
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Control System Engineering

Nonlinear model predictive control

optimization for autonomous mobile

robots

Supervisor

Prof. Angelo Cenedese

Master Candidate

Riccardo Lorigiola

October 20, 2022

Academic Year 2021/2022

i

Abstract

In the Agent-Target Coordination field, one of the most researched area is the

coordination of a group of heterogeneous mobile agents in order to accomplish

advanced tasks. Thanks to the accessibility and the improvement of Unmanned

Aerial Vehicle (UAV) and Unmanned Ground Vehicle (UGV) over the last decades,

their use in exploration, research and industrial cooperative applications is increas-

ing. However, solving challenging tasks, such as search&rescue and environmental

monitoring, demands the application of control laws that require high performance

computational systems. Despite the components miniaturization, the complexity

of developing light-weight but performing processors has lead the growth of cloud-

computing.

In this thesis, it is addressed the problem of driving a UGV to follow an UAV

in order to set up a landing scenario, while dealing with computational resources

allocation. Specifically, the target trajectory is not know in advance by the agent

and the only source of information concerning the poses and velocities of both

vehicles comes from the camera attached to the external computational node. To

solve this problem, it is proposed a cascade of control techniques based on the Model

Predictive Control (MPC) and Gaussian Process Regression (GPR) approaches.

The Model Predictive Control controller is devoted to solving the Agent-Target

Coordination problem by driving the UGV under the aerial vehicle. The GPR

module, instead, is dedicated to predicting the computational effort of the controller,

to providing the MPC control invariant N and to allocating the computation of the

Model Predictive Control solution locally or on the external node.

Simulation results on Matlab are presented in order to illustrate and validate

the proposed approach.

Keywords: Nonlinear Model Predictive Control, Optimization, Mobile Robots

iii

Sommario

Una delle aree di maggior sviluppo e innovazione nell’ambito della robotica mo-

bile risulta essere il coordinamento degli agenti mobili eterogenei. Questi vengono

impiegati sia in ambito cooperativo industriale che in ambito tecnico e scientifico e

sono destinati a svolgere operazioni da semplici a molto complesse. Fanno parte di

questi particolari agenti mobili i veicoli terrestri (UGV) e i veicoli aerei (UAV) senza

equipaggiamento che per eseguire compiti elaborati, quali search&rescue o moni-

toraggio ambientale, necessitano di complesse e articolate leggi di controllo che a

loro volta richiedono sofisticati processori in grado di fornire elevate performance

computazionali. La miniaturizzazione dei processori non sempre riesce a support-

are la potenza di calcolo necessaria per gestire tali controllori, pertanto, la nuova

frontiera risulta essere il cloud-computing.

Questo lavoro di tesi ha lo scopo di progettare un controllore di un UGV in grado

di seguire un UAV anche durante eventuali manovre di atterraggio. Le manovre

di inseguimento dell’agente di terra devono essere eseguite mentre il suo processore

gestisce anche l’allocazione delle risorse computazionali localmente o in un nodo es-

terno al sistema. Si è supposto che la traiettoria dell’UAV non risulti nota a priori

e che gli unici dati di cui si è potuto disporre risultino forniti dalla telecamera col-

legata al nodo computazionale esterno. Il problema è stato affrontato proponendo

l’implementazione di un controllore a cascata basato sul Model Predictive Con-

trol (MPC) e sul Gaussian Process Regression (GPR). Il controllore MPC è stato

programmato per coordinare l’UGV al fine di posizionarlo al di sotto dell’UAV. Il

modulo GPR è invece strutturato per prevedere il costo computazionale del con-

trollore MPC e allocare il calcolo della soluzione dell’MPC localmente o sul nodo

esterno. Tutti i risultati ottenuti nelle diverse fasi di studio del sistema sono stati

simulati in ambiente Matlab e gli stessi validano l’architettura di controllo costruita

in funzione delle ipotesi effettuate.

Keywords: Nonlinear Model Predictive Control, Optimization, Mobile Robots

Contents

1 Introduction 1

1.1 State of the art . 1

1.2 Thesis structure . 2

1.3 Notation . 3

2 Preliminary 5

2.1 Pose of a rigid body . 5

2.1.1 Euler angles . 6

2.2 Holonomic and non-holonomic constraints 9

3 Agent and Target Models 11

3.1 Agent Model . 11

3.1.1 UGV Model . 12

3.1.2 DDR Model . 13

3.1.2.1 DDR Kinematic Model 14

3.1.2.2 DDR wheels dynamic model 15

3.1.2.3 DDR complete dynamic model 17

3.2 Target Model . 19

3.2.1 Quadrotor Projection . 21

4 Computation node 29

5 Problem formulation and Model Predictive Control 31

5.1 Problem formulation . 31

5.2 Optimal Control Problem . 34

5.2.1 General description . 35

5.2.2 Model Predictive Control . 36

6 NMPC controller definition 39

6.1 Runge-Kutta Integration . 39

6.1.1 Application of Runge-Kutta Integration 41

6.2 NMPC Agent Controller . 43

6.3 Definition of the cost factors . 44

6.3.1 Controller architecture . 46

7 DDR control 47

7.1 Controller Optimization . 47

7.1.1 Controller Computational Time and Input Predictor 51

7.1.1.1 Gaussian Process Regression 51

7.1.1.2 Generating Training Dataset 54

7.1.1.3 Predictor Results 57

7.2 Controller architecture . 61

8 Simulation and results 63

8.1 Matlab frameworks . 63

8.2 Results . 65

9 Conclusion 77

A Appendix 79

A.1 Agent Model . 79

A.1.1 Stability of the PI control action 79

A.1.2 Wheels State Estimation . 80

A.2 Target Model . 82

A.2.1 Time derivative of rotation matrices 82

A.2.2 Target position and yaw angle controller 83

List of Figures

2.1 Position and orientation of a rigid body 5

2.2 Roll-Pitch-Yaw angles set representation 7

2.3 Elementary rotations around the coordinate axis 8

2.4 Non-holonomic constraint example Rolling disk on a plane 10

3.1 Example of UGV Differential Drive Robot configuration 11

3.2 UGV unicycle model . 12

3.3 Pure rolling model . 13

3.4 Differential Drive Robot model scheme 14

3.5 Wheels electro-mechanical scheme 15

3.6 DDR - unicycle comparison . 18

3.7 Example of quadrotor . 19

3.8 Quadrotor model with highlighted forces and torques 20

3.9 Quadrotor projection - Orientation ϑt 23

3.10 Quadrotor projection - Orientation ϑt atan2 discontinuity correction

and filtering . 24

3.11 Quadrotor projection - Angular velocity ωt 24

3.12 Quadrotor simulation - positions and orientations 25

3.13 Quadrotor simulation - linear velocity 26

3.14 Quadrotor projection - position and orientation 27

3.15 Quadrotor projection - Velocities 28

4.1 Example of camera placement . 29

4.2 AprilTag pose detection example 30

5.1 Visual representation of the MPC concept 37

6.1 four-stage Runge-Kutta method test ẏ = −y function approximation 41

6.2 DDR simulation - Ts = 0.42s . 43

6.3 Generic iteration of the optimization algorithm 44

6.4 NMPC controller architecture . 46

7.1 Example of NMPC solution Similar controller behaviours 48

7.2 Example of NMPC solution Two control strategies 49

7.3 Example of NMPC solution Difference between N = 10, 30, 60 and

N = 100 solutions . 50

7.4 GPR prior and posterior example 52

7.5 GPR hyperparameters examples Samples from GP with (l, σf , σn) =

(1, 1, 0.1) . 53

7.6 Example of training samples - iters = 100 56

7.7 Validation N = 10 GPR . 58

7.8 Validation N = 30 GPR . 58

7.9 Validation N = 60 GPR . 59

7.10 Validation N = 100 GPR . 59

7.11 DDR controller . 61

8.1 Controller simulation - pose results 67

8.2 Controller simulation - wheels velocities 68

8.3 Controller simulation - errors . 68

8.4 Controller simulation - Actual vs N = 10 GPR results 69

8.5 Controller simulation - Actual vs N = 30 GPR results 70

8.6 Controller simulation - Actual vs N = 60 GPR results 71

8.7 Controller simulation - Actual vs N = 100 GPR results 72

8.8 Controller simulation - Control invariant N 73

8.9 Controller simulation NMPC computational time of the chosen con-

trol invariant N . 73

8.10 Controller simulation Controller Optimization cost function values . 74

8.11 Controller simulation Initial configuration 74

8.12 Controller simulation Example of iteration 75

8.13 Controller simulation Final configuration 75

A.1 Position and yaw angle controller architecture 85

List of Tables

3.1 DC motor electro-mechanical parameters 16

3.2 Unicycle - DDR comparison simulation parameters 17

3.3 Quadrotor parameters . 23

3.4 Position and yaw angle controller parameters 23

7.1 DDR initial conditions . 56

7.2 DDR and NMPC parameters . 57

7.3 MSE values for each time invariant N in predicting ωdr, ωdl and T . 60

7.4 RMSE values for each time invariant N in predicting ωdr, ωdl and T 61

8.1 Quadrotor parameters . 65

8.2 DDR model and controller parameters 66

8.3 NMPC cost parameters . 66

8.4 Controller Optimization parameters 66

8.5 DDR initial conditions . 66

Chapter 1

Introduction

1.1 State of the art

Over the last few years, the use of Autonomous Mobile Robots (AMRs) is signifi-

cantly increasing in the industrial, educational and research field. They are used in

a wide variety of environments and applications, including space and seafloor explo-

rations, packages delivery and environmental monitoring. Among the AMR theme,

the cooperation of heterogeneous mobile robots system is one of the topics that met

the largest interest. In fact, the complexity and variety of advanced modern tasks

requires the application of mixed mobile agents sharing the same global goal but

with dedicated sub-tasks. Therefore, it is necessary to resort to a control law that

can manage simultaneously the robots goal and the cooperation requirements. One

of the most used approach to solve these problems is the Model Predictive Control

(MPC), also referred to as Receding Horizon Control or Moving Horizon Optimal

Control.

The Model Predictive Control is a control algorithm that, given the model of

the system, a predicting horizon and an optimization tool, it drives the system in

order to minimize a provided cost function. This controller has achieved enormous

success thanks to the simplicity whereby the system constraints can be included in

the controller formulation. In many cases, the adoption of a linear-MPC may not

be enough to satisfy the process requirements due to the intrinsic nonlinearity of

the kinematic and the dynamic of systems, sensors and actuators. It is therefore

necessary to resort to the Nonlinear Model Predictive Control or NMPC, which

embeds in the model those nonlinearities. On the other hand, by integrating in

the model the nonlinear system behaviour, the optimal solution can no longer be

found in close form, requiring the use of numerical methodologies for solving the

NMPC problem. In general, these numerical techniques requires high computational

capabilities in order to be solved within an acceptable time limit [1, 2, 3, 4].

1

2 Chapter 1 - Introduction

During these years, despite the increasing number of embedded systems with

high computational capability, the use of cloud computing is one of the most pre-

vailing trending [5]. In general, cloud computing is the on-demand availability of

computer system resources, mainly data storage and computing power, without

direct management by the user. Such method allows low-performance systems to

solve challenging tasks by allocating the problem on external systems and by re-

trieving and applying the generated solution. In addition, this technique allows

to assign repetitive tasks to external systems and to fetch the information when

needed, without occupying the internal computational resources.

This thesis focuses on the agent-target cooperation between a Differential Drive

Robot and a quadrotor. The agent has to follow the target in order to set up

a landing scenario while dealing with the NMPC problem allocation between the

internal agent processor and the external computational node. In addition, there

is no communication between the two mobile robots so the quadrotor trajectory is

not known in advance by the UGV. The only source of information about agent

and target poses and velocities are the data processed by the external node, which

is provided with a camera seeing the whole scenario.

1.2 Thesis structure

The chapters are organized as follows:

• In Chapter 2 are provided the preliminary notions about the three and two

dimensional pose of a rigid body and the discussion about holonomic and

non-holonomic constrains.

• Chapter 3 is dedicated to the description of agent and target models. Both

the unicycle and DDR kinematic models are derived and then deepen the

wheels and motors dynamic model. It is also introduced the target model and

the necessary conversion to project the quadrotor measures into the unicycle

model.

• In Chapter 4 is presented and discussed the external computational node.

Then are formalized the assumptions concerning this system.

• Chapter 5 formalizes the Agent-Target Optimized Coordination problem by

defining the metrics and the objectives of the controller. It is successively

introduced the definitions of optimal control problem and model predictive

control.

Section 1.3 - Notation 3

• Chapter 6 provides the tools to optimally discretize a dynamic system using

Runge-Kutta integration method. It also defines the NMPC cost function and

architecture.

• Chapter 7 presents the final controller that solves both the Agent-Target Co-

ordination and the Controller Optimization requirements. It presents the

Gaussian Process Regression method and its application in order to solve the

Controller Optimization requirement. It is then presented the whole controller

scheme.

• Chapter 8 reports the results obtained during the simulation of the whole

system.

• Chapter 9 summarizes the obtained results and suggests future work topics.

1.3 Notation

In this thesis, vectors in Rm and matrices in Rm×n are indicated respectively with

bold lowercase and bold uppercase letters. 0m×n ∈ Rm×n and 0m ∈ Rm denote

respectively the null (m× n) matrix and m-dimensional column vector, In ∈ Rn×n

denotes the identity square matrix. SO(n) denotes the special orthogonal group of

dimension n, while Sn denotes the n-sphere space.

Chapter 2

Preliminary

2.1 Pose of a rigid body

A rigid body is entirely described in space by its position and orientation, or in

short by its pose, with respect to a reference frame. Let FW be the orthonormal

reference frame and x, y and z be the unit vectors of the frame axes. In order to

describe the rigid body pose, it is convenient to consider the orthonormal frame

attached to the body FB and express its position and orientation with respect to

FW . Therefore, it is possible to define p as the vector connecting frames origins and

R as the rotation matrix of FB with respect to FW . The columns of R represent

the coordinates of the FB axis x′, y′ and z′ with respect the body frame axis x, y

and z.

x

y

z
x'

z'

y'

Figure 2.1: Position and orientation of a rigid body

5

6 Chapter 2 - Preliminary

Before proceeding, it is worth mentioning some properties of the rotation ma-

trices. R is an orthogonal matrix and therefore

RTR = I3 ⇐⇒ RT = R−1 (2.1.1)

which leads to the fact that its transpose is equal to its inverse. It is also possible to

note that if det (R) = 1, the frame is right-handed while, if det (R) = −1 the frame

is left-handed. The rotation matrix defined above belongs to the special orthogonal

group SO(m) of the real (m×m) matrices. For more details see book [6].

It is possible to attribute a geometrical meaning to the rotation matrix, namely

R describes the rotation around an axis in space needed to align the axes of the

reference frame with the corresponding axes of the body frame. In fact, a point P

in space can be represented as p in FW or as p′ in FW ′ . It follows that

p = Rp′ ⇐⇒ p′ = RTp (2.1.2)

It is possible also to derive a composition rule for consecutive rotations of the

same vector. Let F0, F1 and F2 be three reference frame with common origin O and

define Ri
j as the rotation matrix of frame i with respect to j. It follows that the

generic point P can be expressed as⎧⎨⎩p0 = R0
1 p

1

p1 = R1
2 p

2
=⇒ p0 = R0

1 R
1
2 p

2 = R0
2 p

2 (2.1.3)

where the superscript on positions and matrices denotes the frame in which elements

are expressed. Using this reasoning, it is possible to prove that the composition of

rotations is not commutative

2.1.1 Euler angles

In a three dimensional environment, the rotation matrix R describes the rotation

of a frame using nine elements, though are not independent. By exploiting the

orthogonality property of R, the elements are related by six constraints that yield

this representation a redundant description. In fact, a minimal representation of

the special orthogonal group SO(m) requires m(m − 1)/2 parameters. Therefore,

three parameters are needed to parameterize SO(3), while only one is needed for

SO(2) (planar rotation). It follows that a minimal representation of the orientation

of a rigid body in a three dimensional environment can be obtained by using a set

of three angles.

