placing reflective or fiducial markers on people and objects. However, using
these marker-based methods outside of a laboratory setting is difficult. Another method
is to install sensors like cameras in the environment rather than on the robot itself to track
people [42].

Techniques like the DynamicWindowApproach (DWA) are frequently used to prevent
the robot from colliding with people or other objects [105]. The idea behind this method
is that a system uses the robot’s current velocity to figure out where it will be in the future
while also considering whether to keep or change the robot’s velocity within the limits
of its actuation capability and while figuring out a future velocity that will not cause a
collision.

Over longer time scales, there are techniques based on path-planning. A path-planning
algorithm generates a set of waypoints or paths for the robot to follow in these methods
if the goal of the robot is not immediately visible to the robot. However, when applied
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to HRI, the majority of path-planning algorithms that are effective at navigating around
obstacles will exhibit behavior that is inappropriate for a social context.

Socially acceptable positioning

Even though robots are able to move around without hitting anything, they often lack the
ability to navigate in a way that is socially acceptable in the presence of other people. For
instance, when a robot and a person are moving through a corridor in an office building, it
may happen that the robot would continue to move straight down until they are just inches
away from colliding, at which point it would move out of the way. Even though it would
eventually avoid the person, this behavior is very different from what humans would do
in a similar situation, and it can be interpreted as aggressive or confrontational. The fact
that the majority of robot mapping methods only provide geometric maps with people as
obstacles is the source of this issue.

Howmuch closer to a robot do people prefer to stand? And how close should a robot get
to people before it is considered rude, unsuitable, or makes them feel uneasy? Research
such as [305] measured the distance at which people feel at ease when approached by
robots, and according to a Hüttenrauch et al. study [152], people prefer that the robot
stand at distances analogous to those considered in human proxemics.

As a result, methods for human-proxemic-based robot navigation have been developed
to increase a robot’s social acceptability. For instance, when a robot follows a user from
behind, the robot can either follow the same trajectory as the user, or it can move directly
to the user’s current location, which might be a shorter and faster pathway. Gockley et al.
showed that users perceive the first behavior as more natural [114]. Morales Saiki et al.
developed a technique that allows a robot to navigate side by side with its user, for which
they found it important for the robot to anticipate the user’s future motion [212].

Perceived safety. Robots’ behavior should be understandable by humans

Another thing to think about is that people’s perceptions of safety may not always match
what a robot thinks is safe. The behaviors of robots are typically programmed to opti-
mize a specific task, but in order to do so, they may use movements that are difficult to
comprehend and may also appear unpredictable to humans.

As a result, efforts have been made to incorporate aspects of perceived safety and com-
fort into path planning. For example, Sisbot et all. created a path planner for a mobile
robot that plans how to achieve a specific objective while avoiding uncomfortable situ-
ations [290]. The planner considers factors like whether people are standing or sitting,
as well as the possibility that the robot might surprise them by appearing from behind an
obstacle.

When only a portion of the robot enters the user’s personal space, it is also necessary to
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plan a motion path that people will perceive as safe and comfortable. According to Kulic
and Croft [181], for instance, when a robot arm is used in close proximity to a person,
such as when a person and an industrial robot collaborate on a shared task, the robot must
account for the socially acceptable distance when calculating a path for its end effector
to achieve its specified goal (e.g., grasp an object or hand an object to a person). From a
strictly functional standpoint, this could make the robot’s movement inefficient, but it will
result in a more favorable user evaluation of the interaction [52].

At the same time, robot motion trajectories are frequently utilized to communicate
the robot’s intention and objective. In order to explicitly convey information through the
robot’s trajectory, path-planning algorithms have been developed. A mobile robot, for
instance, can indicate whether it is available for interaction by slowly moving a few me-
ters away from a visitor [132]. In a similar way, trajectories have been used to enable
cleaning robots and drones, among others, with few means of self-expression to commu-
nicate their intentions to users [295]. In HRI, when a robot hands an object to its user,
this prefers a robot to behave with “legibility,” which means that they can understand the
robot’s goal and intention [174]. Hence, researchers have developed algorithms to control
a robot arm to generate legible motions while reaching a given goal. A robot could hand
over an object to a person in many different ways, but the most energy-efficient one may
be incomprehensible to a person, so it is better to perform a motion that is easier to be
interpreted [77].

Robots should be able to understand human verbal and noverbal cues

A robot that works closely with a person should be able to comprehend how that person
perceives the space around them. Consider a scenario in which two people collaborate. By
saying “give me that object,” one person might ask the other person to pass something to
him. If there is only one object available, the referent “object” will be obvious, however,
what if there are multiple items? In most cases, it is simple for people to deduce the
intended referent of “object.” To make the request clear, a variety of complex cues can
be used, such as the person’s preferences, task information, the previous context of the
interaction, gaze direction, body orientation, and others. This type of interaction is defined
as spatial perspective-taking, and is an important skill mostly in collaborative scenarios
[302].

Spatial dynamics of initiating HRI

Every social interaction must be initiated by someone. The subsequent interaction is im-
pacted by how someone approach each other and how this is perceived. It is generally
expected that approaching behavior will benefit both parties involved in the interaction.
The approacher tries to get the other person’s attention, which signals interest in the person
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being approached, while, initiating an interaction causes positive affect in the initiator by
eliciting neural activity in reward-related brain regions [278]. In addition, starting a con-
versation demonstrates confidence in one’s ability to have a successful social encounter
and assertiveness.

Whereas this can be rather trivial for a person, a robot needs to be carefully designed
to appropriately initiate an interaction. HRI has long studied robot approaching behavior.
For instance, according to Nakauchi and Simmons, when a robot joins a queue, it must
respect the personal space of others who are also waiting [220]. A robot’s navigation
modemust change from purely functional to taking into account social distance and spatial
configuration when it comes into contact with people [8]. In addition, context and task
depend on initiating an interaction. It have been demonstrated that if an approach is poorly
planned and carried out, even a simple task as providing information about the stores in a
mall will fail because of an erroneous initial approach [274][162].

The robot is not the only one that can initiate the conversation, indeed in many cases
are the people themselves to try to interact with the robot. When this happens, the robot
should respond precisely and with the correct timing. If it does not, the user may find the
interaction to be awkward and unnatural, and they may even stop starting new interactions
in the future [162].

1.9.2 Other nonverbal cues used HRI
In light of everything that has been discussed in the preceding sections, communicating
effectively with a stranger may appear to be more difficult if the nonverbal communication
channel is absent. This is due to the fact that while interacting, people constantly and
seemingly automatically pick up on a variety of nonverbal cues. The subtleties ofmeaning,
emotion, and intention in other people can be deduced from these cues.

Nonverbal cues that are present in human interaction have been actively utilized to
enhance interactions with the robot, even in the earliest designs of social robots. They are
typically used in conjunction with speech to provide additional details about the internal
state or intentions of the robot. For example, one of the first social robots, Kismet, used
posture cues like pulling back or leaning forward to show emotion and get people to talk
to it [40]. Keepon, a minimalist social robot, demonstrates emotion and attention through
gaze and reactive motion [177].

Functions of nonverbal cues in interaction

A further layer of information is added to human (and human–robot) interaction by nonver-
bal cues, which enable people to communicate important information between the lines.

Nonverbal communication cues, such as eye gaze, body posture, or facial muscle ac-
tivity, are frequently studied as implicit indicators of affect toward a person or object, as
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reported in the preceding sections. Many of the nonverbal messages that are sent are ex-
pressed automatically or even completely unconsciously. As a result, nonverbal cues are
frequently regarded as unfiltered and more genuine, revealing individuals’ true attitudes.

HRI relies heavily on nonverbal cues. When interacting with a robot, a person’s non-
verbal cues can indicate whether or not they enjoy the interaction and whether or not they
like the robot. As a result, they can be used to direct the robot’s behavior and serve as a
measurement or cue of attitude or engagement.

The manner in which robots produce nonverbal cues may also have an impact on HRI.
For instance, when the robot does not respond appropriately to people’s nonverbal cues or
when it makes gestures that do not match the rhythm or meaning of its speech, interaction
can appear awkward.

Nonverbal cues are now widely accepted as a prerequisite for smooth and successful
interaction between humans and robots, despite the fact that earlier research on HRI pri-
marily focused on speech as the most obvious mode of communication for robots. In fact,
when speaking to a robot, a person would expect that the machine would turn its head in
his direction and make eye contact with him to show that it is paying attention to what he
has to say. A robot that behaves in this way without speaking will make the interaction
feel more natural and smoother. On the other hand, a person will notice immediately when
some of this “social glue” is absent or that something is going wrong, even though it might
be difficult to pinpoint exactly what is missing.

When attempting to incorporate nonverbal signals into HRI, it might be beneficial to
take into account each channel of communication separately, even though humans exhibit
and experience nonverbal cues in multiple modalities at once, such as sound, movement,
and gaze.

Gaze and eye movement

A crucial and subtle cue for managing social interaction is gaze. People’s willingness and
ability to follow the conversation are also indicated by their gaze, as are interest, com-
prehension, and attention. In addition to their social function, gaze and eye movements
facilitate functional interactions and collaboration, such as handing someone an object or
pointing out the next tool needed for a task.

During an interaction, gaze can also be used to get and keep another person’s attention.
For instance, by looking from one person to another, the speaker might suggest whose turn
it is to speak next (turn-taking management). Joint attention is a well-established aspect
of gaze behavior in human interaction. Joint attention refers to interactions with partners
attending to the same area or object at the same time and it is important for collaborative
tasks where actors need to coordinate their activities. The timing and synchrony of gaze
behavior are crucial considerations for achieving joint attention.
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In several ways, joint attention has been incorporated into HRI: Imai et al. utilized it
to facilitate smoother communication with individuals so that they are aware of the topic
the robot is discussing, both with and without speech [153]. Joint attention has also been
examined as a fundamental ability of robots, particularly humanoid robots, that want to
learn from humans [275]. Finally, joint attention has been studied in interactions with
children who have autism, with the aim of using robots to assist them in developing this
important social skill. It is, however, still unclear whether individuals with autism who
were trained to use social skills, such as performing joint attention, with robots are able to
apply these skills in human–human interaction as well [257].

When used in HRI, robot gaze cues typically have the same impact as they would in
human interactions. This could be because researchers have used human gaze behavior to
derive models of gaze behavior for robots. They have shown that models like those, can
be used to get people to take on different conversational roles like addressees, bystanders,
or nonparticipants using the resulting gaze cues [216] and that it can direct who will speak
next in a multiparty interaction [217]. In another study, Andrist et al. demonstrated that
face-tracking movements can make a robot appear more thoughtful and intentional by
engaging in mutual gaze and purposeful gaze aversions [16].

Gesture

Gesturing is perhaps the most obvious form of information transmission during an inter-
action, following speech.

In HRI, gesturing can also significantly improve spoken communication. The arms and
hands of a robot or other body parts like its head, ears, or tail may be used to make ges-
tures. People’s perceptions and comprehension can also be affected by the shape, timing,
naturalness, and smoothness of gestures [41]. Salem et al. demonstrated that the ASIMO
robot used in their experiment was perceived as more anthropomorphic and likable when
gestures were used in addition to speech in HRI [268]. As a result, participants expressed
a greater willingness to interact with the robot later on than when the robot communicated
solely through speech. This study also demonstrated that, despite having a negative im-
pact on task performance, using gestures that were not in sync with speech resulted in even
stronger positive robot evaluations.

Mimicry and Imitation

Mimicry and imitation are another aspect of nonverbal interaction that has received a lot
of attention in the literature. The terms “mimicry” and “imitation” are often associated
but while the former refers to the unconscious imitation of another person’s behavior, the
latter refers to the conscious imitation of another person’s behavior.

As a largely automatic behavioral response, mimicry serves a number of important
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social functions as well. One is that it indirectly signals positive affect and liking for an
interaction partner. During a conversation, if two people make the same gestures or take
the same posture, it usually means that they have built a positive relationship. In a similar
way, you can tell that communication is not going as smoothly as it should when people’s
nonverbal cues are out of sync and not reflecting one another.

In the process of designing robots, various aspects of imitation and mimicry have been
implemented and evaluated. There is large and growing collection of literature on robot
learning by imitation, in which robots record and then replicate human actions [20]. Riek
et al. developed an ape-like robot that mimicked users’ head gestures, and their findings
suggest this made a positive contribution to people’s interactions with the robot, although
these gestures were not always clear to participants [254].

If mimicry and posture from human psychology are combined, robots that are able
to display certain types of behaviors (e.g., leaning in) to affect how people behave and,
therefore, how they feel, can be designed. For instance, Wills et al. showed that a robot
that mimicked people’s facial expressions and displayed socially contingent head poses
received more monetary donations than a robot that did not display such behavior [312].
As a result, mimicry and imitation can be used in HRI as conscious and unconscious social
cues to improve interaction and convince people to follow the robot’s recommendations.

Posture and movement

The way people move and their entire body posture also convey messages. A person’s
emotional state can be deduced from their postures as well as their facial expressions.
These kinds of postural cues are especially important when a person’s face is hidden, but
they can also be an additional source of information to a person’s state of mind when his
facial expression can be seen. Also, in a human interaction, a person’s posture can convey
attention, engagement, and attraction.

Therefore, robots’ bodily postures can help them express themselves even more, but
also used as an alternative medium to express feelings, for example when a robot does not
have expressive facial features. Beck et al. demonstrated that affective body postures can
help people comprehend a robot’s emotional state better [30]. Xu et al. demonstrated that
humans could not only interpret the affective body postures of robots, but they could also
mimic the emotions they perceived the robots to be exhibiting [320]. Designers of robots
have also realized that barely perceptible micromovements can give the impression that
the robot is more real [321][157][266]. These micromovements are often implemented as
small, random perturbations to the robot’s actuators. These lifelike animations can also
be used to communicate the internal state of the robot, such as how excited the robot is by
the speed or amplitude of its movement [32]. This strategy have been used successfully
in non-anthropomorphized robots, such as pet-like ones, to communicate without using
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human speech [64][289].

Robot perception of nonverbal cues

Standard pattern-recognition techniques are used to allow robots to perceive and identify
human nonverbal cues. Typical systems use cameras, depth cameras, or sensors carried by
the user to record a time series of data. Although the constant advancement of technology
allows for the improvement of robotic perception capabilities, researchers also add special
equipment to the robot, such as eye trackers and motion-capture systems, to provide data
on nonverbal cues relevant for interaction.

Software could be written to recognize a limited number of gestures, for this reason, it
is typical to train machine learning models to recognize gestures and other nonverbal cues
[209].

HRI researchers use these fundamental perception techniques to estimate whether peo-
ple are actually interacting with their robots. In HRI, users occasionally do not pay at-
tention to what the robot says and signals, in contrast to typical human interaction, where
the human partner is expected to be attentive and engaged. As a result, one of the most
important steps in enabling robots to successfully interact with users is recognizing their
engagement. Rich et al., in order to determine whether a user is engaged in interaction,
they devised a method that combined back-channeling and the detection of eye contact
cues [253]. Sanghvi et al. used body language and affective postures to identify engage-
ment with a robotic game companion [271].
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Chapter 2

Technologies used

2.1 Alphapose RMPE: Regional Multi-Person Pose Esti-
mation

Multi person pose estimation in the wild is a challenging task [272][294][184][222][308]
usually approached using a two-step [232][113] or a part-based [60][233][154] frame-
work. Both of them have their advantages and disadvantages. The two-step framework
first detects human bounding boxes and then estimates the pose within each box indepen-
dently but, the estimation accuracy highly depends on the quality of the detected bounding
boxes. The part-based framework first detects body parts independently and then assem-
bles them to form multiple human poses, but when two or more people are too close to-
gether, body parts can be ambiguous. Also, part-based framework loses the capability to
recognize body parts from a global pose view due to the mere utilization of second-order
body parts dependence.

Even when this problem is simplified to a single person (single-person pose estimator
SPPE), small errors in localization and recognition can cause bad results or even failures.
This problem is generally inevitable especially for thosemethods that solely depend on hu-
man detection results. Two major problems derive from localization errors and redundant
detections.

The former problem causes the SPPE to not detect body parts even when the bounding
boxes are considered as correct, (e.g. with IoU > 0.5), and so, the detected human poses
can be wrong. Redundant detections instead, cause the SPPE to produce a pose for each
given bounding box, and so, to have redundant poses.

To address the above problems, Alphapose propose a two-step Regional Multi-person
Pose Estimation (RMPE) framework that exploit three components to facilitate pose es-
timation in the presence of inaccurate human bounding boxes. The components are: Sym-
metric Spatial TransformerNetwork (SSTN), parametric poseNon-Maximum-Suppression
(NMS), and Pose Guided Proposals Generator (PGPG).
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Figure 2.1: Faster-RCNN [252] detector and the SPPE Stacked Hourglass model [222]
applied to show the problem of bounding box localization errors. As noted in the original
paper [100], the red boxes are the ground truth bounding boxes, and the yellow ones are
detected as correct bounding boxes with IoU > 0.5. The heatmaps are the outputs of SPPE
corresponding to the two types of boxes. While the yellow boxes are considered as correct
detections, the corresponding body parts are not detected in the heatmaps of those boxes
and so, poses are not detected by the SPPE Stacked Hourglass model. Image taken from
the paper [100].

Figure 2.2: Faster-RCNN [252] detector and the SPPE Stacked Hourglass model [222]
applied to show the problem of redundant human detections. As noted in the original paper
[100], the left image shows the detected bounding boxes, instead the right image shows
the estimated human poses. Because each bounding box is operated on independently,
multiple poses are detected for a single person. Image taken from the paper [100].

The pipeline of the RMPE is illustrated in Figure 2.3. The human bounding boxes
obtained by the human detector are fed into the SSTN module that consists of a Spatial
Transformer Network (STN) and a Spatial De-Transformer Network (SDTN) which are
attached before and after the SPPE. The STN receives human proposals and the SDTN
generates pose proposals. The Parallel SPPE module acts as an extra regularizer during
the training phase. Finally, the parametric Pose NMS is carried out to eliminate redundant
pose estimations. Unlike traditional training, the SSTN+SPPE module is trained with
images generated by the PGPG.
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Figure 2.3: Pipeline of the Alphapose RMPE framework. Image taken from the paper
[100].

2.1.1 Localization errors problem
Small translation or cropping of human proposals can significantly affect performance of
SPPE [222]. The SSTN along with the parallel SPPE modules, have been introduced to
the SPPE when the human proposals are imperfect. The SSTN is fine-tuned together with
the SPPE.

2.1.1.1 SSTN

The STN has demonstrated excellent performance in selecting region of interests automat-
ically, for this reason Alphapose RMPE uses it to extract high quality dominant human
proposals. The STN performs a 2D affine transformation which can be expressed as:
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where 𝜃1 , 𝜃2 and 𝜃3 are vectors in ℝ2. {𝑥𝑠
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𝑖 } and {𝑥𝑡
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𝑖} are the coordinates before and after
transformation, respectively. After SPPE the resulting pose is mapped into the original
human proposal image. A SDTN is required to remap the estimated human pose back to
the original image coordinate.

