UNIVERSITA DIPARTIMENTO
DEGLI STUDI i DI INGEGNERIA

- DELL'INFORMAZIONE
DI PADOVA -

DIPARTIMENTO DI INGEGNERIA
DELL’INFORMAZIONE

Corso di Laurea in
Computer Engineering

"Model-Based Reinforcement Learning for
industrial robotics applications"

RELATORE: LAURFEANDO:
Prof. Ruggero Carli Niccolo’ Turcato
Matr: 2021446

ANNO ACCADEMICO 2021/2022
DATA DI LAUREA: 05/09/2022






Contents

Abstract [ENG] iii
Abstract [ITA] v
Introduction vii
1 Model-Based Reinforcement Learning 1
1.1 Gradient-Based Policy Search with GPs. . . . . .. .. 4
1.1.1  Model-based policy gradient . . . . . . . . ... 6
1.1.2 GPR and one-step-ahead predictions . . . . . . 7
1.1.3 Long-term predictions with GP dynamical models 9
1.1.3.1 Moment matching . . . ... ... .. 10
1.1.3.2 Particle-based method . . . . . . . .. 10

1.2 Monte Carlo gradient estimation for MB Policy Search
with GPs . . . . .. .. 11
1.2.1 Model Learning . . . . . ... ... ... ..., 11
1.2.1.1  Speed-Integration Model . . . . . . . . 12
1.2.1.2 Kernel choice . . . . . ... ... ... 13
1.2.1.3 Model Optimization . . . . ... ... 13
1.2.2 Policy Update . . . . . . .. ... .. ... ... 13
1.2.2.1  General-Purpose Policy . . ... ... 14
1.2.2.2  Gradient computation . . . ... . .. 14
1.2.2.3 Dropout . . . . . ... ... ... ... 17
2 Industrial Robotics Application: Tossingbot 23
2.1 Simulations in Gazebo . . . . . . ... ... 26
2.1.1 Control of Robot Tossing . . . . . .. ... ... 29
2.1.2 Bullet Release . . . . . ... ... ... ..... 34
2.2 Learning a Robot Tossing Policy with MC-PILCO . . . 36
2.2.1 Model definition . . . . ... ... ... L. 38
2.2.1.1 Modeling of Tossing noise . . . . . . . 40
2.2.2 Cost Function . . . . .. ... ... ... 43

2.2.3 Tossing Policy . . . . . ... ... ... ..... 44



ii CONTENTS

2.2.3.1 Centers initialization . . . . . . . . .. 44

2.3 Laboratory Experiments . . . . . .. ... ... .... 45
2.3.1 Collecting data for Model Learning . . . . . . . 45

2.3.2  Control of Robot Tossing . . . . . ... ... .. 50

3 Results 57
3.1 Simulation . . . . ... ... oL 57
3.1.1 Model learning . . . . .. ... ... ... .. o8

3.1.2 Policy learning . . . . . ... ... 59

3.1.2.1 Noisemodels . ... ... ... .... 62

3.1.2.2  Dropout effects on policy learning . . . 64

3.2 Laboratory . . ... ... ... 75
3.2.1 Model learning . . . . .. ... ... ... 76

3.2.2 Policy learning . . . . ... ... 7

4 Comments 81
A Gaussian Processes 83
A.1 Parameters-space View . . . . . . . .. ... ... ... 84
A.2 Function-space View . . . . . . . . . ... ... .... 85
A.2.1 Prediction with Noiseless Observation data . . . 87

A.2.2 Prediction with Noisy Observation data . . . . 87

A.2.3 Selection of Hyperparameters - Hints . . . . . . 88

Bibliography 91




Abstract

In industrial robotics settings, pick-and-place tasks are amongst the
most common activities that are delegated to robotic manipulators,
because of the advantages they bring in terms of costs when performing
highly repetitive tasks. Indeed, it is preferred to assign these tasks to
a robot than to a human, for many reasons like for example reduced
costs and because it allows to free man-hours for more intellectual
tasks. An ideal goal would be to have a robotic system capable of
handling arbitrary objects.

Some of the great challenges in this context are: (i) to guarantee the
time efficiency of the task, crucial for handling costs; (ii) programming
of the robot, indeed optimal pick and place of arbitrary objects is not
a trivial task.

When allowed, throwing objects, instead of placing them, has the
potential to improve the time-efficiency, as well as to increase the
physical reachability of a robotic arm, by exploiting extrinsic dexterity.
This can be called pick-and-throw. Unfortunately, when dealing with
arbitrary objects, this approach opens a new set of problems on top
of those already existing, mainly (i) how to pick the object in an
optimal way for throwing; (ii) how to toss an object grasped in a
certain configuration.

A recent work, Tossingbot [1], has implemented a whole pick-and-
throw task in unstructured settings, using a trial and error approach
exploiting unsupervised learning.

This approach has excellent performances in terms of time-efficiency
and accuracy, but it does come at the cost of having to perform
hundreds to thousands of training throws in order to learn the task
even with the simplest object, a ball.

The objective of this thesis is to explore how to apply Reinforcement
Learning techniques to the considered pick-and-throw task with a
simple ball, in order to train the robot to reach the same performance
as Tossingbot, using minimal training trials.

Mainly, we applied a recent Model-Based RL algorithm, MC-PILCO,
to train a tossing policy in a simulated environment created from scratch

1ii



iv CONTENTS

and we validated part of the algorithm on data collected in laboratory
sessions.

We show some positive and encouraging results obtained with the
policy training in simulations, as well as with the real data, moreover,
we exploited this particular task to highlight some interesting and
crucial aspects of the algorithms itself.




Abstract

Nel contesto della robotica industriale, le mansioni del tipo pick-and-
place sono tra le piu comuni ad essere delegate a bracci manipolatori,
poiché questi sono molto efficienti e adatti ai lavori ripetitivi.

In questi casi, delegare mansioni ai robot presenta diversi vantaggi,
tra i quali il risparmio di costo e di tempo uomo. Inoltre, liberare le
persone dai compiti piu pesanti e ripetitivi permette a quest’ultimi di
concentrarsi su incarichi intellettualmenete piu rilevanti.

Un ostacolo ancora non del tutto superato, in questo ambito, e
sicuramente la gestione di oggetti arbitrari, dove le sfide piti importanti
sono: (i) garantire l'efficienza in termini di tempo della mansione; (ii)
la programmagzione del robot.

Quando possibile, un modo per aumentare 'efficienza temporale
dell’attivita di pick-and-place ¢ lanciare gli oggetti invece di riporli, in
questo caso si puo parlare di pick-and-throw. Cio consente anche di
allargare il confine dello spazio raggiungibile del robot, sfruttando la
sua cosiddetta manualita estrinseca.

Purtroppo, quando gli oggetti manipolati sono arbitrari, questo
approccio aggiunge nuovi problemi a quelli gia esistenti, in partico-
lare: (i) come raccogliere un oggetto con 'orientamento corretto per
poi lanciarlo; (ii) come lanciare un oggetto afferrato in una certa
configurazione.

In un articolo di recente pubblicazione, viene presentata l'imple-
mentazione di una mansione di pick-and-throw completa, in ambiente
non strutturato, utilizzando un approccio trial and error che fa uso di
unsupervised learning, questo sistema ¢ stato chiamato Tossingbot [1].

Tossingbot ha prestazioni eccellenti sia in termini di efficienza tem-
porale che di accuratezza. Tali risultati, tuttavia, si ottengono al costo
di dover effettuare fino a migliaia di prove per imparare l'attivita,
questo anche considerando 1'oggetto manipolato piu semplice, ovvero
una pallina.

L’obiettivo di questa tesi ¢ di indagare come si puo applicare il
Reinforcement Learning, per insegnare una mansione di pick-and-throw
a un braccio manipolatore in maniera efficiente.



vi CONTENTS

In particolare, si vuole verificare se e possible raggiungere le stesse
performance di Tossingbot nel lancio di una pallina, utilizzando un
numero minimo di lanci di allenamento.

Nello specifico, & stato utilizzato un recente algoritmo di Model-
Based RL, MC-PILCO per allenare una policy di lancio in un ambiente
simulato, in piu, parte dell’algoritmo e stato validato con dati raccolti
in sessioni di laboratorio.

Sono stati ottenuti risultati positivi ed incoraggianti sia nell’ambiente
simulato che con dati reali, oltre a cio e stato possibile sfruttare la
particolare geometria della mansione per evidenziare alcuni aspetti
peculiari dell’algoritmo stesso.




Introduction

Pick-and-place tasks are amongst the most common kind of opera-
tions assigned to robotics manipulators in industrial settings.

They are activities of crucial importance and repeatable nature that
in many sites and cannot be eliminated.

For economic reasons, time reduction of such task is an important
aspect to consider. Moreover, another crucial aspect to reduce is the
involvement of human operators in the manipulator task, which is in
general undesirable.

Industrial robots, due to their great speed, precision and cost-
effectiveness in repetitive tasks, tend to be used instead of manual
workers in automated production lines, but these powerful machines
require much more preliminary work, like calibration [2, 3], task and
trajectory planning [4, 5, 6] in order to reach the desired objectives.

The robotics research community dedicated a lot of effort into mak-
ing such tasks time and resource efficient, as well as more and more
autonomous, some research addresses the time-efficient trajectory plan-
ning problems [7, 8], while other propose solutions to make autonomous
the entire task [9].

When allowed, throwing objects has the potential to improve the
time-efficiency, as well as to increase the physical reachability of a
robotic arm, by exploiting object dynamics, a form of dynamic extrinsic
dexterity [10].

In the case of pick-and-place, the ability of throwing objects would
enable a robot arm to put objects rapidly into bins located outside
its maximum kinematic range, which not only increases the physical
domain where target boxes can be located, but also maximizes its
operational efficiency.

However, precisely tossing arbitrary objects in unstructured envi-
ronments is challenging because it depends on many factors related
to the object properties (e.g. shape, inertia, mass, etc ...) and its
interaction with the rest of the environment (e.g. frictions, collisions,
etc ...). For example, grasping a hammer by its handle rather than
its head may lead to different trajectories even with the same tossing

vii



viii Introduction

movement of the robot. Instead, an ideal ball would perform the same
trajectories when tossed in the same way, regardless of the orientation
of grasping, it can however be significantly decelerated due to the effect
of air friction.

A recent work, Tossingbot [1], confronted with the implementation
of a whole pick-and-throw task in unstructured settings, namely the
authors dealt with the full process of deciding how to pick an arbitrary
object and how fast to throw it in order to reach an arbitrary target
box.

The authors of [1] implemented an end-to-end unsupervised learning
architecture, composed of two Deep Convolutional Neural Networks
(DCNNs) and two robot primitives, in order to learn the whole task
by trial and error, in an unsupervised way.

This architecture is composed of a DCNN to predict the optimal
orientation to pick each observed object, a grasping primitive, a second
DCNN to predict the release velocity of the picked object, in order to
reach an arbitrary target location, and finally a throwing primitive.

The interested reader can refer to [1] for more details.

The proposed approach is successful and is relatively simple to
implement, but presents some limitations, the most relevant of which is
constituted by the number of trials required to learn the task. Indeed,
the system demands to perform hundreds or thousands of trials even
for the simplest object, a ball.

This task presents a number of practical problems, first of all being
the design problem of defining the robot movement appropriate to
enforce a Cartesian velocity to an object, then, second not in terms of
importance, is the problem of releasing the grasped object at the right
time and place synchronized with the tossing movement.

Relying to learning approaches is in this case a desirable approach
for the resolution of such task, the reason being that many aspects of
this task are quite difficult to approach with ad hoc solutions and even
more difficult to describe with analytical models. In particular, there
is the problem of throwing arbitrary objects with the correct velocity,
applying the same velocity to different objects can result in different
trajectories.

At this point, a whole set of problems related to learning opens up,
what should the system learn? What should be handcrafted? What
learning approach should be followed?

The authors of [1] proposed to teach the robot the release velocity
to impose to the thrown objects, while the robot’s tossing movement




ix

is implemented with a robot primitive (handcrafted) and chose to rely
to am unsupervised learning approach that works by trial and error.

This approach is able to solve a lot of practical issues. The system
just requires to see the unstructured bin of objects and to verify if the
objects tossed by the robot actually fall in the correct bin or not. It is
shown that by collecting loads of experience the system is able to learn
a correct map from the visual information to the Cartesian velocity.

The simplicity of this kind of unsupervised learning approaches is
also its curse, the key factor being the loads of experience needed to
reach convergence, by just evaluating the final outcome of throwing an
object the Tossingbot system is ignoring tons of information that lies
in between the release and the landing: the object’s trajectory.

In this thesis, we propose to teach the pick-and-throw task to a
robotic manipulator using a Reinforcement Learning (RL) approach,
in order to reach convergence to optimal performance with few training
trials.

RL is an area of Machine Learning that is tasked with designing
intelligent agents that take actions in an environment, in order to
reach a certain goal. The agent is indeed equipped with the ability to
evaluate by itself its own performance and should adapt its behavior
accordingly as it progressively interacts with the environment.

The two main approaches in RL literature are Model-Free and
Model-Based approaches (denoted as MB hereafter), the first kind
relies on various strategies to learn the actions to perform a certain
task directly from the interaction with the environment, while the
second kind uses the interaction with the environment to build a
dynamics Model that is able to predict the system’s evolution given
current state and the action performed by the agent.

MB approaches, with the right premises can be particularly effective
in yielding optimal acting agents with limited actual experience with
the real system, which is very desirable in contexts of sophisticated
mechanical systems, of which industrial robotics is a prime example.

The pick-and-throw task can be thought of as a standalone activity
that is very interesting by the point of view of learning, because efficient
approaches require to learn the dependency of the landing position
from the initial state, i.e. release position and velocity, but it can also
be considered as a benchmark for industrial robotics applications.

Therefore, to show how MB RL methods could be valuable in the
field of industrial robotics, we investigated how this approach could
be applied to a pick-and-throw task, we built a minimal simulated




X Introduction

environment with the Gazebo software [11] and applied a very recent
algorithm for learning an acting control policy in a very efficient way:
MC-PILCO [12].

MC-PILCO is a Model-Based policy gradient algorithm. In partivu-
lar, which exploits Gaussian Processes (GPs) to learn a dynamics
model of the system and a Monte Carlo approach to estimate the
policy gradient, the GPs can make use of specialized kernel functions if
some knowledge of the system is available, which can lead to improved
data-efficiency of the model. Moreover, any differentiable function
can be used as policy, although simple, interpretable functions are
recommended, the authors of [12] provided a simple, interpretable
general-purpose policy function.

The robotic manipulator chosen for the task is Franka Emika’s
Panda robot, a collaborative manipulator for which all libraries and
software for simulation is available, moreover an actual real Panda
Robot was available to some experiments in the laboratory of the
Department of Information Engineering of the University of Padova.