Section 2.1 - Pose of a rigid body 7

Theorem 2.1.1 (Euler’s rotation theorem) A generic rotation matrix R ∈ SO(3)

can be obtained by composing a suitable sequence of three elementary rotations

while guaranteeing that two successive rotations are not made about parallel axes.

Using the Euler’s rotation theorem, it is possible to create 12 distinct set of

rotations around the coordinate frame axes, called Euler angles triplets. In the

following, the ZY X angles set or Roll-Pitch-Yaw angles set is used, namely Φ =

[φ, ϑ, ψ]T .

Figure 2.2: Roll-Pitch-Yaw angles set representation

The rotation adopting Roll-Pitch-Yaw angles can be obtained by rotating the

frame around axis x by the angle φ (roll), the rotating around axis y by ϑ (pitch)

and at last around axis z by ψ (yaw). Using the composition rule for consecutive

rotations in Equation 2.1.3 and defining the three elementary rotation as

Rx(φ) =

⎡⎢⎢⎢⎣
1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎤⎥⎥⎥⎦ (2.1.4a)

Ry(ϑ) =

⎡⎢⎢⎢⎣
cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ

⎤⎥⎥⎥⎦ (2.1.4b)

Rz(ψ) =

⎡⎢⎢⎢⎣
cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎦ (2.1.4c)

8 Chapter 2 - Preliminary

it is possible to compute R(Φ) as

R(Φ) = Rz(ψ)Ry(ϑ)Rx(φ)

=

⎡⎢⎢⎢⎣
cψcϑ −sψcφ + cψsϑsφ sψsφ + cψsϑcφ

sψcϑ cψcφ + sψsϑsφ −cψsφ + sψsϑcφ

−sϑ cϑsφ cϑcφ

⎤⎥⎥⎥⎦
(2.1.5)

where sα and cα are respectively the sine and cosine of angle α.

(a) x axis rotation (roll) (b) y axis rotation (pitch)

(c) z axis rotation (yaw)

Figure 2.3: Elementary rotations around the coordinate axis

Section 2.2 - Holonomic and non-holonomic constraints 9

2.2 Holonomic and non-holonomic constraints

In order to derive a mobile robot kinematic and dynamic equations, it is relevant to

point out and analyze the presence of holonomic and/or non-holonomic constraints.

Such constraints can limit the admissible configuration space and/or how the system

can reach the configurations.

Definition 2.2.1 Given a dynamical system of equation q̈ = f(q, q̇, u, t), or

equivalently ẋ = fx(x, u, t), it is said to be subjected to a constraints if there is a

function defined over q and u of the form

ψ(q, q̇,u, t) ≥ 0 (2.2.1)

In this wide variety of constraints, the state constraints can be divided into two

group

ψ(q, q̇, t) ≥ 0

ψ(q, t) ≥ 0

(non-holonomic constraint)

(holonomic constraint)

The non-holonomic constraints are also referred as kinematic constraints and as

can be seen from from the equation, they can not be integrated. On the other hand,

the holonomic constraints can be integrated. From a practical point of view, non-

holonomic constraints impose that a combination of states and velocities are not

accessible, constraining the system kinematic and dynamic but leaving unchanged

the configuration space. Instead, the holonomic ones reduce the configuration space,

making some states inaccessible.

A very useful and straightforward example is the disk rolling on a plane without

slipping on the horizontal plane, while keeping the plane that contains it (sagittal

plane) in the vertical direction (Figure 2.4).

By defining its generalized coordinates, namely the Cartesian coordinates x and

y and its orientation ϑ with respect to a fixed reference frame FW , it is possible to

define the disk configuration vector q = [x, y, ϑ]T . The disk pure rolling condition

imposes that the velocity along the direction perpendicular to the sagittal plane

has to be zero. Therefore, by using some simple geometric considerations, this

constraint imposes that

ẋ sinϑ− ẏ cosϑ = 0 →
[︂
sinϑ − cosϑ 0

]︂
q̇ = 0 (2.2.2)

The constraint in Equation 2.2.2 is non-holonomic since it leaves unchanged

the configuration space but imposes that some combinations of configurations and

10 Chapter 2 - Preliminary

Figure 2.4: Non-holonomic constraint example
Rolling disk on a plane

velocities are locally not admissible. For more details and examples on holonomic

and non-holonomic constraints, see book [6].

Chapter 3

Agent and Target Models

3.1 Agent Model

This section presents an exhaustive description of the agent dynamic. The agent

taken into account is an Unmanned Ground Vehicle or UGV.

Figure 3.1: Example of UGV
Differential Drive Robot configuration

Despite moving in a three-dimensional environment, the examined agent has to

deal only with three Degrees of Freedom (2 translational DoFs and 1 rotational

DoF) since the remaining three DoFs are constrained by the terrain wherein it is

moving. Therefore, by knowing the topography, UGVs can be idealized as they are

moving on planar surfaces.

This project covers a particular configuration of UGV namely the Differential

Drive Robot or DDR. The structure of Differential Drive Robots consists on two

11

12 Chapter 3 - Agent and Target Models

independent drivable wheels with the same rotation axis. In this thesis, it is consid-

ered a DDR with also some free castor and/or spherical wheels which are used for

physical stability purpose. It is worth noticing that castor and spherical wheels do

not add motion constraints and hence their presence can be omitted in the system

model.

In the next sections, the generic UGV model is first derived and successively

used as basis for the DDR model.

3.1.1 UGV Model

In order to better comprehend the DDR system and to build the simplified target

model, it is mandatory to derive the UGV model. In this thesis, the generic UGV

is modelled as unicycle, which is a ground vehicle with a single orientable wheel, as

shown in Figure 3.2.

Figure 3.2: UGV unicycle model

Let FW denote the world frame and FB the body-fixed frame, with origin in OB.

In addition, let p ∈ R2 be the position of 0B in FW and ϑ ∈ S1be the orientation of

the body frame with respect to the world frame. It is therefore possible to define the

system state x = [p, ϑ]T = [x, y, ϑ]T ∈ R2 × S1 which, accordingly to Section 2.1,

represents the pose of the rigid body on planar surface. In addition, it is possible to

denote with v ∈ R the linear velocity of OB in the inertial world frame and ω ∈ R
the angular velocity of FB with respect to FW .

Section 3.1 - Agent Model 13

By using Figure 3.2 and some geometric considerations, it is possible to derive

the unicycle kinematic model, i.e.⎡⎢⎢⎢⎣
ẋ

ẏ

ϑ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cosϑ 0

sinϑ 0

0 1

⎤⎥⎥⎥⎦
⎡⎣v
ω

⎤⎦ (3.1.1)

The previously defined system has no state dynamic and it is only drive by the

two inputs v and ω. Moreover, due to the presence of sinϑ and cosϑ inside the

input matrix, the system is non-linear.

3.1.2 DDR Model

Before going into the Differential Drive Robot model details, the rolling disk exam-

ple presented in Section 2.2 has to be discussed in more details. During the disk

non-holonomic constraint derivation, the no-slip assumption is made. This assump-

tion imposes that a wheels has to move with a pure rolling motion, or equivalently

without losing grip with the contact surface. This implies that there is a linear

direct map between linear and angular wheel velocities, i.e.

v = r ω with v =
√︁
ẋ+ ẏ (3.1.2)

where r is the wheel radius and ω is its angular velocity.

In general, considering a drivable wheel, its spinning rate ω is not directly im-

posed but indeed an external torque is applied in order to make it spin. Therefore,

given the model in Figure 3.3, the applied torque τ and the mass m, inertia I and

radius r of the wheel, it is possible to derive the following dynamic equations

Figure 3.3: Pure rolling model

f = mac τ − rf = I
ac
r

(3.1.3)

f =
τ

r
(︁
1 + I

m r2

)︁ (3.1.4)

where f is the friction force between the wheel and the surface.

14 Chapter 3 - Agent and Target Models

Equation 3.1.4 shows the necessary friction force that allows a torque τ to drive

the wheel. To satisfy the no-slip constraint, it is hence necessary that

τmax ≤ µsmg r

(︃
1 +

I

m r2

)︃
(3.1.5)

where µs is the static friction coefficient and g is the gravitational acceleration.

If this constraint is not satisfied, the linear map in Equation 3.1.2 is no more

valid and the model has to be completely rewritten. For this reason, Equation 3.1.5

and hence the no-slip constraint are assumed always satisfied.

Thanks to this assumption, the Differential Drive Robot model can thereby be

split in two: the motion kinematic model and the wheel dynamic model. The first

part considers how the wheels angular velocities modify the agent position and

orientation while the second describes the electro-mechanical system model and the

implemented low level controller.

3.1.2.1 DDR Kinematic Model

Given the UGV unicycle kinematic model, it is possible to expand it to the Differ-

ential Drive Robot kinematic one by using some geometric considerations.

Figure 3.4: Differential Drive Robot model scheme

Section 3.1 - Agent Model 15

Considering the middle point between the tho wheels the body frame center OB,

defining r and d ad the wheels radius and distance and ωr and ωl as the right and

left wheel angular velocities, it is possible to derive the relation between ωr and ωl

and v and ω of the unicycle model i.e.⎧⎨⎩v = r ωr+ωl

2

ω = r
d
(ωr − ωl)

←→

⎧⎨⎩ωr = v
r
+ dω

2r

ωl =
v
r
− dω

2r

(3.1.6)

By combining Equation 3.1.1 and 3.1.6, it is possible to obtain the Differential

Drive Robot kinematic model.

⎡⎢⎢⎢⎣
ẋ

ẏ

ϑ̇

⎤⎥⎥⎥⎦ = r

⎡⎢⎢⎢⎣
cosϑ
2

cosϑ
2

sinϑ
2

sinϑ
2

1
d

−1
d

⎤⎥⎥⎥⎦
⎡⎣ωr
ωl

⎤⎦ (3.1.7)

3.1.2.2 DDR wheels dynamic model

To generate an accurate model of the agent, it is necessary to model also the wheels

dynamic. The DDR has two independently drivable wheels, connected via gearboxes

to two DC motors. In this thesis, it is considered also the presence of two rotary

encoders, which measure the wheels angular positions. In the following, the model

of a single wheel is considered since, despite the different parameters, the design of

the two wheel systems is the same.

Figure 3.5 presents the wheel model scheme: the DC motor is powered by a

voltage v and generates a torque that makes the wheel spin.

Figure 3.5: Wheels electro-mechanical scheme

16 Chapter 3 - Agent and Target Models

From a practical viewpoint, the DC motor is generally controlled via PWM

(Pulse Width Modulation) using a H-bridge system, allowing also the rotation of

the wheel in both direction. Assuming an ideal PWM control (no input voltage

oscillation), the dynamic equations of the wheel system can be written as

v(t) = L
di(t)

dt
+R i(t) +KΦω(t)

KΦ i(t) = J
dω(t)

dt
+ b ω(t)

(3.1.8)

In order to reach a desired wheel speed set-points, two independent proportional-

integral feedback control loops (PI) are designed and implemented. This controller

scheme has been chosen since it is simple to implement in a low-level controller and

it is robust to model parameters change and environment disturbances.

Parameter Description SI

R armature resistance Ω

L armature inductance H

KΦ motor constant Nm√
W

J system inertia kg m2

b viscous friction Nm
rad/s

i armature current A

v input voltage V

Table 3.1: DC motor electro-mechanical parameters

Assuming that the wheel angular velocity is available, thus making the feedback

action possible, the whole wheel dynamic is given by

v(t) = L
di(t)

dt
+R i(t) +KΦω(t)

KΦ i(t) = J
dω(t)

dt
+ b ω(t)

v(t) = Kp e(t) +Ki

∫︂ t

0

e(τ) dτ

e(t) = ωd(t)− ω(t)

(3.1.9)

where ωd is the desired wheel angular velocity, Kp and Ki are respectively the

proportional and integral gains. The stability of the PI control action and the

availability of the wheel angular velocities are proven and discussed in Appendices

A.1.1 and A.1.2.

Section 3.1 - Agent Model 17

3.1.2.3 DDR complete dynamic model

By the combination of the models derived in Equations A.1.4 and 3.1.7, it is possible

to expressthe whole DDR dynamic model in a state space representation, i.e.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ϑ̇

i̇r

ω̇r

ėi,r

i̇l

ω̇l

ėi,l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 r
2 cosϑ 0 0 r

2 cosϑ 0

03×3 0 r
2 sinϑ 0 0 r

2 sinϑ 0

0 r
d 0 0 − r

d 0

−Rr

Lr
−KΦr+Kp,r

Lr

Ki,r

Lr

03×3
KΦr

Jr
− br

Jr
0 03×3

0 −1 0

−Rr

Lr
−KΦl+Kp,l

Ll

Ki,l

Ll

03×3 03×3
KΦl

Jl
− bl

Jl
0

0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

ẏ

ϑ

ir

ωr

ei,r

il

ωl

ei,l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1 03×1

Kp,r

0 03×1

1

Kp,l

03×1 0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ωd,r

ωd,l

⎤⎥⎦

(3.1.10)

where the subscript r and l identifies respectively the right and left wheels.

It is possible to notice that the state matrix is block partitioned: each low level

controller modifies only the dynamic of the corresponding wheel, without interfering

with the other. This feature is useful to tune properly the controllers gains in order

to adapt them to different wheels dynamic internal parameters.

Figure 3.6 validates the derived model, the effectiveness of the low level PI

controller and compares the unicycle performance to the DDR ones. The parameters

and gains used in this comparison are reported in Table 3.2.

R L KΦ b J Kp Ki wd r d

[Ω] [mH] [Nm√
W
] [µNm

rad/s
] [g m2] [−] [−] [rad/s] [m] [m]

Right 2 30 0.5 0.1 10 0.1 2 10 0.034 0.165

Left 1.8 20 0.6 0.2 8 0.2 1 5 0.034 0.165

Table 3.2: Unicycle - DDR comparison simulation parameters

It is possible to notice a difference between the unicycle and the DDR due to

the DDR trajectories. Despite the fact that at steady state the two models both

draw a circle, the center of rotation is modified due to the transitory behaviour of

the DDR wheels as shown in Figure 3.6a. This behaviour can be clearly seen in

Figures 3.6c and 3.6d: both the sine waves have the same amplitude and frequency

but the DDR one is translated and delayed.

18 Chapter 3 - Agent and Target Models

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x [m]

-0.1

0

0.1

0.2

0.3

0.4

0.5
y
 [

m
]

Trajectory

DDR

UGV

(a) Trajectory

0 2 4 6 8 10

t [s]

0

100

200

300

400

500

600

 [
d

e
g

]

Orientation

DDR

UGV

(b) Orientation

0 2 4 6 8 10

t [s]

-0.3

-0.2

-0.1

0

0.1

0.2

x
 [

m
]

Trajectory - x axis

DDR

UGV

(c) Trajectory - x axis

0 2 4 6 8 10

t [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

y
 [

m
]

Trajectory - y axis

DDR

UGV

(d) Trajectory - y axis

0 2 4 6 8 10

t [s]

0

2

4

6

8

10

r [
ra

d
/s

]

Right wheel vel.

Desired

Actual

(e) Right wheel angular velocity

0 2 4 6 8 10

t [s]

0

1

2

3

4

5

l [
ra

d
/s

]

Left wheel vel.