The SDTN computes the 𝛾 for de-transformation and generates grids based on 𝛾:
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Since SDTN is an inverse procedure of STN, the following can be obtained:

[𝛾1 𝛾2] = [ 𝜃1 𝜃2]
−1

(2.3)

𝛾3 = −1 × [ 𝛾1 𝛾2] 𝜃3 (2.4)

To back propagate through SDTN, 𝜕𝐽(𝑊, 𝑏)
𝜕𝜃 can be derived as:
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with respect to 𝜃3.
𝜕 [𝛾1 𝛾2]

𝜕 [𝜃1 𝜃2]
and 𝜕𝛾3

𝜕𝜃3
can be derived from Eqn. 2.3 and 2.4 respectively.

After having found the high quality dominant human proposal regions, the SPPE can
be used for accurate pose estimation.

2.1.1.2 Parallel SPPE

The parallel SPPE branch help the STN to extract good human dominant regions during
the training phase. The parallel SPPE shares the same STNwith the original SPPE, but the
spatial de-transformer (SDTN) is omitted. The parallel SPPE purpose is to back-propagate
center-located pose errors to the STN module, indeed, the output of this branch is directly
compared to labels of center located ground truth poses and because it has only to do that,
all its layers are frozen. When STN extracts not center-located poses, the parallel branch
will back-propagate large errors. In this way, the STN will focus on human-dominant
regions.

2.1.2 Redundant detections problem
Human detectors inevitably generate redundant detections, which in turn produce redun-
dant pose estimations. Therefore, pose NMS is required to eliminate the redundancies.
The authors of Alphapose RMPE have found previous methods as [51][60] to be either
not efficient or not accurate enough. For this reason they proprosed a parametric NMS
method to deal with this problem.

In the following 𝑃𝑖 indicates the 𝑖𝑡ℎ pose, each pose will be composed by 𝑚 joints and
each pose can be seen as a set of tuple as {⟨𝑘1

𝑖 , 𝑐1
𝑖 ⟩, ..., ⟨𝑘𝑚

𝑖 , 𝑐𝑚
𝑖 ⟩}, where 𝑘𝑗

𝑖 and 𝑐𝑗
𝑖 are the 𝑗𝑡ℎ

location and confidence score of joints respectively.
The parametric NMSmethod proposed by the author of Alphapose RMPE firstly select

the most confident pose as reference, then an elimination criterion is applied to poses
closed to the referenced one. This process is repeated on the remaining poses set until
redundant poses are eliminated and only unique poses are reported.
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The elimination criterion exploits a pose similarity function in order to eliminate the
poses that are too close and too similar to each others. The function uses a pose distance
metric 𝑑(𝑃𝑖, 𝑃𝑗|Λ) to ensure the pose similarity, and a threshold 𝜂 as elimination criterion,
where Λ is a parameter set of the function 𝑑(⋅). The function is therefore defined as follows:

𝑓(𝑃𝑖, 𝑃𝑗|Λ, 𝜂) = 𝟙[𝑑(𝑃𝑖, 𝑃𝑗|Λ, 𝜆) ≤ 𝜂] (2.6)

If the distance 𝑑(⋅) is smaller than 𝜂, the output of 𝑓(⋅) will be 1, which indicates that pose
𝑃𝑖 will be eliminated due to redundancy with reference pose 𝑃𝑗.

The pose distance function 𝑑𝑝𝑜𝑠𝑒(𝑃𝑖, 𝑃𝑗) is composed by two elements. Assuming that
the box for 𝑃𝑖 is 𝐵𝑖, the first element is 𝐾𝑠𝑖𝑚(𝑃𝑖, 𝑃𝑗|𝜎1) and it is defined as:
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, if 𝑘𝑛

𝑗 is within Β(𝑘𝑛
𝑖 )

0 otherwise
(2.7)

where Β(𝑘𝑛
𝑖 ) is a box centered at 𝑘𝑛

𝑖 , and each dimension of Β(𝑘𝑛
𝑖 ) is 1/10 of the original

box 𝐵𝑖. The 𝑡𝑎𝑛ℎ operation filters out poses with low-confidence scores. When two cor-
responding joints both have high confidence scores, the output will be close to 1. This
distance softly counts the number of joints matching between poses.

The second element is 𝐻𝑠𝑖𝑚(𝑃𝑖, 𝑃𝑗|𝜎2). It considers the spatial distance between parts
and it is defined as:

𝐻𝑠𝑖𝑚(𝑃𝑖, 𝑃𝑗|𝜎2) = ∑
𝑛

𝑒𝑥𝑝[−(𝑘𝑛
𝑖 − 𝑘𝑛

𝑗 )2

𝜎2
] (2.8)

By combining Eqn. 2.7 and 2.8, the final distance function can be written as:

𝑑(𝑃𝑖, 𝑃𝑗|Λ) = 𝐾𝑠𝑖𝑚(𝑃𝑖, 𝑃𝑗|𝜎1) + 𝜆𝐻𝑠𝑖𝑚(𝑃𝑖, 𝑃𝑗|𝜎2) (2.9)

where 𝜆 is a weight balancing the two distances and Λ = {𝜎1, 𝜎2, 𝜆}. Differently than in
[60] the set of parameters are determined in a data-driven manner.

2.1.3 Pose-guided Proposals Generator
For the two-stage pose estimation, proper data augmentation is necessary to make the
SSTN + SPPE module adapt to the imperfect human proposals generated by the human
detector. An intuitive approach is to directly use bounding boxes generated by the human
detector during the training phase. However, the human detector can only produce one
bounding box for each person. The author of Alphapose RMPE implemented a proposals
generator so to greatly increase that quantity. Since they already have the ground truth pose
and an object detection bounding box for each person, they can generate a large sample
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of training proposals with the same distribution as the output of the human detector.
They found that the distribution of the relative offset between the detected bounding

box and the ground truth bounding box varies across different poses. There exists a dis-
tribution 𝑃(𝛿𝐵|𝑃), where 𝛿𝐵 is the offset between the coordinates of a bounding box gen-
erated by human detector and the coordinates of the ground truth bounding box, and P is
the ground truth pose of a person.

Due to the variation of human poses, is difficult to directly learn the distribution 𝑃(𝛿𝐵|𝑃),
so instead, they attempt to learn the distribution 𝑃(𝛿𝐵|𝑎𝑡𝑜𝑚(𝑃)), where 𝑎𝑡𝑜𝑚(𝑃) denotes the
atomic pose [323] of 𝑃 . To derive the atomic poses from annotations of human poses, they
first aligned all poses so that their torsos have the same length. Then they used the k-means
algorithm to cluster their aligned poses, and the computed cluster centers form their atomic
poses. For each person instance sharing the same atomic pose 𝑎, they calculate the offsets
between its ground truth bounding box and detected bounding box. The offsets are then
normalized by the corresponding side-length of ground truth bounding box in that direc-
tion. After these processes, the offsets form a frequency distribution, and they fit their
data to a Gaussian mixture distribution. For different atomic poses, they have different
Gaussian mixture parameters.

2.2 MEBOW:Monocular Estimation of Body Orientation
in the Wild

Human Body Orientation Estimation (HBOE) aims to estimate a person’s orientation rel-
ative to the camera’s point of view. It is important for a number of industrial applications,
such as robots interacting with people and autonomous driving vehicles cruising through
crowded urban areas.

HBOE can be estimated directly from image analysis or extracted from data obtained
from other processes, such as human 3-D pose. Hence, it could be argued that HBOE is a
simpler task than the latter and directly solvable using pose estimation models. However,
HBOE warrants to be tackled as a standalone problem for three reasons. First, the 3-D
pose may be difficult to infer due to poor image resolution, occlusion, or indistinguishable
body parts, all of which are prevalent in in-the-wild images. Second, in certain scenarios,
the orientation of the body is already sufficient to be used as the cue for downstream
prediction or planning tasks. Third, the lower computational cost for the body orientation
model compared to a 3-Dmodelmakes it more attractive for implementation on the device.

Although HBOE has been studied in recent years [15][24][59][108][130][131][196]
[219][283][324][328], it can be seen that the primary bottleneck was the lack of a large-
scale, high-precision, diverse-background dataset. A robust HBOE model is presented in
the paper [313], however this is not the main goal of the authors. In fact, their main goal is
to fill the hole in HBOE by providing a large-scale dataset for orientation estimation from
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a single in-the-wild image.

2.2.1 COCO-MEBOW
In the past, the TUD multiview pedestrians dataset [15] was the most widely used dataset
for benchmarking HBOE models and today it is still used for training and evaluation in
recent HBOE algorithms [15][130][131][324]. This dataset consists of 5228 images cap-
tured outdoors, many of them in grayscale. Each image contains one or more pedestrians,
each of which is labeled with a bounding box and a body orientation. Body orientation
labels only have eight bins (front, back, left, right, diagonal front, diagonal back diagonal
left, diagonal right), which can be too coarse in certain situations. Later work [130] tried
to enhance the TUD dataset by providing continuous orientation labels, each of which was
averaged from the orientation labels collected from five different labelers.

There are other lesser-used datasets for HBOE. Their limitations, however, make them
only suitable for HBOE under highly constrained settings but not for in-the-wild applica-
tions. For example, the 3DPes dataset [23] (1012 images, 8-bin) and CASIA gait dataset
[245] (19139 frames of videos capturing 20 subjects, 6-bin) have been used in [324] and
[196][248], respectively. Moreover, the human bodies in the images of these two datasets
are all walking pedestrians captured from a downward viewpoint by one or a few fixed
outdoor surveillance cameras. The MCGRGBD datasets [197] has a wider diversity of
poses and provides depth maps in addition to the RGB images. But all its images were
captured indoors and from only 11 subjects.

Human orientation can also be computed given a full 3-D pose skeleton. For this rea-
son, human 3-D pose datasets such as the Human3.6M [156], can be converted to a body
orientation dataset for HBOE research. However, due to the constraint of the motion
capture system, these 3-D pose datasets often cover only indoor scenes and are sampled
frames of videos for only a few subjects.

Direct prediction of body orientation from an image is valid because not only labeling
a training dataset is simpler but also better performance could be achieved by directly
addressing the orientation estimation problem. As supporting evidence, [110] shows that
a CNN and Fisher encoding-based method taking in features extracted from 2-D images
outperforms state-of-the-art methods based on 3-D information (e.g., 3-D CADmodels or
3-D landmarks) for multiple object orientation estimation problems.

Given the enormous success of large-scale datasets in advancing vision research, such
as ImageNet [71] for image classification, KITTI [109] for optical flow, and COCO [193]
for object recognition and instance segmentation among many others, the authors of the
paper [313] decided to annotate one of them to fill the lack of such a dataset for HBOE
task. They presented the COCO-MEBOW (Monocular Estimation of Body Orientation
in the Wild) dataset, which consists of high-precision body orientation labels for 130K
human instances within 55K images from the COCO dataset [193]. This dataset uses 72
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bins to partition the 360∘, with each bin covering only 5∘, which the authors maintained to
be much more fine grained than all previous datasets while within the human cognition
limit.

They chose the COCOdataset as the source of images for orientation labeling because it
contains rich contextual information, and the diversity of human instances captured within
it in terms of poses, lighting condition, occlusion types, and background makes it suitable
for developing and evaluating models for body orientation estimation in the wild. Addi-
tionally, the COCO dataset already had bounding box labels for human instances, making
it easier for body orientation labeling. As can be seen in Figure 2.5, another advantage
of this dataset is that the image resolution of the labeled human instances is much more
diverse than, for example, TUD dataset. This is particularly helpful for training models
for practical applications in which both high- and low-resolution human instances can be
captured as the distance between the camera and the subject and the weather condition can
both vary.

In the making they neglected all ambiguous human instances, they labeled all suitable
133380 human instances within the total 540007 images, out of which 51836 images (as-
sociated with 127844 human instances) are used for training and 2171 images (associated
with 5536 human instances) for testing.

Figure 2.4: Distribution of the body orientation labels in the COCO-MEBOW dataset and
examples. Image taken from the paper [313].
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Figure 2.5: Comparison of the distribution of the captured human body instance resolution
for COCO-MEBOW dataset and that for the TUD dataset [15]. The x-axis represents√

𝑊 ⋅ 𝐻, where 𝑊 and 𝐻 are the width and height of the human body instance bounding
box in pixels, respectively. Image taken from the paper [313].

2.2.2 MEBOW Human Body Orientation Estimation model
Limited by the relatively small size and the coarse-grained orientation label (either 8-bin
based, or 6-bin based) of existing datasets discussed above, approaches based on fea-
ture engineering and traditional classifiers such as SVM have been favored for HBOE
[15][24][59][108][219][283] [328]. Deep learning-based methods [248][61] also treat
HBOE as a classification problem. For example, the method in [248], given an input,
it uses a 14-layer classification network to predict which bin out of eight different ones
represents the orientation; the method in [61] uses a 4-layer neural network as the clas-
sification network. These methods all used simple network architecture due to the small
size of the available datasets for training. And the obtained model only works for certain
highly constrained environment similar to those used for training image collection. Given
the continuous orientation label provided by [130] for the TUD dataset, some recent work
[130][131][324] has attempted to address more fine-grained body orientation prediction.
In particular, Yu et al. [324] utilized the key-points detection by another 2-D pose model
as an additional cue for continuous orientation prediction. However, deep learning-based
methods have been held back by the lack of a large-scale HBOE dataset.

The HBOE model architecture provided in the paper [313] can be seen in Figure 2.6.
The idea behind that is that the cropped images of subjects are first processed through a
backbone network as the feature extractor. The extracted features are then concatenated
and processed by a few more residual layers (Head), with one fully connected layer and a
softmax layer at the end.

The output are 72 neurons, 𝑝 = [𝑝0, 𝑝1, … , 𝑝71] (∑71
𝑖=0 𝑝𝑖 = 1.0), representing the probabil-

ity of every possible orientation bin being the best one to represent the body orientation
of the input image. More specifically, 𝑝𝑖 represents the probability of the body orientation
𝜃 to be within the 𝑖-th bin in Figure 2.7(b), e.g., within the range of [𝑖 ⋅ 5∘ − 2.5∘, 𝑖 ⋅ 5∘ + 2.5∘].

For the objective function of the model, their approach is different from previous ap-
proaches that either directly regress the orientation parameter 𝜃 (Approach 1 and 2 of
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[131]) or treat the orientation estimation as a pure classification problem (Approach 3 of
[131], and [130]), where each bin is a different class. Instead, they take inspiration from
the heat map regression idea, which has been extremely successful in key-point estimation
[222][293], and let the loss function for 𝑝 be:

ℒ =
71

∑
𝑖=0

(𝑝𝑖 − 𝜙(𝑖, 𝜎))2 (2.10)

where 𝜙(𝑖, 𝜎) is the circular Gaussian probability, as illustrated in Figure 2.7) (red curve):

𝜙(𝑖, 𝜎) = 1√
2𝜋𝜎e

−
1

2𝜎2 (𝑚𝑖𝑛(|𝑖−𝑙𝑔𝑡|,72−|𝑖−𝑙𝑔𝑡|))2

(2.11)

and 𝑙𝑔𝑡 is the ground-truth orientation bin. The idea behind this is to regress a Gaussian
function centered at the ground truth orientation bin so that the closer one of them is to the
ground-truth orientation bin label 𝑙𝑔𝑡, the higher the probability the model should assign
to it. The validity of this idea have found foundation from the significantly eased that the
learning process of the neural network had, where on the opposite, the use of standard
classification loss function, such as cross entropy loss between 𝑝 and the ground truth
represented by one hot vector, could not converge.

As backbone model, ResNet-50 and ResNet-101 were initially considered but they
observed that HRNet+Head provides much better performance in experiments. This could
be explained by the fact that the HRNet and its pretrained model are also trained on COCO
images and designed for a closer related task such as 2-D pose estimation.

Figure 2.6: HBOE model architecture proposed in [313]. Image taken from the paper
[313].
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Figure 2.7: Illustration of 72 orientation bins (black ticks) and orientation loss for regress-
ing 𝑝 to the circular Gaussian target probability function. Image taken from the paper
[313].

2.3 Hopenet

2.3.1 Head pose problem
In the past, head pose estimation and facial expression tracking have played an important
role in driving vision technologies for non-rigid registration and 3D reconstruction and
enabling new ways to manipulate multimedia content and interact with users. Major ap-
proaches to face modeling where discriminative/landmark-based approaches [273][330]
and parameterized appearance models (PAM) [65][204]. More recently, due to their flex-
ibility and robustness to occlusions and extreme pose changes, the use of modern deep
learning models to directly extract 2D facial keypoints have become the dominant ap-
proach to facial expression analysis [43][331][182]. In addition, they made it possible to
recover the 3D pose of the head, establishing the correspondence between the keypoints
and a 3D head model and performing alignment. However, in some applications the head
pose may be all that needs to be estimated and thus, the keypoint-based method may not
be the best choice in that scenario.

While keypoint detectors have improved dramatically due to deep learning, head pose
recovery still is a two step process with numerous opportunities for error. First, if suffi-
cient keypoints fail to be detected, then pose recovery is impossible. Second, the accuracy
of the pose estimate depends upon the quality of the 3Dmodel of the head. Indeed, generic
head models can introduce errors for any given participant, and also, the process of de-
forming the head model to adapt to each participant requires significant amounts of data
and can be computationally expensive. Another aspect to take into account is that while
it is common for deep learning based methods using keypoints to jointly predict head
pose along with facial landmarks, the goal of those is to improve the accuracy of the facial
landmark predictions instead to have the head pose branch sufficiently accurate on its own
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[182][246][247].
A Convolutional Neural Network (CNN) architecture that directly predicts head pose

has the potential to be much simpler, more accurate, and faster. While other works have
addressed the direct regression of pose from images using CNNs they did not include a
comprehensive set of benchmarks or leverage modern deep architectures [182][246][247]
[322][227][58][119]. A brief discussion about those along with a detailed study about the
weaknesses of head pose estimation from 2D landmark methods can be found in the paper
of the model used in the project [263].

2.3.2 Hopenet model
Hopenet is an accurate and easy to use head pose estimation network based on a multi-loss
CNN. It is trained on 300W-LP [331], a large synthetically expanded dataset, to predict
intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint
binned pose classification and regression.

This model was created in order to fill a gap in the literature about non-keypoint-based
head pose estimationmethods and because the authors maintained that deep networks have
large advantages compared to landmark-to-pose methods in that: they are not dependent
on the head model chosen, the landmark detection method, the subset of points used for
alignment of the headmodel or the optimization method used for aligning 2D to 3D points;
they always output a pose prediction which is not the case for the latter method when the
landmark detection method fails.

All previous work which predicted head pose using convolutional networks regressed
all three Euler angles directly using a mean squared error loss. But, the authors, found
that this approach does not scale well with large synthetic training data. They propose
to use three separate losses, one for each angle where each loss is a combination of two
components: a binned pose classification and a regression component. Any backbone
network can be used and augmented with three fully connected layers which predict the
angles. These three fully connected layers share the previous convolutional layers of the
network.

The idea behind this approach is that by performing bin classification they use stable
softmax layer and cross-entropy, thus the network robustly learns to predict the neighbor-
hood of the pose. While, by having three cross-entropy losses, one for each Euler angle,
they have three signals which are backpropagated into the network which improves learn-
ing.

In order to obtain a fine-grained predictions they compute the expectation of each out-
put angle for the binned output. Then, they add a mean-squared error loss to the network,
in order to improve fine-grained predictions. In the end, they have three final losses, one
for each angle, and each is a linear combination of both the respective classification and
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the regression losses. The final loss for each Euler angle is the following:

ℒ = 𝐻(𝑦, ̂𝑦) + 𝛼 ⋅ 𝑀𝑆𝐸(𝑦, ̂𝑦) (2.12)

Where H and MSE respectively designate the cross-entropy and Mean Squared Error loss
functions, while 𝑦 and ̂𝑦 are the predicted result and the ground truth. The detailed archi-
tecture is shown in Figure 2.8.