We developed a simple and efficient trajectory generation that
allowed to implement a low accuracy, high precision tossing system,
which, with opportune noise modeling, is more than acceptable for the
desired task.

We performed a series of simulated trials in order to validate the
performance of the algorithms in terms of system evolution prediction
and system control, as well as to show the exploratory features of said
algorithm, which can be interpreted due to the characteristics of the
considered task.

The results show that the dynamics model presented in [12], with
the needed adaptations, is capable of learning to predict the trajectories
and landing locations of the tossed ball, provided that the nominal
initial positions and velocities are sufficiently accurate, moreover the
general-purpose policy from [12] was successful in learning a map from
target location to input release velocity.

In the experiments we were able to show the ability of [12]’s policy
gradient algorithm in exploring the policy’s parameters space, thus
increasing the probability of the training to yield an optimal policy.

Moreover, it was possible to gather some trajectory data of test ball
in laboratory using 3D cameras and thus validate the Model of [12] on
real data. In addition, a second trajectory generation was developed
and tested for use on the real robot.

The experiments presented in this thesis should be considered prelim-




xi

inary to further research that explores learning how to throw different
objects.

The policy learning test performed with the simulation data show
that, when the model is precise enough, MC-PILCO is able to learn the
long-term dependencies of the system evolution from the manipulator
action.

Moreover, Model Learning experiments performed with the data col-
lected in the laboratory sessions show promising results that encourage
to follow this line of research.

This document is organized as follows:

o Chapter 1 gives a brief introduction on Model-Based methods for
Reinforcement learning with particular attention to MC-PILCO;

o Chapter 2 describes in a formal way the task and present the pro-
posed solution based on MC-PILCO, as well as all the experiments
that have been performed.

o Chapter 3 will show and discuss all results obtained with the
various experiments in simulations, demonstrating that with MC-
PILCO it is indeed possible to learn industrial robotics tasks.
Moreover, some encouraging experiments performed with real
data of ball trajectories collected in laboratory will be discussed.




xii

Introduction




Chapter 1

Model-Based Reinforcement
Learning

This chapter will give a brief introduction on Model-Based (MB)
methods for Reinforcement learning (RL), also called planning or
indirect methods. All content described in this chapter is preparatory
to comprehend the work presented in chapter 2 and chapter 3, for
deeper explanations refer to [13].

RL is an area of Machine Learning that is concerned with building
intelligent agents that are required to take actions in an environment,
in order to minimize the notion of cumulative cost. The key ingredient
of the RL paradigm is that the behavior of the agent is defined and
evolves as it progressively interacts with the environment, until it
reaches convergence when an optimal behavior is found. The most
important trait that differs RL from other machine learning paradigms
(e.g. supervised learning) is the autonomy of the learning process. All
that is needed in RL to train an agent is the environment interaction
and a cost function to evaluate states.

In the RL literature, the environments are typically described by
the Markon Decision Process (MDP), which is defined by the tuple
(S,A,P,C,~v):

e S: a finite set of states;

A a finite set of actions;

P: a state transition probability matrix/function with entries:

P.gs’ = P[St_|_1 = Sl‘St = S,At = CL] (11)

C: cost function, C% = E[Cy4+1|St = s, A+ = a], which returns the
immediate cost in that specific state;

~: discount factor, v € [0, 1].



2 Model-Based Reinforcement Learning

The MDP formulation of an environment is useful to use most of
the tools in the literature [13], when the system is known and, in
particular, when the system is finite. Most of the real world scenarios,
like the ones considered in this work, are not finite and only partially
observable, nonetheless the MDP formalism is usually retained even
when dealing with complex systems.

The behavior of the agent is described by a policy function:

m:AxS—[0,1]

7T<a78) = P(at =a,St = S) (12)

The policy defines the probability of the agent taking action a when
in state s.

The goal of the RL paradigm is to yield a policy 7 such that its
expected long term return G} is minimized at each state:

o0
Gt = Cip1 +7C12 + 72Ct+3 Tt = Z 7k0t+k+1 (1.3)
k=0

The long term value of a state, given policy 7, is defined by the value
function:

0a(s) = Ea[GrlS; = 5] = 3 w(als)(C 4 Y] Plyve(s))  (1.4)
acA s'eS

where the rightmost member of the equation is called Bellman Fx-
pectation FEquation. If the policy is deterministic, at each state only
one action is selected with unit probability, the formalism of 7 can be
changed so that 7(s) = a defines the action selected by 7. The Bellman
Ezpectation Equation can then be rewritten:

vr(s) = CTO 44 Y PIu () (1.5)
s'eS

MB RL methods follow the same philosophy of all RL methods, but
exploit models of the environment built using the collected experience
to yield an acting agent. By a model of the environment we mean
anything that an agent can use to predict how the environment will
respond to its actions. Given a state and an action, a model produces
a prediction of the resultant next state. If the model is stochastic, then
there are several possible next states, each with some probability of
occurring. Some models produce a description of all possibilities and

their probabilities, i.e. a distribution of states.
The main reason of having a model of the environment is that the




3

agent is able to explore the environment without actually needing a
physical interaction, or reducing the interaction time needed to reach
convergence. This can be really useful in contexts where wear and tear
of the involved components are important aspects to consider or when
system interaction is costly. This is especially true when dealing with
sophisticated mechanical systems.

Indeed, RL techniques that do not build models of the system, called
Model-Free (MF) or direct methods, are very easy to deploy and have
very good performances on limited and constrained environments, but
can require large interaction time on more complex systems.

The possible relationships between experience, model, values, and
policy are summarized in fig. 1.1. Each arrow shows a relationship of
influence and presumed improvement between different phases of the
RL process.

Model-Free reinforcement learning paradigms directly build value
functions and/or policies with the collected experience, they can be
represented by the smaller loop between experience and value/pol-
icy. Instead planning methods follow the external loop in fig. 1.1:
a model of the environment is built with the experience collected
interacting with the system (model learning), the learned model is
then exploited to build a policy directly or through a value function
(planning), finally the resulting policy is used to interact with the
system (acting), generating new experience.

Depending on the peculiarities of the system, like its dynamics and
the complexity of the action to perform, MB approaches can lead to
increased data efficiency with respect to MF methods, requiring less
exploration to reach convergence. The biggest downside of planning
methods, is the complexity and the difficulty of deploying, as the overall
architecture is more complex and requires additional components, w.r.t.
direct approaches. Moreover, indirect methods have a not null risk of
introducing biases in the design of the model, which is not a problem
in direct methods.

For this reason, the use of a model to learn an acting policy is a
double-edged sword, it can lead to an optimal policy very efficiently,
possibly needing limited experience with the system, therefore resulting
in low wear of the environment, but a model may never reach a good
enough approximation of the system’s dynamics, so a policy that
converges to optimality following a faulty model might very well be
sub-optimal w.r.t. the real world.




4 Model-Based Reinforcement Learning

value/policy
acting
planning direct RL

model experience

N

model learning

Figure 1.1: Relationships among learning, planning, and acting (from [13]).

1.1 Gradient-Based Policy Search with GPs

One popular Reinforcement Learning approach to learn an acting
policy is Policy gradient or Gradient-based policy search, as the name
implies it consists in learning a policy defined by some parameters
6 by gradient descent over a cost function. This approach requires
to compute a cost estimation that depends on the policy parameters,
which is a non trivial problem.

The use of Model-Based approaches for learning the control of
mechanical systems is very appealing in industrial robotics applications,
where it is desirable to learn how to control a mechanical system, rather
than designing ad hoc control strategies with complex mathematical
tools that might present strong biases and/or limiting approximations.
Moreover, typical direct learning approaches are not favored in these
contexts, given the aforementioned poor data efficiency issues.

PILCO (Probabilistic Inference for Learning COntrol) [14] is a suc-
cessful MB RL algorithm that uses GP models (details in appendix A)
and gradient-based policy search to achieve substantial data efficiency
in solving different control problems.

In PILCO, long-term predictions are computed analytically, approx-
imating the distribution of the next state at each time instant with a
Gaussian distribution by means of moment matching. In this way, the




1.1 Gradient-Based Policy Search with GPs 5%

policy gradient is computed in closed form.
However, the use of moment matching introduces also two relevant
limitations:

o Moment matching allows modeling of only unimodal distributions.
This introduces relevant limitations related to the initial condition,
as well as being potentially wrong.

e The computation of the moments is shown to be tractable only
when considering Squared Exponential (SE) kernels and differen-
tiable cost functions. Limiting the kernel choice might be very
stringent depending on the system, it has been shown repeat-
edly that specialized kernel functions can lead to substantive
improvements in data efficiency and generalization properties

15, 16, 17, 18, 19).

Several other MB RL algorithms have extended PILCO to overcome
these limitations, Deep-PILCO [20] has explored how to overcome the
use of SE kernels, which uses Bayesian Neural Networks [21, 22] to
model system evolution. Results show that, compared to PILCO, Deep-
PILCO requires larger number of iterations with the system to learn
the task. This can be explained by the fact that NNs typically require
large sets of data for convergence to good performance, therefore might
not be the best choice for these applications. Another approach was
presented in PETS [23]. which uses an ensemble of NNs to model
uncertainty in the estimation of system dynamics. Again results show
worse data efficiency when compared to PILCO for control of low-
dimensional systems (e.g. cartpole [14, 24]), while presenting positive
results in simulated high-dimension systems.

One method to bootstrap Model Learning of real mechanical systems
in PILCO consists in the use of simulated data to learn a prior for the
GP model before starting the RL procedure on the actual system [25].
This approach shows important improvements in the performance in
unexplored configurations, however, accurate simulators are required
in these settings, which might not be always available.

Other approaches addresses the limitations of gradient-based opti-
mization, adopting gradient-free policy optimization [26], while others
focused on overcoming approximations due to moment matching relying
on particle-based methods [27, 28].

Promising results with particle-based methods were obtained ex-
ploiting the reparameterization trick [29] which has shown successful
results in stochastic variational inference SVI [28, 30].




6 Model-Based Reinforcement Learning

In this thesis, a recent MB RL algorithm was exploited for learning
control of a mechanical system in the context of industrial robotics,
namely: Monte Carlo Probabilistic Inference for Learning C'Ontrol
(MC-PILCO) [12].

MC-PILCO, like PILCO is a (MB) policy gradient algorithm, in
which GPs are used to estimate one-step-ahead system dynamics and
long-term state distribution are approximated with a particle-based
method, instead of moment matching.

The reparameterization trick is exploited in the computation of
the gradient of the expected cumulative cost with backpropagation
[31]. The optimization problem is interpreted as a stochastic gradient
descend problem (SGD) [32], and dropout [33] of the policy parameters
is used in order to raise the chances to escape from local minima,
obtaining performing policies. Results in [12] show that MC-PILCO
outperforms its predecessor PICLO and other similar extensions of the
same.

1.1.1 Model-based policy gradient

Consider the discrete-time system described by the unknown transi-
tion function f(-,-):

LTr4+1 = f(x7'7u7') + wr (1-6)

where 2, € R% and u, € R% are respectively the state and control inputs
of the system at each step 7, while w; ~ N (0,%,,) is an independent
Gaussian random variable modelling additive system noise. In this
context, the continuous state x, corresponds to the finite state se S
in the MDP formalism, while the continuous inputs u, correspond to
the finite actions a € A.

The cost function in this formulation ¢(x;) defines the immediate
penalty for lying in state x,, it does not depend on the control inputs
forwarded at current time. The inputs forwarded to the system are
chosen following a policy 7y : © — u that depends on the parameters
0. The objective is to yield a policy that minimizes the expected
cumulative cost over finite number of steps T', namely:

T
J(6) = Y Blerr)] (17)
7=0

where the initial state zq is selected according to a given probability
p(xo)-




1.1 Gradient-Based Policy Search with GPs 7

A planning approach for learning a policy consists, in general, of the
succession of several trials; i.e. attempts to solve the desired task. As
preliminary step, an initial policy, possibly random, is used to collect
exploration data used to bootstrap the model of the system dynamics.
Each trial consists of three main phases:

o Model Learning: data collected from all previous interactions are
used to build a model of the system dynamics;

e Policy Update: the policy is optimized in order to minimize the
cost J(0) according to the current model;

e Policy Execution: the current optimized policy is applied to the
system and the data are stored for model improvement.

The model of the system dynamics is used to predict the system
evolution under the execution of the current policy 7wy, the predicted
evolution is used to compute an estimation of J(#) and its gradient
VyJ(0), in order to update 6 following gradient-descent approach.

1.1.2 GPR and one-step-ahead predictions

A common strategy with GPR-based approaches for one-step-ahead
predictions consists in estimating the evolution of each state dimension
with separate GPs, hereafter denoted as full-state model. Consider:

AW =20 ) el dy) (1.8)

T

being the increment between the value of the +-th component of the
states a time t + 1 and t. Define:

g = Al 4 (0 (1.9)
(4)

as the noisy observation of A;”’, with () modelling additive noise.
Moreover, let:

iy = [%] (1.10)

Ur

be the vector that summarize both the state and the input applied at
time ¢, which is the general GP input. Then, one can define a dataset:

D= (X,y")
g~ [0,y (1.11)

X ={&,..., %}




8 Model-Based Reinforcement Learning

where y(¥) is the vector of measurements, and X is the set of GP inputs.
For each state dimension, the GPR assumes the following probabilistic
model:

M@n) ]| [ e
yO = |+ | i | =nO(X)+ed (1.12)
B0 (2, ) (i)

€1,

where the additive noise is usually modeled as zero-mean Gaussian:
el) ~ N(0,0;1), and h)(-) is the unknown function:

ROz AD el d) (1.13)

that describes the system dynamics, modeled a prori as zero-mean GP.
Following the formalism defined in appendix A, the GP model:

h ~ N (0, Ki(X, X)) )
Kij(X,X)eRM™" '
with the a priori covariance matrix K;(X,X) defined element-wise
through a certain kernel function.

One standard choice of kernel function is the Squared Exponential
or RBF kernel:

k(z,x') = N exp(—||z —'||5-1) (1.15)

which is a common choice for regression of continuous functions, more
details on the RBF kernel and kernels in general in the context of GPR
in appendix A.2.

The scaling factor A and the matrix A are kernel hyperparameters,
which can be optimized by maximization of the marginal likelihood
(some insight in appendix A.2.3).

Matrix A is typically assumed as diagonal: A = diag(\q,...,\,) and
the diagonal terms Aq,...,\, are called length-scales.

As known from GPR literature, given the general GP input z, at
time 7, possibly Z, ¢ X, the posterior distribution of h(")(Z,) can be
computed in closed form:

E[AD] = E[AO)(2,)] = ki(Z-, X )al) (116
VIAD] = VA (2)] = ki(Zr, &7) — ki (7, XD (8, X)




1.1 Gradient-Based Policy Search with GPs 9

with Ty, ot and ki(Zr,X):

o) — 1y (1.17)
ki(3r, X) = [ki(Zr,%0,),- -, ki(Er, 3]

More details on the derivation of the posterior distribution in ap-
pendix A.2.2.