Desired

Actual

(f) Left wheel angular velocity

0 2 4 6 8 10

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

i
[A

]

Motor current

Right

Left

(g) Motor current

0 2 4 6 8 10

t [s]

0

0.5

1

1.5

2

2.5

3

e
i [

ra
d

]

Integral error

Right

Left

(h) Integral error

Figure 3.6: DDR - unicycle comparison

Section 3.2 - Target Model 19

3.2 Target Model

Tho goal of this section is to understand the dynamic and to provide a suitable

model of the quadrotor, i.e. the Unmanned Aerial Vehicle (UAV) with four pro-

pellers used as target in this thesis. An example of this vehicle is shown in Figure

3.7.

Figure 3.7: Example of quadrotor

The quadrotor moves in a three-dimensional environment without constraints

and thus it has to cope with 6 DoFs (3 translational DoFs and 3 rotational DoFs),

having only 4 control inputs. It is therefore evident its under-actuated nature and

consequently it can not command an instantaneous acceleration in an arbitrary

direction. However, this limitation restricts only the way the quadrotor can reach

a desired configuration.

To derive the dynamic model of an aircraft, two prevailing methods are applied:

Euler-Lagrange formalism and Newton-Euler formalism. Both methods provide a

consistent description of the system dynamic, though, only the second formalism is

presented and use to derive the quadrotor model.

Let FW be the inertial world frame and FB be the body frame of the quadrotor,

which its origin OB is at the center of mass (CoM) of the aircraft. In addition, let

p ∈ R3 be the position of OB in FW frame and the rotation matrix R ∈ SO(3) be

the orientation of FB with respect to the inertial frame. It is possible to describe

the full pose of the aircraft in FW by using the pair (p, R) ∈ R3 × SO(3). By

defining v ∈ R3 as the linear velocity of OB in the inertial frame and ω ∈ R3 as the

angular velocity of FB with respect to FW , it is possible to derive the kinematic of

the quadrotor, namely

ṗ = v

Ṙ = R [ω]×

(3.2.1)

where the last equation is derived in Appendix A.2.1.

20 Chapter 3 - Agent and Target Models

In order to model also the dynamic of the aircraft, the forces and torques gen-

erated by each propeller are considered in the motion equations. Each propeller

rotates around ezi ∈ R3 axis with an angular velocity ωi ∈ R, i = 1, . . . , 4. If the

propeller spins clockwise (CW) with respect its axis, then its angular velocity in

FW is −ωiezi , otherwise it is ωiezi .

Figure 3.8: Quadrotor model with highlighted forces and torques

Defining Ωi = ωi|ωi| ∈ R as the propeller control input, the propeller thrust

force fi ∈ R3 is equal to

fi = cfiΩiezi (3.2.2)

where cfi ∈ R+ is the propeller trust coefficient constant parameter. As consequence

of the thrust force, a torque τ ti ∈ R3 associated to each propeller is generated, i.e.

τ ti = pi × fi = cfiΩi pi × ezi (3.2.3)

where pi is the distance of the propeller to the CoM of the aircraft. Moreover,

the propeller blades generate a drag torque τ di ∈ R3 that has opposite direction

compared to the propeller angular velocity and is given by

τ di = cτiΩiezi (3.2.4)

where cτi ∈ R is the propeller drag coefficient which is positive if the propeller spins

clockwise and negative otherwise. Combining all the contributions of each propeller

(Equations 3.2.2 - 3.2.4), it is possible to obtain the total force and torque acting

on the quadrotor CoM, expressed in body frame FB, i.e.

fc =
4∑︂
i=1

fi =
4∑︂
i=1

cfiΩiezi (3.2.5)

τc =
4∑︂
i=1

τ ti + τ di =
4∑︂
i=1

(cfi pi × ezi + cτiezi)Ωi (3.2.6)

Section 3.2 - Target Model 21

In the final dynamic model, fc and τc are referred as control variables even if

these two quantities are related to the propeller angular velocities Ω = [Ω1 Ω4]
T

by the wrench map

fc = FΩ τc = MΩ (3.2.7)

By denoting l as the aircraft arm length, the matrices F ,M ∈ R3×4 are given

by

F =

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

cf1 cf2 cf3 cf4

⎤⎥⎥⎥⎦ M =

⎡⎢⎢⎢⎣
0 l cf2 0 −l cf4
−l cf1 0 l cf3 0

−|cτ1| −|cτ2| −|cτ3| −|cτ4 |

⎤⎥⎥⎥⎦ (3.2.8)

In this thesis, minor perturbation caused by aerodynamic and gyroscopic effects

due to rotors and flapping are neglected. Therefore, combining the Newton-Euler

dynamic equations and the kinematic equations (Equation 3.2.1), the model of the

simplified quadrotor can be described by

ṗ = v (3.2.9a)

Ṙ = R [ω]× (3.2.9b)

v̇ = −g e3 +m−1Rfc (3.2.9c)

ω̇ = J−1(−ω × Jω + τc) (3.2.9d)

where g > 0, m > 0 and J ∈ R3×3 are respectively the gravitational acceleration,

the aircraft mass and its positive definite inertia matrix while R is the rotation

matrix embedding the aircraft attitude. In Equation 3.2.9d, the term −ω×Jω has

been added to consider the gyroscopic effect caused by the rotation of the whole

platform. For a more accurate quadrotor model, see [7, 8].

3.2.1 Quadrotor Projection

The developed model is useful to understand how the target behaves but is does

not provide directly useful information for a Agent-Target Cooperation scenario. In

particular, comparing the angles representing the rotation around the world frame

z axis, it is possible to notice that the quadrotor yaw angle ψ does not provide any

information about the quadrotor motion direction, as opposed to the DDR ϑ one.

Therefore, it is necessary to project the target state into the simplified agent one,

i.e. project the target into the unicycles “space”.

22 Chapter 3 - Agent and Target Models

Given the quadrotor state x = [p, Φ, v, ω]T and defining the target unicycle

state xt = [xt, yt, ϑt]
T and input ut = [vt, ωt]

T , it is possible to obtain the following

equations

xt = px (3.2.10a)

yt = py (3.2.10b)

vt =
√︂

v2
x + v2

y (3.2.10c)

ϑt = atan2(vy,vx) (3.2.10d)

The previously presented equations represent the projection of the quadrotor

position and velocity on the xy-plane. Moreover, the last equation imposes the

non-holonomic constraints to the target unicycle model. By rewriting Equation

3.2.10d as
vy
vx

= tanϑt → vx sinϑt − vy cosϑt = 0 (3.2.11)

it is possible to notice that the similarity with the non-holonomic rolling disk con-

straint in Equation 2.2.2.

The last parameter needed to represent the quadrotor as an unicycle is the

angular velocity ωt. By time differentiation of the ϑd angle, ωt can be expressed as

ωt =
dϑt
dt

=
d[atan2(vy(t),vx(t))]

dt
=

v̇yvx − vyv̇x
v2
x + v2

y

(3.2.12)

Despite such quantity can be computed, it is necessary to have the knowledge

of v̇ and thus of the quadrotor input (Equation 3.2.9c). In this thesis, however, the

target trajectory is not know in advance, so the quadrotor input is not available

and it is necessary to resort to a different way to compute ωt. Due to the lack of

further information, it is assumed that it is possible to recover such quantity by

discrete time differentiation of ϑt.

Figures 3.12 and 3.13 show the evolution of the quadrotor model using the

parameters reported in Table 3.3. In order to generate the trajectory, a position

and yaw angle controller has been implemented with gains as in Table 3.4. All the

controller details are reported in Appendix A.2.2.

Moreover, it is possible to observe how Figures 3.12b and 3.12h proves the

independence of the quadrotor trajectory from its yaw angle ψ.

Therefore, given the quadrotor state, it is possible to compute the quadrotor

projection orientation ϑt as in Equation 3.2.10d, resulting in Figure 3.9a. Due to

Section 3.2 - Target Model 23

the discontinuity of the atan2 function, the graph presents jumps and oscillations.

Despite solving the discontinuity problem (Figure 3.9b), the resulting graph still

has some oscillation, probably caused by the fluctuation of the quadrotor velocities

around zero. Hence, by applying the following equation

ϑt(k) =

⎧⎨⎩ϑt(k − 1) if vx,vy ≤ εv

atan2(vy(k),vx(k)) otherwise
(3.2.13)

and applying a Butterworth filter, it is possible to obtain ϑt and ωt as in Figure

3.10 and 3.11. Due to the discrete derivative, ωt presents some noise but it is still

reliable.

m Jx Jy Jz l cf cτ

[kg] [kg m2] [kg m2] [kg m2] [m]

1.5 0.029125 0.029125 0.055225 0.2555 5.84µ 0.06

Table 3.3: Quadrotor parameters

Kpp Kip Kdp Kda Kpa⎡⎢⎣50 50

50

⎤⎥⎦
⎡⎢⎣0.1 0.1

0.5

⎤⎥⎦
⎡⎢⎣15 15

10

⎤⎥⎦
⎡⎢⎣150 150

50

⎤⎥⎦
⎡⎢⎣15 15

10

⎤⎥⎦
Table 3.4: Position and yaw angle controller parameters

0 10 20 30 40 50 60 70

t [s]

-3

-2

-1

0

1

2

3

t [
ra

d
]

Computed orientation

(a) atan2 function output

0 10 20 30 40 50 60 70

t [s]

-14

-12

-10

-8

-6

-4

-2

0

2

4

t [
ra

d
]

Orientation - atan2 correction

(b) atan2 discontinuity correction

Figure 3.9: Quadrotor projection - Orientation ϑt

24 Chapter 3 - Agent and Target Models

0 10 20 30 40 50 60 70

t [s]

-8

-6

-4

-2

0

2

t [
ra

d
]

Orientation - atan2 correction and filtering

Figure 3.10: Quadrotor projection - Orientation ϑt
atan2 discontinuity correction and filtering

0 10 20 30 40 50 60 70

t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t [
ra

d
]

Angular velocity

Figure 3.11: Quadrotor projection - Angular velocity ωt

Section 3.2 - Target Model 25

(a) Initial conditions (b) Trajectory

0 10 20 30 40 50 60 70

t [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
 [
m

]

x axis

(c) Trajectory - x axis

0 10 20 30 40 50 60 70

t [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 [
ra

d
]

Roll angle

(d) Attitude - roll angle

0 10 20 30 40 50 60 70

t [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y
 [
m

]

y axis

(e) Trajectory - y axis

0 10 20 30 40 50 60 70

t [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

 [
ra

d
]

Pitch angle

(f) Attitude - pitch angle

0 10 20 30 40 50 60 70

t [s]

0

0.2

0.4

0.6

0.8

1

z
 [
m

]

z axis

(g) Trajectory - z axis

0 10 20 30 40 50 60 70

t [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 [
ra

d
]

Yaw angle

(h) Attitude - yaw angle

Figure 3.12: Quadrotor simulation - positions and orientations

26 Chapter 3 - Agent and Target Models

0 10 20 30 40 50 60 70

t [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

v
x
 [

m
/s

]

x axis vel

(a) Linear velocity - x axis

0 10 20 30 40 50 60 70

t [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

v
y
 [

m
/s

]

y axis vel

(b) Linear velocity - y axis

0 10 20 30 40 50 60 70

t [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

v
z
 [

m
/s

]

z axis vel

(c) Linear velocity - z axis

Figure 3.13: Quadrotor simulation - linear velocity

Section 3.2 - Target Model 27

(a) Initial conditions (b) Trajectory

0 10 20 30 40 50 60 70

t [s]

-8

-6

-4

-2

0

2

t [
ra

d
]

Orientation - atan2 correction and filtering

(c) Orientation ϑt

Figure 3.14: Quadrotor projection - position and orientation

28 Chapter 3 - Agent and Target Models

0 10 20 30 40 50 60 70

t [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
v

t [
m

/s
]

Linear velocity

(a) Linear velocity vt

0 10 20 30 40 50 60 70

t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t [
ra

d
]

Angular velocity

(b) Angular velocity ωt

Figure 3.15: Quadrotor projection - Velocities

Chapter 4

Computation node

The use of external computational nodes for practical application is growing due to

the increasing power and computational demanding of ever new controller.

In this thesis, such node is used to provide computational power on demand

and the agent and target measures. To obtain information on the agent and target

systems, such node is provided with a fixed camera which sees the whole scenario

(Figure 4.1). By applying some calibration, detection and appropriate filtering

techniques, it is possible to retrieve not only the poses (positions and orientations)

but also the linear velocities of the agent and target in the camera frame FC .

Figure 4.1: Example of camera placement

A very effective, reliable and light system to compute the pose of elements in

a camera field of view is the AprilTag detection system. AprilTags are a visual

fiducials artificial landmarks designed to be easily to recognized; they are based

on a two dimensional QR code but with far smaller data payload (between 4 to

29

30 Chapter 4 - Computation node

12 bits). The AprilTag system is implemented in C without external dependencies

and carefully designed to be portable to real-time embedded devices. Using the

provided detection software, it is possible to obtain both position and orientation

with respect to the camera frame while identifying the tag. An example of its

application can be seen in Figure 4.2. For more details see [9].

Figure 4.2: AprilTag pose detection example

Combining such detection system with an Extended Kalman Filter (EKF), it is

possible also to obtain the object linear velocity v ∈ R3 for both the agent and the

target.

In order to communicate with the agent, a wireless channel is used. In this work,

such channel is idealized, namely it does not introduce communication and package

loss latencies.

Chapter 5

Problem formulation and Model

Predictive Control

5.1 Problem formulation

The aim of this section is to introduce the system optimization problem and to

define the assumption used to design the controller. This work considers a UGV

as controlled agent and an Unmanned Aerial Vehicle (UAV) as target. The agent

is modelled as Differential Drive Robot (DDR), with dynamics as in Section 3.1,

whereas the target has model as presented in Section 3.2.1.

The purpose of the agent is twofold:

• Agent-Target Coordination: track the target movement and position itself

under the quadrotor, in order to be prepared for a landing scenario;

• Controller Optimization: adapt the control system to the target dynamics,

balancing between the performance and the computational resources employed

Assuming that the agent is moving on a planar surface (z = 0), it is possible to

define p = [x, y]T and ϑ as its position and orientation of the body frame FB with

respect to the inertial reference frame FW . In addition, defining Ωk = [ik, ωk, eik]
T

as the agent wheel-“k” state (k ∈ r, l), it is possible to denote with ξ ∈ R9 the state

of the agent system, i.e.

ξ =

⎡⎢⎢⎢⎢⎢⎢⎣
p

ϑ

Ωr

Ωl

⎤⎥⎥⎥⎥⎥⎥⎦ (5.1.1)

31

32 Chapter 5 - Problem formulation and Model Predictive Control

Furthermore, by defining the agent control input as the right and left desired

wheels angular velocities ωd = [ωdr, ωdl]
T , the Differential Driver Robot can be

described by the following non-linear dynamic system

ξ̇(t) = f(ξ(t),ωd(t)) (5.1.2)

where f(·, ·) is derived in Equation 5.1.2.

Similar reasoning can be applied to the quadrotor projection variables, now re-

ferred as target quantities. Defining ξt = [xt, yt, ϑt]
T and ut = [vt, ωt]

T as the

target state and input variables, it is possible to denote the target non-linear dy-

namic equation, namely

ξ̇t(t) = fu(ξt(t),ud(t)) (5.1.3)

where fu(·, ·) is derived in Equation 3.1.1.

In order to pass the correct information to the controller, it is necessary to

estimate the system states.

As previously presented in Chapter 4, the external computation node provides

the pose and linear velocities of both agent and target. In this thesis, the agent

linear velocity measures are unused but it could be integrated in the model in order

to improve the agent model parameters and wheels speed measures.