Figure 2.8: Hopenet architecture. ResNet50 [133] used as backbone. Image taken from
the paper [263].

2.4 ConvNeXt
In [199] the authors review the design spaces and test the limits of what a pure Convo-
lutional Neural Networks (CNN) can achieve. Starting from a standard Residual neural
Network (ResNet) they gradually modernize it toward the design of a vision Transformer.
Along the way, several key components that contribute to the performance difference are
discovered, and the final outcome of this exploration leads to the definition of a family of
pure CNN models called ConvNeXt. These models compete favorably with Transform-
ers in terms of accuracy and scalability while maintaining the simplicity and efficiency of
standard CNNs.

Looking back at the 2010s, the decade was marked by the monumental progress and
impact of deep learning. Although the invention of back-propagation-trained CNNs dates
back to the 1980s [191], it was only in late 2012 that everyone saw their true potential
for visual feature learning. This awareness has led the field of visual recognition to suc-
cessfully shift from engineering features to designing CNN architectures over the course
of the decade. The introduction of AlexNet [180] accellerated the “ImageNet moment”
[264], ushering in a new era of computer vision. Since then, the field has evolved at a rapid
pace. Representative CNN like VGGNet [287], Inceptions [296], ResNe(X)t [133][318],
DenseNet [151], MobileNet [150], EfficientNet [299] and RegNet [242] focused on dif-
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ferent aspects of accuracy, efficiency and scalability, and popularized many useful design
principles.

The dominance of CNN in computer vision was not a coincidence. Indeed, in many
scenarios, the sliding window strategy is intrinsic to visual processing, particularly when
working with high-resolution images. CNN have several built-in inductive biases such
as translation equivariance, making them suitable for a wide variety of computer vision
applications. CNN are also inherently efficient due to the fact that, when used in a sliding-
window manner, the computations are shared [281].

In the meantime, neural network design for Natural Language Processing (NLP) has
taken a very different path, as the Transformers have replaced recurrent neural networks
to become the dominant backbone architecture. Despite the differences between language
and vision domains, the two streams converged in 2020, thanks to the introduction of
Vision Transformers (ViT).

ViT has made minimal changes to the original NLP Transformers, introducing no
image-specific inductive bias except for the initial “patchify” layer and, with the help
of larger model and dataset sizes, they can outperform standard ResNets by a significant
margin. But computer vision is not limited to image classification. Without the CNN in-
ductive biases, a vanilla ViT model faces many challenges in being adopted as a generic
vision backbone. An example of this is the quadratic complexity with respect of the input
size of ViT’s global attention that, while it might be acceptable for image classification
task as ImageNet [71], it quickly becomes intractable with higher-resolution inputs.

To fill this gap, Hierarchical Transformers uses a hybrid approach to try to behave more
similarly to CNN, reintroducing the well-known “sliding window” strategy. Swin Trans-
former [198] represent a milestone in this direction, demonstrating for the first time that
Transformers can be adopted as a generic vision backbone and achieve state-of-the-art
performance across a range of computer vision tasks beyond image classification. The
success of such a type of Transformer has revealed that the essence of convolution still
matters and can make the difference, and that the characterizing elements of a perform-
ing architecture can also enhance others. However, the attempt to introduce ideas into
architectures other than those initially used can have a cost, for example, a naive imple-
mentation of sliding window self-attention can be expensive [244] or by introducing cyclic
shifting [198] the speed can be optimized but the system becomes more sophisticated in
design.

From system-level comparisons such as between Swin Transformer and ResNet, it can
be seen that CNN and hierarhical vision Transformers become different and similar at
the same time. In fact they are both equipped with similar inductive biases but differ
significantly in the training procedure and macro/micro-level architecture design.

In the following, all exploration steps done in [199] are provided but for a more ex-
haustive reading the paper and its appendix are suggested. They consider two model sizes
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in terms of FLOPs, one is the ResNet-50 / Swin-T regime with FLOPs around 4.5 ⋅ 109

and the other being ResNet-200 / Swin-B regime which has FLOPs around 15.0 ⋅ 109. All
models are trained and evaluated on ImageNet-1K [71]. Figure 2.11 shows a summary
scheme with all the steps.

2.4.1 Training Techniques
The first thing that is shown in [199] is that in addition to the design of the network archi-
tecture, the training procedure also affects the final performance [31][310]. Vision Trans-
formers have not only introduced a new set of architectural design modules and decisions,
but have also introduced several vision training techniques such as the AdamW optimizer.
In their study they decide to use as baseline ResNet-50/200 models, trained with a recipe
close to that of DeiT’s [301] and Swin Transformer’s [198]. The training is extended to
300 epochs from the original 90 epochs for ResNets. They use the AdamW optimizer
[200], data augmentation techniques such as Mixup [327], Cutmix [325], RandAugment
[67], Random Erasing [329], and regularization schemes including Stochastic Depth [151]
and Label Smoothing [297]. By itself, this enhanced training recipe increased the perfor-
mance of the ResNet-50 model from 76.1% to 78.8% (+2.7%), implying that a significant
portion of the performance difference between traditional CNN and vision Transformers
could be due to training techniques.

2.4.2 Macro Design
In this passage, the authors of [199] analyze the Swin Transformers’ macro network de-
sign. Swin Transformers follow CNN [133][288] to use a multi-stage design, where each
stage has a different feature map resolution. In [199], two interesting design considera-
tions are highlighted: the stage compute ratio, and the “stem cell” structure.

2.4.2.1 Stage compute ratio

The original design of the computation distribution across stages in ResNet was largely
empirical. The heavy “res4” stagewasmeant to be compatible with downstream tasks such
as object detection, where a detector head operates on the 14 × 14 feature plane. Swin-T,
on the other hand, followed the same principle but with a slightly different stage compute
ratio of 1:1:3:1. For larger Swin Transformers, the ratio is 1:1:9:1. Following this design,
in [199] they adjust the number of blocks in each stage from (3, 4, 6, 3) in ResNet-50 to
(3, 3, 9, 3), which also aligns the FLOPs with Swin-T. This improves the model accuracy
from 78.8% to 79.4%. However a more optimal design is likely to exist [242][243].
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2.4.2.2 Stem cell structure

Typically, the stem cell design is concerned with how the input images will be processed
at the network’s beginning. Due to the redundancy inherent in natural images, a common
stem cell will aggressively downsample the input images to an appropriate feature map
size in both standard CNN and vision Transformers. The stem cell in standard ResNet
contains a 7 × 7 convolution layer with stride 2, followed by a max pool, which results
in a 4× downsampling of the input images. In vision Transformers, a more aggressive
“patchify” strategy is used as the stem cell, which corresponds to a large kernel size and
non-overlapping convolution. Swin Transformer uses a similar “patchify” layer, but with
a smaller patch size of 4 to accommodate the architecture’s multi-stage design. In [199],
they replace the ResNet-style stem cell with a patchify layer implemented using a 4 × 4,
stride 4 convolutional layer. This improves the model accuracy from 79.4% to 79.5% and
suggests that the stem cell in a ResNet may be substituted with a simpler “patchify” layer
similar to the one in ViT which will result in similar performance.

2.4.3 ResNeXt-ify
In this step of [199], they attempt to adopt the idea of ResNeXt [318], which has a bet-
ter FLOPs / accuracy trade-off than a vanilla ResNet. The core component is grouped
convolution, where the convolutional filters are separated into different groups. At a high
level, the guiding principle of ResNeXt is “use more groups, expand the width”. More
precisely, ResNeXt employs rouped convolution for the 3 × 3 conv layer in a bottleneck
block. As this significantly reduces the FLOPs, the network width is expanded to com-
pensate for the capacity loss. In [199] they use depthwise convolution, a special case of
grouped convolution where the number of groups equals the number of channels. The
latter was observed by the author of [199] to be similar to the weighted sum operation in
self-attention, which operates on a per-channel basis, for example, mixing only informa-
tion in the spatial dimension. The combination of depthwise conv and 1 × 1 convs leads
to a separation of spatial and channel mixing, a property shared by vision Transformers,
where each operation either mixes information across spatial or channel dimension, but
not both. The use of depthwise convolution effectively reduces the network FLOPs but
also the accuracy. However, following the strategy proposed in ResNeXt, in [199] they
increase the network width to the same number of channels as Swin-T’s (from 64 to 96)
ultimately bringing the network performance to 80.5% with increased FLOPs (5.3G).

2.4.4 Inverted Bottleneck
In [199] it is highlighted that an important design in every Transformer block is that it cre-
ates an inverted bottleneck, for example, the hidden dimension of the MLP block is four
times wider than the input dimension (see Figure 2.9). But also that this transformer design
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is connected to that of the inverted bottleneck with an expansion ratio of 4 used in CNN.
In this passage of [199], they explore the inverted bottleneck design which configurations
are illustrated in Figure 2.10 (a) to (b). Despite the increased FLOPs for the depthwise
convolution layer, this change reduces the whole network FLOPs to 4.6G, due to the sig-
nificant FLOPs reduction in the downsampling residual blocks’ shortcut 1 × 1 conv layer.
This results in slightly improved performance (80.5% to 80.6%) in ResNet-50 / Swin-T
and even more gain (81.9% to 82.6%) in the ResNet-200 / Swin-B regime, while reducing
FLOPs.

Figure 2.9: Block designs for a ResNet, a Swin Transformer, and a ConvNeXt. Image
taken from the paper [199].

2.4.5 Large Kernel Sizes
In this part of the exploration, in [199] they focus on the behavior of large convolutional
kernels. They point out that one of the most distinctive aspects of vision Transformers
is their non-local self-attention, which allows each layer to have a global receptive field.
While large kernel sizes have been used in the past with CNN [180][296], the gold stan-
dard (popularized by VGGNet [288]) is to stack small kernel-sized (3 × 3) conv layers,
which have efficient hardware implementations on modern GPUs [190]. Although Swin
Transformers reintroduced the local window to the self-attention block, the window size
is at least 7×7, significantly larger than the ResNe(X)t kernel size of 3×3. For this reason,
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Figure 2.10: Block modifications and resulted specifications implemented by [199] in
2.4.4 step. (a) is a ResNeXt block; (b) they create an inverted bottleneck block; (c) the
position of the spatial depthwise conv layer is moved up. Image taken from the paper
[199].

in [199] they revisit the use of large kernel-sized convolutions for CNN.

2.4.5.1 Moving up depthwise conv layer

To explore large kernels, one prerequisite is to move up the position of the depthwise conv
layer (Figure 2.10 (b) to (c)). This is a design decision also evident in Transformers: the
MSA block is placed before the MLP layers. Because they have an inverted bottleneck
block, complex/inefficient modules (MSA, large-kernel conv) will have fewer channels,
while efficient, dense 1 × 1 layers will do the heavy lifting. This intermediate step reduces
the FLOPs to 4.1G, resulting in a temporary performance degradation to 79.9%.

2.4.5.2 Increasing the kernel size

With all these preparations, the benefit of adopting larger kernel-sized convolutions is
significant. In [199] they experimented with several kernel sizes, including 3, 5, 7, 9, and
11. The network’s performance increases from 79.9% (3 × 3) to 80.6% (7 × 7), while the
network’s FLOPs stay roughly the same. Additionally, they note that the benefit of larger
kernel sizes reaches a saturation point at 7×7 for both small and large capacity model. For
this reason they use the 7 × 7 depthwise conv in each block.

At this point in their exploration, they have concluded their examination of network
architectures on a macro scale. What can be seen at this point in the exploration made in
[199], is that a significant portion of the design choices taken in a vision Transformer can
be mapped to CNN instantiations.

2.4.6 Micro Design
In this section, the authors of [199] investigate several other architectural differences on a
micro scale.
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2.4.6.1 Replacing ReLU with GELU

In [199] they point out that a discrepancy between NLP and vision architectures are the
specifics of the activation functions to be used. Numerous activation functions have been
developed over time, but the Rectified Linear Unit (ReLU) [218] is still widely used in
CNN due to its simplicity and efficiency. ReLU is also used as an activation function in the
original Transformer paper [304]. But, the Gaussian Error Linear Unit, or GELU [135],
which can be considered as a smoother variant of ReLU, is used in the most advanced
Transformers, including Google’s BERT [76] and OpenAI’s GPT-2 [241], and, most re-
cently, ViTs. In [199] they find that ReLU can be replaced with GELU in their CNN as
well, although the accuracy stays unchanged (80.6%).

2.4.6.2 Fewer activation functions

Another thing that was noted in [199] exploration is that a small distinction between a
transformer and a ResNet block is that transformers have fewer activation functions. Con-
sider a Transformer block with key/query/value linear embedding layers, the projection
layer, and two linear layers in an MLP block. There is only one activation function in
the MLP block. In comparison, it is common practice to append an activation function to
each convolutional layer, including the 1 × 1 convs. In [199] they removed all GELU lay-
ers from the residual block except for one between two 1×1 layers, replicating the style of
a Transformer block (Figure 2.9). This process improves their result to 81.3%, practically
matching the performance of Swin-T.

2.4.6.3 Fewer normalization layers

Still in [199], they highlight that transformer blocks usually have fewer normalization lay-
ers as well. For this reason, they removed two Batch Normalization (BN) layers, leaving
only one BN layer before the conv 1 × 1 layers. This further increases their performance
to 81.4%, already surpassing Swin-T’s result.

2.4.6.4 Substituting BN with LN

Another element analyzed in [199] is Batch Normalization [155]. They maintained that
BN is an essential component in CNN as it improves the convergence and reduces overfit-
ting. However, BN also has many complexities that can have a negative effect on model
performance [315]. There have been numerous attempts at developing alternative nor-
malization [269][303][314] techniques, but BN has remained the preferred option in most
vision tasks. On the other hand, the simpler Layer Normalization [22] (LN) has been
used in Transformers, resulting in good performance across different application scenar-
ios. However, directly replacing BN with LN in the original ResNet will result in subopti-
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mal performance [314]. In [199], due to all the changes made to the network architecture
and training techniques, using LN instead of BN they observe that their CNN model does
not have any difficulties in training, on the contrary, the performance was slightly better,
achieving an accuracy of 81.5%.

2.4.6.5 Separate downsampling layers

Finally in [199] they point out that in ResNet, spatial downsampling is obtained by the
residual block at the beginning of each stage, using 3 × 3 conv with stride 2 (and 1 × 1
conv with stride 2 at the shortcut connection). However, in Swin Transformers, a separate
downsampling layer is added between stages. For this reason they explored a similar
strategy in which they use 2 × 2 conv layers with stride 2 for spatial downsampling. But
this modification led to diverged training. To solve this problem, they conducted further
investigation which showed that adding normalization layers wherever spatial resolution
is changed can help stabilize training. These include several LN layers also used in Swin
Transformers such as one before each downsampling layer, one after the stem, and one
after the final global average pooling. This way they can improve accuracy to 82.0%,
significantly exceeding Swin-T’s 81.3%.

This brings them to their final model, which they have called ConvNeXt. For a more
in-depth understanding but also to read about the various tests carried out by them and the
relative results, it is suggested to read their paper [199].
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Figure 2.11: Steps in order of implementation of the gradually modernization of a stan-
dard Convolutiona Neural Network (ResNet-50) toward the design of a vision Trans-
former (Swin) explored in [199]. The foreground bars are model accuracies in the ResNet-
50/Swin-T FLOP regime; results for the ResNet-200/Swin-B regime are shown with the
gray bars. A hatched bar means the modification is not adopted. Image taken from the
paper [199].
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Chapter 3

Problem definition, Solution proposed

and Implementation

3.1 Problem definition
The project done has been developed as solution to the problem of processing images re-
trieved from a simple robot RGB camera stream in order to extract meaningful information
related to body posture, with the ultimate objective of estimating a person’s engagement
propensity in scenarios involving human-robot interaction. This level had to be expressed
as a value that could be understood by humans as well as used by the robot.

Engagement with a robot partner has an impact on the beginning, maintenance, and
conclusion of the interaction, making it essential for natural and successful human-robot
interaction [285]. When used in HRI, this information can be exploited in different ways,
for example, as a simple data to monitor the quality of certain aspects of the robot (e.g.,
appearance, behaviors, information expressed), or as a trigger for specific behaviors such
as conversation initiation (e.g., use a more cautiously approach when moving toward a
person that does not seem to want to interact, move toward the person that appears more
interest in the robot) and conversation handling (e.g., change the subject if it appears that
the one being discussed at the time is not in the best interest of the person with whom the
robot is conversing).

In HRI studies, engagement has been viewed as both a state of mind to be achieved in
an interaction where defined verbal and nonverbal cues have been exploited, and as some-
thing that must be monitored in order to manage or improve specific tasks. For instance,
in [285] is presented a study on the dependence that engagement has with respect to some
particular nonverbal cues such as gesture and gaze, during collaborative interaction. In
[175], the nonverbal cue of a robot making eye contact is looked at to see if it would affect
engagement in a HRI situation. In [267], context has been used as a characterizing ele-
ment to manage definition and behavior related to engagement. In [253] instead, directed
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gaze, mutual facial gaze, conversational adjacency pairs and backchannels are used as
cues to recognize engagement. In [284], engagement is used to improve robot behaviors
in hosting activities. In [186], nodding, laughter, verbal backchannels and eye gaze are
used as social signal inputs for a real-time engagement recognition model and therefore
to influence the dialogue strategy of the robot.

The system designed had to work in the most general way possible due to the fact that
it had to be exploited by different social robots. In fact, nowadays more and more of them
are being created, but, most of the time, they are nothing more than grey boxes with only a
limited amount of controllability provided by their official API and without the possibility
to add custom solution to improve their perception. Because of these factors, one of the
requirements of the project was to make use of only one RGB camera, which is typically
found in robots of this kind. To be able to effectively exploit information related to the
robot camera stream (e.g., to modify the robot’s behavior), the system had to work almost
in real time. Also, a lot of the time, businesses don’t make their own robots, rather, they
buy them from other companies and develop software to accomplish specific jobs and
commissions. In this specific project, the company had its own infrastructure to manage
robots from different producers, therefore it was necessary that the system implemented
was compatible with it.

Another aspect to take into account was that, because this project was done during an
internship in a company, when working on a project with multiple elements like this one,
it is better to design and implement each component as a standalone feature so that it can
be used again in other projects. For this reason, the meaningful information that had to be
extracted should have had a meaning by their self.

3.2 Solution proposed
Given requests and limitations reported above, the system had to:

• extract meaningful information related to body posture, giving priority to those that
can give meaningful information even when taken alone

• estimate the engagement, or to be more precise, the level of Propensity For Interac-
tion (PFI) that a person could have towards the robot. This level had to be expressed
as a value usable both by the robot and interpretable by humans

• use information retrievable only by a single RGB camera

• work almost in real time so that information retrieved can be used to manage aspects
of the robot

• be compatible with the infrastructure created by the company to manage robots from
different producers
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Initially, a feasibility study has been conducted in order to define if the results requested
were obtainable in someway and if some algorithms ormodels, usable under the restriction
defined, could have been already implemented. From a search in the literature, nonverbal
communication immediately appeared as what should have been the key element of the
project. Indeed, from psychology, human-science and also HRI studies, this element ap-
pears to be a reliable source of information which can be consulted through the analysis of
visual cues [18][28][286][187][230][186][175]. This proved that meaningful information
related to body posture can be found from the analysis of information retrieved from a
single RGB camera.