The evolution of each state dimension is modeled by a distinct GP,
assuming that the d, GPs are conditionally independent from each
other given current input Z,, the posterior distribution for estimate of
the state at time 7+ 1 is then modeled as:

(7 41|12+, D) NN(MT—Fl)ET-I—l) (1.18)

where the mean vector and covariance marix can be expressed as:

(1.19)

1.1.3 Long-term predictions with GP dynamical models

The parameterized policy 7y is evaluated and improved in the policy
update step of MB policy gradient (section 1.1.1) following long-term
predictions of the evolution of states: p(Z1),...,p(Z7).

To rigorously compute these probabilities, it is demanded to apply
the one-step-ahead GPs in cascade, propagating model uncertainty.

Namely. this requires to start from an intial distribution p(xg) and at
each step 7, the next state distribution is obtained by marginalization
of eq. (1.18) over p(Z;):

p(:%T-i-l) = fp(£7+1|£77We(fT)ap)p(iT)dfT (1'20)

The exact computation of eq. (1.20) is not tractable in most of
the interesting cases, therefore in the following we will consider two
different approximation approaches: moment matching (exploited in
PILCO) and the particle-based method developed for MC-PILCO by
the authors of [12].




10 Model-Based Reinforcement Learning

1.1.3.1 Moment matching

This requires the assumption that the GPs use only SE kernels as
covariance functions, then consider a Gaussian initial state distribution:

i) NN(NQ,EQ) (1.21)

Then p(#1) can be computed in closed form (details can be retrieved in
[34]) and next it is approximated to be a Normal distribution, whose
mean and variance have been analytically computed previously.

This procedure is iterated for each step of the prediction horizon,
yeilding the following probability distributions: p(Z2),...,p(Z7).

Hence, it is possible to compute the policy gradient in closed form,
which is a favorable property, but it comes at the costs already men-
tioned at the beginning of this section (1.1):

o SE kernels may lead to poor generalization properties;

e Only unimodal distributions can be modeled, which is not repre-
sentative of many real systems.

1.1.3.2 Particle-based method

With this method, eq. (1.20) is approximated by means of a particle-
based approximation:

o M particles 2" are sampled by the initial state distribution p(z).

o Each of the M particles is propagated using the one-step-ahead
GP models from eq. (1.18), i.e. 27, me{l,..., M} is sampled
from:

Pl |2 o), D) (1.22)

T

The propagation is iterated until a trajectory of T" samples has
been generated for each of the M particles.

The long-term prediction of eq. (1.20) is approximated at each time
step 7+ 1 by the distribution of the particles {z7% {, m =1,...,M}.
Most importantly, this process does not have particular requirements
on the choice of kernel function and the distribution of the initial state.
This approach does not suffer the most critical issues of moment
matching, but the price to pay is the additional computational complex-
ity. In particular, the computation of eq. (1.18) requires to compute
eq. (1.19), which requires to compute, for each element of the state,
mean and variance from the related GP model following eq. (1.16).




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 11

(1)

The computation of I'; and ar’ from eq. (1.17) can be done offline,
once for each GP model. While the computation of the mean of

the GP target E[A(f)] is linear in the number of training samples,
the computation of the variance V[2()(z,)] is the bottleneck of the
operations, having quadratic complexity in the numer of training
samples.

The cost of a single state prediction is then O(d,n?), whereas the
total computational cost of computing the evolution of all M particles
if O(d,MTn?).

Many aspects of the system dynamics and of the type of kernel
function might influence the number of particles and the number
of samples required to obtain a good enough approximation of the
long-term system evolution, determining a remarkable computational
burden as well as memory requirement.

Howsoever, GPUs with large memories are nowadays more and
more common and can certainly alleviate the computational burden
by running in parallel each particle’s evolution.

1.2 Monte Carlo gradient estimation for MB Pol-
icy Search with GPs

This section will describe the core concepts of the MC-PILCO
algorithm: GPR for model learning and Monte Carlo sampling to
estimate the expected cumulative cost using the learned system model.

The algorithm follows the steps described in section 1.1.1, the
following will describe in depth model learning and policy update steps.

1.2.1 Model Learning

MC-PILCO can use the one-step-ahead model described in sec-
tion 1.1.2 but the authors of [12] proposed a novel prediction model,
named speed-integration, that promises to bring advantages w.r.t. the
previously described one. This subsection will describe the aforemen-
tioned model, discuss the possible kernel choices and finally describe the
model’s hyperparameters optimization as well as the possible reduction
techniques for the learning problem.




12 Model-Based Reinforcement Learning

1.2.1.1 Speed-Integration Model

This approach requires to characterize the state as:

v = H (1.23)

dr

where ¢, € R% is the vector of generalized coordinates of the system
at time 7, whose interpretation changes depending on the type of
system and what it is desired to describe. Instead, ¢; is the derivative,
w.r.t. time, of q;.

The model exploits the natural relationship between the generalized
coordinates and its derivative, indeed, when considering a small sam-
pling time T, it is possible to approximate to constant accelerations
between consecutive time-steps, using standard kinematic rules, it is
possible to yield the following:

iF

Gr+1 = qr + Tsqr + 9

. i . Ts . .
(Gr+1—Gr) =qT+quT+§AqT (1.24)

QT+1 = QT + AQT

Of course, the sampling time Ts must be well calibrated with respect
to the application.

With these assumptions, the only unknown quantity in eq. (1.24) is
Aqr, which are set to be the targets of the GPR, which can be learned
with % GP models.

Let denote with Z,; and Z; the ordered set of the dimension of ¢ and
q respectively, then it is possible to denote with:

A = ) — 4, iy, 129

the target of the ¢;, GP model, which is used to predict the evolution of
the 75 velocity component, then x,41 = [qTT +1,Q7T +1]T can be computed
following eq. (1.24).

Compared to the full-state model described in section 1.1.2, speed-
integration trains half as much GP models and correctly condition the
predicted evolution of generalized coordinates with respect to their
derivatives.

However, when a small enough sampling time is not available, speed-
integrating might diverge from the real dynamics with high probability,
but, as already stated, MC-PILCO can be used with the full-state
modeling, which might be more effective in that case.




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 13

1.2.1.2 Kernel choice

Particle-based methods have the possibility to characterize the GP
models, of any dynamical model adopted, with the appropriate kernel
without restrictions, the authors of [12] presented a couple alternatives
to the standard SE kernel of eq. (1.15), which will be presented as
examples.

SE + Polynomial (SE + P(@):

kSE—i—P(d) (jTjaka) = kSE(ilTjrfﬁTk) + ]f]()d) (ZZ'Tj,ZETk)

d (1.26)
kz(?d) (Trj,T7) i = H(UJQDT + SEz;ZPﬁTk)
r=1

The function k](gd) is called Mutiplicative Polynomial (MP) kernel
of degree d and is useful to capture the modes of the system that are
polynomial in z, which is typically true for mechanical systems.

Semi-Parametrical (SP):

kspypa (Tr,Tn,) = ksp(Tr,Tr,) +kpr(Tr,Tn,)
kpr(Fry,dn) = @' (Tr,)Spro(in,)

The function kp; allows to exploit prior knowledge in the system by
defining a suitable basis function ¢(Z). kpy is typically derived from
basic physic principles and for this reason it is called Physically Inspired
kernel [16].

The correctness of these formulations comes from the fact that the
sum of kernels is still a kernel [35], refer to [12] for deeper explanations.

(1.27)

1.2.1.3 Model Optimization

Once the dynamics model is chosen (from section 1.1.2 or sec-
tion 1.2.1.1 or any alternative most suitable to the considered system)
the GP hyperparameters are optimized by maximizing the marginal
likelihood (ML) of the training samples (see appendix A.2.3).

Various reduction techniques to lower the computational complexity
and memory consumptions of the GP models are discussed in [12].

1.2.2 Policy Update

This subsection will present a general-purpose policy and describe
the optimization performed in MC-PILCO as well as the application
of dropout of the policy parameters.




14 Model-Based Reinforcement Learning

1.2.2.1 General-Purpose Policy

MC-PILCOQ’s policy optimization can be applied to any differentiable
policy function, like a deep Neural Network, but for most applications,
simpler and more interpretable functions are preferred, therefore [12]
presented the following squashed-RBF-network policy:

Ny )
Z wie“imzw> , W; € Rd“ (1.28)
1

Umaz ;=

To(T) = Upqy tanh (

which is a squashed, weighted sum of Gaussian basis functions.

The parameters are: 8 = {w, A, X}, with A = {a1,...,ap,} being
the centers of the basis functions, weighted by w = [w1,...,wy,]. The
matrix X is a covariance matrix used to shape the gaussian distribution,
it can be assumed as diagonal with the diagonal elements called length-
scales.

This policy’s output values are constrained to lie in the interval
[ —Umaz, Umaz |, Where g, is assumed as the constant maximum con-
trol action, chosen depending on the particular system.

1.2.2.2 Gradient computation

The reparameterization trick is applied to compute the estimate of
the expected cumulative cost (eq. (2.23)) with Monte Carlo sampling
[36], as described in section 1.1.3.2.

Let m(Tm), m=1,...,M and 7 =1,...,T be the state of the m-th
particle at time 7, then the MC estimates of the expected cost and
cumulative cost are:

(1.29)

At each time-step 7 the expected state cost is approximated by the
mean of the cost computed on the sampled particles.
The reparameterization trick is applied to define differentiable
(m)

stochastic operations, the evolution of a particle & at following
time step is obtained by sampling from:

p(a 2 7o (), D) ~ N (sir+1, 1) (1.30)




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 15

defined in eq. (1.19). Instead of sampling directly from N (pr+1,%741)
it is convenient to sample from a properly dimensioned zero-mean and
unitary variance gaussian distribution, then the particle is mapped to:

(m)

Tri1 = Ur41+ Lriie,
Lr+1LZ+1 = Y741, (1-31)
~N(0,14,)

where L., 1 is the Cholesky decomposition of ¥, 1 . This reparametriza-
tion allows for standard differentiation, thus the gradient of J(8) from
eq. (1.29) is computed using backpropagation with an optimizer like
Adam [37].

The following computations show the dependencies of the Gradient
of eq. (1.29) w.r.t. 6 from the policy 7.

1
(1.32)
B i i M 8c(a3¢m))§w$m)
=1 Mmzl am(Tm) 09

(m)
Lg% = 0 since p(xg) does not depend on the policy. From eq. (1.31)

the partial derivative of the particle’s state w.r.t. policy parameters
can be computed with eq. (1.19):
aw(m) a,LL 1+ Lryqe a,LL 1 OL.iq¢
T+1 _ T+ T+ _ T+ + T+
00 00 00 00 (1.33)
a,u7'+1 aa%(_m)
o0 00
Since L1 is diagonal like -1, it is easier to compute the gradient
of L;41e rather then computing the gradient of L1 and then multiply
by €. Considering:

=TT
(Lrp18)D = A/V[AED 521, 4,

then we get:

A A T
n [aE[AQ)] 5E[A$dx)]]
0 o o0




16 Model-Based Reinforcement Learning

(1.35)

The gradient computation of the i-th state element of the m-th
particle w.r.t. 6 is:

oz 8m$m’i)+6E[Ag)] 0 V[AT”]E@
o0 o0 o0 o0

Z\ e T ) (1.36)

which shows recursive properties, with:
ﬁacgm’i)
06

From full-state model described in section 1.1.2, it is possible to
yield the analytical expressions of gradients in eq. (1.36).

Since ]E[Aqg) | is the output value of the i-th GP with input Z., the
gradient is straightforward to compute for eq. (1.16):

—0 Yi=1,....dy; m=1,....M (1.37)

CE[AY]  oki(3,, X)

(4)
o7 o ay (1.38)
and for the variance term V[Ag)]:
oVIAY ok, 7y) okT (77, X)

(1.39)

0% or. kilEnX) (rter”) 0%

both of which depend only on the chosen kernel function. While the
gradient of the extended state ¥ w.r.t. parameters 6 is:

i _ r] =2 a‘%’i )
06 a“g ”%9"37

e R(Gtdu)xdy (1.40)




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 17

where the policy gradient peeps out.
The policy gradient is composed of the gradients of the various
parameters, in case of the policy described in section 1.2.2.1:

Omg(7) _ Omg(T7) Omg(Tr) Omg(Zr) (1.41)
0 \ ow ' A T 0%; '
and the term %”HT can be computed recursively
Putting all togheter:
T M d, (m)y A, (m.i)
2 1 aC(wT )5337
Vo (0) = ( — )
(m) :
_ T i i/[: dy @C(wq(_m‘))T—l km,i) 692%( |
=1 Mmzlizl achm,z) k=0 (3@(;&’“ )
with:
mi) CE[AI] 0 V[Agcmﬂ)] i
(mod) _ [ﬁn) Iy S el (1.43)

The contribution of the gradient of the policy w.r.t. # to this forumu-
lation is clear.

The computation of each particle’s component is independent from
the other particles, therefore each term of the sum with index m in
eq. (1.42) can be done in parallel and the recursive properties of the
state gradient can be exploited.

1.2.2.3 Dropout

Gradient-based optimizations is known to suffer from the presence
of local minima that often times trap the optimization in a sub-optimal
configuration of the parameters. Various optimizers like Adam [37]
incorporate techniques to reduce noise in the gradient computation,
in order to best estimate the true gradient, but all SGD methods and
derivatives have no guarantee of reaching global minima.

In order to discriminate a global minima, it is necessary to have a
broad knowledge of the loss function J(6), in this case, only a noisy
estimate J (0) is available, therefore it is necessary to numerically
explore the function in the parameters space (6 € ©). The authors of
[12] proposed the use of dropout [33] to improve exploration in the
parameters 6 and increase the ability of escaping from local minima
during policy optimization of MC-PILCO.




18 Model-Based Reinforcement Learning

Considering the policy described in eq. (1.28), the dropout is applied
by randomly dropping the weights w with probability pg, this is
implemented by scaling each center’s weight w; with a random variable
ri ~ Ber(1—pg) where Ber(pg) is a Bernoulli distribution assuming
value 1%% with probability 1 —p; and 0 with probability p,.

This is equivalent to formulating a distribution over the weights,
thus yielding a parameterized stochastic policy my.

As shown in [38], the distribution of each weight w; can be approxi-
mated by means of a bimodal distribution, defined as the sum of two
scaled Gaussians with infinitely small variance £2:

wi ~ paN(0,€2) + <1—pdw( wi £2> (1.44)

1—pg’

The use of a stochastic policy during policy optimization phase
has the effect of increasing the entropy of the particles’ distribution,
thus incrementing the probability of visiting low-cost regions of the
parameters’ space, escaping local minima.