To complete the agent state, it is necessary to estimate the wheels states, namely

[ir, ωr, eir, il, ωl, eil]
T . Using the internal wheels position measures (Section 3.1.2.2)

and the eir and eil exact knowledge provided by the low level controllers, it is possible

to estimate the whole wheels state, as discussed in Appendix A.1.2. At last, it is

possible to compute the target angular velocity as presented in Section 3.2.1.

Therefore, it is possible to reconstruct both the whole agent and target states,

i.e.

ξ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃t

ỹt

ϑ̃

ĩr

ω̃r

ẽir

ĩl

ω̃l

ẽil

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃t

ỹt

ϑ̃t

ṽt

ω̃t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.1.4)

Section 5.1 - Problem formulation 33

Having identified the agent and target states estimation assumptions, it is pos-

sible to define the Differential Drive Robot requirement for the Agent-Target Op-

timization Coordination (ATOC) problem. In order to define the problem, the

following assumption have been made:

1. the target velocities do not exceed the actuation capability of the agent;

2. the quadrotor projection model is suitable to represent the actual quadrotor

trajectory;

3. the computation node provides the agent and target measures continuously,

without losing any of them;

4. the exchange of data between the computation node and the agent takes place

via an ideal channel (no latency);

The ATOC problem can be then divided into two sub-problems: Agent-Target

Coordination (ATC) and Controller Optimization (CO)- It is possible to indepen-

dently define their definitions and requirements and later merge the solutions to

obtain the Agent-Target Optimized Coordination solution.

Problem 5.1.1 (Agent-Target Coordination) Given the agent state ξ as in Equa-

tion 5.1.1, the target pose ξt = [pt, ϑt]
T = [xt, yt, ϑt] as in Equation 3.2.10, the

controller aims to drive the Differential Drive Robot in order to

lim
t→∞
∥pt(t)− p(t)∥2 = 0 (5.1.5a)

lim
t→∞
|ϑt(t)− ϑ(t)|2 = kπ with k ∈ N (5.1.5b)

The first equation imposes that the agent position corresponds exactly to the

target one, while the second one requires that the DDR heading direction is aligned

with the target one, without taking into account its direction.

In order to define the Controller Optimization problem, it is necessary to make

some further consideration. In a real world application, time between the controller

input reception and output response can not be overlooked, resulting in a delay in

the actuation of the system. Such delay is generally negligible with respect to the

system evolution and/or the controller sample time although, in case of complex

control algorithm, it has to be taken into account. In this work, the time needed to

compute the solution is taken into account merely during the controller choice.

Furthermore, despite using an ideal channel to communicate with the external

computation node, the controller penalizes the use of this source to solve high

demanding tasks, in order to mimic a real behaviour.

34 Chapter 5 - Problem formulation and Model Predictive Control

Given these consideration, it is possible to define the Controller Optimization

problem.

Problem 5.1.2 (Controller Optimization) Let C be a set of n controllers solving

the same problem and ui and Ti be the i-th controller solution and the needed

computational time. In addition, let cext be a fixed cost representing the use of the

external computation node. The controller aims to choose the best controller which

minimizes the following cost function

n∗ = argmin
i∈ 1,...,n

(ui − ū)TCu(ui − ū) + cTT
2
i + Jext (5.1.6)

where Cu is a weighting cost matrix, ū is the best solution and Jext is defined as

Jext =

⎧⎨⎩0 if Ti < Text

cext otherwise
(5.1.7)

By tuning the cost parameters and solving the previously defined problem, it

is possible to obtain a trade off between an optimal control input, which leads to

the best system performance, the computational time needed and the use of the

external resource.

5.2 Optimal Control Problem

In order to satisfy every increasing control requirements, advanced control tech-

niques have been studied and implemented. To deal with more and more demanding

scenario, optimal control theory is being developed and it is becoming increasingly

used. In fact, optimal control theory aims to find an appropriate control action for

dynamical systems in order to optimize a cost function. Due to its general the-

ory, this method can handle multiple objective despite they might concern different

fields. An example is the autonomous drive vehicle problem: the vehicle may have

to minimize the fuel consumption and the travelled distance while respecting the

road code and avoiding other vehicles, bicycles and pedestrians.

In this work, the agent has to solve simultaneously several task: it has to po-

sition itself under a moving target while aligning itself with the motion direction.

Such objectives concerns different fields and might not be compatible; it is thus

necessary to introduce a prioritization mechanism. Control strategies based on the

solution of optimization problem appear to be best suited to solve such problems.

Section 5.2 - Optimal Control Problem 35

Reformulating the requirements as cost function and applying optimal control the-

ory, it is possible to obtain an input that guarantees the best system performances.

In this thesis, the Optimal Control problem is solved by a Model Predictive Control

(MPC) scheme.

5.2.1 General description

At first, let’s introduce the concept of Infinite horizon optimal control problem,

considering the dynamic continuous time system

ẋ(t) = f(x(t),u(t)) (5.2.1)

where x ∈ Rn is the state and u ∈ Rm is the system input. The goal of a model

predictive control is to find u(t) for t ∈ [0,+∞) that minimizes the cost function

J∞ given the initial condition x(0) = x̃0, i.e.

min
u(·)

J∞(x,u) =

∫︂ ∞

0

V (x(t),u(t)) dt (5.2.2)

where V (x,u) is function that associates a cost for each state and input of the

system. Such problem has not a generic close form solution, but it is possible to

prove that if V (·) is positive definite and both f(·, ·) and V (·) are enough regular,

then exists u∗(t) with t ∈ [0,+∞) that minimizes Equation 5.2.2 and stabilizes the

system in Equation 5.2.1 in a neighbourhood of x̃0 [10].

In particular, if we consider the following minimization problem

min
u(·)

J∞(x,u) =

∫︂ ∞

0

xT (t)Qx(t) + uT (t)Ru(t) dt (5.2.3)

subject to
ẋ(t) = Ax(t) +Bu(t)

x(0) = x̃0

(model dynamics)

(initial condition)

where Q and R are positive semi-definite weight matrices (Q, R ≥ 0), the solution

is guaranteed and it is obtained in closed form as stated by Theorem 5.2.1.

Theorem 5.2.1 (Solution of the infinite horizon LQ optimal control problem)

Given the optimization problem as stated in Equation 5.2.3 and let Q
1
2 be a matrix

such that Q = (Q
1
2)TQ

1
2 . It holds that:

1. the Algebraic Riccati Equation (ARE)

ATP + PA− PBR−1BTP +Q = 0 (5.2.4)

36 Chapter 5 - Problem formulation and Model Predictive Control

has a unique positive semi-definite solution P∞. Furthermore, if (A, Q
1
2) is

observable, P∞ is positive definite;

2. the state feedback control law

u(t) = −Kx(t) with K = R−1BTP∞ (5.2.5)

minimize the infinite horizon quadratic cost function and makes the closed-

loop system asymptotically stable

if and only if (A, B is stabilizable and (A, Q
1
2) is detectable.

Equation 5.2.3 and Theorem 5.2.1 take into account only linear systems and

linear-quadratic cost functions.

In general, when V (·) and f(·, ·) assume a generic form, the optimal input that

minimize Equation 5.2.2 can not be found in close form. Moreover, the problem

is not suitable to be solved numerically due to the infinite space dimension of the

solution and the infinite interval of interest.

5.2.2 Model Predictive Control

To solve numerically a generic optimal control problem, an approximate numerical

solution is taken into account by using some assumptions. The first assumption is

to formulate the problem in a discrete time frame. Despite most of the systems

have a continuous dynamic model, the controller is generally implemented digitally

and thus discrete dynamic models are preferred.

Hence, the system model in Equation 5.2.1 has to be discretized using proper

techniques and sample time Ts, in order to obtain

x(k + 1) = fk(x(k),u(k)) (5.2.6)

where, as result of a notation abuse it holds that k = hTs h ∈ N.

The second assumption is to restrict the infinite time horizon to a finite time

interval, namely [0, T], which due to the discrete time nature of the new system can

be brought back to a finite set of time samples of length N , referred to as control

horizon.

The optimal problem in Equation 5.2.3 is then reformulated as follow.

Section 5.2 - Optimal Control Problem 37

Problem 5.2.1 Find u∗(0) . . . u∗(N−1) that minimizes the following optimization

problem

min
u(·)

J =
N−1∑︂
k=0

V (x(k),u(k) + V (x(N)) (5.2.7)

subject to

x(k + 1) = fk(x(k),u(k))

x(0) = x̃0

x(k) ∈ X ∀ k ∈ [0, N]

u(k) ∈ U ∀ k ∈ [0, N − 1]

(model dynamics)

(initial condition)

(state constraint)

(input constrain)

where J(·) is the cost function, x(·) and u(·) are the discrete system state and

input, X and U are respectively the state and input spaces.

It is possible to notice that state and input constraints are embedded in the

problem formulation, since the state and the input are imposed in their respective

sets X and U .

Figure 5.1: Visual representation of the MPC concept

The Model Predictive Control is an approach based on the iterative solution

of the Optimal Control Problem (OCP) (Problem 5.2.1) at each time instant t.

The cost function takes into account the system evolution over the control hori-

zon and minimizes it in order to obtain a series of input u∗(0) . . . u∗(N − 1) that

leads to the minimum cost.

38 Chapter 5 - Problem formulation and Model Predictive Control

In order to achieve a close-loop control, only the first input u∗(0) is applied

enabling the system evolution and the construction of a new control problem. Figure

5.1 visually shows the main idea behind the MPC concept.

Chapter 6

NMPC controller definition

This chapter presents the Nonlinear Model Predictive Control (NMPC) scheme used

to control the Differential Drive Robot described in Equations 5.1.1 and 5.1.2. The

aim is to provide the tools and the arguments to build the different cost functions,

to define the input space, to describe the agent update and to finally present the

whole controller scheme.

6.1 Runge-Kutta Integration

As stated in Section 5.2.2, it is necessary to convert the system continuous dynamic

model in a discrete one in order to be able to apply the NMPC scheme. Since the

agent and taget models are strongly non-linear, classic discretization techniques can

not be applied due to the high accumulation of approximation errors. Therefore, the

Runge-Kutta integration method is used. This technique provides a high accurate

numerical approximation of a function without using its own high order derivative.

Given the first-order initial-value problem⎧⎨⎩ẏ = f(t, y) a ≤ t ≤ b

y(a) = y0
(6.1.1)

and dividing the interval [a, b] into N sub-intervals [tn, tn+1] with n = 0, 1, . . . , N−1,
it is possible to integrate the function by applying the mean value theorem for

integral and to obtain that

y(tn+1)− y(tn) =
∫︂ tn+1

tn

f(τ, y(τ)) dτ = hf(ε, y(ε))

⇒ y(tn+1) = y(tn) + hf(ε, y(ε))

(6.1.2)

39

40 Chapter 6 - NMPC controller definition

where h = tn+1 − tn and ε ∈ [tn, tn+1].

Approximating f(ε,y(ε)) with the linear combination of f(ε1,y(ε1)), f(ε2,y(ε2)),

. . . , f(εm,y(εm)) on the interval [tn, tn+1], it is possible to define the general form

of the Runge-Kutta method i.e.

yn+1 = yn + h
m∑︂
i=1

ci f(εi, y(εi)) (6.1.3)

In this thesis, the four-stage Runge-Kutta method has been used, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4)

k1 = h f(tn, yn)

k2 = h f(tn +
1
2
h, yn +

1
2
k1)

k3 = h f(tn +
1
2
h, yn +

1
2
k2)

k4 = h f(tn + h, yn + k3)

(6.1.4)

Using Equation 6.1.4, it is possible to discretize Equations 5.1.2 and obtain

ξ(k + 1) = fk(ξ(k),ωd(k)) (6.1.5)

The same reasoning can be applied to the unicycle Equation 3.1.1 in order to

discretize the target model.

However, the approximation is accurate only if some requirements are satisfied.

Let’s consider a linear dynamic system of equation

ẏ = λy with y(0) = y0(̸= 0), λ ∈ R− (6.1.6)

with trivial convergent solution y(t) = eλ t. Given such result, it is relevant to

study under what conditions on the step size h the four-stage Runge-Kutta method

reproduces this behaviour. Applying Equation 6.1.6 to Equation 6.1.4 yields

yn+1 =

(︃
1 + h̄

1

2
h̄2 +

1

6
h̄3 +

1

24
h̄4
)︃
yn with n > 0, h̄ = hλ (6.1.7)

and therefore

yn =

(︃
1 + h̄+

1

2
h̄2 +

1

6
h̄3 +

1

24
h̄4
)︃n

y0 (6.1.8)

The previously defined discrete time system is stable if and only if⃓⃓⃓⃓
1 + h̄+

h̄2

2
+
h̄3

6
+
h̄4

24

⃓⃓⃓⃓
< 1⇒ h̄ ∈ (−2.78, 0) (6.1.9)

Section 6.1 - Runge-Kutta Integration 41

and hence the four-stage Runge-Kutta method reproduces the exponential behaviour

if and only if h̄ ∈ (−2.78, 0) [11].

Figure 6.1 proves the convergence interval of four-stage Runge-Kutta method.

0 5 10 15 20 25 30

t [s]

0

2

4

6

8

10

Runge Kutta test, e
-t
 function

Exact

0.5 s

1 s

2 s

2.5 s

2.79 s

0 0.2 0.4 0.6

6

8

10

Figure 6.1: four-stage Runge-Kutta method test
ẏ = −y function approximation

6.1.1 Application of Runge-Kutta Integration

In order to correctly discretize the models in Equations 5.1.2 and 5.1.3, it is nec-

essary to identify their sample time convergence intervals for the four-stage Runeg-

Kutta method. By computing the eigenvalues, it is possible to find a sample upper

bound, i.e.

Ts < Tmax =
2.78

max(λ)
(6.1.10)

which has to be satisfied by the controller sample time Ts.

In general, this requirement is not met. In a widely variety of controlled systems,

a cascade control architecture is used. This architecture allows the control of slow

but complex task by dealing with relatively fast low level processes: moving from

the top layer (high level control) to the bottom one (low level control) controller

complexity and sample time are reduced.

42 Chapter 6 - NMPC controller definition

An example of this phenomena is the agent controller scheme taken into account.

The controller provides, with its own sample rate, the desired angular wheel speed

ωd in order to change the DDR posture, while the internal PI controllers, with an

higher sample rate, has to match the desired references.

Therefore, this sample time difference has to be taken into account during the

discretization procedure.

Given a generic continuous time system ξ̇ = f(ξ,u) and defining Ts as the high

level controller sample time which does not satisfy Equation 6.1.10, the objective is

to develop an approximation method to approximate ξ(t+ Ts) given ξ(t) and u(t).

Let Tc,1, Tc,2, . . . , Tc,j be a set of j controller step size which satisfies Equation

6.1.10 and fk(ξ,u, T) be the four-stage Runge-Kutta discretization with sample

time T , it is possible to express ξ(t+ Ts) as

ξ(t+ Ts) = ξj (6.1.11)

where
ξi = fk(ξi−1,u, Tc,i) with i = 1, . . . , j

ξ0 = ξ(t),

j∑︂
i=1

Tc,i = Ts

(6.1.12)

Using these method, it is possible to simulate a Ts step time without losing

accuracy. It is noteworthy that the Tc,i can be different from the actual low level

controller sample time. The pseudocode of this discretization method is reported

in Algorithm 1, while a possible result is shown in Figure 6.2.

This method certainly allows a correct discretization procedure despite high

sample time, at the expense of the model complexity.