For what concern engagement, in HRI literature several studies regarding this topic
exist. In the ones in which the aspect of engagement have been examined, both explicit
[33][223][262][285] and implicit measures [18][28][124][158][215][253][286][298] have
been considered. However, explicit measures and questionnaires, while providing valu-
able hints regarding the phenomenon of interest, suffer from several limitations such as
introspective ability of the user and the fact that certain aspects are implicit and automatic
cognitive mechanism not accessible to conscious awareness. Instead, thanks to the careful
design of experimental paradigms inspired by research in cognitive science that target spe-
cific cognitive mechanisms, objective implicit metrics could be collected and conclusions
could be drawn about what cognitive processes are at stake [317][316][176]. This proved
that engagement can be detected even using a single RGB camera through the detection of
specific nonverbal cues expressed from the body. However, the studies analyzed, focused
more on detecting the presence of engagement rather than a measurement of it, and in
the ones where some measure were done, it was more related on the amount of time that
engagement was detected rather than an intensity or a probability that such state of mind
was present.

At this point another problem emerged. Through the visual analysis of human body,
several nonverbal cues can be detected and therefore meaningful information can be ex-
tracted, also engagement can be detected by being able to determine the presence of spe-
cific nonverbal cues. However, the system has to provide results almost in real time. Then,
what should be the cues to detected in order to satisfy requirements and limitations?

Engagement is a complex concept moreover when thought from a nonverbal commu-
nication point of view. From what it can be seen in Chapter 1, not only complex state
of mind like this one can be expressed in different ways, but the single element that may
indicate the presence or absence of it should be considered together. Another aspect to
consider is that I was and I still am not an expert in this field nor there was the possibility
to consult someone like that. Therefore, in order to achieve something, it was necessary
to analyze this concept from an engineering perspective. Firstly, it was necessarily to sim-
plify the concept of engagement to take into account. Considering what was expressed in
other studies cited before, in this project, engagement has been considered as the presence
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of specific nonverbal cues that are supposed to express willingness or even only propensity
of a person for an interaction of any type, moreover with the robot recording the situation.
From what expressed in Chapter 1 and in [229], nonverbal cues that may indicate this
particular state of mind could be related to: gesture, body posture, body orientation, prox-
emics and even paralanguage. Considering the limitation to use only the RGB camera,
paralanguage could not be exploited. Also most of proxemics related cues could not be
detected due to the lack of depth information, and the ones that could have been estimated,
would have imposed heavy bounds on the working environment or would have been de-
rived from not reliable measurements. Gestures have also been discarded, at least in this
version of the project, because of the level of complexity that they would have added (e.g.,
multiple tracking). Also, because single image analysis (in that case for face) were already
implemented by the company, not using gestures would have simplified the adaptation of
the system with the their infrastructure. Unlike the others, body posture and orientation
seemed suitable for the project, but while the latter have a well defined meaning, body
posture still was a too big group of nonverbal cues to be exploited as they were. For this
reason, always referring to Chapter 1 and [229], and also by what have been found during
the feasibility study, it was decided to consider only a sub-category of it, that is, those cues
related with the openness of the body. In the end, considering what written until now and
the possible meaning that such information can have when considered alone and together,
it was decided to estimate:

• body pose as a set of keypoints

• body orientation with respect to the robot

• head orientation with respect to the robot

• body pose type:

– one between: open, closed

– one between: upstanding, sitting, lying

• hand pose type:

– one between: open, closed

– one between: palm, back

and that the single results would have been, in the end, aggregated in order to define a
score related to the level of engagement estimated.

3.3 Solution Implementation
The system structure is reported in Figure 3.1. Media hub is a component of the infras-
tructure developed by the company, it manages all the media information produced by the
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robot and other components, in this case it will be the one that requests the execution of the
system developed in this project. Components that compose the company infrastructure
exploit the websocket communication protocol to communicate with each other, for this
reason the system implemented in this project will use it as well.

The Message Manager has the task of managing input and output messages. Each
time that a component wants to fulfil a request, if it was not done yet, it has to establish a
websocket connection with the system and send a request message. TheMessageManager
will process the input message and send another one to the Task Manager containing all
the information necessary to it to execute the correct pipeline. The Task Manager will
manage the requests to the other component based on themessage received by theMessage
Manager, also, it will forward to the Message Manager components results whenever they
are ready. As pictured in Figure 3.1, all other components are independent to each other.
In fact, each one of them has been developed as an independent websocket component.
By doing so, each of those can be used alone if the necessary input is given. This allows
to use, test, upgrade and add components without changing the backbone structure of the
whole system. Additionally, thanks to that, it was possible to define the system’s request
input message so that it must explicit the desired information to include in the response
message. In this way if only some components’ output has been requested, not all the
pipeline and elements must be executed. Another thing exploitable, thanks to that level of
independence, was the asynchronicity in Python, that allowed the execution of other parts
of the code when an asynchronous command is executed and a result is waited, permitting
in this way, to send each output whenever it is ready. The possible outputs requestable
are: body pose keypoints, body orientation, head orientation, body pose type (upstanding,
sitting, lying and open, closed), hands pose type (palm, back and open, closed). Despite
all of this, the pipeline is not completely parallelized. In fact, some components require
other elements’ results as input. As it can be seen in Figure 3.1, components of different
groups have different connections colors. Only members of the same group can work
asynchronously, also the order of execution is expressed in the legend of the Figure 3.1. If
only one part of a group has been requested, only the requested output will be included in
the responsemessage, however, all parts in the previous pipeline step will still be executed.

The system makes use of a variety of models that must be loaded from memory. To
avoid hardcoded path references to models, the systemmakes use of a configuration file in
which their path and each component settings must be declared. Also, because the system
must work in the most generic way possible, a path to the file that contains the camera
matrix and the distortion coefficients can be specified in the configuration. During the
preprocess, those data will be used to undistort the input image. The path to the config-
uration file must be specified in a specific environment variable for it to be located. To
make the deployment easier a docker image has been built successfully starting from a
Nvidia container.
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Figure 3.1: System schema

3.3.1 Components implementation

3.3.1.1 Input message

An acceptable input message is formatted as:

• client_id: id of the machine that has made the request

• flow_id: contains the sequence of actions/routes done

• encoded_image: input image encoded in base64 format

• actions: list of requested action

• camera_calibration: flag to enable the image undistortion

3.3.1.2 Preprocess

Body pose is generically estimated as a set of keypoints with a predefined order. Because
of the flexible usage of its results, it could be used as the core of several applications
(e.g., gesture recognition, body tracking, etc.). However in this project, it plays a minor
role as it is only used for some spatial/geometry based checks and to locate people and
their heads and hands. The reason why it is utilized in this manner is that, considering
the study done in [263], keypoints seems not to be a reliable source of information to use
directly as input for other estimations. However, this approach has been used because
its results, taken alone, can be exploited easily in other projects, and to avoid employing
multiple deep learning models to detect all body parts of interest (e.g., in this project 3
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different detectors would have been used). Additionally, by doing so, other body parts
can be detected in an easy way opening the system to further development.

The preprocess block has the role of checking if something is wrong with the input
image passed in input, undistorting it if it has been requested and extracting from it, if
there are any people, meaningful information about body pose.

The first thing that this component does is to check if the configuration file can be
found by following the path specified in its environment variable. If it was not possible to
parse the file, the execution will be stopped and an error message will be sent as response.
The image is then decoded from base64 and a simple check is exploited to define whether
it can be used. This simple check consists of: trying to load the image using the Opencv
[39] package; extracting its edges using canny edge detector [54]; computing a pixel ratio
defined as:

𝑝𝑖𝑥𝑒𝑙_𝑟𝑎𝑡𝑖𝑜 =
∑ℎ_𝑒𝑑𝑔𝑒

𝑖=0 ∑ℎ_𝑒𝑑𝑔𝑒
𝑗=0 𝑝_𝑒𝑑𝑔𝑒𝑖,𝑗

ℎ_𝑒𝑑𝑔𝑒 ⋅ 𝑤_𝑒𝑑𝑔𝑒 ⋅ 255 (3.1)

where 𝑝_𝑒𝑑𝑔𝑒, ℎ_𝑒𝑑𝑔𝑒, 𝑤_𝑒𝑑𝑔𝑒 are respectively the pixels, height and weight of the canny
edge detector resulting image. If this ration is smaller than a fixed threshold it means
that the image is too homogeneous (e.g., blurred images, camera malfunctions, something
occluded the camera) and therefore, it is very likely that no information can be extracted.
In order to improve the execution efficiency, whenever an image of this type is passed, the
execution is interrupted and a specific error is sent as response.

Figure 3.2: (a) Preprocess pipeline. (b) Checks done on the input message

After this, if the camera_calibration flag has been declared as true, the image is undis-
torted exploiting OpenCV library and its related camera calibration and undistortion func-
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Figure 3.3: (a) Grey-scale converted input image. (b) Canny edge detector applied to (a)
result. (c) Blurred version of (a). (d) Canny edge detector applied to (c)

tions.

Figure 3.4: (a) Input image. (b) Undistorted version of (a)

Before requesting the execution of the body pose estimator, a rapid check on the action
requested is done in order to verify which components are present in it and the correctness
of the request itself. In fact, it is possible that some of the requested actions are misspelled,
do not exist, or have not been specified at all. If no actions have been defined correctly,
the execution will be interrupted and a specific error will be sent as response, otherwise
the error message will be sent along with results of correctly requested components. After
this, a request to the body pose estimation component is done.

In the body pose estimation component, a version of Alphapose API slightly modified
by me is used to estimate people’s pose as a set of keypoints. Specifically, the 68-keypoint
model trained on halpe dataset [99] has been utilized due to its balance between perfor-
mance and result finesse. As result, a set of keypoints (defined by image coordinates) and
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confidences are given for each person detected.

Figure 3.5: (a) Input image. (b) Undistorted version of (a)

Figure 3.6: Two example of the Alphapose result. Images taken from COCO dataset

If at least one person has been detected, keypoints with a confidence smaller than some
fixed thresholds are “removed” by replacing their values and confidences with fixed ones
(full body, head and hands have different thresholds). Then, full body, head, left and right
hands bounding boxes are defined. In this process, firstly a height and width padding are
computed as in algorithm 12:

The height padding is defined as the distance found as the Frobenius norm of left or
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Algorithm 1: Height padding
if 𝑐𝑜𝑛𝑓[𝑠_𝑙] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 and 𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑙] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 then

ℎ_𝑝𝑎𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑛𝑜𝑟𝑚([𝑘𝑝[ℎ𝑖𝑝_𝑙][𝑥], 𝑘𝑝[ℎ𝑖𝑝_𝑙][𝑦]] − [𝑘𝑝[𝑠_𝑙][𝑥], 𝑘𝑝[𝑠_𝑙][𝑦]]))
else if 𝑐𝑜𝑛𝑓[𝑠_𝑟] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 and 𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑟] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 then

ℎ_𝑝𝑎𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑛𝑜𝑟𝑚([𝑘𝑝[ℎ𝑖𝑝_𝑟][𝑥], 𝑘𝑝[ℎ𝑖𝑝_𝑟][𝑦]] − [𝑘𝑝[𝑠_𝑟][𝑥], 𝑘𝑝[𝑠_𝑟][𝑦]]))
else

if 𝑤_𝑖𝑚𝑎𝑔𝑒 > ℎ_𝑖𝑚𝑎𝑔𝑒 then
ℎ_𝑝𝑎𝑑 = 𝑖𝑚𝑎𝑔𝑒_𝑟𝑎𝑡𝑖𝑜 ⋅ ℎ_𝑖𝑚𝑎𝑔𝑒

else
ℎ_𝑝𝑎𝑑 = 𝑖𝑚𝑎𝑔𝑒_𝑟𝑎𝑡𝑖𝑜 ⋅ 𝑤_𝑖𝑚𝑎𝑔𝑒

end
end

Algorithm 2:Width padding
if 𝑐𝑜𝑛𝑓[𝑠_𝑙] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 and 𝑐𝑜𝑛𝑓[𝑠_𝑟] > 𝑝_𝑐𝑜𝑛𝑓_𝑡ℎ𝑟 then

𝑤_𝑝𝑎𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑛𝑜𝑟𝑚([𝑘𝑝[𝑠_𝑙][𝑥], 𝑘𝑝[𝑠_𝑙][𝑦]] − [𝑘𝑝[𝑠_𝑟][𝑥], 𝑘𝑝[𝑠_𝑟][𝑦]]))
else

if 𝑤_𝑖𝑚𝑎𝑔𝑒 > ℎ_𝑖𝑚𝑎𝑔𝑒 then
𝑤_𝑝𝑎𝑑 = 𝑖𝑚𝑎𝑔𝑒_𝑟𝑎𝑡𝑖𝑜 ⋅ ℎ_𝑖𝑚𝑎𝑔𝑒

else
𝑤_𝑝𝑎𝑑 = 𝑖𝑚𝑎𝑔𝑒_𝑟𝑎𝑡𝑖𝑜 ⋅ 𝑤_𝑖𝑚𝑎𝑔𝑒

end
end

right shoulder-hip keypoints coordinates. If both keypoints of a side have been flagged
as “removed” their couple will not be considered. If both sides cannot be considered,
a fraction of the smaller image dimension will be used instead. The width padding is
defined analogously as the previous one but considering as the only couple, the left and
right shoulders keypoints coordinates. By doing so, the padding will be related with the
body dimension of each person. A fraction of these paddings will be used to adjust the
dimensions of the bounding boxes.

The method for finding each bounding box is the same, but keypoints and the amount
of padding used will vary depending on their type. Each bounding box will be initially
defined as the rectangle which left-upper corner is the keypoint with minimum coordinates
values among the ones considered for that box type and the right-lower corner as the one
with maximum coordinates values (“removed” keypoints will not be considered). The
sizes of the boxes are eventually increased by a fraction of the padding found before.
To prevent this increase from causing the boxes to exceed the size of the image, boxes
dimensions are checked in relation to the ones of the image and modified so to not exceed
them.
In the end, the number of people detected, keypoints-confidences and bounding boxes are
sent back as response along with error descriptions if any occurred.
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Figure 3.7: Bounding box definition. (a) before padding. (b) after padding

Figure 3.8: Bounding box definition. (a) before padding. (b) after padding

3.3.1.3 Head Orientation

Oculesics have great impact in nonverbal communication, indeed in 1.7.4 has been re-
ported that the eyes are particularly useful in establish mental and emotional states of
others and that they have been widely implicated as social cueing mechanisms facilitating
nonverbal communication. However, a direct visual analysis of eyes is not always feasi-
ble. Indeed, eyes are very small and even smaller are the part of them that may express
features (e.g., direction and pupil dilation). In relation to the project, the robot would have
to be placed very close to the person that have to be analyzed, reducing significantly the
number of possible uses of the system. Additionally, this will impose a strong starting
proxemic cue related to the person itself. This is not detectable by the system and there-
fore, it can cause unpredictable results. For these reasons, a simplification of that cue has
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been considered for the project. Having a greater dimension, typically follows the eye or
even just the direction of interest, head orientation can be detected in a more reliable way
and in more general situations, therefore, it has been considered for the project.

Head orientation block has the role to estimate the yaw, pith, and roll of heads detected
by the preprocess component. To do so, it requires the input image, the keypoints and the
bounding boxes previously extracted.

Figure 3.9: Yaw Pitch and Roll
rotations

The estimation of those angles is entrusted to the
Hopenet model described in section 2.3. However,
during tests this model highlighted some difficulty to
make constant and correct estimations in situations in
which the head was too much turned (an estimation
of these limits can be similar to the ones of the BIWI
dataset [98]: ±75∘yaw, ±60∘pitch, ±50∘roll). There-
fore, it was required to impose some limitation in its
use exploiting only information extracted until the head
orientation estimation. As a result, four checks based
solely on the head’s key points have been developed.
By doing so, not only was it possible to avoid employ-
ing the model in problematic circumstances, but it also
made possible to extract some useful data without directly estimating the orientation. The
checks define if portions of the head related with the face are visible enough to proceed
with the orientation estimation. The checks are reported in algorithm 3456:

Algorithm 3: Head Horizontal Visibility
if (𝑐𝑜𝑛𝑓[𝑒𝑦𝑒_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[𝑒𝑎𝑟_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) or (𝑐𝑜𝑛𝑓[𝑒𝑦𝑒_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”
and 𝑐𝑜𝑛𝑓[𝑒𝑎𝑟_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) then
return 𝑇 𝑟𝑢𝑒

end
return 𝐹𝑎𝑙𝑠𝑒

Algorithm 4: Head Vertical Visibility
if 𝑐𝑜𝑛𝑓[𝑛𝑜𝑠𝑒] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[ℎ𝑒𝑎𝑑] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” then

return 𝑇 𝑟𝑢𝑒
end
return 𝐹𝑎𝑙𝑠𝑒

Algorithm 5: Is Head Front
if ((𝑐𝑜𝑛𝑓[𝑒𝑎𝑟_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[𝑒𝑎𝑟_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) and
(𝑘𝑝[𝑒𝑎𝑟_𝑙][𝑥] > 𝑘𝑝[𝑒𝑎𝑟_𝑟][𝑥])) or ((𝑐𝑜𝑛𝑓[𝑒𝑦𝑒_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and
𝑐𝑜𝑛𝑓[𝑒𝑦𝑒_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) and (𝑘𝑝[𝑒𝑦𝑒_𝑙][𝑥] > 𝑘𝑝[𝑒𝑦𝑒_𝑟][𝑥])) then
return 𝑇 𝑟𝑢𝑒

end
return 𝐹𝑎𝑙𝑠𝑒
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Algorithm 6: Face Keypoints Coherency
𝑒𝑦𝑒_𝑙_𝑡𝑜_ℎ𝑒𝑎𝑑 = ((𝑘𝑝[𝑒𝑦𝑒_𝑙][𝑥] − 𝑘𝑝[ℎ𝑒𝑎𝑑][𝑥])2 + (𝑘𝑝[𝑒𝑦𝑒_𝑙][𝑦] − 𝑘𝑝[ℎ𝑒𝑎𝑑][𝑦])2)
𝑒𝑦𝑒_𝑟_𝑡𝑜_ℎ𝑒𝑎𝑑 = ((𝑘𝑝[𝑒𝑦𝑒_𝑟][𝑥] − 𝑘𝑝[ℎ𝑒𝑎𝑑][𝑥])2 + (𝑘𝑝[𝑒𝑦𝑒_𝑟][𝑦] − 𝑘𝑝[ℎ𝑒𝑎𝑑][𝑦])2)
𝑒𝑦𝑒_𝑙_𝑡𝑜_𝑒𝑦𝑒_𝑟 = ((𝑘𝑝[𝑒𝑦𝑒_𝑙][𝑥] − 𝑘𝑝[𝑒𝑦𝑒_𝑟][𝑥])2 + (𝑘𝑝[𝑒𝑦𝑒_𝑙][𝑦] − 𝑘𝑝[𝑒𝑦𝑒_𝑟][𝑦])2)
if 𝑒𝑦𝑒_𝑙_𝑡𝑜_ℎ𝑒𝑎𝑑 < 𝑒𝑦𝑒_𝑟_𝑡𝑜_ℎ𝑒𝑎𝑑 then

𝑟𝑒𝑓_𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑦𝑒_𝑙_𝑡𝑜_ℎ𝑒𝑎𝑑/𝑣𝑎𝑙𝑢𝑒
else

𝑒𝑦𝑒_𝑟_𝑡𝑜_ℎ𝑒𝑎𝑑/𝑣𝑎𝑙𝑢𝑒
end
if 𝑒𝑦𝑒_𝑙_𝑡𝑜_𝑒𝑦𝑒_𝑟 < 𝑟𝑒𝑓_𝑣𝑎𝑙𝑢𝑒 then

return 𝐹𝑎𝑙𝑠𝑒
end
return 𝑇 𝑟𝑢𝑒

The first two are very coarse controls that only ensure that specific vertical and horizontal
portions of the face are visible by checking that couple of keypoints have not been flagged
as “removed”. If a person’s keypoints do not pass those checks, the head orientation
estimation will not be done on that person and its result will contain the value used to
indicate “removed”. The third defines if the head is facing or is showing a back related
part of it to the camera. The fourth was needed because Alphapose, as other body pose
estimators, tries to define the position of keypoints that are not directly visible, therefore,
it can make the other checks unreliable. This happens when the head yaw is near ±90∘. In
this particular positions, eyes’ keypoints will be very close to each other, for this reason,
it can be used as a clue of the presence of this limit case. To avoid that this close distance
derives from the dimension of the head (e.g., a far person with respect to the robot), instead
of the presence of those particular poses, a fraction of that distance is compared with the
greater one between left eye-head and right eye-head. The head orientation estimation
will not be performed on a person whose keypoints fail the last two tests, and the result
will include a value used to indicate “back”.