The authors of [12] validated the additional property of dropout
of mitigating issues related to exploding gradients, probably due to
the fact that the gradient is computed with several different values
of w. Since different values of w yield different policies, the gradient
estimates are computed by averaging with slightly different policies,
obtaining a regularization effect.

The downside of dropout is that the additional entropy of a stochas-
tic policy might affect the precision of the obtained solution, therefore
it is necessary that the policy optimization step returns a deterministic
policy.

For these reasons, the authors of [12] defined a heuristic scaling
procedure to gradually decrease the dropout rate, pg4, until reaching 0,
during the policy update iterations.

A monitoring signal s is defined as function of the statistics of J in
the preceding iterations, the expression is:

E[AT)]
V[AJT)]
asE[AT; 1]+ (1 —as)AJ; (1.45)
as(V[ATj 1]+ (1 as)(AJ; - E[AT;1])?)
0;)—J(0;-1)

where A}'j is the cost change between the two consecutive policies

sj=0Sj—1+ (1 —ayg)

AN

AJj]
AJj]
=

Il

~ <P

<
N |l

>




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 19

mg,_, and my, respectively at the j —1 and j-th optimization steps.
The quantities E[AJ;] and 4/V[AJ;] are respectively the mean

and standard deviation of Ajj, computed with Exponential Moving
Average (EMA) filtering with coefficient ay, also referred as the filter’s
memory.
: : : . E[AT]
The signal s; is an EMA filtered version of the ratio m
VIAJ;
The optimization algorithm checks at each iteration, if the absolute
value of s was below a certain threshold o, in the last ng iterations:

Usj—ns‘77|3]‘] <05 (146)

where the minor sign is applied element-wise. If this condition is true,
the dropout rate p; is decreased by dp; while both the optimizer’s
learning rate «g, and threshold o4 are scaled by an arbitrary factor Ag,
until reaching minimum allowed value:

pa = max(pg — Apg, 0)
oy = max(Asaqp, Qg (1.47)

Os = AsOs
The procedure is iterated as long as:
pg =0 and o > Qo (1.48)

The idea behind the heuristic is that the signal s would reach
small value when the optimization reaches convergence (low E[AJ;])
or when the Model’s predictions are uncertain (high V[Ajj]), in both
these cases it is necessary to close the optimization and collect more
data either for performance validation or to strengthen the model’s
prediction.

MC-PILCO with dropout is summarized in algorithm 1.

It is worth mentioning that some adaptation is likely to be required
to use MC-PILCO in particular setups, depending on the required
task. In the next chapter we will describe all the modifications and
additions that were required to solve the considered task. Moreover,
we compared the performances of policy optimization and the effects
on the resulting policy under different setups with and without the use
of dropout.

The following table contains all optimization parameters defined in
[12] and related values tuned by the authors. If not specified differently,
the same values were used throughout all this work.




20 Model-Based Reinforcement Learning

Algorithm 1 MC-PILCO with Dropout

Require: Policy 7y, cost ¢, kernel £k,
optimization parameters: Ny, M, oy, 0up ., Dds ADa
and monitoring signal parameters: og, A, ns.

Apply initial control policy to system and collect data.
while task not successfully learned do
(1) Model Learning:
GP models are learned from sampled data - section 1.2.1
(2) Policy Update:
so=0
for j=1,..., Ny do
Simulate M particles rollouts with current GP models and 7y
Compute J(6;) from eq. (1.29)
Compute V.J(6;)
T, ,, < gradient-based update
Update s; with eq. (1.45)
if (1.46) then
Update pg, oy and o with eq. (1.47)
end if
if not (1.48) then
exit for loop
end if
end for
(3) Policy Execution:
apply updated policy to system and collect data.
end while
return final policy 7y, and system model;




1.2 Monte Carlo gradient estimation for MB Policy Search with GPs 21

H parameter description value H

Dd dropout rate 0.25

Apy pq reduction term 0.125
Qe optimizer’s learning rate 0.01

Olppin minimum learning rate 0.0025
Qg EMA filter memory 0.99
Os threshold of monitoring signal 0.08
Ng number of monitored iterations 200
Ag reduction coefficient of os and oy, 0.5

Table 1.1: Standard values for the policy optimization parameters [12].

The full algorithm was implemented by the authors of [12] in Python
with the PyTorch [39] library, the code is publicly available ! and was
exploited in this work.

IMC-PILCO’s code is available at: https://www.merl.com/research/license/MC-PILCO



https://www.merl.com/research/license/MC-PILCO

22

Model-Based Reinforcement Learning




Chapter 2

Industrial Robotics Application:
Tossingbot

The application described in this chapter was inspired by Tossingbot
[1], where the authors explored how to learn a full pick-and-throw task
of arbitrary objects using self supervised learning. Namely, Tossingbot
exploits Deep Convolutional Neural Networks (DCNNs) [22] both to
learn how to grasp an arbitrary object and the linear velocity it needs
to be tossed from a release position in order to reach a target bin, by
trial and error. The authors of Tossingbot trained a DCNN to learn the
grasping orientation for throwing and a second DCNN for the tossing
task, these networks are used sequentially at each tossing trial', the
predicted grasping orientations and tossing speed are then used with
two robot primitives to perform the pick-and-throw operation. The
tossing module is not used for full regression, i.e. its targets are not
the velocities vy,s5 but it predicts a residual ¢ which is used to compute
the final release velocity provided to the tossing primitive by:

HvtossH = HﬁtossH +0 (2.1)

where 04,45 is the velocity computed by standard ballistic equations that
describe the accelerated motion of a bullet under the effects of gravity:.
This setup, named Residual-physics, leverages the generalization of the
ballistic equations to adapt to new target locations, while the DCNN is
used to account for unmodeled dynamics, e.g. momentums or frictions.

The use of this setup is justified by the results presented in [1],
which show significant advantages of predicting a residual w.r.t. a full
regression of the tossing velocity.

During the training phase, a certain number of tossing trials are
performed and the outcome is registered, this data is used to jointly

La tossing trial, in this context, is the execution of a single robot tossing trajectory that results
in the bullet entering the target bin or missing it.

23



24 Industrial Robotics Application: Tossingbot

train the grasping and tossing modules. Lastly, a testing phase evalu-
ates the performances of the trained modules in terms of success rate
of reaching the target bin.

The task of Tossingbot is clear, pick an arbitrary object and toss it
into a bin, in a self-supervised way. In this work we focused on the last
part of the task, learning to toss objects with a robotic manipulator,
and we evaluated the application of the Model-Based Reinforcement
Learning framework MC-PILCO. We considered the simplest object
to throw: a ball, which is one of the objects considered in [1], and the
results show very good performances.

The reason that drove this work is showing that this kind of task
can be learned in a much more efficient way, indeed [1] shows that
the self supervised learning approach works pretty good in practice,
but requiring thousands of training trials even in simulation to reach
convergence. This is mostly due to the fact that Tossingbot’s approach
relies on DNNs which are known to be typically data-inefficient.

Instead, in this work we show that by adapting MC-PILCO’s Model-
Based framework, described in section 1.2, we are able to teach the
task to the robot with a very limited amount of exploration trials. This
is very interesting for industrial robotics, since this results in a lowered
wear and occupation of the equipment during a preliminary phase.

The main idea is to take advantage of MC-PILCO’s Model-Based
Policy Seach algorithm to train a tossing policy, that is able to predict
the cartesian velocity vector that the robot needs to impose to the
bullet from a release position, in order to reach an arbitrary landing
position. The Model Learning step is not required to account for the
robot’s dynamics, but only for the bullet dynamics from the moment
it is released until the moment it reaches target altitude. This is
possible until the robot control does not introduce too much noise
during execution of the tossing trajectory.

The robotic manipulator chosen for the task is a Franka Emika (FE)
Panda Robot, which is a 7 DOF collaborative manipulator with only
revolute joints. The reasons of this choice are dual:

« a Panda robot is available for these experiments in the Department
of Information Engineering (DEI) Robotics laboratory;

o Franka Emika provides uniform support both for control of the
real robot and for simulations in Gazebo simulator [11], under the
Robot Operating System (ROS) framework [40].

This chapter will first describe in a precise way the task, then




25

v '
v '
v v
' '
' '
' '
\ \
' '
' '
/<\ . H
Oga-"\ 0 | dimag a
- mmmmssssscccseo- S S EE O B R WS :
1 1 1
' '

release

‘X
\@X target

1

'
'
I
’
'
.
.
’
’
’
’

L maxr

B
Figure 2.1: Scheme describing the task (top view)

section 2.1 will present the simulating environment that was prepared
for validation of the learning framework, section 2.2 will describe how
MC-PILCO was adapted to the considered task, finally section 2.3 will
introduce the work that we were able to implement and test in the
laboratory of DEL.

The task can be summarized by the schemes in fig. 2.1 and fig. 2.2,
the RGB triplet of axes in the left part of the figure is the reference
frame of the robot’s base, supposing that the target bins all lie at the
same altitude, namely z;, then the target domain can be described as:

cos (yaw,) - £
Xy = | sin(yaw,)-¢ (2.2)
<t

where ¢ € [ Liin, Lmaz] and yaw, € [—6,6]. This simplifies the mod-
elling, but we will show in section 2.2 that the algorithm can easily be
adapted to work on arbitrary target positions.

Similar to what the authors of [1] did, we constrained the release




26 Industrial Robotics Application: Tossingbot

Vtoss S
-
“ ha ™
__________ l\‘
Xrelease \
\
\
\
\
\
é |
\
\
\
‘Xtarget
1

Figure 2.2: Scheme describing the task (side view)

position to lie on the semi-circumference of radius L,,;,, aligned with
the target direction, namely:

COS (yawtarget) * Liin
Xyer = | sin (yawtarget> * Limin (2'3)

Zrelease

Furthermore, we fixed the orientation of the tossing velocity vector
Utoss tO be angled at a = % radiants upwards.

The parameters Lj,n, and Z,¢eqse are completely dependent on the
kinematic of the robotic manipulator [41], while L4, must be sensibly
calibrated such that positions X; can be reached. Lastly vs,ss cannot
be any velocity, robots manufacturers provide information on the limits
in both joints and cartesian space, in this case v4,ss must be at least
smaller than the maximum velocity in cartesian space indicated by the
manufacturer, but in general this limit also depends on the trajectory
that was designed 2.

2.1 Simulations in Gazebo

Franka Emika provides all the libraries for control of the manip-
ulator, as well as the the code for simulating the robot in Gazebo,
therefore it was not difficult to build from scratch a minimal simulating
environment, which can be seen in fig. 2.3, it consists of:

2We referred to Franka Emika’s parameters for the Panda robot: https://frankaemika.github.
io/docs/control_parameters.html



https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/control_parameters.html

2.1 Simulations in Gazebo 27

« Gazebo simulator and Robot Operating System (ROS);
« FE Panda Robot;

o A red ball, modeled to replicate weight and dimensions of a golf
ball®. The reference frame of the model is placed at the exact
geometric center of the sphere;

o A hollow green cylinder, of 10cm of diameter, with 0.5cm border,
of height 10cm that worked as the target bin for the tossing task.
It was custom built for this application;

o A taller green cylinder which is used to place the ball for the robot
to pick up;

o A table, where the Panda robot is «placed», just for aesthetics.

The robot interface was provided by Mowvelt! [42] and an effort
controller* provided by the ros_control framework [43], was used to
control the execution of the tossing trajectory.

During the exploration and test trials, the target cylinder is moved
arbitrarily in the target space in front of the robot (just described
in fig. 2.1), at ground level, since the goal of the task is to make the
bullet fall into the cylinder, we set the x,y coordinates of the target
position to be the geometrical center of the cylinder’s base, while the
z coordinate is set to be the altitude of the cylinder’s top face, in the
considered reference frame. In this simulation, we chose, for simplicity,
to place the robot’s base frame at a certain altitude w.r.t. the world
frame, namely the pose of the base frame of the Panda is obtained by
applying the following transformation matrix to the world frame:

(2.4)

as it can be clearly seen in fig. 2.3, it is just a translation over the 2
axis of the world frame.
Therefore, the position of the target X; expressed in the world frame
1s:
cos (yawy) - ¢
X = | sin(yaw,) - ¢
hcyl

(2.5)

Shttps://en.wikipedia.org/wiki/Golf_ball
Leffort joint_trajectory controller specifically



https://en.wikipedia.org/wiki/Golf_ball

28 Industrial Robotics Application: Tossingbot

Figure 2.3: Gazebo simulation

with A, = 0.1m being the height of the cylinder.

All the positions, if not specified, will be expressed in the world
reference frame of the simulation, for convenience of the programmer.
This can be done without fear of losing generality, for example, all
positions could be re-expressed in the robot reference frame if needed,
by just applying the needed transformation Tf.

In order to learn the bullet dynamics, the MB-RL framework requires
the simulation to provide the data of the trajectories performed by
the bullet during unconstrained motion from release until it reaches
the altitude of the target. The trajectories must be free of collisions,
therefore the hollow cylinder in fig. 2.3 cannot be used when collecting
data for model learning, because it is likely that the bullet might collide
with its edges. It will only be used when testing the tossing policy,
instead, during the exploration trials we used a lower cylinder just as
a placeholder.

The data of the bullet trajectories was collected using Gazebo’s
integrated odometry plugin®, which provides both the positions and
velocities in the desired reference frame.

The execution of a tossing trial® is composed of the following steps:

Sspecifically: gazebo _ros_p3d plugin https://github.com/ros-simulation/gazebo_ros_
pkgs/blob/kinetic-devel/gazebo_plugins/include/gazebo_plugins/gazebo_ros_p3d.h
6A short recording of the simulated experiment is available at: https://drive.google.com/



https://github.com/ros-simulation/gazebo_ros_pkgs/blob/kinetic-devel/gazebo_plugins/include/gazebo_plugins/gazebo_ros_p3d.h
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/kinetic-devel/gazebo_plugins/include/gazebo_plugins/gazebo_ros_p3d.h
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing

2.1 Simulations in Gazebo 29

e The ball is spawned over the pickup green cylinder;

e The target bin is spawned in front of the robot, in one of the
possible positions describe in fig. 2.1;

e The robot picks the ball from the pickup position such that the
origin of the ball reference frame is coincident with the origin of
the end-effector reference frame.

e The robot performs the tossing at the Cartesian velocity indi-
cated by the policy or computed random, this is explained in
section 2.1.1;

o The trajectory of the bullet from release until it reaches altitude
z¢ is recorded and forwarded to the model learning block.

It was chosen not to spawn the bullet already attached to the end-
effector to simulate the grasping errors that are inevitable in a real
scenario.