Algorithm 1 Accurate simulation using four-stage Runge-Kutta discretization

1: ξ ← system state at time t (ξ(t))

2: u← system input

3: Tc,1, Tc,2, . . . , Tc,j ← low level controller step

4: for i← 1 to j do

5: ξ ← fk(ξ,u, Tc,i)

6: end for

7: ξ → system state at time t+ Ts (ξ(t+ Ts))

Section 6.2 - NMPC Agent Controller 43

-0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Actual

T
c,i

 = 0.042, i = 1...10

T
c,i

 = 0.42, i = 1

Figure 6.2: DDR simulation - Ts = 0.42s

6.2 NMPC Agent Controller

The NMPC controller aims to coordinate the Differential Drive Robot with the

target by solving Problem 5.1.1. Therefore, to generate the NMPC cost function,

it is necessary to translate the requirements in appropriate cost factors.

The optimization problem can be formulated as

ω∗
d = argmin

ω̂d(·)
J = Jd + Jϑ + Jvω + Jωd

(6.2.1a)

subject to ξ̂(k + 1) = fk(ξ̂(k), ω̂d(k)) (model dynamics) (6.2.1b)

ξ̂(0) = ξ̃(t) (initial condition) (6.2.1c)

ω̂d(k) ∈ U (input constraint) (6.2.1d)

where Ji are the different cost factors, ξ̂ and û are the simulated state and input used

in the minimization procedure while ξ̃ is the system state measures. In addition,

with a slight abuse of notation, the model dynamic updating equation (Equation

6.2.1b) uses the method presented in Section 6.1.1.

44 Chapter 6 - NMPC controller definition

6.3 Definition of the cost factors

The NMPC cost function is composed by four independent costs with the task of

minimizing a particular sub-problem.

The first term Jd is the straight forward conversion of the Problem 5.1.1 position

requirement, i.e.

Jd =
N−1∑︂
k=0

cd · ∥p̂t(k)− p̂(k)∥2 =
N−1∑︂
k=0

cd · ∥êd(k)∥2 (6.3.1)

where cd is the distance cost tuning factor and pt is the target position. It is

possible to notice that the defined cost function is convex, semi-definite positive

and has minimum in zero, which is one of the problem requirements.

The second term Jϑ tries to fulfill the Problem 5.1.1 orientation requirement.

Given the unitary heading vectors n of the agent and nt of target as in Figure 6.3,

the dot product can be used to measure their line-up, i.e.

nt · n = ∥nt∥∥n∥ cos
(︂
ϑ̂t − ϑ̂

)︂
= cos(ϑ̂t − ϑ̂) = cos(êϑ) ∈ [−1, 1] (6.3.2)

ϑ

n

ϑ

n

Figure 6.3: Generic iteration of the optimization algorithm

Therefore, a good candidate for the orientation alignment cost function is

Jϑ =
N−1∑︂
k=0

cϑ · (1− cos2(êϑ(k))) =
N−1∑︂
k=0

cϑ · ea(k) (6.3.3)

where cϑ is the alignment cost tuning factor. It is trivial to notice that the function

has minimum in zero when ϑt − ϑ = kπ with k ∈ Z, as requested by the problem

formulation.

Section 6.3 - Definition of the cost factors 45

Clearly, the distance and orientation errors are estimated quantities since they

depend on the projection in the interval N of the agent and target states. The

agent dynamic can be estimated by applying recursively Equation 6.2.1b from the

initial conditions.

On the other hand, it is possible to obtain the target state projection by applying

recursively the four-stage Runge-Kutta discretization of Equation 5.1.3.

The cost function term Jvω tries to minimize the mismatch between the target

and agent linear and angular velocities. Since the agent and target models are

different, in order to compare those quantities, it is necessary to convert the wheels

angular velocities ωr and ωl into v and ω by using Equation 3.1.6. Therefore, the

cost function Jvω can be expressed as

Jvω =
N−1∑︂
k=0

êTvω(k)Cvω êvω(k) =
N−1∑︂
k=0

∥êvω(k)∥2Cvω

evω(k) = [vt, ωt]
T −DDR2uni([ω̂r(k), ω̂l(k)]

T)

(6.3.4)

where Cvω is the velocities tuning matrix and DDR2uni is the conversion function,

embedding the DDR wheels radius r and distance d parameters.

The last term Jωd
contributes to the stability of the Differential Drive Robot

input. As reported in Equation 6.2.1d, the input has to belong to U = {ωd ∈ R2 :

ωd,min ≤ ωd ≤ ωd,max}. However, there are no constraints which impose the absence

of input oscillations which might damaging the actuators. For this reason, the Jωd

penalizing factor is added to the NMPC cost function, i.e.

Jωd
=

N−1∑︂
k=0

∥ω̂d(k)∥2R (6.3.5)

Having defined the structure of the cost function and all its term, it is possible

to summarize the NMPC problem as

ω∗
d = argmin

ω̂d(·)

N−1∑︂
k=0

cd · ∥êd(k)∥2 + cϑ · ea(k) + ∥êvω(k)∥2Cvω
+ ∥ω̂d(k)∥2R

subject to ξ̂(k + 1) = fk(ξ̂(k), ω̂d(k))

ξ̂(0) = ξ̃(t)

ξ̂t(k + 1) = fk,uni(ξ̂t(k), [ṽt(t), ω̃t(t)]
T)

ξ̂t(0) = ξ̃t(t) = [p̃t(t), ϑ̃t(t)]
T

ω̂d(k) ∈ U

(6.3.6)

46 Chapter 6 - NMPC controller definition

6.3.1 Controller architecture

The controller scheme is shown in Figure 6.4 below. The NMPC controller receives

as input the agent state ξ̃(t), the target state ξ̃t(t), the number of control invariant

N and the dedicated algorithm parameters. Given these information, the controller

solves the optimization problem presented in Equation 6.3.6. As stated in Section

5.2.1, only the first input of the optimal input sequence is applied, i.e. ωd(t) =

ω∗
d(0).

Figure 6.4: NMPC controller architecture

Chapter 7

DDR control

This Chapter is devoted the creation of the Differential Drive Robot controller that

solves both Agent-Target Coordination and Controller Optimization problems. It

is necessary to implement an additional controller that addresses Problem 5.1.2

since the previously defined NMPC scheme deals only with Problem 5.1.1. In the

following sections are presented the tools and arguments used to implement this

controller. At the end, the whole system scheme is shown, highlighting its cascade

architecture.

7.1 Controller Optimization

Before solving the Controller Optimization problem, it is necessary to address which

controllers have been used. Referring to the definition of Problem 5.1.2, these

controllers have to solve the same problem and to return the same type of output

ui.

Good candidates are the NMPC controllers with different control invariant in-

dex: they take as input the same quantities to compute the optimal solution, con-

sidering different time invariant N1 < N2 < · · · < Nn.

Despite using the same initial conditions, changing the time horizon generally

influences the outcome: increasing the number of control invariant N allows the

algorithm to see the overall system evolution and to adapt to it at best, typically

at the expense of the computational effort.

In this thesis, it is considered the following set of time invariant N

N1 = 10 N2 = 30 N3 = 60 N4 = 100 (7.1.1)

47

48 Chapter 7 - DDR control

In order to solve Problem 5.1.2, the last element to define is the best solution ū.

Since the target trajectory is not known in advance, it is not possible to compute the

best input to adjust the agent system in relation to the overall quadrotor motion.

By resorting to the assumption that the unicycle model is a suitable representation

of the quadrotor motion, it is possible to define the approximated best solution ˜̄u∗

as

˜̄u∗ = argmin
ω̂d(·)

Nmax−1∑︂
k=0

J, Nmax = max
i∈{1,2,...,n}

Ni (7.1.2)

where the cost function is defined as in Equation 6.3.6.

Figures 7.1, 7.2 and 7.3 show three NMPC solutions with the same cost function

definition and weight factors but with different initial conditions. It is possible to

notice three different behaviours:

Fig. 7.1: all the controllers drive the DDR in the same way;

Fig. 7.2: there are two control strategies, performed by N = 10, 30 and

N = 60, 100;

Fig. 7.3: N = 10, 30, 60 make the agent execute the same trajectory, which

differs greatly from the N = 100 one.

In all the examples, the solution computation time increases as the control invariant

N raises.

It is therefore possible to understand the relevance of solving the Controller

Optimization problem: when the performances of all the controllers are alike, it is

convenient to resort to the less computationally demanding one (Figure 7.1), while

sometimes it is needed to resort to a controller with higher control invariant to

achieve the desired system requirements (Figure 7.3).

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x [m]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y
 [
m

]

NMPC prediction - Trajectory

UGV

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(a) Trajectory prediction

10 20 30 40 50 60 70 80 90 100

N [-]

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [
s
]

NMPC prediction - Computation time

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(b) Solution computational time

Figure 7.1: Example of NMPC solution
Similar controller behaviours

Section 7.1 - Controller Optimization 49

0.5 0.55 0.6 0.65 0.7

x [m]

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

y
 [
m

]

NMPC prediction - Trajectory

UGV

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(a) Trajectory prediction

10 20 30 40 50 60 70 80 90 100

N [-]

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

T
im

e
 [
s
]

NMPC prediction - Computation time

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(b) Solution computational time

Figure 7.2: Example of NMPC solution
Two control strategies

50 Chapter 7 - DDR control

0.6 0.7 0.8 0.9 1 1.1 1.2

x [m]

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25
y
 [
m

]
NMPC prediction - Trajectory

UGV

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(a) Trajectory prediction

10 20 30 40 50 60 70 80 90 100

N [-]

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

T
im

e
 [
s
]

NMPC prediction - Computation time

DDR - N = 10

DDR - N = 30

DDR - N = 60

DDR - N = 100

(b) Solution computational time

Figure 7.3: Example of NMPC solution
Difference between N = 10, 30, 60 and N = 100 solutions

Section 7.1 - Controller Optimization 51

7.1.1 Controller Computational Time and Input Predictor

Determining the NMPC controllers solutions might be inefficient both from an

energy and computational point of view, especially if, at the end, only one solution

is adopted. Therefore, it is necessary to implement a predictor of the controllers

computational time and outcome.

7.1.1.1 Gaussian Process Regression

Building a mathematical model to describe a system might be challenging due

to the limited knowledge of the underlying system, complex non-linearities or the

existence of unknown exogeneous phenomena impacting the input-output response.

Therefore, it is relevant to develop methods for system identification using only

batches of input-output data.

A possible solution is to apply the Gaussian Process theory to the regression

problem. TheGaussian Process Regression (GPR) is a method for non-linear regres-

sion which assumes that the target function can be modelled as Gaussian Process.

This methodology can be divided in two step: generate the prior and incorporate

the process observation. The prior is a Gaussian vector of the form

f∗ ∼ N (0,K(X∗,X∗)) (7.1.3)

where X∗ are a set of points to predict and K(·, ·) is the covariance matrix. Such

probabilistic function represents the prior knowledge before making any observa-

tions of the actual process and it depends only on the form of the imposed covariance

matrix.

By defining f andX as the process observation and training points, it is possible

to express the joint distribution of [f , f∗]
T as⎡⎣f

f∗

⎤⎦ ∼ N
⎛⎝0,

⎡⎣K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

⎤⎦⎞⎠ (7.1.4)

and, by using the condition distribution theory for Gaussian random vectors, it is

possible obtain

f∗|X∗,X,f ∼ N (K(X∗,X)K(X,X)−1f ,

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)) (7.1.5)

The function values f∗, which correspond to prediction inputX∗, can be sampled

from the joint posterior distribution of Equation 7.1.5 by evaluating its mean vector

and covariance matrix.

52 Chapter 7 - DDR control

An example of the whole process is shown in Figure 7.4. Figure 7.4a shows

different samples from the prior f∗ distribution, highlighting also the 95% confidence

interval; Figure 7.4b presents the posterior samples conditioned by the five “+”

observations. It is possible to notice that the confidence interval shrinks around the

observed points and widens the farther away from these points, returning as in the

prior.

(a) Prior

(b) Posterior

Figure 7.4: GPR prior and posterior example

During the Gaussian Process Regression formulation, the choice of the covari-

ance function K(X,X ′) plays a fundamental role in the predictor efficacy, since it

encodes the assumption about the objective unknown function. In this thesis, the

Square Exponential (SE) kernel is use, i.e.

cov(f(x),f(x′)) = K(x,x′) = exp

(︃
−1

2
∥x− x′∥2

)︃
(7.1.6)

From the previous equation, it is possible to notice that the covariance of the

Section 7.1 - Controller Optimization 53

output is written as function of the inputs and that it encodes a distance similarity

metrics, due to the use of the square norm. Beside being one of the most used

covariance function within the kernel machines field, it has some relevant properties.

It is infinitely differentiable, which implies that the GP is very smooth and it can

be expressed as a linear combination of an infinite number of Gaussian-shaped basis

function.

In order to adapt to different system, typically some hyperparameters are intro-

duced in the SE kernel function. For example, considering a one dimensional SE

covariance function, the kernel can be expressed as

k(xp, xq) = σ2
f exp

(︃
− 1

2l2
(xp − xq)2

)︃
+ σ2

nδpq (7.1.7)

where l is the length-scale, σ2
f is the signal variance and σ2

n is the noise variance.

(a) (l, σf , σn) = (1, 1, 0.1) (b) (l, σf , σn) = (0.3, 1.08, 5 · 10−5)

(c) (l, σf , σn) = (3, 1.16, 0.89)

Figure 7.5: GPR hyperparameters examples
Samples from GP with (l, σf , σn) = (1, 1, 0.1)

54 Chapter 7 - DDR control

The relevance of an accurate tuning of these hyperparameters is presented in

the Figure 7.5. The “+” data are sampled from a GP with (l, σf , σn) = (1, 1, 0.1).

Figure 7.5a shows the results of training a Gaussian Process Regressor with the

same hyperparameters. Instead, Figures 7.5b and 7.5c presents the results obtained

by training it with (l, σf , σn) = (0.3, 1.08, 5 · 10−5) and (l, σf , σn) = (3, 1.16, 0.89).

Therefore, it is necessary to resort to some methods, such as the marginal likelihood,

to score the various model and to take the best. A more comprehensive description

of the Square Exponential and of other kernel functions can be found in [12].

In this thesis, the fitrgp [13] Matlab function has been utilized to train the

GPR and to tune the hyperparameters. It is worth to point out that it takes as

output a one-dimensional response vector Y train and therefore it is necessary to

generate a save a different GPR model for each predictor computational time and

outputs.

GPmodel = fitrgp(X_train, Y_train, ...

'BasisFunction', 'none', ...

'KernelFunction','ardsquaredexponential', ...

'Optimizer', 'fmincon');

saveLearnerForCoder(GPmodel);

Code 7.1: GPR training Matlab code

KernelFunction and Optimizer specifies the kernel function and how the hy-

perparameters are tuned. In this case, a Squared Exponential kernel with separate

length per predictor is utilized as covariance function and it is supposed the pres-

ence of a constant offset in the function. The GPR hyperparameters are found by

minimizing a constrained nonlinear optimization of the marginal likelihood.

7.1.1.2 Generating Training Dataset

In order to train the Gaussian Process Regressor, it is needed a training dataset.

Since the controller takes as input only the agent state ξ̃(t) and the target state ξ̃t(t)

and input ut(t), it is not essential to generate a quadrotor trajectory and simulate

the whole system. Therefore, it is possible to generate randomly some hypothetical

configurations and to feed them to the NMPC controllers.

Algorithm 2 shows the code used to obtain the training samples for the GPR

of the NMPC controllers computational time and outputs. Each scenario is left

to evolve for some steps before generating another one: this method allows the

generation of more truthful data as well as increasing the training samples.