The model used to estimate head orientation needs as input, images with only a single
head. For this reason, starting from the input image, the latter are found by using the head
bounding boxes provided by the preprocess module. In the end the cropped images are
given to the model and the yaw, pitch and roll for each of them are retrieved. The response
will contain both results of heads processed by the model and the ones blocked by checks.

3.3.1.4 Body Orientation

As reported in 1.7.1, body orientation can express plentiful nonverbal information about
engagement whether it is about initiating or maintaining an interaction. Also, as delineated
in 1.9.1 it can be a fundamental cue in collaborative interactions. For these reasons, body
orientation has been considered in this project.

Body orientation block has the role to estimate the angle of people’s body with respect
to the robot. To do so, it requires the input image, the keypoints and the bounding boxes

71



Figure 3.10: Visual plotting of Head Orientation module results. (a) heads reference frame
rotated by the estimated angles (x pointing to right, y to the ground, z out of the screen)
(b) 3D cubes to enhance the perception of the angles estimated. Yaw: green, Pitch: red,
Roll: blue

extracted by the preprocess component.
The estimation of this orientation is entrusted to the MEBOWmodel described in sec-

tion 2.2.1. The orientation estimated is considered as defined by the authors when taken
as single component result, while its value is redefined during the aggregation. The ori-
entation used in MEBOW is the angle between the projection vector of the chest facing
direction (𝐶) onto the y-z plane and the direction of the axis z, where the x, y, z vectors
are defined by the image plane and the orientation of the camera. Given a 3-D human
pose, the chest facing direction 𝐶 can be computed by 𝐶 = 𝑇 × 𝑆, where 𝑆 is the shoulder
direction defined by the vector from the right shoulder to the left one, and 𝑇 is the torso di-
rection defined by the vector from the midpoint of the left- and right-shoulder joints to the
midpoint of the left- and right-hip joints. MEBOW provides as result the most probable
along 72 bins. The distribution of those is pictured in Figure 2.7. During tests, this model
revealed some estimation issues when working with bodies observed from behind (e.g.,
from 270∘to 0∘and from 0∘to 90∘), returning completely incorrect results in some instances.
On the other hand, when bodies were front-facing the camera, the results appeared to be
consistently accurate and very fine-grained. For this reason, as done for the head orienta-
tionmodule, some checks have been used to avoid using themodel in problematic situation
while still extracting information that may be useful for the final aggregation. The checks
define if portions of the body are visible enough to proceed with the orientation estimation.
The checks are reported in algorithm 789:
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Algorithm 7: Upper Body Vertical Visibility
if (𝑐𝑜𝑛𝑓[𝑠_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) or (𝑐𝑜𝑛𝑓[𝑠_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and
𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) then
return 𝑇 𝑟𝑢𝑒

end
return 𝐹𝑎𝑙𝑠𝑒

Algorithm 8: Is Body Front
if ((𝑐𝑜𝑛𝑓[𝑠_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[𝑠_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) and (𝑘𝑝[𝑠_𝑙][𝑥] > 𝑘𝑝[𝑠_𝑟][𝑥])) or
((𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[ℎ𝑖𝑝_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) and
(𝑘𝑝[ℎ𝑖𝑝_𝑙][𝑥] > 𝑘𝑝[ℎ𝑖𝑝_𝑟][𝑥])) then
return 𝑇 𝑟𝑢𝑒

end
return 𝐹𝑎𝑙𝑠𝑒

Algorithm 9: Are Shoulder Keypoints Superimposed
if (𝑐𝑜𝑛𝑓[𝑠_𝑙] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑” and 𝑐𝑜𝑛𝑓[𝑠_𝑟] ≠ “𝑟𝑒𝑚𝑜𝑣𝑒𝑑”) and (𝑘𝑝[𝑠_𝑙][𝑥] == 𝑘𝑝[𝑠_𝑟][𝑥] and
𝑘𝑝[𝑠_𝑙][𝑦] == 𝑘𝑝[𝑠_𝑟][𝑦]) then
return 𝑇 𝑟𝑢𝑒

end
return 𝐹𝑎𝑙𝑠𝑒

Figure 3.11: Body orientation definition used in MEBOW. Image taken from the paper
[313]

The first ensure that the left or right side of the torso frontal view is visible to the camera.
The body orientation estimation will not be performed on that person and the result will
contain the value used to indicate “removed” if the keypoints do not pass that check. The
second specifies whether the camera is viewing the body from the front or back. The third
step determines whether the left and right shoulder keypoints are completely overlapping.
This check had to be done because Alphapose can estimate keypoints of parts even when
they are not directly visible. However, when this happen for shoulders and hips, very
often is one of them that occlude its counterpart, therefore, the keypoint estimated but not
directly seen is superimposed to the one of the opposite side. In these situations, the body
orientation is very close to the limits imposed before but will pass the first two checks
easily. If a person’s body do not pass the latter check, his body orientation estimation will
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not be done and his result will contain the value used to indicate “back”.
The model used for body orientation estimation, needs as input, images with a single

person. For this reason, starting from the input image, they are obtained by cropping
it using the full body bounding boxes found from the preprocess module, they are then
resized so to be compatible with the model, and in the end passed to the model itself. The
result is multiplied by 5 to obtain the information in degrees.

The results of each person, whether deriving from the model or from the controls, are
ultimately sent back as response.

Figure 3.12: Body Orientation results. (a) 215∘. (b) 165∘. (c) 200∘

3.3.1.5 Pose Classification

Nonverbal cues derived from a person’s posture, as stated in 1.7.1, can reveal a great
deal about a person’s feelings and attitudes. Additionally, they can tell much about social
relationships and the structure of social interaction. From all the possible information in-
terpretable, the body openness is directly connected to engagement. In fact, this particular
nonverbal cue can unconsciously influence the perception and will of a person, making
it more or less prone to start, continue or even end a conversation with the observed per-
son. Following 1.7.1 and [229], different body parts can express this cue, among those
the upper body and hands have been considered in this project.

A specific dataset for each type of classification proposed did not existed. For this
reason, custom datasets have been built putting together others found online and by anno-
tating multipurpose datasets as COCO [193] and Open Images [183][34][236]. However,
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because there was not an infinite amount of time available for the realization of those
four, it was possible to create custom datasets that only contained sufficient data to train
decent models. Having few data, it was decided to use pre-existing models and fine-tuning
them on the custom datasets created. To choose which one to utilize, their performance
on ImageNet-1K have been analyzed in relation with the number of parameters used. The
models that were taken into consideration had pre-trained weights that could be found in
Pytorch hub. In the end ConvNext [199] tiny was chosen.

Training was done using Pytorch, for this reason it was possible to use its data trans-
forms to implement data augmentation. The data transform composed for training ran-
domly change the brightness, contrast and saturation of the image (ColorJitter with 0.3
to each cited parameters), then it crops a random portion of that and resize it to a given
size (RandomResizedCrop, scale is the RCS low hyperparameter studied), then, with a
given probability (0.5) it does a horizontal flip and in the end, it normalizes the image.
The one used for validation instead only resize, crops at the center so to have the correct
dimensions and then it normalizes the input image.

Additionally, because balancing the datasets’ classes would have excluded some ex-
amples, it was utilized the option to specify weights for each class. By doing so examples
of a class with greater weight will be considered more valuable to the model. The weights
were computed as:

𝑤𝑒𝑖𝑔ℎ𝑡_𝑐𝑙𝑎𝑠𝑠𝑛 = 1 − 𝑛𝑢𝑚_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠_𝑐𝑙𝑎𝑠𝑠𝑛
𝑛𝑢𝑚_𝑡𝑜𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 (3.2)

For every classification type, a hyperparameter study has been conducted. These stud-
ies have been done using a library called optuna [6] and exploiting its Tree-structured
Parzen Estimator (TPE) algorithm [37][36] for sampling the hyperparameter to use in each
trial. That sampler is based on independent sampling. On each trial, for each parameter,
TPE fits one Gaussian Mixture Model (GMM) 𝑙(𝑥) to the set of parameter values asso-
ciated with the best objective values, and another GMM 𝑔(𝑥) to the remaining parameter
values. It chooses the parameter value 𝑥 that maximizes the ratio 𝑙(𝑥)/𝑔(𝑥).

The first study conducted pointed to minimize the validation loss across the trials, but
because the model tried overfitted and diverged very rapidly with that dataset, the results
obtained seemed not to improve the starting situation. Then it was tried to maximize the
accuracy across trials obtaining some improvements, therefore, it was decided to continue
in this way also for the remaining models. The initial study consisted of 150 trials, each of
which utilized early stopping and consisted of no more than 100 epochs of training. In the
subsequent studies, fewer trials were performed, the searching space was reduced, and the
training settings were altered due to the fact that a study of the previous kind took more
than 72 hours to complete, and the machine used for this task was available only during
non-working hours. The other studies consisted of 100 trials with trainings of no more
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than 50 epochs and early stopping. For each trial, the loss function was cross-entropy.
The hyperparameters composing the searching space can be seen in Tables 3.13.2.

Values
Learning Rate [1e-5, 1e-1]
Optimizer Adam, SGD
Batch_size 16, 32, 64

Rc Scale Lower 0.5, 0.6, 0.7, 0.8, 0.9

Table 3.1: Hyperparameters composing
the searching space for the study body
upstanding, sitting, lying

Values
Learning Rate [1e-5, 1e-1]
Optimizer Adam, SGD
Batch_size 32, 64

Rc Scale Lower 0.08, 0.5, 0.9

Table 3.2: Hyperparameters composing
the searching space for the studies of
body open, closed; hands open, closed;
hands palm, back

The hyperparameters found were then used in the final training of their respectively
models. Each training was composed by a maximum of 150 epochs and a patience of 50
epochs.

Body classification: upstanding, sitting, lying

For this classifier, different datasets have been merged together. IASLAB-RGBD Fallen
Person Static Dataset [17] contains 360 images with lying people. Freiburg Sitting peo-
ple dataset [224] constitutes a dataset with 200 images of six different people sitting in
multiple viewpoints and in a wide range of orientations. E-FPDS dataset [185] consists
of 6982 images, with a total of 5023 falls and 2275 non falls corresponding to people in
conventional situations (standing up, sitting, lying on the sofa or bed, walking, etc); from
it only the one containing fallen people have been considered. COCO dataset [193] is
a large-scale object detection, segmentation, and captioning dataset with 123287 images
and 886284 objects instances. From it, 165834 images have been extracted by cropping
people using their bounding boxes provided in the annotation of the dataset. The images
were then processed by the body orientation estimation module, and because only peo-
ple who were facing the camera were of interest, only those with results between 90∘and
270∘were taken into consideration. Images with width ⋅ height less than 2000 were also not
taken into consideration because it was very difficult to understand them. In the end, their
number was reduced to 62535. COCO provide the dataset in already divided training and
validation splits. The previous process was done on each split without merging them. Af-
ter that, I annotated 10246 images for the training split, classifying 3614 as standing, 1322
as sitting, 100 as lying, and 5210 as unusable. The latter class refers to images for which
I preferred not to assign a class because it was either impossible to do so or the image was
very ambiguous. For the validation split instead, 1747 images have been annotated by me
from which 483 as upstanding, 262 as sitting, 6 as lying, 996 as unusable.

In order to have nearly an 80%/20% division between training and validation split, the
datasets were merged as follows:
Train:

Upstanding: COCO annotated (3614) | TOT = 3614
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Sitting: COCO annotated (1322) + Freiburg test (130) | TOT = 1452
Lying: COCO annotated (100) + E-FPDS train (3822) | TOT = 3922

Validation:

Upstanding: COCO annotated (483) | TOT = 483
Sitting: COCO annotated (262) + Freiburg train (70) | TOT = 332
Lying: COCO annotated (6) + E-FPDS val (762) + IASLAB (360) | TOT = 1128

Results of the hyperparameter study done for this classifier can be found in Figure
3.13 and Table 4.19 with the set used for the final training highlighted. The results of the
training can be found in Figure 3.14.

Figure 3.13: Upstanding-sitting-lying hyperparameter study results. (a) original plot. (b)
plot limited to value > 0.9 ta have a more refined view

Figure 3.14: Upstanding-sitting-lying training results
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Body classification: open, closed

For this classifier, only the COCO dataset has been used. As done previously, from
images of this dataset single person have been cropped, then only picture with person
oriented between 90∘to 270∘(using body orientation module) and having height ⋅ width
> 2000 have been considered. Those have been annotated by me using clues derived
from Chapter 1 and [229] that may indicate an open or closed body pose. In particular
my decision was driven mostly by observing the areas related with the torso and head,
observing if they were occluded in some way by hands and arms. In the end 11476 images
were annotated for the training split from which 2988 were classified as open, 3206 as
closed 5282 as unusable, where the latter class refers to images for which I preferred not
to assign a class because it was either impossible to do so or the imagewas very ambiguous.
For the validation split instead, 2662 images have been annotated from which 670 were
classified as open, 821 as closed and 1171 as unusable.

Figure 3.15: Example of images taken from the various datasets. (a) COCO. (b) IASLAB.
(c) E-FPDS. (d) Freiburg

Results of the hyperparameter study done for this classifier can be found in Figure
3.16 and Table 4.20 with the set used for the final training highlighted. The results of the
training can be found in Figure 3.17.

Hands classification: palm, back

For this and the next classifiers, four datasets have been used. The NUS hand posture
datasets I [238] consists of 10 hand posture classes, 24 sample images per class, which
are captured by varying the position and size of the hand within the image frame. The
NUS hand posture datasets II [239] is a 10 class hand posture dataset in which the pos-
tures are shot in and around National University of Singapore (NUS), against complex
natural backgrounds, with various hand shapes and sizes; the postures are performed by
40 subjects, with different ethnicities, both males and females and in the age range of 22
to 56 years. MNIST Sign language [300] follows the structure of other MNIST dataset but
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Figure 3.16: Body open-closed hyperparameter study results. (a) original plot. (b) plot
limited to value > 0.75 ta have a more refined view

Figure 3.17: Body open-closed training results

focus on the American sign language letter (24 classes of letters excluding J and Z which
require motion). Open Images is a dataset of 9 million images annotated with image-level
labels, object bounding boxes, object segmentation masks, visual relationships, and local-
ized narratives; it contains a total of 16 million bounding boxes for 600 object classes on
1.9 million images.

Because the first three datasets include clearly defined signs made with hands, it was
possible to map those to a particular class. In this case the mappings can be found in Table
3.3 for NUS I, II and MNIST signs. MNIST sign language dataset was made by cropping
and augmenting another dataset that can be found here [210]. For this reason, MNIST
sign language have not be considered in the composition of the validation dataset.

From MNIST sign, 27455 training images could be used, but considering that for each
image of the starting dataset about 50 have been created using data augmentation, only
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a portion of them have been considered in the end. An algorithm has been developed
to avoid the situation in which only poses belonging to the same class would have been
taken into account by sampling a portion of the data. This, first finds out the number of
images belonging to the new class with the smaller number of elements, then it computes
the ratio between that number and the one of each classes. This ratio will be multiplied
to the number of elements of each type of the original MNIST, finding out the number
of elements that will be taken when randomly sampling each of those types. Each image
sampled will be take part of the class defined following the map.

After mapping and sampling there were 2734 palm and 2103 back and 2733 neutral.
The latter was a third class used in an initial approach to the problem, later it was decided
to unify neutral and palm due to their similarity and because early training tests showed
that the problem could be too complex for the amount of data.

From NUS I and II, after following the map 3.3, it was possible to have 1682 images
classified as palm, 0 as back for the training split, 558 palm and 0 back for the validation.

From Open Images instead, example have been retrieved by cropping hands following
the provided bounding box annotations, from which only the ones with width ⋅ height >
2000 were considered. Those have later been classified by me obtaining in the end 717
palm and 1283 back for training, 630 palm and 1451 back for validation (having the lim-
itation to use MNIST only for training it was given priority to the validation set).
Train:

Palm: Open Images (717) + MNIST s (5467) + NUS I,II train (1682) | TOT = 7866
Back: Open Images (1283) + MNIST s (2103) + NUS I,II train (0) | TOT = 3386

Validation:

Palm: Open Images (630) + NUS I,II val (558) – TOT = 1188
Back: Open Images (1451) + NUS I,II val (0) – TOT = 1451

Results of the hyperparameter study done for this classifier can be found in Figure
3.18 and Table 4.21 with the set used for the final training highlighted. The results of the
training can be found in Figure 3.19.