2.1.1 Control of Robot Tossing

The main goal of the simulation was to provide a benchmark envi-
ronment to extensively evaluate the performance of the Monte Carlo
gradient estimation (described in section 1.2). The first objective in
this task was to design a robot trajectory that is able to bring the
end-effector to the desired release position with desired cartesian ve-
locity. The trajectory computation is required to be computationally
efficient, in order to be able to perform many trials in few time, and to
be precise enough that the release velocity is not too much uncertain.

The approach chosen for the trajectory generation is pretty straight-
forward, it is required to reach a release positioon X,. with the
end-effector of the manipulator, with velocity:

cos (yaw,) - cos ()
Vtoss = |Vtoss| | sin (yaw,) - cos («) (2.6)
sin («)

which is the velocity vector described at the beginning of the chapter.
This requirement can be easily translated from cartesian space into

file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing



https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing
https://drive.google.com/file/d/1xNmkhDtpo_v9ZzN3xaZgijfw7tfrrhJe/view?usp=sharing

30 Industrial Robotics Application: Tossingbot

Figure 2.4: The end-effector reference frame at the robot tossing pose

joint space by considering:

. Rrel Xrel .

. T
J(Qrel)Qrel: [UtT(;ss 00 0]

namely, T, is the output pose of the forward kinematics function [41]
of the manipulator, targeting the end-effector reference frame, q,.; is the
joint configuration that achieves said end-effector pose, while J(g,¢;)
is the Jacobian matrix [41] of the manipulator at joint configuration
qrel, reffered to the reference frame of the end-effector. Clearly, X,.; is
a position in cartesian space, R,.; is, instead, a rotation matrix that
expresses the orientation of the end-effector frame, it is very easy to
compute, looking at fig. 2.4.

R, is the rotation matrix describing the rotation that brings the
x axis of the end-effector frame to be aligned with the cartesian ve-
locity vector wvsoss, it can be seen clearly in fig. 2.5 that the z axis is
perpendicular to the segment that connects the touching points of the
gripper’s pliers. Therefore, one can compute:

Qrel = fk_l(Trel)

| . (2.8)
Qrel = JT(Qrel) [vtjo’ss 0 0 O]

where J T(qrd) is the pseudoinverse of the Jacobian matrix of the ma-
nipulator at joint configuration g,.;, and f; is the inverse kinematics
function of the robot.

If we are able to bring the robot, with the bullet grasped in the




2.1 Simulations in Gazebo 31

Figure 2.5: Closeup of the end-effector reference frame

end-effector, at joints configuration ¢,.; at joints velocities ¢,.; and
we release the ball at the right moment, we can impose the cartesian
velocity vioss to it, therefore giving rise to an unconstrained motion of
initial velocity vspss-

In general, the joints configuration ¢, is not unique, therefore
it was chosen specifically to reduce the complexity of the motion,
i.e. to reduce the number of joints moving. Then, the position X,
is a consequence of the following choices, but that is fine since the
parameters Ly, and z,¢ of eq. (2.3) are arbitrary.

In practice, considering yaw, = 0 without loss of generality, it was
chosen ¢,..; such that:

e The axis of joints 2, 4 and 6 are parallel to each other and
perpendicular to the axis of the joint 1, these are the only joints
that contribute to the motion;

e The robot is in elbow-up configuration;

o the last joints are positioned such that the end-effector reference
frame is at the desired orientation R,.;;

o Joints 3 and 5 are at their zero position.

At such configuration, if we compute the projection on the ground
plane, of the x axis of the end-effector frame, we find that it is always




32 Industrial Robotics Application: Tossingbot

Figure 2.6: The end-effector and joint 2 reference frames at the robot tossing pose

parallel to the x axis of the joint 2 reference frame, it can be seen in
fig. 2.6. Therefore by adjusting the first joint, we can move the release
position X,.; on the semi-circumference described in fig. 2.1, and the
tossing velocity vector is then:

cos (%’el,l) - COS (a)
Vtoss = HvtossH sin (%el,l) -8in (a) (2'9)
sin ()
where ¢, 1 = yaw, is the value of the first joint at release pose, and it
fully determines the parameter yaw,.
In the simulation we performed the following approximation:

drel = JT (Qrel)vtoss = [%‘el,l drel,2 qrel,3 dreld Yrel5 Grel,6 %’el,?]
N . . T
Arel = [0 00 drel 4 0 drel 6 0]

QTGZ ~ erel
(2.10)

while it is true that e 1,qrer,3, Gret,5,dret,7 ~ 0, Grer,2 from the compu-
tation is not close to zero, but it is a small enough value that it can
be neglected with reasonable effects on the tossing error. The next
chapter will show that this trajectory generation is precise enough to
be used as described in section 2.2.

In the end, it is necessary to just move 2 joints, such that they reach
their target values, with target velocity. This goal can be re-expressed
in the following way: joint & must move from value gy, to g.¢; j in time




2.1 Simulations in Gazebo 33

0.0
2 =
-0.5 1 S 107
-1.0 - 1 5 1
~1.51 0 0 T~
______________ P
—2.09 . rel q_4 -=- reldq_4 —5
5] T a4 1 — das —— ddq_4
' max q_4 max dq_4 ~10 max ddq_4
-3.04 — ming_ 4 —-24 —— mindq_4 —— min ddqg_4
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.
20 A
2 .
3 -
10 A
1 .
2 N e AN ) U
-=-- relq_6 —14 —-- reldq_6
1 — q._6 — dq_6 -101 — ddq_6
max q_6 -2 max dq_6 max ddqg_6
ol — min g_6 —— min dq_6 —20d — min ddq_6

Figure 2.7: The reference trajectories of joints 4 and 6 during a toss with |viess| =
1m/s. [positions left, velocities middle, accelerations right]

Tr such that the velocity of the same joint at time 75 is the desired
velocity qrep -

Let’s define:
Aqy = Greik — Tk (2.11)
and consider the function s(7) defined as:
a a a
s(t) = — 37'4+ 27'2+ 72
A7y 3TE 2Tp (2.12)
. a 3 a o a :
(1) === 7+ 57"+ —7
T T TF

where 75 = %@q and a = Gy

Then we have s(7r) + qr, = @rer e and $(7F) = ¢pe1; Which is our
goal. In fig. 2.7 we show the reference trajectories that are computed
with eq. (2.12) and forwarded to the robot controller to execute a
tossing trial of unitary cartesian velocity, the vertical lines indicate the
instant 7z, which is the time that the joints reach the target position
and velocity, that is the moment when the bullet needs to be released
from the end-effector. The final part of the trajectories is composed of
a damping period which brings velocities to zero.

By no means this is the most precise design possible, but it is very
efficient, requiring just to compute and invert a single Jacobian matrix




34 Industrial Robotics Application: Tossingbot

and to compute 2 joint trajectories with eq. (2.12), which is a completely
known polynomial function. Moreover this computation is completely
immune to the ever-persisting problem of Jacobian singularities, since
the configuration ¢,; is for sure non-singular. Other approaches require
to compute and invert the Jacobian matrices over all the trajectory
(section 2.3).

The only problems that might be encountered with this approach
are that the trajectories may exceed the joints limits in terms of
acceleration, and that the acceleration at final time is not zero. In
practice, these are not pressing concerns, because we managed to tune
the the acceleration times and Ag such that these limits are not reached
and what happens after 77 is of no concern since it does not affect the
bullet trajectory.

It must be noted that this approach typically causes heavy oscilla-
tions to the 4th joint when stopping and would likely cause errors or
damage to a real manipulator. Indeed when working with the Panda
robot in DEI’s laboratory we relied to a safer approach.

Finally, we tested the precision of our tossing system, by performing
a series of 190 tossing trials in the range of Cartesian velocities that
are of interest for this application. In fig. 2.8 we compare the Cartesian
velocities that were given in input to the system that was just described,
with the actual velocities of the bullet measured with the odometry.
The resulting curve is not too far from the identity function that is
plotted for convenience, indeed it will be shown in the next chapter
that we were able to account for this noise in the test performed in
this simulation.

2.1.2 Bullet Release

Handling the release of the bullet was the most challenging aspect
of the work related to the simulation and the same is true for the
experiments performed in the laboratory, for the following reasons:

e The gripper provided by Franka Emika is already simulated in
Gazebo and all code for its control is provided, but the control
is not real time and it is not possible to synchronize the joints
trajectory with the gripper aperture/closure. The same is true for
the physical gripper.

e Modeling friction in Gazebo is not automatic, particularly for user-
defined models, and all frictions must be modeled when defining




2.1 Simulations in Gazebo 35

3

1.6 ‘u‘

1.4 A

1.2 1
7
8,
,/ -
£1.01
rd
/’,j:
0.8 7 .
//
0.6 P

0.4 1 /
[ o

0.4 0.6 0.8 1.0 1.2 1.4 1.6
vr

Figure 2.8: The comparison between the required tossing velocity (v,) and the
actually measured velocity (v,,) at release of the ball, captured by the odometry.
Please note that the Panda robot’s max nominal velocity in Cartesian space is
1.7m/s.

the geometry of the objects. If these parameters are not set in the
ball’s model, it is not possible to perform grasping in simulation.

Therefore to actually utilize Franka Emika’s gripper to grasp the
bullet one needs to model the friction effects in order not to lose the
bullet before the actual release point. Even if these parameters are
set correctly, and the robot is able to grasp the bullet with its gripper,
one cannot program the release of the same at the correct instant of
time, because of the lack of real time control and/or synchronization.

We decided to avoid this issue all together and postpone it to when
it was time to perform the experiments with the physical manipulator,
instead in the simulations we relied to a Gazebo plugin provided by
Pal Robotics, named gazebo_ros_link_attacher7. When needed to
pick the object, the plugin is used to attach the reference frame of the
ball’s Gazebo model to the last reference frame of the manipulator’s
model, and detach the frames to release it.

The problem of synchronization of bullet release with robot trajec-
tory is not solved by the link attacher plugin, which requires to be
called at the correct time. The effort controller we used to forward the
trajectories to the robot allows the user to define a callback function
which provides the updated state of the robot at a certain frequency.

Tavailable at https://github.com/pal-robotics/gazebo_ros_link_attacher



https://github.com/pal-robotics/gazebo_ros_link_attacher

36 Industrial Robotics Application: Tossingbot

Unfortunately, we discovered that said frequency is far too low for our
aims, therefore we relied to a different approach.

Fortunately, the odometry plugin that was exploited is able to work
at high sampling rates, and in the simulations it was set to the highest
value available: 1K Hz. A ros node was specifically implemented to
continuously read the bullet odometry and perform the detachment
of the ball from the robot end effector when the measured position of
the ball is close to the nominal release position. In practice we had to
anticipate the release of a small distance to account for delays in the
detachment, the final results are good and we measured the distance
of the actual release point from the nominal point being in average
well under 1em.

In fig. 2.9 and fig. 2.10 it is possible to observe some plots related
to an example throw performed with the simulator. In fig. 2.9 the left
image shows a trajectory collected in an example toss in the simulation,
the red dashed curve is the raw data, while the blue curve is the same
data resampled at constant frequency with linear interpolation, in the
same plot it is possible to see the release point as the small green
triangle. The right image of fig. 2.9 shows the velocity norm along the
trajectory in blue, which has the typical shape of accelerated motion,
while the target speed given in input to the tossing system is the orange
horizontal line. This last plot shows that the system, in this particular
example, was overshooting, this is a known problem and section 2.2.1.1
will explain how it was tackled.

The plots in fig. 2.10 are referred to the trajectory shown in fig. 2.9,
the left one showing the plots of the velocities and the right one
presenting the boxplots of the velocity deltas, box divided in the x,vy, z
components. The most relevant information that can be inferred from
this plots is the statistics captured by the boxplot in fig. 2.10 which
reveals that the data collected by the systems is very simple, because
the deltas in the 3 components are clearly almost constant, with Av,
being negative as expected.

2.2 Learning a Robot Tossing Policy with MC-
PILCO

The considered task requires the robot to throw a bullet in arbitrary
target location, the initial position of the system (i.e. release point
of the bullet) and the direction of the initial velocity are constrained
by the target. We can think of the tossing system described in this




2.2 Learning a Robot Tossing Policy with MC-PILCO 37

- 5.0
= i NOiSy —— simulator
— resampled + filt 4.5 4 target
1.2 4.0
1.0
0.8 >
0.6 3.01
0.4
0.2 237
0.0 2.0
-0.35
~0.40 131
~0.45 N
-0.50
07 08 09 10 L1 1.0 ~__

0 5 10 15 20 25 30

Figure 2.9: [a,b], (a): 3D plot of a trajectory performed in a simulated toss, (b): the
respective plot of the velocity norm along the trajectory

19 0.00 4 [ —_
O -
—0.05 A
—1-
—0.10 A
—2
—3 _ 4
v, 0.15
—4 4 vy
v, —0.20 A
0 5 10 15 20 25 X y z

Figure 2.10: [a,b] referring to fig. 2.9, (a): velocities of the z,y,z components, (b):
the respective boxplot of the velocity deltas of the trajectory




38 Industrial Robotics Application: Tossingbot

[;Bl,...,JJT]

Figure 2.11: The tossing system control scheme

chapter as a system which takes a single discrete control action, i.e. a
scalar representing the initial velocity norm of the bullet, and returns
a single output which is the trajectory described by the bullet from
the initial position until it reaches target altitude, check out fig. 2.11
to have a idea.

Therefore the policy does not need to learn a mapping from any
state to the control action, it needs to learn a function that takes in
input the target position and returns the control action needed to reach
the goal state, i.e. the norm of the release velocity to forward to the
tossing system.

The model used for deriving a tossing policy does not consider the
robot’s dynamics for simplicity, it only assumes that the robot tossing
determines the initial bullet velocity at given release position, possibly
with some noise.

In section 2.2.1 we describe a variation of the speed-integration model
to predict the landing position of a bullet given the initial velocity
and release point, in section 2.2.2 we present a cost function that
depends on the distance of the landing position from the target, finally
in section 2.2.3 we portray the designed tossing policy based on the
general purpose policy described in section 1.2.2.1.

2.2.1 Model definition

The model considers only the evolution of the bullet from the release
position, until reaching target level, since the cost function by definition
takes as input the system’s state and in this case the state must take
into account the target position in some way. The simplest way to
do so is by concatenating the bullet state at time 7 with the target
position it is required to reach in the current trial.




2.2 Learning a Robot Tossing Policy with MC-PILCO 39

The state is then described by the vector:

Pr .
rr=|pr | €R

v (2.13)
pTapTaXt € R?)

where p; and p; are respectively the position and the velocity in the
world reference frame of the ball at time 7, while X; is the current
target location, which lies in the domain described at the beginning of
the chapter in eq. (2.2).