Section 7.1 - Controller Optimization 55

Algorithm 2 Generating training set for GPR

1: iter ← number of example to simulate
2: itere ← iterations dedicated to system evolution
3: for i← 1 to iter do
4: generate randomly ξ(0), vt and ωt
5: for j ← 1 to 4 do
6: for k ← 1 to itere do
7: ω∗

d,j ← solve 6.3.6 with N = Nj

8: save ξ(k), ξt(k), ω
∗
d,j, vt, ωt and computation time Tj,k

9: evolve DDR model using ω∗
d,j

10: evolve UGV model using vt and ωt
11: end for
12: reset DDR and UGV initial state
13: end for
14: end for

To generate the training initial states ξ(0), vt and ωt, the following assumptions

and considerations are made:

a. it is not necessary to generate both the agent and target pose; it is sufficient

to impose the target on the world frame FW origin with zero orientation and

to generate randomly the agent pose;

b. the target linear and angular velocities are randomly generated but do not

exceed the DDR limits;

c. the wheels currents is sampled from a Gaussian distribution with mean equals

to

ii = ωi
bi
KΦi

i ∈ r, l (7.1.8)

which represents the current needed to balances the friction torque;

d. the integral term ei is set randomly.

The Algorithm previously presented represents the best training samples gener-

ator but it has to provide a large amount of samples in order to sufficiently cover

the possible agent-target configuration space. It is in fact possible to notice that

it has to randomly generate 9 variables ([x, y, ϑ, ωr, eir, ωl, eil, vt, ωt]) which have

to cover the agent-target states during the simulation.

In order to assure the coverage of the target trajectory, the Algorithm is modified

to generate the training samples around the desired trajectory (educated training)

as shown in Algorithm 3.

Despite generating the training set around the target trajectory, the overfitting

problem is avoided introducing the Gaussian noise. In addition, this “disturbance”

allows also to cover some “far from trajectory” agent configurations.

56 Chapter 7 - DDR control

Algorithm 3 Generating training set for GPR - Target trajectory coverage

1: iter ← number of example to simulate

2: iters ← number of samples for each considered target trajectory sample

3: ξt(k),ut(k)← target state and input

4: σ ← samples distribution

5: for i← 1 to iter do

6: ωrl,t ← convert ut(i) into DDR angular wheel speed

7: irl,t ← ωrlt
brl
KΦrl

current to balance the friction torque

8: for j ← 1 to iters do

9: ξ ← [ξt(i), ir,t, ωr,t, 0, il,t, ωl,t, 0]
T +N (0, diag(σ))

10: for j ← 1 to 4 do

11: ω∗
d,j ← solve 6.3.6 with N = Nj

12: save ξ, ξt(i), ω
∗
d,j, ut(i)and computation time Tj,k

13: end for

14: end for

15: end for

An example of the distribution on the plane of the Algorithm 3 samples is shown

in Figure 7.6. These results are obtained utilizing the parameters reported in Table

7.1.

σx σy σϑ σir σωr σeir σil σωl
σeil

[m] [m] [rad] [A] [rad/s] [rad] [A] [rad/s] [rad]

7 10−4 7 10−4 10.1 10−3 0.1 0.1 0.1 0.1 0.1 0.1

Table 7.1: DDR initial conditions

2.5 3 3.5 4 4.5 5 5.5 6 6.5

x [m] 10
-3

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

y
 [
m

]

10
-3 DDR samples distribution w.r.t. target - Postion

Considered Target

DDR samples

Figure 7.6: Example of training samples - iters = 100

Section 7.1 - Controller Optimization 57

7.1.1.3 Predictor Results

Before training the predictor, it is necessary to identify which information supply as

input to the Gaussian Process Regressor. In order to generate an accurate model,

these information have to represent the system status without introducing mislead-

ing details. Therefore, absolute information such as positions and orientations in

the world reference frame FW have to be converted into relative measures, i.e. po-

sition and orientation relative errors. On the other hand, an excessive amount of

input details will cause overfitting, namely the alignment of the predictor to the

training dataset. This phenomenon makes the predictor unuseful in reference to

unseen data. A good balance between model complexity and system representation

can be achieved by setting as inputs ∥ed∥2, ea, ωr, ωl and ut.

∥ed∥2 and ea represents the distance and the relative orientation line-up errors

between the agent and the target. It is possible to notice that these quantities

appear also in Equation 6.3.6 as terms of the NMPC cost function and, therefore,

it is reasonable to assume their correlation with the computation time and output

controller responses. ωr, ωl and ut represents the DDR wheels angular velocities and

the target linear and angular velocities. Such quantities are related to the vehicles

motion and thus are linked to the evolution of the agent and target measures in the

NMPC model updating equations.

In order to test the accuracy of the GPR, the training dataset is divided into

two subsets dedicated to the actual GPR training and to validate the obtained

model. The following Figures shows the validation results of the GPR model

for the controller computation time and output, applying Equation 7.1.5 with

[∥ed∥2, ea, ωr, ωl, ut]T as input vector. Since the NMPC solution depends on the

DDR parameters and on the NMPC weight coefficients, Table 7.2 reports these

parameters for the sake of completeness.

R L KΦ b J Kp Ki r d

[Ω] [mH] [Nm√
W
] [µNmrad/s] [gm2] [−] [−] [m] [m]

Right 2 30 0.5 0.1 10 0.1 2 0.034 0.165

Left 1.8 20 0.6 0.2 8 0.2 1 0.034 0.165

cd cϑ Cvω R

[1/m2] [−]

1.2 104 5
[︄
2.2 10−2

3.1 10−2

]︄ [︄
5 10−1

5 10−1

]︄

Table 7.2: DDR and NMPC parameters

58 Chapter 7 - DDR control

0 200 400 600 800 1000 1200 1400

Samples [-]

0

0.5

1

1.5

2

2.5

d
r [

ra
d
/s

]

N = 10 GPR Validation - Right wheel input

True

Prediction

(a) Right wheel angular velocity input ωdr

0 200 400 600 800 1000 1200 1400

Samples [-]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

d
l [

ra
d
/s

]

N = 10 GPR Validation - Left wheel input

True

Prediction

(b) Left wheel angular velocity input ωdl

0 200 400 600 800 1000 1200 1400

Samples [-]

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
 [
s
]

N = 10 GPR Validation - Computation time

True

Prediction

(c) Computation time T

Figure 7.7: Validation N = 10 GPR

0 200 400 600 800 1000 1200 1400

Samples [-]

-2

0

2

4

6

8

10

d
r [

ra
d
/s

]

N = 30 GPR Validation - Right wheel input

True

Prediction

(a) Right wheel angular velocity input ωdr

0 200 400 600 800 1000 1200 1400

Samples [-]

-2

0

2

4

6

8

10

d
l [

ra
d
/s

]

N = 30 GPR Validation - Left wheel input

True

Prediction

(b) Left wheel angular velocity input ωdl

0 200 400 600 800 1000 1200 1400

Samples [-]

0.1

0.15

0.2

0.25

0.3

T
 [
s
]

N = 30 GPR Validation - Computation time

True

Prediction

(c) Computation time T

Figure 7.8: Validation N = 30 GPR

Section 7.1 - Controller Optimization 59

0 200 400 600 800 1000 1200 1400

Samples [-]

-6

-4

-2

0

2

4

6

8

10

d
r [

ra
d
/s

]

N = 60 GPR Validation - Right wheel input

True

Prediction

(a) Right wheel angular velocity input ωdr

0 200 400 600 800 1000 1200 1400

Samples [-]

-5

0

5

10

d
l [

ra
d
/s

]

N = 60 GPR Validation - Left wheel input

True

Prediction

(b) Left wheel angular velocity input ωdl

0 200 400 600 800 1000 1200 1400

Samples [-]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
 [
s
]

N = 60 GPR Validation - Computation time

True

Prediction

(c) Computation time T

Figure 7.9: Validation N = 60 GPR

0 200 400 600 800 1000 1200 1400

Samples [-]

-4

-2

0

2

4

6

8

10

d
r [

ra
d
/s

]

N = 100 GPR Validation - Right wheel input

True

Prediction

(a) Right wheel angular velocity input ωdr

0 200 400 600 800 1000 1200 1400

Samples [-]

-5

0

5

10

d
l [

ra
d
/s

]

N = 100 GPR Validation - Left wheel input

True

Prediction

(b) Left wheel angular velocity input ωdl

0 200 400 600 800 1000 1200 1400

Samples [-]

0.5

1

1.5

2

2.5

T
 [
s
]

N = 100 GPR Validation - Computation time

True

Prediction

(c) Computation time T

Figure 7.10: Validation N = 100 GPR

60 Chapter 7 - DDR control

It is possible to notice that a single set of NMPC weighting factors has been used

for all the controllers. It is possible to set cd and cϑ constant since all the controllers

have the same task and since they modifies the importance of the Problem 5.1.1

requirements in the NMPC cost function. A similar reasoning can be applied to

the input matrix R. As concerns Cvω, scaling this matrix as the control invariant

increase implies the normalization of the velocity error factor with respect to the

time horizon. This adjustment leads to the deletion of the kinematic information

in the cost function. Therefore, by imposing cd, cϑ and R, it is necessary to set also

Cvω constant.

Despite the presence of some outliers in all the graphs, it is possible to observe

how the Gaussian Process Regressor performs almost perfectly in all the Figures. It

is worth noticing that in Figures 7.7c and 7.8c, the GPR predict almost a constant

value despite the presence of oscillation. This behaviour can be attributed to the

hyperparameters estimation: the GPR has identified as noise all the oscillations in

the computation time and therefore it has “filtered out” these fluctuations.

To compare the effectiveness of the prediction, it is introduced a validation

metric, namely the Empirical Risk Function or Mean Square Error (MSE)

Ls =
1

|S|

|S|∑︂
i=1

(y(i)−GPR(x(i)))2 (7.1.9)

where x and y are the validation set input and output, GPR is the Gaussian Process

Regressor and |S| is the dataset dimension.

In this thesis, the training and validation datasets are composed respectively by

12024 and 1336 samples. Table 7.3 confirms the graphical considerations.

N Ls,ωdr
Ls,ωdl

Ls,T

10 0.0048 0.026 0.0001

30 0.0558 0.0284 0.0002

60 0.5251 0.1405 0.0007

100 2.0091 0.8054 0.0317

Table 7.3: MSE values for each time invariant N
in predicting ωdr, ωdl and T

Taking the root of the Empirical Risk Ls, it is possible to compute the Root

Mean Square Error. It provides the standard deviation of the residuals and represent

how spread out the predictions are with respect to the true values.

From the previously presented results, it is possible to infer how the control

invariantN is correlated to the NMPC controller output. In fact, asN increases, the

Section 7.2 - Controller architecture 61

N σ̂ωdr
σ̂ωdl

σ̂T

10 0.0693 0.0507 0.0108

30 0.2363 0.1684 0.0123

60 0.7246 0.3748 0.0274

100 1.4174 0.8974 0.1780

Table 7.4: RMSE values for each time invariant N
in predicting ωdr, ωdl and T

standard deviation of the residuals increases, meaning that there is more variability

in the data. This can be traced back to the fact that smaller variation in the NMPC

initial conditions can generate unlike controller response due to the expansion of

the time horizon.

7.2 Controller architecture

Figure 7.11 shows the Differential Drive Robot controller that solves both Agent-

Target Coordination and Controller Optimization problems. The red box high-

lights the prediction module: it takes as input ξ̃(k), ξ̃t(k) and ũt(k), it computes

[∥ed∥, ea, ωr, ωl, ut]T and by minimizing

n∗ = argmin
i∈ 1,...,n

(ui − ˜̄u)TCu(ui − ˜̄u) + cTT
2
i + Jext (7.2.1)

it provides as output Nn. The blue box identifies the actual DDR controller scheme

while the green one identifies the computation node, as presented in Chapters 4 and

6.

It is possible to notice that the system uses a cascade architecture: the prediction

module solves a high level task and provide a reference, namely Nn, to a lower level

controller, dedicated to the actual system control.

Figure 7.11: DDR controller

Chapter 8

Simulation and results

This Chapter is devoted to validate the proposed controller for the Agent-Target

Coordination and Controller Optimization problems, which are presented in Chap-

ter 5. In order to validate the designed algorithm, a Matlab simulation environment

is utilized. The controller is tested using the quadrotor trajectory shown in Section

3.2.

8.1 Matlab frameworks

Before analyzing the obtained results, it is worth describing the general set up and

tool used. As previously stated, all the computation and simulation are performed

using Matlab framework. In order to implement the NMPC, the CasADi tool has

been utilized.

CasADi [14] is an open-source tool for nonlinear optimization and algorithmic

differentiation. It is equipped with a symbolic framework implementing forward

and reverse mode of algorithmic differentiation on expression graphs in order to

construct gradient, large-and-sparse Jacobian and Hessians. It also provides the

tools to encapsulate the desired symbolic algorithm into Function objects, which

can be exported to stand-alone C code.

In this thesis, CasADi has been utilized to implement the ordinary differential

equation (ODE) of the unicycle and DDR models and the Nonlinear Model Predic-

tive Control cost function. They are then converted into mex functions in order to

have fast execution time, which arises from the advantage of compiled functions.

To solve the NMPC minimization problem, the fmincon[15] Matlab function is

63

64 Chapter 8 - Simulation and results

utilized. This function finds the minimum of a problem specified as

min
x
f(x) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x ≤ beq

lb ≤ x ≤ ub

(8.1.1)

where c(x) and ceq(x) are functions that return vectors while f(x) returns a scalar.

Therefore, Equation 6.3.6 can be reformulated as

ω∗
d = argmin

ω̂d(·)

N−1∑︂
k=0

V (ξ̂(k), ξ̂t(k),ut(t), ω̂d(k))

subject to ξ̂(k + 1) = fk(ξ̂(k), ω̂d(k))

ξ̂(0) = ξ̃(t)

ξ̂t(k + 1) = fk,uni(ξ̂t(k), [ṽt(t), ω̃t(t)]
T)

ξ̂t(0) = ξ̃t(t) = [p̃t(t), ϑ̃t(t)]
T

ωd,min ≤ ω̂d(k) ≤ ωd,max

(8.1.2)

where V (·, ·) is given by

V (ξ̂(k), ξ̂t(k),ut(t), ω̂d(k)) = cd · ∥êd(k)∥2+

+ cϑ · ea(k) + ∥êvω(k)∥2Cvω
+ ∥ω̂d(k)∥2R (8.1.3)

All the cost function components are described in Section 6.3. Code 8.1 reports

the snipped of code containing the fmincon usage and setting parameters.

option = optimoptions('fmincon', 'Display', 'none', ...

'Algorithm', 'sqp', 'SpecifyObjectiveGradient', true);

...

U_opt = fmincon(@(U) cost_f(U), U_guess, ...

[], [], [], [], lb, ub, [], option);

Code 8.1: fmincon usage and setting parameters

Section 8.2 - Results 65

The ‘Algorithm’ option sets the solver for the minimization.

In this thesis, the Sequential Quadratic Programming or SQP method is used.

This algorithm is widely used since it satisfies bounds at all iterations and can

recover from NaN or Inf results.

In addition, cost f provides also the gradient of the cost function in order to

improve the minimization performance. By setting ‘SpecifyObjectiveGradient’

true, the fmincon utilizes also this information during the minimization procedure.

At last, U guess is the initial point from which the algorithm starts to solve the

problem. Due to the problem high complexity, the choice of this initial guess might

influence the computational time needed and therefore it is always set to the input

upper bound, to consistently be in the same conditions both in the training and in

the test.

8.2 Results

This section is dedicated to report the results obtained for the developed controller.