Hands class: open, closed

For this classifier, the same datasets as 3.3.1.5 have been used, but defining different
maps than can be found in Table 3.3. From NUS I & II, 372 image were mapped as open
and 1309 as closed for the training split, 124 open and 435 closed for validation. From
MNIST 2214 images were classified as open, 2878 as closed and 2879 as partially closed.
The latter was a third class used in an initial approach to the problem, later it was decided
to unify closed and partially closed due to their similarity and because early training tests
showed that the problem could be too complex for the amount of data.
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Algorithm 10: Compute element to sample for each class
𝑛𝑢𝑚_𝑜𝑝𝑒𝑛, 𝑛𝑢𝑚_𝑐𝑙𝑜𝑠𝑒𝑑, 𝑛𝑢𝑚_𝑝𝑎𝑙𝑚, 𝑛𝑢𝑚_𝑏𝑎𝑐𝑘 = 0
foreach 𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do

if 𝑚𝑎𝑝_𝑂𝐶[𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠] == “𝑜𝑝𝑒𝑛” then
𝑛𝑢𝑚_𝑜𝑝𝑒𝑛 += 𝑛𝑢𝑚_𝑒𝑙𝑒(𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠)

else
𝑛𝑢𝑚_𝑐𝑙𝑜𝑠𝑒𝑑 += 𝑛𝑢𝑚_𝑒𝑙𝑒(𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠)

end
if 𝑚𝑎𝑝_𝑃𝐵[𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠] == “𝑝𝑎𝑙𝑚” then

𝑛𝑢𝑚_𝑝𝑎𝑙𝑚 += 𝑛𝑢𝑚_𝑒𝑙𝑒(𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠)
else

𝑛𝑢𝑚_𝑏𝑎𝑐𝑘 += 𝑛𝑢𝑚_𝑒𝑙𝑒(𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠)
end

end

𝑛𝑢𝑚_𝑚𝑖𝑛_𝑂𝐶 = 𝑚𝑖𝑛(𝑛𝑢𝑚_𝑜𝑝𝑒𝑛, 𝑛𝑢𝑚_𝑐𝑙𝑜𝑠𝑒𝑑)
𝑛𝑢𝑚_𝑚𝑖𝑛_𝑃𝐵 = 𝑚𝑖𝑛(𝑛𝑢𝑚_𝑝𝑎𝑙𝑚, 𝑛𝑢𝑚_𝑏𝑎𝑐𝑘)
𝑂_𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑢𝑚_𝑚𝑖𝑛_𝑂𝐶/𝑛𝑢𝑚_𝑜𝑝𝑒𝑛
𝐶_𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑢𝑚_𝑚𝑖𝑛_𝑂𝐶/𝑛𝑢𝑚_𝑐𝑙𝑜𝑠𝑒𝑑
𝑃_𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑢𝑚_𝑚𝑖𝑛_𝑃𝐵/𝑛𝑢𝑚_𝑝𝑎𝑙𝑚
𝐵_𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑢𝑚_𝑚𝑖𝑛_𝑃𝐵/𝑛𝑢𝑚_𝑏𝑎𝑐𝑘
foreach 𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do

𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑂𝐶 = 0
𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑃𝐵 = 0
if 𝑚𝑎𝑝_𝑂𝐶[𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠] == “𝑜𝑝𝑒𝑛” then

𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑂𝐶 = 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ⋅ 0_𝑟𝑎𝑡𝑖𝑜
else

𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑂𝐶 = 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ⋅ 𝐶_𝑟𝑎𝑡𝑖𝑜
end

if 𝑚𝑎𝑝_𝑃𝐵[𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠] == “𝑝𝑎𝑙𝑚” then
𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑃𝐵 = 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ⋅ 𝑃_𝑟𝑎𝑡𝑖𝑜

else
𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑃𝐵 = 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠 ⋅ 𝐵_𝑟𝑎𝑡𝑖𝑜

end

𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 = 𝑐𝑜𝑝𝑦(𝑙𝑖𝑠𝑡_𝑓𝑖𝑙𝑒_𝑖𝑛_𝑑𝑖𝑟(𝑖𝑚𝑎𝑔𝑒𝑠_𝑐𝑙𝑎𝑠𝑠_𝑛_𝑝𝑎𝑡ℎ))
for 𝑗 ← 0 to 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑂𝐶 do

𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑜𝑖𝑐𝑒(𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑙𝑖𝑠𝑡)
𝑐𝑜𝑝𝑦_𝑡𝑜_𝑑𝑖𝑟(𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑡𝑟𝑎𝑖𝑛_𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑚_𝑝𝑎𝑡ℎ)
𝑟𝑒𝑚𝑜𝑣𝑒(𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡)

end

for 𝑗 ← 0 to 𝑛𝑢𝑚_𝑜𝑙𝑑_𝑐𝑙𝑎𝑠𝑠_𝑡𝑟𝑎𝑖𝑛_𝑃𝐵 do
𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑜𝑖𝑐𝑒(𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑙𝑖𝑠𝑡)
𝑐𝑜𝑝𝑦_𝑡𝑜_𝑑𝑖𝑟(𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑡𝑟𝑎𝑖𝑛_𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑚_𝑝𝑎𝑡ℎ)
𝑟𝑒𝑚𝑜𝑣𝑒(𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡)

end
end

For what concerns Open Image dataset, the same image used in 3.3.1.5 have been clas-
sified by me obtaining 922 images classified as open and 876 as closed for the training
split, 1173 as open and 959 as closed (having the limitation to useMNIST only for training
it was given priority to the validation set).
Train:

Open: Open Images (922) + MNIST s (2214) + NUS I,II train (372) – TOT = 3508
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Figure 3.18: Hands palm-back hyperparameter study results. (a) original plot. (b) plot
limited to value > 0.75 ta have a more refined view

Figure 3.19: Hands palm-back training results

Closed: Open Images (876) + MNIST s(5757) + NUS I,II train(1309) – TOT=7942
Validation:

Open: Open Images (1173) + NUS I,II train (124) – TOT = 1297
Closed: Open Images (959) + NUS I,II train (435) – TOT = 1394

Results of the hyperparameter study done for this classifier can be found in Figure3.22
and Table 4.22 with the set used for the final training highlighted. The results of the
training can be found in Figure 3.22.
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Figure 3.20: Example of images taken from the various datasets, their size has not been
changed. (a) Open Images. (b) MNIST sign. (c) NUS I & II

Figure 3.21: Hands open-closed hyperparameter study results. (a) original plot. (b) plot
limited to value > 0.75 ta have a more refined view

3.3.1.6 Aggregation

The aggregation module has the role to combine the other component’s results to obtain
a value that indicates the Propensity For Interaction (PFI) of a person. The calculation of
this element needs all previous results, for this reason, if a needed component has not been
requested its result will still be calculated, however it will not be sent in the responses.
The aggregation happens using three different groups of elements: components results
values, components results confidences and aggregation weights. In the latter, three sets
are defined respectively for values, confidences and head orientation. Every set sum to 1.

In the first step of the aggregation module, the components results values are normal-
ized so to have a single value for each element and so that they are between 0 and 1. The
head orientation results are first singularly normalized considering approximately the limit
imposed in that module (±70∘yaw, ±60∘pitch, ±50∘roll) and then they are used to compute
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Figure 3.22: Hands open-closed training results

NUS I MNIST sign
Old class Open-Closed Palm-Back Old class Open-Closed Palm-Back

G1 O P 0 C P
G2 O P 1 O P
G3 O P 2 P D
G4 P P 3 D D
G5 C P 4 C P
G6 P P 5 O D
G7 C P 6 C B
G8 P N 7 C B
G9 P N 8 C P
G10 O N 10 C D

11 C P
NUS II 12 C P

Old class Open-Closed Palm-Back 13 C P
a C P 14 P D
b O P 15 C N
c P P 16 C N
d C P 17 C D
e P N 18 C P
f O N 19 C D
g O N 20 C P
h C P 21 C P
i P N 22 P P
j P P 23 C N

24 C P

Table 3.3: Mapping from old dataset classes to new ones used in this project. O:open,
C:closed, P:partially-closed(only in op)/palm(only in pb), B:back, D:depends(used when
in a category, there was some examples recognizable as one type while others as another
one)

the final value as:

ℎ𝑜_𝑟𝑒𝑠𝑢𝑙𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 1 − ∑ ℎ𝑜_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ⋅ ℎ𝑜_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (3.3)

Body orientation results are firstly modified so to be 0∘when the person is completely
facing the camera and so that by there is no difference in turning clockwise or counter-
clockwise and then it is normalized considering that now the maximum value obtainable
is 90∘. The classification results instead are mapped into fixed values. It will be given a
very low one to results that indicates the absence or impossibility of engagement such as
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closed, back, lying and very high values to the ones that instead may indicates the presence
of it such as open and palm. To the class sitting instead, a value that is nor good nor bad
have been given based on the fact that when seated, the body is constrained and it is more
difficult to make movements with it, therefore influencing the amount of nonverbal infor-
mation expressible. This fact is taken in consideration also by adding to, and decreasing
by, a fixed value respectively the head and body orientation value weights, due to the fact
that the head is more likely to be less constrained than the body and, for this reason, it
could be more expressive in that particular situation. When lying instead, a person’s body
is almost completely constrained and therefore a fixed low value is given to replace the
head and body orientation ones. When a component’s result has not been estimated (e.g.,
the body part in interest was not visible), was flagged as “removed” or its confidence is
lower than the one specified in the aggregation module, the element is flagged as “not
to use” by setting its confidence to a fixed value. Instead, a very low value is used as
the component’s replacement value when it has been flagged as “back”, and at the same
time a very high value is set for its confidence. This has been done on the idea that an
important information is still being expressed but the meaning of that information is that
the component indicates the absence of engagement.

After that, the value weights of elements flagged as “removed” are summed and re-
distributed among all the remaining ones, giving more value to elements with a greater
starting weight.

Algorithm 11: Aggregation module weight re-distribution
if (𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑜𝑠𝑡 > 0) then

foreach 𝑤𝑒𝑖𝑔ℎ𝑡 ∈ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 do
if 𝑤𝑒𝑖𝑔ℎ𝑡 ≠ 𝑛𝑜𝑡_𝑡𝑜_𝑢𝑠𝑒_𝑣𝑎𝑙𝑢𝑒 then

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡/(1 − 𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑜𝑠𝑡)
end

end
end

In the end, the PFI value is computed as the weighted sum of the elements’ value not
flagged as “not to use”, and its confidence as the weighted sum of the elements’ confidence
not flagged as “not to use”.

PFI value and its confidence have to be considered along while interpreting the final
result because the first, having the re-distribution of the weights, define a value between
0 and 1 that define an amount of propensity for interaction given the visible or evaluable
body parts, therefore it can reach great results even with only few computed elements,
while the confidence does not have the re-distribution of the weights and therefore it loses
the ones marked as “not to use” defining a value that gives information about the reliability
of the aggregation, so it would be lowwhen estimations confidences are low but also when
only for a few components were possible to make the estimation.
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Algorithm 12: Aggregation module PFI value and confidence computation
𝑃𝐹𝐼_𝑣𝑎𝑙𝑢𝑒 = 0
𝑃𝐹𝐼_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0
𝑖 = 0
while 𝑖 < 𝑛𝑢𝑚_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do

if 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] ≠ 𝑛𝑜𝑡_𝑡𝑜_𝑢𝑠𝑒_𝑣𝑎𝑙𝑢𝑒 then
𝑃𝐹𝐼_𝑣𝑎𝑙𝑢𝑒 += 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑣𝑎𝑙𝑢𝑒[𝑖] ⋅ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑣𝑎𝑙𝑢𝑒_𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]
if 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] ≠ 𝑏𝑎𝑐𝑘_𝑣𝑎𝑙𝑢𝑒 then

𝑃𝐹𝐼_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 +=
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒[𝑖] ⋅ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]

else
𝑃𝐹𝐼_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 += 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]

end
end
𝑖 += 1

end
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Chapter 4

Tests and Results

During tests, the system worked on a computer with CPU: i7-12700k, GPU: RTX 3080ti
12Gb, RAM: 32Gb (3200MHz). The images retrieved were captured by the stock camera
of a temi V2 (13MP, 120deg FOV) and by a simple smartphone camera (sensor: Sony
IMX 398, 16MP).

Images have been directly captured at a resolution of 640x480 or they were re-scaled
before being given to the system.

In tables, for classifiers’ results, only the first letter of that class has been reported.
Always in them, a lot of abbreviations are used and they stand for: bo: Body Orien-
tation, ho: Head Orientation, usl: Upstanding/Sitting/Lying, boc: Body Open/Closed,
hocl: Hand Open/Closed Left, hpbl: Hand Palm/Back Left, hocr: Hand Open/Closed
Right, hpbr: Hand Palm/Back Right and PFI: Propensity For Interaction. When an esti-
mation/classification has not be done, its value and confidence will be None. In the table
with more than one PFI entries, they refer to different people of the same image in order
from the left to right.

4.1 Individual component detection
The final result of the implemented system depends only on the intermediate data extracted
by the modules. This means that any problem related to one of those may have an impact
on the correctness and reliability of the system itself. Therefore, the first test aims to show
that each implemented component is able to work as defined. In each trial, one component
is tested and the person detected is placed at a distance of 2.5-3m.

In Table 4.1(a) is depicted an image in which all components have been detected in
their positive contribution value. In Tables 4.1(b), 4.4, and 4.5 classifiers module results
have been reported while the one from orientation estimation can be found in Tables 4.2
and 4.3 (angles are expressed in degrees and the conventions used are the same reported
in Chapter 3).

From those, it can be seen that at least in controlled situations like the ones reported, ev-
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ery classifier can infer correctly between its own possible classes and that each orientation
estimator can give acceptable results.

It can be noted that, when one classifier component is detected as having a non-positive
value, the PFI decreases with respect to the one obtained in Table 4.1(a), and that the more
the estimated angle from one of the orientation estimation modules is, the smaller the PFI
will be.

(a) (b)
Value Conf Value Conf

bo 180 0.914 boc c 0.99

ho
y:-5.288
p:-0.755
r:5.749

0.981 PFI 0.862 0.954

usl u 0.999
boc o 0.999
hocl o 0.999
hpbl p 0.636
hocr o 0.999
hpbr p 0.991
PFI 0.979 0.96

Table 4.1: (a) Results with full positive contribution. (b) Body closed posture example

(a) (b)
Value Conf Value Conf

bo 190 0.909 bo 200 0.889
PFI 0.91 0.971 PFI 0.891 0.957

Table 4.2: Body orientation examples

4.2 Generic global test
In this test, two sequences of images extracted from a video recorded by the robot have
been labeled to verify the system’s accuracy. The video was shot when we were testing
the system and the chosen sequences depict respectively a situation where I was trying out
the single modules and one in which up to 4 people were wandering around the room. The
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(a) (b) (c)
Value Conf Value Conf Value Conf

ho
y:-16.757
p:10.148
r:6.948

0.933 ho
y:-28.788
p:11.082
r:5.283

0.938 ho
y:-37.228
p:10.43
r:7.662

0.936

PFI 0.926 0.969 PFI 0.88 0.967 PFI 0.849 0.97

Table 4.3: Head orientation examples

(a) (b)
Value Conf Value Conf

usl s 0.909 usl l 0.889
PFI 0.974 0.915 PFI 0.255 0.869

Table 4.4: Sitting and lying down examples

(a) (b)
Value Conf Value Conf

hpbr b 0.821 hocl c 0.999
PFI 0.968 0.942 PFI 0.97 0.967

Table 4.5: (a) Example of hand back. (b) Example of hand closed

first case was chosen because it represents the optimal scenario but also contains situations
in which I was discussing or interacting with colleagues out of the robot’s field of view.
The second sequence instead, was chosen because it represents a generic scenario in which
people do not remain still and therefore their pose could be more natural and particular
situations as person-to-person occlusionmay occur. The frames labeled are 652 (334+318)
and were taken every 0.5 seconds so to recordmore than 2 and a half minutes per sequence,
but because one label may be given for each person in each frame, the number of labels
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for a single component may be greater than the number of frames.
Because I am the one that labeled all the images and I am not an expert in the nonverbal

communication field, the test has the objective of providing data to highlight the strengths
or weaknesses of the system components more than showing that the final results are good.
However even the PFI has been labeled and therefore its accuracy is provided, but, that
data has to be considered with in mind the assumption that it may be inflated by a bias
derived from the fact that I built the system and for this reason, the reasoning used during
the PFI labeling procedure could be similar to the basic idea of the system itself. In the
labeling procedure, I attributed discrete values for each body part of interest. For the ones
related to classifier modules, it was simply used “0” to sign the positive class and “1” for
the negative (0,1,2 for usl). For the orientations and PFI modules, discrete maps have been
defined considering the value obtained during some tests. The label “4” has been used to
indicate the impossibility of labeling that part because it was occluded or too blurred or
even when it was too ambiguous to decide with enough certainty. All the labels’ maps
have been reported in Table 4.6(a).

Component
total labels

Labels - results
matches

Accuracy
(%) Label: 0 Label: 1 Label: 2

bo 873 726 83.16 bo [165∘, 195∘] [120∘, 160∘) or
(195∘, 240∘]

val <120∘or
val >240∘or
val = None

ho 817 609 74.54 ho [-20∘, 20∘] [-70∘, -20∘) or
(20∘, 70∘]

val <-70∘or
val >70∘or
val = None

usl 1030 988 95.92 usl u s l
boc 680 624 91.76 boc o c -
hocl 526 332 63.12 hocl o c -
hocr 544 368 67.65 hocr o c -
hpbl 567 191 33.69 hpbl p b -
hpbr 648 251 38.73 hpbr p b -
PFI 855 769 89.94 PFI val ≥ 0.7 and

conf ≥ 0.7
val < 0.7 and
conf < 0.7 -

(a) (b)

Table 4.6: (a) Generic global test label maps. (b) Results generic global test

The result of the test can be found in Table 4.6(b). All components but the ones related
to hands have performed well, with the boc and usl classifiers performing equal or even
better than what obtained on the validation set (usl_val 96.1% vs usl_test 95.92% and
boc_val 84.3% vs boc_test 91.76%). The results obtained by the orientationmodules seem
good having respectively around 83% and 74% accuracy for body and head, but they may
have been influenced both positively and negatively by the coarse re-mapping used. The
hands’ classifiers instead, have performed poorly giving the opportunity to discuss what
could be wrong with them. Some elements may lead us to think that the problem could
be the dataset used. Firstly, the results obtained from the training procedure highlight
a divergent behavior on the validation set that could be caused by the model’s inability
to generalize using the training data provided to it. Secondly, there is a not negligible
difference in the results when the samemodel is applied to the right or left hand (about 5%),
which may be caused by the unbalanced presence of examples of one of those types (even
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if it was actually used the RandomHorizontalFlip to try to avoid this problem). Thirdly,
the results of the pb classifier are so poor (left: 33.69% right: 38.73%) that they not only
may indicate the model’s inability to generalize from the training data but also that actually
the model may have learned to distinguish two completely different things with respect
to the palm-back categories. Additionally, the results may have been influenced by the
labeling process used for this test. In fact, it was not easy to understand a small body part
as a hand in the images provided, because their resolution after the undistortion process
was only 379x329, therefore some labeling errors may have occurred.

Even if the hands’ classifiers performed poorly, the PFI results have not been influenced
so much because of the small importance given to them during the aggregation. Obtaining
an accuracy of around 90%, in general, using the threshold proposed in Table 4.6(a) for
the PFI, the system seems to be at least usable even in the current implementation.

4.3 System limitations

4.3.1 Body and head occlusions
The system is quite robust to occlusions and can manage well the absence of almost all
body parts of interest. However, during tests, some particular behavior related to head or
body occlusion have been found.

Regarding the head, the normal behavior of the system in situations in which it is not
visible because, for example, it is out of the robot’s field of view or is occluded by some-
thing, would be to consider it as something flagged as “removed”. Instead, sometimes,
due to the presence of even a little portion of the head or neck, the head is still detected,
or at least the pose estimation modules infer the head keypoints even without being able
to see it directly as shown in Table 4.7. However, this problem has been encountered only
when the head is heavily occluded but a recognizable portion of it (even a very small one)
is quite visible and may be solved by tuning the head keypoints threshold or by utilizing
another pose estimation model.