The model that was exploited is the speed-integration model de-
scribed in section 1.2.1.1 with the addition of a stop-integration con-
dition, which is used to model the ball reaching the target altitude,
namely the condition can be expressed in the following way:

(2.14)

1 if p; is higher than current z;
fsi (xr) = .
0 otherwise

The eq. (1.24) that describes the states transition need to be ad-
justed:

Ty .
Pr+1 =DPr + fsi(xT) (TSpT + ;APT)

p7'+1 = pT + APT

(2.15)

The state vector has only 6 elements that describe the evolution
of the bullet, the last 3 elements contain constant terms that remain
the same for the whole trajectory, the model only requires to predict
the velocity changes, therefore 3 GPs must be trained, one for each
3D dimension. As Kernel function we relied to the classical RBF
(eq. (1.15)) during the simulations, this choice will be explained once the
trajectories will be presented and analyzed. In this kind of application
the user might also define a mean function for the GPs, and supposing
that the gravity acceleration in parallel to the z axis and opposite in
direction, the mean function might be:

m(z-)=1| 0 (2.16)

_gTs
where ¢ is the gravity acceleration and d; is the sampling time. In the
final implementation for the simulative trials we just used zero-mean




40 Industrial Robotics Application: Tossingbot

GPs with RBF kernel, due to the trajectory data being extremely
simple.

In this particular case, the control action is only applied at the
initial state. To reduce the problem’s complexity, the manipulator’s
action is approximated as the application of the initial velocity of the
bullet, with multiplicative noise ). The distribution of the initial state
T 1s:

Xrel
xTo = 7T9(Xt)(’g/}+1) (2.17)
Xt

which is completely dependent on X, since the policy is supposed to
learn to handle the task for arbitrary target positions. In particular,
X¢ can be sampled uniformly from its domain (eq. (2.2)):

cos (yaw,) - £
Xi = |sin(yaw,) - £ |, (vawy) ~ U([=0,0]),¢ ~ U([Lmin, Lmax])
2t
(2.18)
where U([a,b]) is a uniform random variable defined on the interval
[a,b], with a < b.

Again, we should redefine the states distribution from eq. (1.20),
since we incorporated the control action into the initial state distri-
bution, we «lose» the dependency of the state x;,1 from the policy
action my(xy)

i) = [ oo, D)plan)dz, (2.19)

and what happens in the actual implementation is that the input of
the GPs is just z; and not the extended vector z;. Moreover, not all
the elements of the state vector xj, are useful to predict the following
state, obviously the target X; does not influence the bullet trajectory,
we made the further assumption that the ball’s dynamics are not
dependent on the current position, in this way the inputs for the GPs
prediction can be further reduced to the vector py, i.e. the velocity
at time k£ of the bullet. Reducing the dimension of the input vectors
for the GPs is useful to reduce the computational complexity in the
prediction of mean and variance in eq. (1.17).

2.2.1.1 Modeling of Tossing noise

From the data collected in the aforementioned experiment (fig. 2.8),
it was possible to decently estimate a probability density function of




2.2 Learning a Robot Tossing Policy with MC-PILCO 41

the system’s noise, in the experiments we found that modeling the
noised tossing as:
U = vy (141)) (2.20)

works quite well, it expresses that the system is effected by an additive
noise that is a percentage of the input. We estimated this noise by
computing va;vt for each tossing trial in (fig. 2.8) and presented the
resulting density in fig. 2.12. We ignored all the bins related to negative
values in fig. 2.12, so ignored the undershooting of the system and only
considered the overshooting, so we fit a Beta distribution over the bins
corresponding to positive values. The Beta PDF is:

A )
Beta(a, 8) = B(a,B) (2.21)
B(a, ) = T
) F(a+p)

where T'(-) is the Gamma function: I'(z) = {7 t*"te~!dt.

The noise is defined as the random variable: ¢ ~ Beta(a, 3)o, with
a=1, =3 and ¢ = 0.1, in this way ) is constrained in the interval
[0,0] and its distribution is plotted in red in fig. 2.12. In fig. 2.13 we
compare the samples from fig. 2.8 with the newly defined noise, the red
area is plotted between the line of the identity function and the line of
the function vy, = v¢(1+ o) and represents where the noised samples
can fall. For example, consider the vertical line plotted in fig. 2.13
at vy = x, then v (141) € [vg,v4(1 +0)], so between the red and black
points that are positioned at the intersections of the vertical lines with
the edges of the red area. In the next chapter results will show this
approximation working quite well. A more precise approach could be
to estimate the noise in fig. 2.8 by fitting a curve on the samples.




42 Industrial Robotics Application: Tossingbot

mmmm beta pdf
30 A I measured noise

PDF

-0.15 -0.10 -0.05 0.00 0.05 0.10
(Vm = volve

Figure 2.12: The estimated noise of the tossing velocity as percentage of the measured
released velocity

—— sample velocity
1.89 1 modeled noise

1.6 1
1.4 4

1.2 4

Vm

1.0 1

0.8 -

e )
/’/«/
0.6 1 s’
7,
0.4 1 /

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Vr

Figure 2.13: Comparing the samples of velocities with the modeled noise

We found that this overall model works well in the experiments that
were performed, to a grade that depends from the sampling frequency
of the trajectories. As a matter of fact, eq. (2.15) suffers from drifting,
because the predicted position at time T is likely to have crossed
the altitude z; and might not represent correctly the outcome of the
tossing. Higher sampling frequencies result in smaller velocity changes,
resulting in smaller drifting.




2.2 Learning a Robot Tossing Policy with MC-PILCO 43

2.2.2 Cost Function

The definition of the cost, or equivalently reward, function is maybe
the most important part in any RL application, since this cost univo-
cally defines the task’s objectives in terms that the optimization can
«understandy. In particular, the cost function must reflect how the
policy performance in the task is evaluated, and in our case the most
discriminant feature is where the actual landing position is w.r.t. the
target bin.

In our case it is fundamental that the cost function must penalize
policies that throw the ball far from the target position. Then let us
introduce the saturated distance from target state:

1
V0 (2.22)
Ye=10 7. 0
0 00
with /. appropriately set considering the possible distances.
The cost function to evaluate the policy is then:
J(0) = Blc(wr)] (2.23)

so it is the expected saturated distance of the position at time 7" from
target state, over the horizontal plane.

We can also provide a hint to the gradient of .J(6), which is just the
last term of the external summation in eq. (1.42):

1 f &y oc(al") ox”
Mmzlzzl mz 00
M d ) _— ( ) (2.24)

It is clear that the gradient describes the dependencies of the cost
c(w(Tm)) from the initial state xgm), the only concerning aspect is that
with high sampling rates, the dependencies are very deep which re-
sults in the gradient being computed as a summation of many partial
derivatives (standard derivation rules of Calculus).

This might create issues in the optimization if the result of this sum
tends to be too small or too big, this typically leads to the problem

of vanishing/exploding gradient, which is a known problem of many




44 Industrial Robotics Application: Tossingbot

gradient based optimizations.

In practice we did not find this problem pressing, the reason might
be that the model of section 2.2.1 is particularly expressive and the de-
pendencies are clear, moreover the use of particles is certainly providing
an intrinsic regularization.

2.2.3 Tossing Policy

It is clear from eq. (2.17) that it required that the policy must be
defined in the following way:

7o Xt — Vtoss (2.25)

namely, mp must take in input a target position and return the velocity
vector that the robot should apply to the bullet. From eq. (2.6) we
know that the direction of the velocity vector is constrained by X;
and the parameter «, then the only degree of freedom to decide is the
intensity of the tossing, i.e. the norm |vgpss|. Therefore we designed a
policy based on eq. (1.28) that does exactly that:

N, cos (yaw, ) - cos («)

mo(Xp, ) = uﬂ;ax <tanh (Z il e“iXt%w> + 1) sin (yawy) - cos (@)
(

— )
i=1 AT sin ()

(2.26)

where the general purpose policy from eq. (1.28) was adapted to predict
only positive values, in this case is used to learn the norm of the vector,
i.e. |lvpss|- Note that, w.r.t. eq. (1.28), w; € R and upqy € R is set
according to the manipulator’s Cartesian limits.

2.2.3.1 Centers initialization

It is known that the performance of SGD-based methods are heavily
influenced by the initialization of the optimization parameters [22],
meaningful initialization is important to have a good initial exploration
during policy update step. The most influential parameters of the
policy (eq. (2.26)) are the centers a;, which in this particular application
belong to the 3D real vector space. A good principle for centers
initialization is to evenly spread them in the space where the policy
inputs lie, but also other principles could be successful and could be
investigated. Therefore 3 different centers initialization were considered,
whose results will be discussed in the next chapter, the first kind, that




2.3 Laboratory Experiments 45

will be addressed as Sparse initialization:

Cy - {Jmax
a;=|2(cy—35)-d
' (¢y=3) - dmaz (2.27)
2t
ey ¢y ~N(0,1)
A second initialization, that will be called Line initialization:
dmaz - €+ Lrim'n
a =1 do(c—1L
' maz (6= 3) (2.28)
<t
c~N(0,1)
Finally, the last initialization considered, referred as Focus:
Lynin + dnéax +Cy
2 (2.29)

e ¢y ~ N(0,0)

with sigma being a very low value, 0 = 0.05 in the experiments.

2.3 Laboratory Experiments

This section will present the experiments that were performed in
DEI’s laboratory, it was not possible to implement the whole task, since
Franka Emika’s gripper lacks the real time control, nor it is possible
to synchronize the gripper aperture with the joints trajectory.

Nonetheless, it was possible to collect some data for preliminary
model learning experiments and to test a robot tossing trajectory.

We used a red rubber ball of 6e¢m of diameter as bullet, intel

RealSense stereo cameras to record its trajectories and, obviously, the
Panda Robot.

2.3.1 Collecting data for Model Learning

The model presented in section 2.2 requires only to collect uncon-
strained motion of the bullet, therefore we prepared a simple setup to
collect some random tossing of the bullet. The experiment is composed

of:
e The bullet;




46 Industrial Robotics Application: Tossingbot

o At least one stereo camera;
« One apriltag [44];
o Two human operators;
and it is performed in the following way®:

e The camera is placed in front of a scene, possibly of uniform color,
such that the ball can be distinguished from the background in
the images;

o The apriltag is placed on the ground, face up, such that it can be
seen clearly from the camera and the z axis of its reference frame
is vertical.

o The two operators get into position to the edges of the field of
view (FOV) of the camera;

o The operators start tossing the ball to each other while the camera
is recording.

To reduce the motion blur of the moving bullet, it was necessary to set
the exposure time to its minimum value, this allowed, in the collected
images, to reduce deformations of the bullet shape to minimum.

This setup clearly does not require that the robot is used, and this
allowed to test the performance of the Model learning without even
needing to operate the manipulator. This serves also as an example
of how MB techniques might be very appealing in industrial robotics
applications, in this case the tossing policy can be trained using just
data collected very efficiently by the operators, resulting in a minimal
preliminary wear of the robotic manipulator.

To extract the 3D positions of the bullet, in the camera frame,
during the trials performed by the operators the following steps were
performed:

e The video is divided in smaller sequences of RGB images, each
sequence showing a single throw, for each of these images the
corresponding aligned depth map and time step are saved. The
depth map is a matrix of the same dimensions of the image and
aligned with the image, meaning that the RGB image and the
depth map are expressed in the same reference frame.

8a recording of the experiment is available here https://drive.google.com/file/d/1_

MgQnvLw600RCRMA2dpCD7dVVzd__2Cf/view?usp=sharing



https://drive.google.com/file/d/1_MgQnvLw600RCRMA2dpCD7dVVzd__2Cf/view?usp=sharing
https://drive.google.com/file/d/1_MgQnvLw600RCRMA2dpCD7dVVzd__2Cf/view?usp=sharing

2.3 Laboratory Experiments 47

o The RGB images must be pre processed in order to extract the
ball from the background, therefore we implemented a simple
procedure, exploiting the OpenCV library [45], to build a binary
mask of the bullet. This procedure is composed of:

— Estimate the RGB color vector of the ball, this was done
simply by sampling the color of a group of pixels that represent
the ball’s surface. The location of the ball surface on the image
plane is picked by the user with a click on the right location
and the software returns the average color of a neighborhood
of pixels around the clicked pixel;

— All the pixels in the image that are further that a certain
distance in the color space from the estimated bullet color
are set to zero, otherwise they are set to the maximum value;

— Gaussian filtering is applied to the binary image obtained
from the previous step to eliminate most of the outlier pixels,
this works until the outliers are small groups of pixels not
connected to the bullet pixels;

— All the pixels in the gray-scale image obtained from the
previous step are set to the maximum value if their value is
different from zero.

The resulting binary image, representing a binary mask, in the best
performing scenario contains white pixels in the correspondence
of the bullet location in the image frame, while all other pixels are
black, but typically the binary mask also contains other objects.
For example in presence of particular lighting, the operators’ skin
can also be selected by the mask, depending on how the parameters
are tuned;

o Next, for each binary image from the previous step, the software
estimates the position of the ball in the image plane using the
blob tracking of the VISP library [46], it is just necessary to
locate the blob corresponding to the ball in the first image of
the sequence. This can be done manually by the user by clicking
in the blob’s location, or alternatively it could be automated if
the image contains just the mask of the bullet. In practice, most
of the binary images contain several other objects, but in most
cases they are not connected to the ball’s blob, therefore the blob
of interest can be tracked until it remains in the FOV of the
camera or it gets too close to other blobs. This step is the most




48

Industrial Robotics Application: Tossingbot

susceptible to the sampling frequency of the camera, if the blobs
in subsequent samples are too far apart, the tracking fails. The
process was employed on images captured at 60 Hz and it worked
successfully.

The 3D positions of the ball in each image can be retrieved, ig-
noring lens distortions, by considering the center of mass (COM)
of the blob in the image plane and the depth value in the cor-
responding depth map with this simple formula of the pinhole
camera model [47]:

Pi = dl' V=% (2.30)

where d; is the depth value, (u,v) are the coordinates of the
blob’s COM in the image reference frame and u., v, ay, oy are
the camera’s intrinsic parameters. To robustly estimate the 3D
position, for each blob position, d; is computed by averaging the
values of depth in certain neighborhood of the estimated position
in the 2D frame of the depth map.

This procedure works good up to a certain extend, provided that

the ball is in the camera’s depth range, but it typically outputs some
outlier points, therefore in order not to loose too much data, it was

necessary to implement an outlier rejection technique. The two most

common types of outliers are:

e Points whose depth value is too little w.r.t. the real known scene,

the depth map registers these points being very close to the sensor,
in the order of tens of centimeters, this is impossible since in the
experiments, both operators were at least further than 1 meter
from the camera. To reject these points, the software discards
points whose z coordinate in the camera frame is lower than a
certain user-defined threshold;

Points that lie clearly in a wrong spot due to some noise in the
depth map, these are typically far from the other samples in an
horizontal direction. To counter these effects we implemented a
rejection method that fits a plane to the trajectory points with
the RANSAC Algorithm [48] and rejects points that are further
than a certain distance threshold from the plane. This approach
works good in practice since the unconstrained motion results in




2.3 Laboratory Experiments 49

a trajectory in the shape of a parabola, which lies on a plane in
space.