Below it is possible to find the parameters of the agent and target models, of the

NMPC and of the Controller Optimization. In addition, Table 8.5 presents the

initialization values of the DDR, indicating also the develop controller sample time

Ts. Recalling Section 6.1.1, Ts has to satisfy the convergence interval otherwise

it is necessary to resort to additional computation to obtain an accurate system

discretization. In this simulation, to keep consistency to the real-world scenario, Ts

is set to 0.04s; this value meets the convergence interval requirements directly. At

last, the trajectory preformed by the quadrotor is the same as the one shown in

Section 3.2.

m Jx Jy Jz l cf cτ

[kg] [kg m2] [kg m2] [kg m2] [m]

1.5 0.029125 0.029125 0.055225 0.2555 5.84µ 0.06

(a) Model parameters

Kpp Kip Kdp Kda Kpa⎡⎢⎣50 50

50

⎤⎥⎦
⎡⎢⎣0.1 0.1

0.5

⎤⎥⎦
⎡⎢⎣15 15

10

⎤⎥⎦
⎡⎢⎣150 150

50

⎤⎥⎦
⎡⎢⎣15 15

10

⎤⎥⎦
(b) Position and yaw angle controller parameters

Table 8.1: Quadrotor parameters

66 Chapter 8 - Simulation and results

R L KΦ b J Kp Ki r d

[Ω] [mH] [Nm√
W
] [µNm

rad/s
] [g m2] [−] [−] [m] [m]

Right 2 30 0.5 0.1 10 0.1 2 0.034 0.165

Left 1.8 20 0.6 0.2 8 0.2 1 0.034 0.165

Table 8.2: DDR model and controller parameters

cd cϑ Cvω R

[1/m2] [−]

1.2 104 5

⎡⎣2.2 10−2

3.1 10−2

⎤⎦ ⎡⎣5 10−1

5 10−1

⎤⎦

Table 8.3: NMPC cost parameters

Cu cT Text cext

[−] [s] [−]
⎡⎣10

10

⎤⎦ 50 1 200

Table 8.4: Controller Optimization parameters

p(0) ϑ(0) ir(0) ωr(0) ei,r(0) il(0) ωl(0) ei,l(0) ωmin ωmax Ts

[m] [rad] [A]
[︁
rad
s

]︁
[rad] [A]

[︁
rad
s

]︁
[rad]

[︁
rad
s

]︁ [︁
rad
s

]︁
[s]

[0, 0]T 0 0 0 0 0 0 0 −10 10 0.04

Table 8.5: DDR initial conditions

Figure 8.1 shows the effectiveness of the NMPC controller in solving the Agent-

Target Coordination problem.

It is possible to notice that the most difficult trajectory sections are the arc

of circumference ones. This behaviour can be attributed to the linear and angular

velocity profile of the target: the ratio between vt and ωt remains the same, fixing the

Instantaneous Center of Rotation (ICR), but the target velocities are increasing.

In addition, ωt contains some computational noises which affects the controller

solution.

In Figure 8.1d, it is possible to notice the UAV projection and the DDR orien-

tation profiles. Despite ϑ and ϑt match almost perfectly up to 10 seconds, in all

the remaining part of the simulation the orientations follow the same evolution but

Section 8.2 - Results 67

without overlapping. By computing eϑ = ϑt − ϑ, it is possible to notice that it

fluctuates around 0 or 360◦, i.e. the DDR makes a spin on itself and then align to

the target. This behaviour is induced by the combination of the alignment and ve-

locities cost terms in the NMPC cost function: the ea term imposes the alignment

of the DDR with the UAV projection without taking into account the direction

while evω requires the matching of the two vehicles velocities. Therefore, it follows

that in general if the agent has a different direction from the target, the velocity

term tries to align it.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y
 [
m

]

Controller test - Trajectory UAV projection

DDR

(a) Trajectory

0 10 20 30 40 50 60 70

t [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
 [
m

]

Controller test - Trajectory x axis

UAV projection

DDR

(b) Trajectory - x axis

0 10 20 30 40 50 60 70

t [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y
 [
m

]

Controller test - Trajectory y axis

UAV projection

DDR

(c) Trajectory - y axis

0 10 20 30 40 50 60 70

t [s]

-500

-400

-300

-200

-100

0

100

200

300

400

 [
d
e
g
]

Controller test - Orientation

UAV projection

DDR

(d) Orientation

Figure 8.1: Controller simulation - pose results

Figure 8.2 presents the agent actual and desired wheels velocities. It is possible

to notice that the velocities overlap during the slow evolution while oscillate when

disturbances or rapid changes in the target velocity are presents.

In Figure 8.3 presents the distance, alignment, linear and angular velocities

errors. As designed in Section 6.3, the NMPC control the agent in order to minimize

to zero these errors.

68 Chapter 8 - Simulation and results

0 10 20 30 40 50 60 70

t [s]

-6

-4

-2

0

2

4

6

8

10
r [

ra
d

/s
]

Controller test - Right wheel vel.

UAV projection

DDR

(a) Right wheel vel. ωr

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

rd
 [
ra

d
/s

]

Controller test - Right wheel vel. input

UAV projection

DDR

(b) Right wheel vel. input ωdr

0 10 20 30 40 50 60 70

t [s]

-6

-4

-2

0

2

4

6

8

10

l [
ra

d
/s

]

Controller test - Left wheel vel.

UAV projection

DDR

(c) Left wheel vel. ωl

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

ld
 [

ra
d

/s
]

Controller test - Left wheel vel. input

UAV projection

DDR

(d) Left wheel vel. input ωdl

Figure 8.2: Controller simulation - wheels velocities

0 10 20 30 40 50 60 70

t [s]

0

1

2

3

4

5

6

7

8

||
e

d
||

2
 [

m
2
]

10
-3 Controller test - Distance error

(a) Distance error ∥ed∥2

0 10 20 30 40 50 60 70

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
a
 [

-]

Controller test - Alignment error

(b) Alignment error ea

0 10 20 30 40 50 60 70

t [s]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

e
v
 [

m
/s

]

Controller test - Linear vel. error

(c) Linear velocity error ev

0 10 20 30 40 50 60 70

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

e
 [

ra
d

/s
]

Controller test - Angular vel. error

(d) Angular velocity error eω

Figure 8.3: Controller simulation - errors

Section 8.2 - Results 69

The following Figures present the comparison between the actual NMPC and

the GPR prediction results. Analyzing the graphics, it is possible to state that the

GPR is an effective method to predict the NMPC outputs: the regressor is able to

provide reliable data which follow the actual trends as proved by Figures 8.5b, 8.6a

and 8.6c.

On the other hand, Figures 8.5a, 8.5c and 8.7a show that the GPR returns zeros

in some cases, despite being able to correctly predict the other controllers outputs.

By analyzing the theory and the code presented in Section 7.1.1.1, it is possible to

attribute this behaviour to the Gaussian Kernel prior and to the hyperparameters

estimation.

In this thesis, it is assumed to use a Square Exponential kernel with zero mean,

i.e.

f∗ ∼ N (0,K(X∗,X∗)) (8.2.1)

which represent the predictor function when the input data point is too distant

from the training dataset values. Despite using the same training input samples for

all the controllers predictor, the figrgp Matlab function computes independently

the hyperparameters, namely the the length-scale l, the signal variance σ2
f and the

noise variance σ2
n. Therefore, due the optimization of these parameters, it is possible

that for some predictors the input point is “near” and for other it is “far” from the

training examples, due to different length scale l settings.

0 10 20 30 40 50 60 70

t [s]

-2

-1

0

1

2

3

4

5

d
r [

ra
d

/s
]

N = 10 Right wheel input

Prediction

Actual

(a) Right wheel angular velocity input ωdr

0 10 20 30 40 50 60 70

t [s]

-3

-2

-1

0

1

2

3

4

5

d
l [

ra
d

/s
]

N = 10 Left wheel input

Prediction

Actual

(b) Left wheel angular velocity input ωdl

0 10 20 30 40 50 60 70

t [s]

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

T
 [

s
]

N = 10 Computatin time

Prediction

Actual

(c) Computation time T

Figure 8.4: Controller simulation - Actual vs N = 10 GPR results

70 Chapter 8 - Simulation and results

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

d
r [

ra
d

/s
]

N = 30 Right wheel input

Prediction

Actual

(a) Right wheel angular velocity input ωdr

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

d
l [

ra
d

/s
]

N = 30 Left wheel input

Prediction

Actual

(b) Left wheel angular velocity input ωdl

0 10 20 30 40 50 60 70

t [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
 [

s
]

N = 30 Computatin time

Prediction

Actual

(c) Computation time T

Figure 8.5: Controller simulation - Actual vs N = 30 GPR results

Section 8.2 - Results 71

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

15

20

25

d
r [

ra
d

/s
]

N = 60 Right wheel input

Prediction

Actual

(a) Right wheel angular velocity input ωdr

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

d
l [

ra
d

/s
]

N = 60 Left wheel input

Prediction

Actual

(b) Left wheel angular velocity input ωdl

0 10 20 30 40 50 60 70

t [s]

-0.4

-0.2

0

0.2

0.4

0.6

T
 [

s
]

N = 60 Computatin time

Prediction

Actual

(c) Computation time T

Figure 8.6: Controller simulation - Actual vs N = 60 GPR results

72 Chapter 8 - Simulation and results

0 10 20 30 40 50 60 70

t [s]

-10

-5

0

5

10

d
r [

ra
d

/s
]

N = 100 Right wheel input

Prediction

Actual

(a) Right wheel angular velocity input ωdr

0 10 20 30 40 50 60 70

t [s]

-15

-10

-5

0

5

10

d
l [

ra
d

/s
]

N = 100 Left wheel input

Prediction

Actual

(b) Left wheel angular velocity input ωdl

0 10 20 30 40 50 60 70

t [s]

0

0.5

1

1.5

2

2.5

3

T
 [

s
]

N = 100 Computatin time

Prediction

Actual

(c) Computation time T

Figure 8.7: Controller simulation - Actual vs N = 100 GPR results

Section 8.2 - Results 73

0 10 20 30 40 50 60 70

t [s]

10

20

30

40

50

60

70

80

90

100

N
 [
-]

Controller test - NMPC control invariant

Figure 8.8: Controller simulation - Control invariant N

0 10 20 30 40 50 60 70

t [s]

0

0.5

1

1.5

2

T
 [
s
]

Controller test - NMPC comp. time solution

Predicted

Actual

Internal allocation threshold

Figure 8.9: Controller simulation
NMPC computational time of the chosen control invariant N

74 Chapter 8 - Simulation and results

0 10 20 30 40 50 60 70

t [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
J
 [
-]

Controller test - Controller optimization cost value

N = 10

N = 30

N = 60

N = 100

Figure 8.10: Controller simulation
Controller Optimization cost function values

Figure 8.11: Controller simulation
Initial configuration

Section 8.2 - Results 75

Figure 8.12: Controller simulation
Example of iteration

Figure 8.13: Controller simulation
Final configuration

Chapter 9

Conclusion

This thesis presents the Agent-Target Coordination of heterogeneous mobile robots

and the Controller Optimization using an external computational power resource.

It investigates a possible methodology to solve the problem of driving a Differential

Drive Robot to follow an Unmanned Aerial Vehicle in order to set up a landing

scenario, while managing the allocation of computational resources in the local

processor or in the external computational node.

In the presented framework, the target trajectory is not known in advance by

the agent and the only source of vehicles’ poses and velocities is the camera at-

tached to the external node. In particular, it is assumed that the measurements are

provided without any delay due to communication or package losses and without

any computational cost for the agent controller. On the other hand, the allocation

of other processes on this external node uses some agent resources and therefore it

has to be considered during the controller optimization. Despite the technological

progress, this structure is becoming increasingly used as a result of the difficulties in

developing performing but light-weight processors. Furthermore, in some industrial

applications, it is convenient to centralize the power resources on a ground station

and to mount simpler controllers on the mobile robots in order to minimize the cost

and maximize the power efficiency. For these reasons, the contribution of this work

is to analyze this framework and to develop an effective controller in order to deal

with this setup.

In addition, this thesis validates the use of Nonlinear Model Predictive Control

and Gaussian Process Regression methods to efficiently achieve the desired results.

In particular, it has been proved the simplicity of integrating the system require-

ments into the Nonlinear Model Predictive Control objective cost function and the

effectiveness of such method. Despite the difficulties in tuning the parameters,

the NMPC controller has demonstrated good converging performance and system

stability.

77

78 Chapter 9 - Conclusion

Furthermore, Section 7.1.1.1 addresses the difficulties and the benefits of us-

ing the Gaussian Process Regression to identify unknown models. Indeed, it is

necessary to resort to an exhaustive training dataset and to correcly tune the hy-

perparameters in order to guarantee good prediction performances in the widest

variety of situations. On the other hand, this method can correctly predict the

unknown system outcome when the input data are reasonably close to the training

ones, as shown in Chapter 8.

This thesis provides few starting points for the developing of future works:

• The controller is validated through several simulations on Matlab where the

real-time constraint was not taken into account. A follow-up could study

and implement the proposed solution on ROS Gazebo or another real-time

simulation environment and then to test it in the laboratory.

• The computational external resource is modelled as an ideal node providing

information without introducing communication delay. It could be interesting

to model the communication channel, to integrate the introduced delay into

the model and to investigate under which condition the system still manages

to provide acceptable performances.

• During the GPR training, it has been noticed that the NMPC weight pa-

rameters affect the time needed to compute the NMPC solution despite the

same initial conditions. It might be significant to investigate the correlation

between the NMPC parameters and the solution computational time, in or-

der to address the complex scenarios and hence to better generate the GPR

training set.

• In this thesis, it is assumed that the quadrotor projection is suitable to rep-

resent the actual quadrotor trajectory. In case of an aerial evader, it can be

easily understood that such approximation is no more reliable. One possible

improvement is to study a method to identify the reliability of such assump-

tion and to integrate the obtained information in the controller optimization

choice.

Appendix A

Appendix

A.1 Agent Model

A.1.1 Stability of the PI control action

This section is dedicated to prove the stability of the PI control action presented in

Section 3.1.2.2.

It is worth to rewrite Equation 3.1.9 in state space form, i.e.⎡⎣ di(t)
dt

dω(t)
dt

⎤⎦ =

⎡⎣−R
L
−KΦ

L

KΦ
J

− b
J

⎤⎦⎡⎣ i(t)
ω(t)

⎤⎦+

⎡⎣ 1
L

0

⎤⎦ v(t) (A.1.1)

v(t) = Kp e(t) +Ki

∫︂ t

0

e(τ) dτ (A.1.2)

e(t) = ωd(t)− ω(t) (A.1.3)

and therefore, by expanding the system state to x = [i, ω, ei]
T with ei(t) =∫︁ t

0
e(τ) dτ , it is possible to express the whole system as⎡⎢⎢⎢⎣
di(t)
dt

dω(t)
dt

dei(t)
dt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−R
L
−KΦ+Kp

L
Ki

L

KΦ
J

− b
J

0

0 −1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
i(t)

ω(t)

ei(t)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
Kp
L

0

1

⎤⎥⎥⎥⎦ωd(t) = Fx(t) +Gωd(t) (A.1.4)

To prove the system stability as Kp and Ki vary, it is possible to compute

the eigenvalues of the state matrix F in Equation A.1.4. Let λ ∈ C, the system

79

80 Chapter A - Appendix

eigenvalues can be find by imposing

det(λIn − F) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
λ+ R

L

KΦ+Kp

L
−Ki

L

−KΦ
J

λ+ b
J

0

0 1 λ

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = 0 (A.1.5)

In order to assure the system asymptotic stability, all the eigenvalues’ real part

has to be negative. By resorting to the Routh-Hurwitz criteria and developing the

necessary calculations, it is possible to obtain

∆(λ) = det(λIn − F) = λ

(︃(︃
λ+

R

L

)︃(︃
λ+

b

J

)︃
+
KΦ(KΦ +Kp)

LJ

)︃
+
KΦKi

LJ

= λ3 + λ2
(︃
R

L
+
b

J

)︃
+ λ

(︃
Rb

LJ
+
KΦ(KΦ +Kp)

LJ

)︃
+
KΦKi

LJ

(A.1.6)

Re(λ) < 0 | ∆(λ) = 0⇔ Kp > 0, 0 < Ki <
RJ + Lb

KΦ

(︃
Rb

LJ
+
KΦ(KΦ +Kp)

LJ

)︃
(A.1.7)

Hence all the modes of the system are stable if and only id Kp and Ki satisfy

the inequalities in Equation A.1.7.