While the head may figure as not detected, the body cannot, because the system will
define as body the largest group of body parts of the same person. In Table 4.8 it can be
noticed that the body orientation estimation is done even when a small portion of the torso
is visible, and therefore, the keypoints have passed all visibility checks defined. Indeed, by
plotting the keypoints estimated during the preprocess as depicted in Table 4.9, some body
parts occluded by the chair are still present. However, in Table 4.9(b), while the keypoints
around the heap have been plotted, their confidences were too low to be considered and for
this reason, the bounding box defined during the preprocess does not include that portion.
Always from Table 4.8, it can be seen that while a partial occlusion of the body allows
safe estimations, an almost total obscure of it, can bring unexpected results. This situation
mostly appears when a great portion of the body is occluded without the possibility to see
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the extrema portion of itself and in those cases, the results will report a low PFI value or
confidence. The great variation in PFI is given by the incorrect attribution of the class lying
and by all the limitations imposed when that particular pose is detected. This erroneous
prediction may be caused by the data used for the training, in fact, it may be the case that
among all the examples, a great portion of the ones that depict only partially the body, they
are labeled as lying. Additionally, it has to be considered that without depth information,
when only the upper part of the body is visible, someone lying down in a vertical position
it may appear similar to one standing, moreover when context information retrievable in
the image is limited because of a tight bounding box. A way to avoid this may be to define
another check exploiting body keypoints and their confidence, from the fact that the more
a keypoint has been “guessed” because not directly visible, the smaller its confidence
should be.

(a) (b)

Table 4.7: Examples of scenarios with occluded head

(a) (b)
Value Conf Value Conf

usl l 0.717 usl u 0.717
PFI 0.255 0.866 PFI 0.958 0.916

Table 4.8: Examples of scenarios with occluded body

4.3.2 PFI fluctuation
Another strange behavior encountered during tests is the fluctuation of the PFI value in
consecutive frames as shown in Table 4.10. This peculiarity has been detected only when
the person is in an ambiguous pose as in Table 4.10 or when he is at a distance of around
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Table 4.9: Pose estimation on the same images of Table 4.8

4.5m and more. The first case has been analyzed previously, on the second instead, very
few things can be said. In fact, at such a distance is quite understandable that at the current
resolution, orientation modules can give coarser results and have less consistency, and that
everything which regards hands may be less accurate due to their small dimension. To
solve this problem, increasing the resolution may be an option but by doing so, the weight
of each message will increase and may cause latency in requests and responses. Another
way could be to vary the body parts threshold according to the dimension of the bounding
boxes but if not done in the appropriate way, this may lead to the appearance of other
strange behavior and unpredictable results in particular situations.

(a) (b)
Value Confidence Value Confidence

PFI 0.039 0.751 PFI 0.865 0.843

Table 4.10: Examples of a an ambiguous situation

4.3.3 Person to person occlusion
A limitation inherited from the use of the body pose estimator exploited in the system is
the inaccurate detection of people when they are overlapping. As it can be seen in Table
4.11, people are distinct as long as there is no clear overlap, but when the latter happens,
one of them may not be detected or what will be given as result is the composition of the
two body as one. However, for it to occurs, is needed an almost complete superimposition
of the bodies or one of them has to have some body parts not visible and the other has to
overlap the same parts on the first body. Because the situation is very specific, the problem
does not occur often, and even when it may happen, most of the time it can work properly
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as shown in Tables 4.12, but still, it has to be considered because the system may be used
in a crowded situation. Unfortunately, because the problem derives from the body pose
detection, the only way to avoid this problem is to use a different model for the same task.

(a) (b) (c)
Value Confidence Value Confidence Value Confidence

PFI 0.836 0.728 PFI 1 0.494 PFI 0.714 0.595
PFI 0.454 0.935 PFI 0.385 0.698

PFI 0.929 0.948

Table 4.11: Examples in which problem related to person to person occlusion appeared

(a) (b) (c)
Value Confidence Value Confidence Value Confidence

PFI 0.522 0.429 PFI 0.775 0.592 PFI 0.806 0.74
PFI 0.398 0.798 PFI 0.766 0.842 PFI 0.717 0.593

PFI 0.889 0.665
PFI 0.898 0.647

Table 4.12: Examples in which problems related to person to person occlusion may have
appeared but they did not

4.3.4 Currently Implementation
The system background idea derives from a simplification of what someone can analyze
knowing some nonverbal communication concepts, but in the actual implementation, an
important aspect is not exploited, or at least its implementation is still too coarse. Indeed,
at this moment, the system does not consider time, it takes every single frame and the
result obtained refers only to that. This may cause incorrect PFI value, or at least, results
that may differ from what even a common person may have guessed. For example, in
Table 4.13 the PFI value and confidence are high because each component (but the pitch)
has been detected as having a positive contribution value at least in that precise frame. It
may be the case that the person was ready for an interaction with the robot, but something
happened, and his attention changed to something else, showing this by a great tilt of the
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head. In particular situations, if this will bring the robot to start the interaction with the
person, it may cause another change of focus in the person and if the initial situation was
a dangerous one, the second may be even more because the robot may cause a distraction.
Obviously, we are talking of a very specific situation that may appear only if the robot is
inserted in specific contexts, but it highlights the concept. An improvement, in this case,
may come from the introduction of something that considers intermediate results over a
short amount of time.

Value Confidence
bo 180 0.903

ho
y:-4.395
p:25.51
r:3.271

0.924

usl u 0.999
boc o 0.999
hocl o 0.941
hpbl p 0.809
hocr o 0.99
hpbr p 0.786
PFI 0.955 0.942

Table 4.13: Example of a particular situation where even if almost all the component give
positive contribution and therefore there is a high PFI, it would be the case to not interact
with that person

4.4 Runtime Analysis

4.4.1 Individual Components
In this test, runtimes of individual components are reported. The trials aim to show the
time spent by every single component, for this reason, the retrieved execution times are not
relative to the exact module used in the final system, but only to those parts that actually
compute their results, therefore a simplified version of the system has been used.

For this test 20 trials have been considered. Each of them used the simplified version of
the system on an image. Each one of them has the same person repeated several times. The
person used allows the detection of all his body parts. The runtimes information registered
for each component and for each person detected were finally averaged. The results can
be seen in Table 4.14 and a pie chart that highlights the execution time in percentage with
respect to the total employed is shown in Table 4.15(a).

The situation is pretty clear. Preprocess and body orientation are the most time expen-
sive components among all others, taking together more than 70% of the total registered.
However, preprocess is done only one time at the start of the pipeline, therefore, when
more people are detectable, its total runtime remains quite unaltered. An example of this
can be seen in Table 4.15(b) and in the results of the next test.

As expected, because they exploit the same base model, classifiers have all similar exe-
cution time, however, having only the weights found during training to differentiate them
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Average
time (s)

#
people

Average
time (s)

Preprocess 0.12205 1 0.28818
Body orientation 0.11172 2 0.45323
Head orientation 0.00994 3 0.64819

Body usl 0.01323 4 0.86558
Body oc 0.01323 5 1.04030

Hand oc left 0.01299 6 1.27448
Hand pb left 0.01299 7 1.43309
Hand oc right 0.01256 8 1.66571
Hand pb right 0.01257 9 1.87075

PFI 0.00003 10 2.04449
11 2.23349

(a) 12 2.45149
13 2.61075
14 2.80333
15 3.09728
16 3.19541
17 3.39053
18 3.67699
19 3.82651
20 3.98125

(b)

Table 4.14: (a) results of the Individual components test. (b) results of the Number of
people detected test

(a) (b)

Table 4.15: (a) percentage of time spent by individual components compared to the total
when working on only one person. (a) percentage of time spent by individual components
compared to the total when working on 20 people

from each other, it was quite surprising to see different runtimes for hands open/closed
and palm/back classifiers.

4.4.2 Number of people detected
In these tests, the execution time is analyzed in relation to the number of people detected.
These tests involve requesting the system to execute the full pipeline on a series of images.
Each one of them has the same person repeated several times. The person used allows the
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detection of all his body parts. Each image has a defined number of people, but they all
have the same dimensions, therefore the unused space was filled with black pixels.

(a) (b)

Table 4.16: Examples of images used during tests

In the first test the systemworked on images with a number of people between 1 and 20.
The system used was operating in a docker container built starting from a Nvidia-Pytorch
docker image. During tests this shown an optimization in GPU memory employed during
the execution of the system, therefore it has not to be excluded the possibility that also
the runtime may differ with respect to the previous test. In the first test it was registered
the time elapsed between the transmission of the request from, and the receipt of, the
response to the client. Results are reported in Table 4.14 and depicted in Figure 4.1. It
can be seen that the runtime scales linearly with respect to the number of people detected.
This constitutes a primary limitation of the system, that if not managed in the correct way
could bring to unexpected results. A way to avoid this problem, could be for example, to
do the preprocess to all the people detected but consider only 5 of them for the remaining
pipeline components. To decide which person to consider, for instance, it can be exploited
their body pose estimation confidence or their body bounding box area. However, how
it can be seen in Table 4.12(c), even with only 4-5 people it is quite difficult that other
people could be detected in the same image without occluding each other and therefore
decreasing the total number of elements to analyze.

In the second test the same script used in the subsection 4.4.1 was employed to process
the same images exploited in the previous test, registering in this time the runtime of
individual components in relation to the number of people processed, however, in this
case, they have been grouped by their body part of reference to have more readable results.
The outcomes have been reported in Table 4.17 and depicted in Table 4.18. From Table
4.18(a) it is clear that body orientation component has the biggest impact on the runtime.
From Table 4.18b instead, it can be observed better the impact of the other components.
Classifiers have quite the same behavior, with those of the hands having a greater impact
than those of the body, but only because four of them are used on each person rather than
the two used for the body. Preprocess is the second topmost impacting runtime when only
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one person is detected, but it is easily surpassed by the classifiers considered in groups
when more people are present in the picture. If the PFI execution time is not considered,
the head orientation is the most efficient component until around 20 people are detected.

1 2 3 4 5 6 7 8 9 10
Preprocess 0.06505 0.06505 0.06426 0.09649 0.07269 0.07746 0.08755 0.12264 0.10257 0.11955

Head orientation 0.01318 0.02037 0.02629 0.04685 0.04458 0.05102 0.06272 0.07047 0.08309 0.08513
Body classification 0.02427 0.05176 0.07369 0.10651 0.12097 0.14289 0.17281 0.1935 0.22955 0.23738
Hand classification 0.04755 0.10359 0.14218 0.22117 0.2343 0.27552 0.33406 0.37675 0.44439 0.45783
Body orientation 0.10927 0.21924 0.31079 0.46435 0.50674 0.63688 0.69157 0.80806 0.86575 1.00425

PFI 0.00005 0.00005 0.00007 0.0001 0.00012 0.00014 0.00017 0.00019 0.00023 0.00023
11 12 13 14 15 16 17 18 19 20

Preprocess 0.11342 0.12664 0.14684 0.15494 0.13476 0.15418 0.15055 0.16903 0.17725 0.17853
Head orientation 0.1113 0.10199 0.13113 0.1399 0.13166 0.13871 0.14725 0.18197 0.16427 0.18483
Body classification 0.26919 0.29091 0.31774 0.34931 0.36811 0.38259 0.41046 0.45087 0.45289 0.47158
Hand classification 0.55476 0.5554 0.678 0.72044 0.71199 0.74211 0.79306 0.95821 0.87865 0.9649
Body orientation 1.12086 1.20585 1.30693 1.43707 1.46156 1.53858 1.64525 1.7849 1.85469 2.00218

PFI 0.00026 0.00029 0.00031 0.00034 0.00035 0.00038 0.00041 0.00043 0.00044 0.0047

Table 4.17: Individual components total time when working on different number of people
(from 1 to 20)

Figure 4.1: System runtime when working on different number of people (from 1 to 20)

4.4.3 Modularity and asynchronicity
Here, a test will be used to show the contribution of the modularity and asynchronicity
introduced in the system. The test involves the execution of two scripts, in the first is
simulate the case of a simple implementation of the system that only allows consecutive
requests, therefore there would be only one client that makes the same request two times
consecutively; in the second instead, the asynchronicity is tested by making two clients
requesting at the same time the same individual request. The requests done to the system
required to it the execution of the full pipeline over the same set of images used in tests
of subsection 4.4.2. The recorded execution times started when the request was sent and
stopped when the last reply have been received.
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(a) (b)

Table 4.18: (a) plot of result reported in Table 4.17. (b) same as before but without plotting
the body orientation values

The consecutive client employed 85.5933 seconds to finish, while the two concurrent
clients took 77.6942 seconds the first and 80.3256 seconds the second. Taking the worst
time between the latter two as reference, there was a decreasing in runtime of about 5
seconds while requesting the same number of processes. However, this can be effectively
done on a computer with a good CPU and GPU. Indeed, a similar test conducted on a
device with CPU: i5-4440 and GPU: GTX 980 with only the preprocess and body classi-
fiers up (due to the limited amount of GPU memory), employed 23.636 seconds for the
sequence, while the two concurrent clients took 25.0241 seconds the first and 25.5674
the second, employing around 1.5 seconds more requesting the same number of processes
when done at the same time than when executing them in sequence.
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Conclusions

A system that uses only information from a single RGB camera to estimate engagement
levels in human-robot interaction has been described in this thesis.

During the definition of the system’s ground idea, concepts of nonverbal communica-
tion and HRI have been reported and discussed. Having limited expertise in those fields,
it was necessary to simplify the problem, redefining the meaning of engagement to be
measured, as a simpler view of it: the Propensity For any type of Interaction (PFI) that a
person may have toward the robot. Including the problem’s requests and limitations into
the equation, has brought to propose a system composed of many modules, from which,
specific information would have been extracted and aggregated by an additional step to
provide the final result.

During the feasibility study models able to analyze specific nonverbal cues have been
tested and, in the end, pose estimation, head orientation, body orientation and the classi-
fication of body and hands poses, have been chosen as the information to be extracted by
the system modules.

For the first three components, already built API or models were found, for the remain-
ing instead, custom datasets have been annotated and fine-tuning has been used to train
specific classifiers.

The system has been tested in some specific scenarios as well as more general ones,
showing good accuracies in almost all modules and great final results but highlighting at
the same time a serious problem for what regards the hands’ modules, that as maintained,
it could be caused by the dataset composed for those tasks. Other tests documented some
limitations of the system, however, the specific cases in which they may appear have been
described along with some improvements to make in order to avoid those strange behav-
iors. Finally, some runtime tests have highlighted that when many people are completely
visible, the execution time of the system could be unfeasible with the possible usage de-
scribed during chapters. Some solutions have been proposed to overcome the problem,
however, it has also been shown that such situations may be difficult to appear. At the
same time, those tests have shown that the system modular design combined with the
asynchronicity introduced have reduced the time spent for requests by almost 11% with
respect to a simple consecutive pipeline.
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Surely, other tests should be conducted to confirm the goodness of the system and to
verify its consistency, however, as shown so far, the system created can be considered
a good start moreover if evaluated as an explorative or initial solution for the problem
analyzed. Nevertheless, it still has a lot of room for improvement, for example, better
model training procedures or the use of more recent methods can enhance each defined
module. Also, other modules can be added, not only to extract other relevant information
but also to process the already present ones, and have in this way, more to aggregate in
the final step. For instance, by going to keeping track of the already present information,
changes in particular aspects can be detected, and therefore, specific nonverbal cues can
be exploited.

Another thing to keep in mind is that the datasets used and the models that were already
built were all published under non-commercial uses licenses, therefore, if someone wants
to exploit the system created in any commercial products, it has to re-create them from
scratch or buy their commercial licenses if there are any.
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Appendix

Hyperparameters study tables
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Trial Batch Size Learning Rate Optimizer Rcs low Accurcay Trial Batch Size Learning Rate Optimizer Rcs low Accuracy
1 64 0.000252 SGD 0.5 0.936 78 64 0.00002 Adam 0.5 0.96
2 16 0.0107 SGD 0.6 0.962 79 64 0.000196 Adam 0.6 0.951
3 32 0.0000354 Adam 0.6 0.96 80 64 0.0000797 Adam 0.5 0.963
4 32 0.035 SGD 0.8 0.951 81 64 0.00013 Adam 0.9 0.958
5 16 0.0000424 SGD 0.7 0.953 82 64 0.0000514 Adam 0.5 0.888
6 64 0.0000786 Adam 0.5 0.962 83 64 0.0000347 Adam 0.5 0.963
7 64 0.0544 SGD 0.5 0.951 84 64 0.000109 Adam 0.5 0.959
8 16 0.00016 SGD 0.7 0.96 85 64 0.0000623 Adam 0.5 0.96
9 32 0.000463 SGD 0.6 0.96 88 64 0.0000301 Adam 0.5 0.961
10 16 0.0000189 Adam 0.6 0.961 89 64 0.0000121 Adam 0.5 0.958
11 64 0.00294 Adam 0.9 0.907 90 64 0.0000219 Adam 0.5 0.957
12 16 0.00355 Adam 0.5 0.894 92 16 0.000176 Adam 0.5 0.944
13 64 0.00843 Adam 0.8 0.581 93 64 0.0000475 Adam 0.8 0.958
14 64 0.0123 Adam 0.9 0.581 94 64 0.0000727 Adam 0.5 0.96
15 16 0.00113 Adam 0.6 0.903 95 64 0.000355 Adam 0.5 0.94
16 16 0.0000794 SGD 0.5 0.936 96 16 0.0000171 Adam 0.6 0.96
17 64 0.00107 SGD 0.6 0.96 97 32 0.00087 Adam 0.5 0.927
18 64 0.0000104 Adam 0.5 0.962 98 64 0.0000757 Adam 0.5 0.959
19 64 0.0000109 Adam 0.5 0.901 99 64 0.0000437 Adam 0.5 0.962
20 16 0.0206 SGD 0.8 0.955 100 64 0.0000848 Adam 0.5 0.96
21 32 0.00305 SGD 0.7 0.963 101 64 0.0000339 Adam 0.5 0.959
22 32 0.00342 SGD 0.7 0.961 102 64 0.0000568 Adam 0.9 0.961
23 32 0.094 SGD 0.7 0.818 105 64 0.000108 Adam 0.5 0.956
24 32 0.00747 SGD 0.7 0.959 106 32 0.00022 Adam 0.5 0.952
25 32 0.00175 SGD 0.9 0.955 107 64 0.00015 Adam 0.5 0.956
26 16 0.000446 SGD 0.7 0.959 108 64 0.0000244 SGD 0.5 0.935
27 32 0.00605 Adam 0.6 0.907 110 16 0.0000127 Adam 0.8 0.96
28 64 0.0209 SGD 0.5 0.962 112 64 0.0000186 Adam 0.5 0.966
29 64 0.0237 Adam 0.5 0.581 113 64 0.000027 Adam 0.5 0.964
30 64 0.0000806 SGD 0.5 0.885 114 64 0.0000179 Adam 0.5 0.962
31 64 0.000308 SGD 0.5 0.962 115 64 0.0000278 Adam 0.5 0.964
32 64 0.000302 SGD 0.5 0.961 116 32 0.0000392 Adam 0.7 0.962
33 64 0.0002 SGD 0.5 0.958 117 64 0.000027 Adam 0.5 0.962
34 64 0.000621 SGD 0.5 0.965 118 64 0.0000223 Adam 0.5 0.963
35 64 0.000719 SGD 0.5 0.96 119 64 0.0000326 SGD 0.5 0.942
36 64 0.00166 SGD 0.5 0.961 120 32 0.0000141 Adam 0.6 0.925
37 32 0.000571 SGD 0.8 0.956 121 64 0.0000483 Adam 0.5 0.963
38 64 0.000133 SGD 0.5 0.958 122 64 0.0000196 Adam 0.5 0.963
39 64 0.0514 SGD 0.7 0.949 123 64 0.0000281 Adam 0.5 0.962
40 32 0.0000306 Adam 0.5 0.966 124 64 0.0000342 Adam 0.5 0.963
41 32 0.0000362 Adam 0.7 0.966 125 64 0.0000162 Adam 0.5 0.967
44 32 0.0000442 Adam 0.7 0.958 126 64 0.0000156 Adam 0.7 0.961
45 32 0.0000233 Adam 0.7 0.955 127 16 0.0000115 Adam 0.5 0.963
46 32 0.0000642 Adam 0.7 0.962 128 64 0.0000228 Adam 0.5 0.963
47 32 0.0000245 Adam 0.9 0.961 129 32 0.0000101 SGD 0.9 0.915
48 32 0.000278 Adam 0.7 0.95 130 64 0.0000172 Adam 0.5 0.964
49 32 0.0000408 Adam 0.8 0.939 131 64 0.0000404 Adam 0.5 0.963
50 32 0.000133 Adam 0.5 0.953 132 64 0.0000171 Adam 0.5 0.964
51 32 0.0136 SGD 0.7 0.957 133 64 0.0000586 Adam 0.5 0.961
52 32 0.000017 SGD 0.5 0.942 134 64 0.0000277 Adam 0.5 0.962
53 32 0.00158 Adam 0.9 0.581 135 64 0.0000187 Adam 0.5 0.963
54 64 0.000102 Adam 0.5 0.954 136 64 0.0000164 Adam 0.5 0.965
55 64 0.0000494 Adam 0.5 0.965 137 64 0.0000446 Adam 0.5 0.964
56 64 0.0000539 Adam 0.5 0.967 138 16 0.0000126 Adam 0.7 0.958
57 64 0.0000507 Adam 0.5 0.962 139 64 0.0000496 Adam 0.5 0.963
58 64 0.0000286 Adam 0.5 0.961 140 64 0.0000182 SGD 0.5 0.79
59 32 0.0000571 Adam 0.6 0.945 141 64 0.0000392 Adam 0.8 0.96
60 64 0.0000158 Adam 0.7 0.961 142 64 0.0000157 Adam 0.5 0.963
61 16 0.0000374 Adam 0.5 0.963 143 64 0.0000134 Adam 0.5 0.963
62 16 0.000013 Adam 0.5 0.964 144 32 0.0000222 Adam 0.5 0.961
63 16 0.0000142 Adam 0.5 0.962 145 64 0.000029 Adam 0.5 0.961
65 16 0.0000267 Adam 0.5 0.961 146 64 0.0000204 Adam 0.5 0.96
66 16 0.000039 Adam 0.5 0.96 147 64 0.0000151 Adam 0.5 0.962
67 16 0.0000101 Adam 0.5 0.962 148 32 0.0000245 Adam 0.5 0.962
68 32 0.00268 Adam 0.8 0.581 149 64 0.0000355 Adam 0.6 0.96
69 16 0.00456 Adam 0.7 0.887 150 16 0.0000643 Adam 0.5 0.961
70 64 0.0000845 Adam 0.5 0.964
71 64 0.0000943 Adam 0.5 0.96
72 64 0.0000205 Adam 0.5 0.963
73 64 0.0000302 Adam 0.5 0.964
74 64 0.0000309 Adam 0.5 0.961
75 64 0.0000623 Adam 0.5 0.968
76 64 0.000065 Adam 0.5 0.96
77 64 0.0000141 Adam 0.5 0.961