The methods are, in gerenal, applied in the order that they were just
described.

One example of outliers of the first kind is shown in fig. 2.14, while
an example of outliers of the second type can be seen in fig. 2.17, where
outliers in red have been removed from the trajectories.

Once the outliers are removed from the trajectory they leave «holes»,
then the choices are to return in output the smaller trajectories that
are created, or to «fill the holes» in some way. The sampling frequency
of the camera is known, and it was verified to be very consistent, but
most MB algorithm perform re-sampling in any case to obtain samples
with constant sampling times, therefore also in this case it was decided
to re-sample each trajectory using the the inliers and interpolating
each dimension using time as the independent variable. This has the
effect of recovering the points that were lost as outliers.

The last necessary step is to express the trajectories in a global
reference frame, such that its z axis is perpendicular to the ground.
This is necessary since it is expected to find dynamics effects in the z
axis elements, such as the gravity pull and frictions, while the x and y
elements should not present such effects. With these considerations in
mind, a Model obtained by trajectory data expressed in this reference
frame can be directly used in the robot’s reference frame, which also
has z axis perpendicular to the ground.

Therefore we used the apriltag placed on the ground to determine a
global reference frame, using apriltag’s ROS library? it is possible to
estimate from an image the transformation from the reference frame
of the camera to the apriltag’s frame, which will be called ground
reference frame. To robustly estimate this transformation it was
necessary to estimate an average transformation from a sequence of
images, we estimated translation and rotation in terms of a 3D vector
and quaternion from the images of a portion of a video and computed
an average of both. The final transformation is obtained as:

N N
R(I{,Z'_l %’) N Qe Vi (2.31)
0 0 0 1

TS =

where ¢; and v; are respectively, the translation vector and quaternion
of the transformation measured in the i-th image, while R(q) expresses

9http://wiki.ros.org/apriltag_ros



http://wiki.ros.org/apriltag_ros

50 Industrial Robotics Application: Tossingbot

the rotation matrix computed from the quaternion q.

Then, all trajectories expressed in the camera reference frame can
be brought in the ground reference frame by applying 77.

The velocities along the trajectory can then be computed by means
of acausal numerical differentiation of the positions, specifically, we
applied the central difference approximation, namely, the velocity along
one direction at time 7 is approximated with p; = (pr41 —pr—1)Fs/2,
where Fj is the camera sampling frequency.

In fig. 2.15 and fig. 2.18 it is possible to view the velocity plots
corresponding respectively to the trajectories in fig. 2.14 and fig. 2.17
in the two frames. In each velocity plots it is possible to see that one
dimension is clearly accelerated, for both examples it is possible to say
that the dimension y is clearly the most accelerated when considering
trajectories in the camera reference frame, this can be explained by
the fact that the y axis of the camera frame is almost vertical.

Instead, for the trajectories expressed in the ground reference frame
it clear that the z direction is the accelerated one, which is the expected
outcome.

In fig. 2.16 and fig. 2.19 it is possible to observe the boxplots of
the velocity deltas of, respectively, the trajectories in fig. 2.14 and
fig. 2.17, expressed in both reference frames. These statistical plots
show that trajectories expressed in the camera frame have deltas of
x and z elements close to zero in average and with high variance and
deltas of the y element higher than zero in average and with smaller
variance.

By contrast those plots expressed in the ground frame show that x
and y deltas are, in average, close to zero with high variance while the
deltas of the z component have an average negative value with smaller
variance.

These last observations are very important, since the velocity deltas
are the targets of the GPs in the model presented in section 2.2.1, and
this indicates that the data that will be forwarded to the model are
coherent with what was seen in the simulations (figs. 2.9 and 2.10).

2.3.2 Control of Robot Tossing

The trajectory generation for robot tossing presented in section 2.1.1
is not practically applicable to a real Panda robot, because of the issues
mentioned in the same section, therefore it was necessary to define a
different approach.

The critical aspect of trajectory generation for a manipulator is




2.3 Laboratory Experiments 51

3d points
4~ 3d points (inliers)
—8— 3d points resamp

z 06 -1.0

Figure 2.14: Example of a trajectory collected during the laboratory experiments,
the red points are outliers rejected because of being too close to the camera plane.
This trajectory is expressed in the camera frame.

2 Vi
14 — Yy
1 A Vz
0_
Vx 0 -
— V|
—1- y
vy -1
-2 =2
-3 /\/\/\/\/\_/ —34 Mv\_\/\/\_/
0 5 10 15 20 0 5 10 15 20

Figure 2.15: [a,b] Comparing velocities of the trajectory in fig. 2.14, (a): w.r.t.
camera reference frame, (b): w.r.t. ground reference frame.

— 0.75 A

1.0 A
0.50 A
0.5 A 0.25 A
= 0.00-

0.0 A
-0.25 1
—0.5 - —0.50 1
1 -0.75 4

X y z X y z

Figure 2.16: [a,b] Comparing velocity deltas of the trajectory in fig. 2.14, (a): w.r.t.
camera reference frame, (b): w.r.t. ground reference frame.




52 Industrial Robotics Application: Tossingbot

3d points
4~ 3d points (inliers)
—8— 3d points resamp

-0.05
0.00
0.05

y 0.10
0.15
0.20
0.25

—1.2—1.0—0.8_0.6_0 4
X

Figure 2.17: Example of a second trajectory collected during the laboratory experi-
ments, the red points are outliers rejected because of being too far from the plane
fitted with RANSAC. This trajectory is expressed in the camera frame.

0 5 10 15 20 25 0 5 10 15 20 25

Figure 2.18: [a,b] Comparing velocities of the trajectory in fig. 2.17, (a): w.r.t.
camera reference frame, (b): w.r.t. ground reference frame.

1.5 0.751
0.50 A

1.0 A
0.25 A

0.5 1
== 0007

0.0 1
-0.25 4
—0.5 A1 —0.50 -
—1.0 A —0.75 |

X y z X y z

Figure 2.19: [a,b] Comparing velocity deltas of the trajectory in fig. 2.17, (a): w.r.t.
camera reference frame, (b): w.r.t. ground reference frame.




2.3 Laboratory Experiments 53

to handle acceleration and deceleration, it is required to generate a
trajectory that has starting, as well as stopping, zero acceleration and
velocity.

The requirements for this trajectory are the same of section 2.1.1,
the end-effector needs to reach a release point with velocity vector
Utoss, as explained in the first pages of this chapter.

Contrary to what has been done in section 2.1.1, the tossing trajec-
tory in this case is generated in Cartesian space, consider:

. " COS ((yawtg-cos ((oz))
X(7)=Xo+p(7) | sin(yaw,) - cos («

sin () (2.32)
p(T)eR

X(7) is the Cartesian trajectory point at time 7, and the trajectory
lies on a line that is parallel to the direction of a vyyss aligned of yaw,
radiants w.r.t. the z axis and aligned « radiants upwards w.r.t. the
horizontal plane. Once the parameters yaw, and « are defined, the
the trajectory X (7) is entirely dependent on p(7), which can be used
to regulate the necessary properties, namely p(m) = p(79) = p(79) =
0, ]j(Tl) = HvtossH 7X(7_1) = X¢ and p(TQ) = ﬁ(TQ) = 0, with 79 being
starting time, 7 being release time and 7 stopping time.

Let us define A,,, and .J,,, being respectively, the maximum Cartesian

acceleration and jerk, then 77 = é—m is the time required to reach

maximum acceleration with jerk .J,, and Ty = quflisu —T7 is the time
required to reach velocity |viss| from the moment acceleration A,
is reached. Then, the trajectory jerk can be defined as in fig. 2.20
and acceleration a, velocity v and position p can be obtained by
integrating the underlying plot. The trajectory is defined such that
X(2T1 —I—Tg) = X, and p(QTl —|—T2> = HUtOSSH, in fig. 2.20 the black
vertical line is the instant 7 = T} when acceleration A,, is reached,
while ther red vertical line is 7 = 277 + T, when velocity |vigss| is
reached.
The Cartesian starting point is defined as:

cos (yaw, ) - cos ()
Xo = X, —p(2T1 +T3) | sin(yaw,) - cos (a) (2.33)
sin («)




54 Industrial Robotics Application: Tossingbot

and the release point was redefined as:

rcos (yaw,)
Xy = | rsin (yawy)

01 (2.34)

r=20.6

in the robot’s base frame. Once the Cartesian trajectory is defined, it
is necessary to «converty it in joints space, it can be done with inverse
kinematics, but in this case the Moweit! interface does explicitly allow
to access the IK plugin, but it does allow to compute the Jacobian
matrix to any configuration (section 2.1.1). The possible choices are
then two: (i) rely to an IK ROS plugin or to additional sofware, like
PyBullet [49]; (ii) to use differential kinematics equations. In this case
it was chose to rely to the second approach, namely we move the robot
to the first Cartesian position X of the trajectory, with elbow up and
gripper in a vertical position, read the current joint configuration ¢,
the rest of the trajectory in joint space can be obtained by integrating
velocity:

a(7+1) = q(r) + T (q(7))o(7) (2.35)

in this way the trajectory keeps the end-effector at the same orientation,
thus forwarding no angular velocity to the bullet.

In addition, the trajectory in fig. 2.20, is also designed to stop some
centimeters after reaching the release point and to return to the starting
point following the same trajectory backwards!?. In fig. 2.21 the same
trajectory in Cartesian coordinates is shown, the plots show the x,y, 2z
components of the trajectory expressed in the robot’s base frame, and
compare the reference trajectory with the actual end-effector positions.
Fig. 2.22 presents the same end-effector trajectory is 3D space, the 3D
plot compares the reference line with the actual measured trajectory
and the release point.

104 small recording of the robot performing said trajectory is available at https://drive.google.
com/file/d/18RCKLB00E8IZzjnWqeDANHEhU3pVLE22Z/view?usp=sharing



https://drive.google.com/file/d/18RCKL80oE8IzjnWqeDANHEhU3pVLE22Z/view?usp=sharing
https://drive.google.com/file/d/18RCKL80oE8IzjnWqeDANHEhU3pVLE22Z/view?usp=sharing

2.3 Laboratory Experiments

55

0.2 4

0.0 -

0.5 A
0.0 4
—0.5 1

T
1

2.5 1

0.0 A

—2.5 4

T T T
1.0 10 1 A
T T T
10 10 1.4

1c

25 4
0

—25 -

—_j

Figure 2.20:

0.70 A
0.65 -

0.60 A

u

0

0.0030

0.0025 A

0.0020 A

0.0015 A

0.0010 A

0.0005 A

0.0000 -

1.0

y

—— measured
= reference

1.2

1.4

1.6

Example of Cartesian trajectory generation with target |vioss| = 0.8m/s

0.20 A

0.10 A

u

0

Figure 2.21: Example of a tossing trajectory in Cartesian space for the physical
Panda robot, created from fig. 2.20. The plot is divided in its x,y, 2z components.
The orange line is the reference trajectory, while the blue line is the measured end
effector trajectory. The tossing orientation is yaw, = 0 and X, = [0.6, 0.0, 0.1]T
in the robot’s base frame. The RMSE of the end-effector trajectory tracking in this

case is 0.0026 m.




56 Industrial Robotics Application: Tossingbot

== 1 reference

—— measured

Figure 2.22: Example of a tossing trajectory in Cartesian space for the physical
Panda robot, the red dashed line is the reference trajectory, the blue line is the
actual measured Cartesian trajectory of the end effector and the green triangle is
the release point. It is the 3D plot of fig. 2.21




Chapter 3

Results

This last chapter will present all the results obtained until now,
including some achieved in DEI’s laboratory, and is organized as follows:

e section 3.1 will present the most relevant results obtained by
MC-PILCO, adapted as described in section 2.2, in the simulated
task. Specifically, section 3.1.1 will show the performance of the
model to predict the bullet trajectories and landing position, while
section 3.1.2 will present all the results of policy learning obtained
in different learning setups and the performances in simulation of
the policies obtained with each setup.

e section 3.2 will show the preliminary results obtained with the
bullet data collected in the laboratory experiments, explained in
section 2.3.1.

3.1 Simulation

All the results discussed in this section were performed with maxi-
mum horizontal target distance from release d,,q, = 50cm and maxi-
mum yaw orientation 6 = &, referring to the start of chapter 2, figs. 2.1
and 2.2. Moreover, the sampling frequency for both trajectory re-
sampling and prediction with the model was set to F5 = 50H z, which
was enough to train a good policy for the target distances that were
considered. As explained in section 2.2.1 the model suffers from drifting
which is reduced with higher sampling frequency, this comes at the
drawback of needing to simulate more samples to simulate the same
interaction time. However, in this particular instance, the velocity
norm of a particle, during the rollouts of policy update, inevitably
accelerates and some drifting at the simulated landing is inevitable
unless the sampling frequency is ridiculously high compared to the
considered target distances.

o7



58 Results

See for example fig. 3.4, where the plot on the right shows the
altitude of the last position of 400 particles

In addition, F5 = 50H z is a more than reasonable setting for the
trajectory sampling, since most 3D cameras have a sampling rate of
around 50/90H z.

Lastly, it is important to set a sufficient system interaction time for
the rollouts in the policy update step, particularly for this application,
if a particle does not cross the target altitude, then it’s not possible to
estimate the landing position and the cost presented in section 2.2.2
does not correctly estimate the policy performance. In all policy train-
ing performed in simulations the maximum interaction/trajectory time
was set to 1s, which leads to rollouts of 50 samples, then trajectories
reach target altitude much before the maximum time, like in fig. 3.1,
but that does not changhe the dependencies of the particles’ last po-
sition from the policy, given that the cost only depends on the final
position, not velocity.

3.1.1 Model learning

The first requirement to check when using any Model-Based RL
technique is the performance of the Model of predicting the correct
evolution of the controlled system, therefore in fig. 3.1 we provide
an example of simulated trajectory, that is correctly predicted by a
model trained on another trial. We find that in average, for the model
presented in section 2.2.1, the predicted trajectory distances itself from
the real trajectory in the order of millimeters. The same figure shows,
on the right, the velocity norm thoughout the simulated trajectory,
which is compatible with the plot in fig. 2.9.

Moreover, some more intensive testing was performed on the model
of section 2.2.1 on a series of simulated trials, which are presented in
fig. 3.2. The test was performed by training the GP models on the
data of a single exploration trial and then testing on new trials by
computing: (i) MSE of the GPs on the targets from the new trajectory;
(ii) MSE of the rollout prediction over the new trajectory; (iii) distance
over the horizontal plane of the predicted landing distance (position of
the last state of the particle) from the actual target. With each new
trial, the model is retrained using all accumulated experience, just like
what happens with MC-PILCO when the outer loop of algorithm 1 is
repeated.