In conclusion, given Equation A.1.6, it is possible to prove that the system

asymptotically reaches the desired constant input reference ωd(t) = k.

W (s) =
[︂
0 1 0

]︂
(sIn − F)−1G =

KΦ
JL

(Ki + sKp)

∆(s)
(A.1.8)

W (s) |s=0= 1⇒ wd(t) = k, y(t) = L−1 [W (s)L[k]] = k + . . .⏞⏟⏟⏞
converging

modes

t→∞−−−→ k (A.1.9)

A.1.2 Wheels State Estimation

The implemented PI feedback control loops need the knowledge of the current

wheels speed angular velocities to work. However, this information is not available

directly in the considered Differential Drive Robot scheme. In fact, the only source

of information about the wheels states are the encoders connected to the wheels

shafts, which provide their angular positions. To retrieve the wheels angular veloc-

ities information two methods can be applied: standard time derivative and state

estimation.

Section A.1 - Agent Model 81

The first method simply compute the difference between two consecutive mea-

sures of the wheel encoder and divide by the elapsed time.

ωi(k) =
ϑ(k)− ϑ(k − 1)

T
(A.1.10)

The so obtained measure, despite being computationally efficient, is widely af-

fected by the time precision and by the environmental noises. In general, it is

possible to improve the precision of this measure by using an embedded dedicated

computation unit and by filtering the obtained measures.

A more reliable and less noise affected estimation system is the state estimation.

Such method uses the whole model knowledge and can reconstruct not only the

wheel angular velocity but the whole system state. Given the model in Equation

3.1.8, the applied input v and integrating the wheel angular position ϑ into the

system state, it is possible to express the system as⎡⎢⎢⎢⎣
i̇

ϑ̇

ω̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−R
L

0 −KΦ
L

0 0 1

KΦ
J

0 − b
J

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
i

ϑ

ω

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
1
L

0

0

⎤⎥⎥⎥⎦ v = F̄ x̄+ Ḡv

y =
[︂
0 1 0

]︂
x̄ = H̄x̄

(A.1.11)

where x̄ is the new state while F̄ , Ḡ and H̄ are the new state, input and output

matrices.

Given the new system, in order to be able to reconstruct the state, it must be

observable.

Proposition A.1.1 (Observable system [16]) Given a n-dimensional system in the

form
ẋ(t) = Fx(t) +Gu(t)

y(t) = Hx(t)
(A.1.12)

such system is said to be observable if and only if the matrix

O =

⎡⎢⎢⎢⎢⎢⎢⎣
H

HF
...

HF n−1

⎤⎥⎥⎥⎥⎥⎥⎦ (A.1.13)

is full rank, or equivalently if and only if kerO = {0n}.

82 Chapter A - Appendix

Therefore, by computing the system observability matrix O (Equation A.1.14),

it is possible to prove that the system in Equation A.1.11 is observable.

O =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

KΦ
J

0 − b
J

⎤⎥⎥⎥⎦ ⇒ rankO = 3 ⇒ kerO = {0} (A.1.14)

By resorting to a full-order state observer, it is possible to estimate the state x̄

using the following state system

̇̂x = F̄ x̂+ Ḡv +L(y − ŷ)

ŷ = H̄x̂
(A.1.15)

where the observer gain L ∈ R3×1 is chosen in order to ensure that Re(eig(F̄ −
LH̄)) < 0 while y and v are the input and output of the system in Equation

A.1.11. It is worth to notice that the control input v is obtained by the PI low-level

controller which in turn uses the wheels angular velocity estimate: such scheme is

called observer-based controller.

A.2 Target Model

A.2.1 Time derivative of rotation matrices

This section is dedicated to derive the time derivative of a rotation matrix RW,B ∈
SO(3) representing the orientation of a frame FB attached to a rigid body with

respect to an inertial frame FW when an angular velocity ω ∈ R3 is applied. Let

P be a point in the three dimensional space and let express its coordinates in the

inertial frame as p ∈ R3. Let assume that P possesses an angular velocity ω ∈ R3,

that has axis ω
∥ω∥ ∈ S

2 passing through frame FW origin. Given these assumption,

the point P is moving with uniform circular motion. Under these conditions, the

time derivative of the position p is

ṗ = ω × p (A.2.1)

By defining ei ∈ S2 as the canonical vector of FW , it is possible to express the

canonical vector of frame FB w.r.t. frame FW as eW,i = RW,B ei. In addition, let

ωW ∈ R3 be the vector that express the angular velocity ω in the inertial frame.

By recalling the previous equation, it is possible to write

ėW,i = ωW × eW,i (A.2.2)

Section A.2 - Target Model 83

and therefore, by recalling that eW,i is the i-th column of RW,B matrix and the

properties of skew-symmetric matrices, it is possible to state that

ṘW,B = [ωW]×RW,B (A.2.3)

The previous equation expresses the time derivative of a rotation matrix that

represents the orientation of frame FB with respect to FW when the angular rate is

expressed in frame FW .

Considering the case where ω ∈ R3 is expressed in frame FB, namely ωB =

RT
W,BωW , the roles of the frames are switched and thus it is possible to state that

ṘB,W = [ω̂B]×RB,W (A.2.4)

where RB,W ∈ SO3 is the rotation matrix representing the orientation of frame FW

w.r.t. frame FB and ω̂B ∈ R3 is the angular velocity expressed in FB. Therefore it

must hold that

ω̂B = −ωB = RT
W,B ωW (A.2.5)

in order to have Equations A.2.3 and A.2.4 represent the same rotation. Therefore,

using the skew-symmetric matrix properties, it is possible to state that

ṘW,B = (ṘB,W)T = RT
B,W [−ωB]

T
× = RW,B[ωB]× (A.2.6)

A.2.2 Target position and yaw angle controller

In order to make the quadrotor follow a desired position trajectory a position and

yow angle controller has been implemented. Such controller, as the name suggest,

takes as input the desired position pd = [xd yd zd]
T and yaw angles ψd and gen-

erates the necessary force fc and torque τc.

Given the rotation matrix as in Equation 2.1.5 and noticing that the total force

acting on the quadrotor CoM is along the z axis in the body frame FB, namely

fc = [0 0 T]T , it is possible to rewrite the dynamic Equation 3.2.9c as

v̇ = p̈ =

⎡⎢⎢⎢⎣
(sψsφ + cψsϑcφ)

T
m

(−cψsφ + sψsϑcφ)
T
m

−g + (cϑcφ)
T
m

⎤⎥⎥⎥⎦ (A.2.7)

Given the desired yaw orientation ψd and assuming ϑ and φ small, it is possible

84 Chapter A - Appendix

to approximate the previous equation and obtain

ẍ = (sψd
φ+ cψd

ϑ)
T

m
(A.2.8a)

ÿ = (−cψd
φ+ sψd

ϑ)
T

m
(A.2.8b)

z̈ = −g + T

m
(A.2.8c)

Assuming the quadrotor in hoovering condition, namely z̈ = 0⇒ T = mg, it is

possible to build the invertible map between ẍ, ÿ and φ, ϑ, i.e.⎡⎣ẍ
ÿ

⎤⎦ = g

⎡⎣ sψd
cψd

−cψd
sψd

⎤⎦⎡⎣φ
ϑ

⎤⎦
⇓⎡⎣φ

ϑ

⎤⎦ = g−1

⎡⎣sψd
−cψd

cψd
sψd

⎤⎦⎡⎣ẍ
ÿ

⎤⎦
(A.2.9)

and therefore obtain
φ = g−1 (sψd

ẍ− cψd
ÿ)

ϑ = g−1 (cψd
ẍ+ sψd

ÿ)
(A.2.10)

Using a PID feedback controller on the quadrotor position, it is possible to

obtain the command quadrotor acceleration p̈∗ and therefore, the desired roll and

pitch angles φ∗ and ϑ∗.

p̈∗ = p̈d +Kdpėp +Kppep +Kip

∫︂
ep (A.2.11a)

ep = pd − p (A.2.11b)

φ∗ = g−1 (sψd
ẍ∗ − cψd

ÿ∗) (A.2.12a)

ϑ∗ = g−1 (cψd
ẍ∗ + sψd

ÿ∗) (A.2.12b)

where Kdp, Kpp and Kip are respectively the derivative, proportional and integral

position matrices.

Therefore, given the desired z axis acceleration z̈∗ and the desired roll-pitch-

yaw attitude αd = [φ∗ ϑ∗ ψd]
T , by resorting to an altitude-attitude controller, it

Section A.2 - Target Model 85

is possible to obtain the necessary trust force T and torque τ using the following

equations

T =
m

cϑcφ
(g + z̈∗) (A.2.13a)

τ = Kda(α̇d − α̇) +Kpa(αd −α) (A.2.13b)

where Kda and Kpa are respectively the derivative and proportional attitude ma-

trices.

Figure A.1: Position and yaw angle controller architecture

Bibliography

[1] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. “An auto-generated

real-time iteration algorithm for nonlinear MPC in the microsecond range”.

In: Automatica 47.10 (2011), pp. 2279–2285. issn: 0005-1098. doi: https:

//doi.org/10.1016/j.automatica.2011.08.020. url: https://www.

sciencedirect.com/science/article/pii/S0005109811003918 (cit. on

p. 1).

[2] Yutao Chen et al. “Efficient Partial Condensing Algorithms for Nonlinear

Model Predictive Control with Partial Sensitivity Update”. In:

IFAC-PapersOnLine 51.20 (2018). 6th IFAC Conference on Nonlinear Model

Predictive Control NMPC 2018, pp. 406–411. issn: 2405-8963. doi: https:

/ / doi . org / 10 . 1016 / j . ifacol . 2018 . 11 . 067. url: https : / / www .

sciencedirect.com/science/article/pii/S2405896318327253 (cit. on

p. 1).

[3] Moritz Diehl et al. “Real-time optimization and nonlinear model predictive

control of processes governed by differential-algebraic equations”. In: Journal

of Process Control 12.4 (2002), pp. 577–585. issn: 0959-1524. doi: https:

/ / doi . org / 10 . 1016 / S0959 - 1524(01) 00023 - 3. url: https : / / www .

sciencedirect.com/science/article/pii/S0959152401000233 (cit. on

p. 1).

[4] Yutao Chen et al. “An Adaptive Partial Sensitivity Updating Scheme for Fast

Nonlinear Model Predictive Control”. In: (Aug. 2018) (cit. on p. 1).

[5] Francesco Branz et al. “1 kHz Remote Control of a Balancing Robot with

Wi-Fi-in-the-Loop”. In: IFAC-PapersOnLine 53.2 (2020). 21st IFAC World

Congress, pp. 2614–2619. issn: 2405-8963. doi: https://doi.org/10.1016/

j.ifacol.2020.12.312. url: https://www.sciencedirect.com/science/

article/pii/S2405896320305930 (cit. on p. 2).

[6] B. Siciliano et al. Robotics: Modelling, Planning and Control. Advanced Text-

books in Control and Signal Processing. Springer London, 2010. url: https:

//books.google.it/books?id=jPCAFmE-logC (cit. on pp. 6, 10).

87

https://doi.org/https://doi.org/10.1016/j.automatica.2011.08.020
https://doi.org/https://doi.org/10.1016/j.automatica.2011.08.020
https://www.sciencedirect.com/science/article/pii/S0005109811003918
https://www.sciencedirect.com/science/article/pii/S0005109811003918
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.067
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.067
https://www.sciencedirect.com/science/article/pii/S2405896318327253
https://www.sciencedirect.com/science/article/pii/S2405896318327253
https://doi.org/https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/https://doi.org/10.1016/S0959-1524(01)00023-3
https://www.sciencedirect.com/science/article/pii/S0959152401000233
https://www.sciencedirect.com/science/article/pii/S0959152401000233
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.312
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.312
https://www.sciencedirect.com/science/article/pii/S2405896320305930
https://www.sciencedirect.com/science/article/pii/S2405896320305930
https://books.google.it/books?id=jPCAFmE-logC
https://books.google.it/books?id=jPCAFmE-logC

88 BIBLIOGRAPHY

[7] Shweta Gupte, Paul Infant Teenu Mohandas, and James M. Conrad. “A sur-

vey of quadrotor Unmanned Aerial Vehicles”. In: 2012 Proceedings of IEEE

Southeastcon. 2012, pp. 1–6. doi: 10.1109/SECon.2012.6196930 (cit. on

p. 21).

[8] Xiaodong Zhang et al. “A Survey of Modelling and Identification of Quadrotor

Robot”. In: Abstract and Applied Analysis 2014 (Oct. 2014), pp. 1–6. doi:

10.1155/2014/320526 (cit. on p. 21).

[9] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In:

2011 IEEE International Conference on Robotics and Automation. 2011. doi:

10.1109/ICRA.2011.5979561 (cit. on p. 30).

[10] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory,

Computation, and Design. Nob Hill Publishing, 2017. isbn: 9780975937730.

url: https://books.google.it/books?id=MrJctAEACAAJ (cit. on p. 35).

[11] Endre Süli. “Numerical Solution of Ordinary Differential Equations”. In: 2010

(cit. on p. 41).

[12] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes

for machine learning. Adaptive computation and machine learning. 2006,

pp. I–XVIII, 1–248. isbn: 026218253X (cit. on p. 54).

[13] fitrpg MatlabWorks page. https://it.mathworks.com/help/stats/

fitrgp.html (cit. on p. 54).

[14] Joel A E Andersson et al. “CasADi – A software framework for nonlinear op-

timization and optimal control”. In:Mathematical Programming Computation

11.1 (2019), pp. 1–36. doi: 10.1007/s12532-018-0139-4 (cit. on p. 63).

[15] fmincon MatlabWorks page. https://it.mathworks.com/help/optim/ug/

fmincon.html (cit. on p. 63).

[16] Ettore Fornasini. Appunti di Teoria dei Sistemi. Libreria Progetto. 2015 (cit.

on p. 81).

https://doi.org/10.1109/SECon.2012.6196930
https://doi.org/10.1155/2014/320526
https://doi.org/10.1109/ICRA.2011.5979561
https://books.google.it/books?id=MrJctAEACAAJ
https://it.mathworks.com/help/stats/fitrgp.html
https://it.mathworks.com/help/stats/fitrgp.html
https://doi.org/10.1007/s12532-018-0139-4
https://it.mathworks.com/help/optim/ug/fmincon.html
https://it.mathworks.com/help/optim/ug/fmincon.html

	Introduction
	State of the art
	Thesis structure
	Notation

	Preliminary
	Pose of a rigid body
	Euler angles

	Holonomic and non-holonomic constraints

	Agent and Target Models
	Agent Model
	UGV Model
	DDR Model
	DDR Kinematic Model
	DDR wheels dynamic model
	DDR complete dynamic model

	Target Model
	Quadrotor Projection

	Computation node
	Problem formulation and Model Predictive Control
	Problem formulation
	Optimal Control Problem
	General description
	Model Predictive Control

	NMPC controller definition
	Runge-Kutta Integration
	Application of Runge-Kutta Integration

	NMPC Agent Controller
	Definition of the cost factors
	Controller architecture

	DDR control
	Controller Optimization
	Controller Computational Time and Input Predictor
	Gaussian Process Regression
	Generating Training Dataset
	Predictor Results

	Controller architecture

	Simulation and results
	Matlab frameworks
	Results

	Conclusion
	Appendix
	Agent Model
	Stability of the PI control action
	Wheels State Estimation

	Target Model
	Time derivative of rotation matrices
	Target position and yaw angle controller