Table 4.19: Results of the hyperparameter study for the upstanding/sitting/lying classifier

104



Trial Batch Size Learning Rate Optimizer Rcs Low Accuracy Trial Batch Size Learning Rate Optimizer Rcs Low Accuracy
1 64 0.0000142 SGD 0.5 0.642 50 32 0.0000112 SGD 0.08 0.622
2 32 0.00101 SGD 0.5 0.853 51 64 0.00325 SGD 0.5 0.863
3 64 0.00131 Adam 0.9 0.679 52 64 0.00488 SGD 0.5 0.864
4 64 0.00411 SGD 0.5 0.86 53 64 0.00283 SGD 0.5 0.857
5 32 0.0304 Adam 0.5 0.551 54 64 0.00153 SGD 0.5 0.852
6 32 0.00912 Adam 0.08 0.551 55 64 0.0209 SGD 0.5 0.858
7 32 0.0369 SGD 0.08 0.861 56 64 0.00797 SGD 0.08 0.852
8 64 0.0991 Adam 0.9 0.551 57 32 0.00415 SGD 0.5 0.861
9 64 0.0571 Adam 0.5 0.551 58 64 0.00121 SGD 0.5 0.842
10 64 0.0000146 SGD 0.5 0.697 59 32 0.00392 SGD 0.5 0.86
11 32 0.000122 SGD 0.08 0.796 60 32 0.00215 SGD 0.5 0.862
12 32 0.00647 SGD 0.08 0.853 61 32 0.00233 SGD 0.5 0.86
13 64 0.0069 SGD 0.08 0.852 62 32 0.00288 SGD 0.5 0.862
14 32 0.0182 SGD 0.08 0.851 63 32 0.0032 SGD 0.5 0.855
15 64 0.00303 SGD 0.9 0.851 64 32 0.00197 SGD 0.5 0.866
16 32 0.000404 SGD 0.5 0.836 65 32 0.0017 SGD 0.5 0.854
17 64 0.000227 SGD 0.08 0.786 66 32 0.000914 SGD 0.5 0.846
18 32 0.022 SGD 0.08 0.86 67 32 0.00232 SGD 0.5 0.857
19 32 0.0227 SGD 0.08 0.854 68 64 0.000537 SGD 0.5 0.834
20 64 0.00217 SGD 0.5 0.857 69 32 0.00113 Adam 0.5 0.598
21 32 0.0472 SGD 0.08 0.844 70 32 0.00521 SGD 0.5 0.861
22 32 0.0115 SGD 0.08 0.863 71 64 0.000359 SGD 0.5 0.832
23 32 0.0105 SGD 0.08 0.854 72 32 0.0057 SGD 0.5 0.856
24 32 0.00228 SGD 0.9 0.852 73 32 0.00181 SGD 0.5 0.853
25 32 0.00431 SGD 0.08 0.852 74 32 0.00428 SGD 0.5 0.857
26 32 0.0121 SGD 0.5 0.86 75 32 0.0027 SGD 0.5 0.85
27 32 0.0762 Adam 0.08 0.551 76 32 0.00983 SGD 0.5 0.858
28 64 0.000657 SGD 0.08 0.823 77 32 0.00728 SGD 0.08 0.863
29 64 0.0000637 SGD 0.5 0.77 80 32 0.00764 SGD 0.08 0.857
30 32 0.0163 SGD 0.9 0.86 81 32 0.0032 SGD 0.08 0.852
31 32 0.0363 SGD 0.9 0.847 82 64 0.0169 Adam 0.5 0.551
32 32 0.0203 SGD 0.9 0.85 83 32 0.0000226 SGD 0.5 0.761
33 32 0.00508 SGD 0.9 0.856 84 32 0.00473 SGD 0.5 0.861
34 32 0.0136 SGD 0.9 0.847 85 32 0.00536 SGD 0.5 0.859
35 32 0.00155 SGD 0.5 0.859 86 32 0.00328 SGD 0.08 0.849
36 32 0.0343 SGD 0.08 0.848 87 32 0.0256 SGD 0.08 0.854
37 64 0.00377 Adam 0.08 0.551 88 32 0.0022 SGD 0.08 0.854
38 32 0.0134 SGD 0.9 0.85 89 64 0.0109 SGD 0.08 0.86
39 64 0.00839 Adam 0.5 0.551 90 32 0.00879 SGD 0.5 0.861
40 32 0.0652 SGD 0.08 0.661 91 32 0.00776 SGD 0.5 0.86
41 32 0.0271 Adam 0.08 0.551 92 32 0.00185 SGD 0.5 0.856
42 32 0.045 SGD 0.08 0.65 93 64 0.000991 SGD 0.5 0.844
43 32 0.0985 SGD 0.5 0.574 94 32 0.00678 SGD 0.08 0.858
44 32 0.0136 SGD 0.5 0.853 95 32 0.0155 SGD 0.08 0.857
45 64 0.00597 SGD 0.5 0.86 96 32 0.00436 SGD 0.5 0.859
46 64 0.00638 SGD 0.5 0.86 97 32 0.0429 SGD 0.08 0.828
47 64 0.000758 SGD 0.5 0.838 98 32 0.00266 SGD 0.5 0.854
48 32 0.00916 SGD 0.5 0.863 99 32 0.00507 Adam 0.5 0.551
49 32 0.0105 Adam 0.9 0.551 100 32 0.00142 SGD 0.5 0.85

Table 4.20: Results of the hyperparameter study for the body open/closed classifier

105



Trial Batch Size Learning Rate Optimizer Rcs low Accuracy Trial Batch Size Learning Rate Optimizer Rcs low Accuracy
1 32 0.000023 Adam 0.5 0.867 52 64 0.00142 Adam 0.5 0.519
2 32 0.000684 SGD 0.5 0.847 53 64 0.0000194 Adam 0.5 0.862
3 64 0.00381 Adam 0.08 0.519 54 32 0.0000356 Adam 0.5 0.87
5 64 0.0681 SGD 0.08 0.519 55 32 0.0000384 Adam 0.5 0.859
6 32 0.00924 SGD 0.9 0.865 56 32 0.0000139 Adam 0.5 0.861
7 64 0.000918 SGD 0.9 0.842 57 32 0.0925 Adam 0.5 0.519
8 32 0.0000128 Adam 0.5 0.868 58 32 0.0000101 Adam 0.5 0.863
9 32 0.0000539 SGD 0.08 0.733 59 32 0.000022 Adam 0.5 0.865
10 32 0.000052 SGD 0.5 0.751 60 32 0.0000745 Adam 0.08 0.855
11 64 0.000258 SGD 0.9 0.794 61 32 0.0000273 SGD 0.5 0.692
12 32 0.0000107 Adam 0.5 0.864 62 32 0.0000504 Adam 0.9 0.863
13 32 0.000013 Adam 0.5 0.86 63 32 0.0000144 Adam 0.5 0.87
14 32 0.0000697 Adam 0.5 0.857 64 32 0.00464 Adam 0.5 0.519
15 32 0.000163 Adam 0.5 0.847 65 32 0.0000143 Adam 0.5 0.867
16 32 0.0000228 Adam 0.5 0.866 66 32 0.0000311 Adam 0.5 0.868
17 32 0.000215 Adam 0.5 0.841 67 32 0.0000211 Adam 0.5 0.857
18 32 0.000032 Adam 0.5 0.862 68 32 0.0000151 Adam 0.5 0.865
20 32 0.00406 Adam 0.5 0.519 69 32 0.0000344 Adam 0.5 0.867
21 64 0.000127 Adam 0.9 0.858 70 32 0.00012 Adam 0.5 0.853
22 32 0.000011 Adam 0.08 0.857 71 32 0.0000507 Adam 0.5 0.86
23 32 0.000465 Adam 0.5 0.811 72 64 0.000714 Adam 0.5 0.641
24 32 0.0000251 Adam 0.5 0.869 73 32 0.0000305 Adam 0.08 0.857
25 32 0.000024 Adam 0.5 0.859 74 32 0.0000191 Adam 0.5 0.859
26 32 0.0000928 Adam 0.5 0.854 75 32 0.0000136 Adam 0.5 0.862
27 32 0.0000246 Adam 0.5 0.861 76 32 0.000024 Adam 0.5 0.866
28 32 0.0000377 Adam 0.5 0.863 77 32 0.0000101 Adam 0.5 0.866
29 64 0.00197 Adam 0.5 0.519 78 32 0.0000395 Adam 0.5 0.863
30 32 0.000371 Adam 0.5 0.828 79 32 0.000212 SGD 0.9 0.824
31 32 0.00009 Adam 0.9 0.857 80 64 0.0000218 Adam 0.5 0.872
32 32 0.0331 Adam 0.08 0.519 81 64 0.0000692 Adam 0.5 0.858
33 32 0.0000185 Adam 0.5 0.866 82 64 0.0000133 Adam 0.5 0.865
34 32 0.0000175 Adam 0.5 0.867 83 64 0.0000463 Adam 0.5 0.862
35 32 0.0000418 Adam 0.5 0.86 84 64 0.0000244 Adam 0.5 0.867
36 32 0.0000161 Adam 0.5 0.869 85 64 0.0000169 Adam 0.5 0.863
38 32 0.0000162 Adam 0.5 0.862 86 64 0.0000293 Adam 0.5 0.867
39 64 0.0000158 Adam 0.5 0.869 87 32 0.00002 Adam 0.5 0.87
40 64 0.0000111 SGD 0.08 0.583 88 64 0.0000187 Adam 0.5 0.86
41 64 0.0000397 Adam 0.5 0.866 89 32 0.0000342 Adam 0.5 0.862
42 64 0.0000874 SGD 0.9 0.733 90 64 0.0000123 Adam 0.08 0.858
43 64 0.0000285 Adam 0.08 0.865 91 32 0.0000206 SGD 0.5 0.647
44 64 0.0000555 SGD 0.5 0.71 92 32 0.0000622 Adam 0.5 0.864
45 64 0.0000198 Adam 0.5 0.871 93 64 0.000017 Adam 0.9 0.877
46 64 0.000016 Adam 0.5 0.868 94 64 0.0000164 Adam 0.9 0.871
47 64 0.0174 Adam 0.5 0.519 95 64 0.0000161 Adam 0.9 0.869
48 64 0.0000585 Adam 0.5 0.865 96 64 0.0000152 Adam 0.9 0.863
49 64 0.0000113 Adam 0.5 0.866 97 64 0.0000244 Adam 0.9 0.868
50 64 0.0000284 SGD 0.9 0.619 98 64 0.0000181 Adam 0.9 0.876
51 64 0.000136 Adam 0.5 0.85 99 64 0.0000118 Adam 0.9 0.87

100 64 0.0000121 Adam 0.9 0.863

Table 4.21: Results of the hyperparameter study for the hands palm/back classifier
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Trial Batch Size Learning Rate Optimizer Rcs low Accuracy Trial Batch Size Learning Rate Optimizer Rcs low Accuracy
1 64 0.015 Adam 0.5 0.547 50 64 0.0000633 Adam 0.08 0.883
2 32 0.0000872 SGD 0.9 0.836 51 32 0.000125 Adam 0.9 0.887
3 64 0.00424 Adam 0.08 0.547 52 64 0.0000115 Adam 0.5 0.889
5 64 0.0000616 SGD 0.08 0.777 53 64 0.000036 Adam 0.5 0.899
6 64 0.011 SGD 0.9 0.885 54 64 0.0000289 Adam 0.5 0.892
7 64 0.000962 SGD 0.5 0.873 55 64 0.0000234 Adam 0.5 0.897
8 64 0.00375 SGD 0.5 0.891 56 64 0.0000256 Adam 0.5 0.897
9 32 0.0163 SGD 0.9 0.882 57 64 0.000029 Adam 0.5 0.894
10 64 0.000244 Adam 0.08 0.883 58 64 0.000028 Adam 0.5 0.896
11 32 0.000532 SGD 0.08 0.857 59 64 0.0000274 Adam 0.5 0.9
12 32 0.00238 Adam 0.5 0.547 60 64 0.000037 Adam 0.5 0.894
13 64 0.0962 SGD 0.9 0.547 61 32 0.0000176 Adam 0.5 0.894
14 64 0.0152 SGD 0.5 0.891 62 64 0.000167 Adam 0.5 0.897
15 64 0.0708 SGD 0.5 0.696 63 64 0.000135 Adam 0.5 0.891
16 64 0.0000112 SGD 0.5 0.746 66 64 0.0000452 Adam 0.5 0.893
17 64 0.00349 SGD 0.5 0.888 67 64 0.000018 Adam 0.5 0.898
18 64 0.0255 SGD 0.5 0.889 68 64 0.0000198 Adam 0.5 0.897
19 64 0.00591 SGD 0.5 0.887 69 64 0.0000158 Adam 0.5 0.895
20 32 0.0312 Adam 0.5 0.547 70 64 0.000122 Adam 0.5 0.887
21 64 0.0019 SGD 0.5 0.886 71 64 0.0000505 Adam 0.5 0.892
22 64 0.00105 SGD 0.5 0.886 72 64 0.0000226 Adam 0.08 0.893
23 64 0.0454 SGD 0.5 0.881 73 64 0.000202 Adam 0.9 0.876
24 64 0.00887 SGD 0.5 0.894 74 64 0.0000137 Adam 0.5 0.895
25 64 0.00777 SGD 0.5 0.89 75 64 0.0000194 Adam 0.5 0.897
26 64 0.00968 SGD 0.5 0.891 76 64 0.0000103 Adam 0.5 0.899
27 64 0.0223 SGD 0.5 0.891 77 64 0.0000108 Adam 0.5 0.899
28 32 0.00895 Adam 0.5 0.547 78 64 0.0000102 Adam 0.5 0.892
29 64 0.046 SGD 0.5 0.877 79 64 0.0000222 Adam 0.5 0.894
30 64 0.00128 SGD 0.08 0.865 81 64 0.0000142 Adam 0.5 0.895
31 64 0.0136 Adam 0.9 0.547 82 32 0.0000379 Adam 0.5 0.897
32 64 0.012 SGD 0.5 0.889 83 32 0.0000376 Adam 0.5 0.897
33 64 0.0237 SGD 0.5 0.886 84 32 0.0000451 Adam 0.5 0.894
34 64 0.0477 SGD 0.5 0.865 85 32 0.0000346 Adam 0.5 0.896
35 64 0.017 SGD 0.5 0.889 86 32 0.0000129 Adam 0.5 0.902
36 64 0.00691 SGD 0.5 0.89 87 32 0.0000132 Adam 0.5 0.899
37 64 0.00568 SGD 0.08 0.874 88 32 0.0000126 Adam 0.5 0.897
38 32 0.00243 SGD 0.9 0.88 89 32 0.0000169 Adam 0.5 0.897
39 64 0.000449 Adam 0.5 0.876 90 32 0.0000106 Adam 0.5 0.898
40 64 0.0237 SGD 0.5 0.891 91 32 0.000011 Adam 0.08 0.892
41 64 0.00425 SGD 0.9 0.887 92 32 0.0000186 Adam 0.9 0.891
42 32 0.0335 SGD 0.08 0.882 93 32 0.0000142 Adam 0.5 0.895
43 64 0.0209 SGD 0.5 0.889 94 32 0.0000102 Adam 0.5 0.897
44 64 0.0105 SGD 0.5 0.888 95 32 0.000353 Adam 0.5 0.879
45 64 0.00346 SGD 0.5 0.888 96 32 0.0000258 Adam 0.5 0.897
46 64 0.0147 SGD 0.5 0.891 97 32 0.0000161 Adam 0.5 0.897
47 64 0.0667 SGD 0.5 0.547 98 32 0.0000165 Adam 0.5 0.895
48 64 0.0000807 Adam 0.5 0.897 99 32 0.0000239 Adam 0.5 0.892
49 64 0.0000771 Adam 0.5 0.895 100 64 0.0000125 Adam 0.5 0.894

Table 4.22: Results of the hyperparameter study for the hands open/closed classifier
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