In fig. 3.2 one can see that the performances of the GPs regression
are not constantly the same, which is somewhat expected, but the




3.1 Simulation 59

w1 ref
—— prediction 4
1.0
0.8 37
0.6 —— velocity norm
0.4 2 initial velocity norm
0.2 \
1 -
\/
0.040 ‘
08 0.9 0.035 01 T T T T T T
1.0 0 10 20 30 40 50

11 0.030

Figure 3.1: [a,b], (a): Example of a rollout (simulation) on a trajectory not used for
training the model. MSE over the trajectory: 0.007 m, Error of predicted landing:
0.015 m. (b): the velocity norm along the trajectory compared to the initial velocity,
which drops to zero once the particle has reached the stop-integration condition.

performances of rollout prediction and, more importantly, landing
prediction do not change change significantly with more trials. These
results are justified by the fact that the trajectories obtained in simu-
lation are very simple, and as already anticipated, the policy update
step is successful with the model trained on just one exploration toss
(one single execution of the outer loop of algorithm 1).

3.1.2 Policy learning

As shown in sections 2.1 and 3.1.1 the trajectories provided by the
simulation are very simple (for example see figs. 2.9 and 2.10), and
the Model is able to predict the landing correctly (see for example
figs. 3.1 and 3.2), therefore the policy update step of MC-PILCO
manages to train an optimal policy with the model trained just with
one single exploration trial. Taking advantage of the particularities of
this task, it was possible to perform a series of different policy training,
under different conditions, mainly to show the beneficial effects of
the application of dropout in the policy optimization, as well as the
modeled control noise, comparing different setups.

As it will be shown in the next pages, it is indeed possible to visualize
and interpret a lot of information regarding the policy described in
section 2.2.3 and how it evolves during training. Namely, by considering
that the target bin is only moved in horizontal direction and its height
is constant, it is possible to plot its output norm on a 2D heatmap,
representing the velocity norm that the policy enforces for a certain
target location. Moreover, it is possible, with the same assumption
to plot the centers a; of the policy function (eq. (2.26)), weighted by




60 Results

2] %
10 \N -
] \7/
1073 3 L 4
1074 3
0 10—5;
2 E
o ]
106 3 3 1 ’
== = Target distance
1077 5 i = Target distance (exp smooth)
] Rollout MSE
1078 4 \ ol J Rollout MSE (exp smooth)
] GPs MSE
10-9 ] | === GPs MSE (exp smooth)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
trials

Figure 3.2: Model learning test on 20 simulated throwing trials, starting with the
model trained on the data of one single exploration trial, for each test trial of the
plot, the model is tested by means of: (i) distance over the z —y plane of the
predicted target from the actual landing; (ii) MSE of the Rollout prediction over
the trajectory; (iii) MSE of the GPs on the targets. For each error computed in
this test its curve is plotted (dashed) in comparison with its exponential smoothing
(continuous) computed with o = 0.5.

At each trial, after testing the Model, the GPs are retrained with the new data.

their weights w;, on a 2D grid.

Both information can give an idea of how the policy evolves during
the training steps, therefore we performed the same training with
identical parameters and models for different setups, varying the centers
initialization (section 2.2.3.1), the tossing noise (section 2.2.1.1) and
the application of dropout (section 1.2.2.3).

The tested setups are described in table 3.1 and for each one of
them we provide, in the next pages a learning plot and a performance
plot. The learning plots show in order:

o Total rollout cost plot, shows for each epoch the mean cost be-
tween all simulated particles, if the algorithm was executed with
dropout applied then vertical lines are plotted in corrispondence
of the epochs were the dropout rate was reduced, as described in
section 1.2.2.3;

e Success rate of the simulated particles rollout in each epoch,
computed by considering the distance along the horizontal plane
of the last position of each particle, a rollout is considered a




3.1 Simulation 61

successful throw if said distance is lower or equal than the nominal
radius of the target bin;

e The Policy output presented as a 2D heatmap, one plot each 250
epochs;

e The Policy centers plotted on the 2D horizontal plane at height
2zt = 0.1m (all points have same height), the points colors are
based on a scale defined w.r.t. their associated weight.

The performance plots instead show the outcome of 100 tossing trials
performed in the Gazebo simulation with the trained policy, the plot
shows the 3D position of the targets, colored in red it the target
was missed by the policy, green if the target was reached succesfully.
The release point at yaw, = 0 is also presented for convenience of
interpretation.

In addition to the tossing noise proposed in section 2.2.1.1, we also
tested some alternatives, just to check if the assumptions taken in
section 2.2.1.1 were meaningful. Therefore we considered the baseline
case without control noise applied, a standard zero-mean noise of std
o = 0.05 and negative control noise, where the initial velocity imposed
to each particle in policy update is: vy = mp(X¢,a) (1 — 1)

The table contains also the performances obtained by the policy, in
terms of success rate!, on a test of 100 trials simulated with Gazebo
(section 2.1). A policy is considered optimal if it provides success rate
> 95%, while it is considered sub-optimal for success rate € [80,95]%,
for success rate < 80% the policy is considered not satisfactory, i.e. a
failure.

Consider that, as a baseline, a policy that follows standard ballistics
rules reaches unsatisfactory performances: 72% target reach. The
policy function is the following:

mg(Xt) = (3.1)

where h is the difference between the z coordinate of the release and
the target altitude, while d is the distance of the target from release in
the horizontal direction.

La toss is considered successful when the bullet reaches the bin, i.e. it enters the bin, eventually
hitting the edges.




62 Results

A |
1.00
" 0.75
- 0.50
Yoo o F0.25
L - 0.00
0.50
0.25
0.00
0.8
0.9 -0.25 Yy
1.0 11
x Tt12 050

Figure 3.3: Policy derived by ballistics equations, 72% target reach. Test performed
with 100 throws simulated in Gazebo, Points represent the target location of one
throw, red points are missed targets, green points are reached targets. The blue
triangle is the release point when the target yaw is zero, placed as a reference.

All tests presented in this section were performed with 400 particles
in the policy update step and 100 centers.

H Setup Centers initialization Modeled control noise Dropout applied Performance H

1 Sparse None Yes 83%
2 Sparse zero-mean (std=0.05) Yes 86%
3 Sparse overshooting Yes 100%
4 Sparse undershooting Yes 67%
5 Sparse overshooting No 91%
6 Line overshooting Yes 98%
7 Line overshooting No 24%
8 Focus overshooting Yes 98%
9 Focus overshooting No 93%

Table 3.1: Tested policy update setups. Green: optimal policy; Yellow: suboptimal
policy; Red: not satisfactory policy.

3.1.2.1 Noise models

To verify the virtue of the tossing noise model presented in sec-
tion 2.2.1.1 we compared the execution of the algorithm on 4 setups,
reported in the first 4 rows of table 3.1, varying only the noise model.
Said rows are color-encoded based on the outcome, the first setup can
be considered as a baseline, since it was performed with no modeled




3.1 Simulation 63

301

25 4

20 A

Il I [ |
11'm .
Mt N

.| - IEELE
i 1

0.02 0.04 0.06 0.08 0.10

Figure 3.4: [a,b], (a): some examples of particles rollout simulated during a policy
training, (b): the height of the final position reached by 400 simulated particles
during an optimization step of policy update, presented as histograms of occurrences,
this highlights the drifting problem

tossing noise, i.e. in the simulated rollouts computed during the policy
update step, the initial velocity of each particle is exactly the vector
returned by the policy (section 2.2.3). The Second setup was performed
with a simple zero-mean Gaussian noise model: ¢ ~ A(0,0?) with
o = 0.05, its performances are almost equal to the baseline, which is
the expected outcome, given that the policy update step of MC-PILCO
computes the policy gradient as average of many particles and the
expected value of ¢ is this case would be zero. In figs. 3.5 and 3.7 it is
possible to observe the learning plots of these first two setups, which
are almost identical in all the plots, in particular the centers of the
two policies reach very similar distribution.

Instead, figs. 3.6 and 3.8 show the performance plots of the two
policies, these plots show the same pattern, both policies struggle to
reach the most distant targets, issue that is solved by applying a correct
noise model.

A zero-mean noise model is clearly not adequate for such system,
if we look back at fig. 2.12 the most obvious alternative could be to
estimate a probability density function from that data. That would
lead to another wrong noise model, since such PDF would not account
for the relationship between the system behavior and system input,
that is instead evident in fig. 2.13.

The learning plots in figs. 3.9 and 3.11 show respectively the policy
update steps performed with overshooting and undershooting tossing
noise, both these executions are longer in terms of number of epochs
in the optimization process, w.r.t. the first two setups. This suggests
that the overall dynamics models used in these optimizations are, in
some way, harder to learn for the policy. The centers distribution in




64 Results

these setups does appear somewhat different w.r.t. the first two setups,
but it is does not look as if different patterns are realized.

Most importantly, fig. 3.10 does show that the policy trained wit
overshooting noise (described in section 2.2.1.1) reaches optimality and
perfect performance, this indicates that the modeled noise describes
the system behavior up to a certain margin that allows the policy to
perform the task correctly.

Instead, fig. 3.12 shows the performance of the policy trained with
undershooting tossing noise, it is noticeable that this policy completely
misses the distant targets, as discussed in section 2.2.1.1, while it is
possible to approximate the tossing system to the identity function for
small velocities (see fig. 2.8), that is not possible for higher velocities
and for these it is necessary to account for the correct functioning.

3.1.2.2 Dropout effects on policy learning

From the previous discussion, we can assume that the system is
sufficiently well described by the noise model presented in section 2.2.1.1
and it can be used for all the remaining setups.

Consider the rows 3,5,6,7,8.9 of table 3.1, which present the perfor-
mance of the policies trained with the different initializations presented
in section 2.2.3.1, for each of these initializations the algorithm was
executed with and without the application of dropout (section 1.2.2.3).

The first, most obvious, aspect to notice about these setups is
that the executions with dropout all reached optimal policy perfor-
mance, while the executions without dropout reached suboptimal or
not satisfactory policies.

Consider then rows 3 and 5, which present the performance of the
policies trained with sparse center initialization, their learning plots
are reported respectively in figs. 3.9 and 3.13. Between these figures it
is possible to appreciate some distinctive features, namely:

e the execution without dropout is faster, the training reaches
convergence in less epochs;

o the rollout cost plot in fig. 3.13 clearly presents some spikes in
later stages of training, which do not appear in fig. 3.9 with
the application of dropout. Each cost spike corresponds to a
performance drop in the underlying success rate plot;

o the scale of the policy output heatmaps in fig. 3.13 is slightly
different from the respective maps in fig. 3.9, the top value, in the
same domain, is higher for the policy trained without dropout.




3.1 Simulation 65

e The centers distributions are different between these two execu-
tions, both during the optimizations and in the late stages, in
particular the centers in the execution without dropout do not
move much outside the initialization area.

This last observation in particular is indicative of the fact that the
execution without dropout does not perform the same exploration in
the parameters space that is instead performed with the application
of dropout. Indeed, each epoch of the policy update step, updates
the policy following SGD approach, in this way the parameters are
«moved» in the direction suggested by the gradient. To update the
policy centers in this way directly corresponds to move their location,
and in this particular case, since the target locations do not move along
the z direction, the centers altitude does not change, they only move
in the horizontal plane. If the optimization process does not explore a
good portion of the parameter space, then the probability of finding a
global minima inevitably decrease, this is confirmed by the fact that
the policy trained without dropout is suboptimal (fig. 3.14).

The effects of dropout application have also been tested with other
two kind of initialization, setups 6 and 7 refer to the Line initialization,
where centers are positioned along a segment, respectively executed
with and without dropout applied. In this particular case, the opti-
mization executed in absence of dropout does not reach convergence,
it remains stuck at the initial configuration, this could be due to the
fact that the initial configuration was a local minima from where it
was not possible to escape with gradient updates. Instead, the execu-
tion of MC-PILCO with setup 6, with the application of dropout the
optimization is able to escape the local minima in few epochs, then,
the rollout cost, success rate curves and policy output heatmaps in the
learning plot of fig. 3.15 are comparable to the learning plots of setups
3 and 4 (figs. 3.9 and 3.13), as well as the number of epochs, while
the distribution of centers for setup 6 is visibly different from previous
executions. In particular in fig. 3.15 it is possible to appreciate the
evolution of the centers distribution from the initial shape to a more
expanded configuration.

Lastly, setups 8 and 9 consist of executions with the Focus centers
initialization, also in this case the policy trained in presence of dropout
is result of much more exploration, the optimization process that is
described in fig. 3.19 was able to explore a much larger portion of
the parameters space, comparing the centers distributions of figs. 3.19
and 3.21 it is possible to see that in the latter the centers did not stray




66 Results

far from the initial configuration. Moreover the cost and success rate
plots of fig. 3.21 present the same spikes/drops of fig. 3.13 that never
appeared in these tests with the application of dropout.

From a performance point of view, setups 8 and 9 have the same
pattern of setups 3 and 5, in both cases the optimizations that exploited
the dropout were able to explore more of the parameters space, landing
in a final optimal configuration. Indeed no execution without dropout
managed to reach the regions of the parameters space where the optimal
policies parameters configurations lie.

Interestingly, in the learning plots associated with the setups that
applied dropout in the optimization process, it is possible to recognize
a visual effect in both the cost and success rate curves, indeed each
time the dropout reduction is applied (vertical lines in the plots) the
noise of the curve is visibly reduced. The learning plot of fig. 3.21
presents this same effect more evidently.

In all dropout setups the reductions were applied in late stage well
after the initial exploration in parameters space, this happens because
the cost decreased under a certain threshold and remained stable for a
number of epochs. Instead the policy update executed with setup 8
(fig. 3.19) applied the first dropout reduction at early stage, this was
due to the high level of variance of the cost signal J at early stage.




3.1 Simulation 67

Learning plot

5] ; ;
8 ) )
o 1 1
5 1 1
| |
T: ] ]
o 1 1
S 1 1
0'0 L T T T T T : T ! T T
0 200 400 600 800 1000 1200 1400
£
%]
< 100 - = "
wn
i i
s 1 1
= 501 T 1
=] 1 1
7] 1 1
g 1 1
[v] 1 1
3 0t— : : : = = i :
S 0 200 400 600 800 1000 1200 1400
optimization steps
5 250 step 500 step 750 step 1000 step 1250 step
g12 1.2 1.2 1.2 1.2 1.0
311 11 11 11 11
= 1.0 1.0 1.0 1.0 1.0
L 0.8 0.8 0.8 0.8 0.8 05
g -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 '
wn ®e® e 6 .y, %00 1
o o %% .“ o %ot °s e, e ®e S 0, .“
2 IR . o 0% oo % o ° * % .o
[} < ‘.‘ﬂ"f ° . °
2] M"‘ N em. oo e K 1. Con 1-0 2 ooe 0
3| TR ) YA ey St Soghi .
S R £ s N & p v 33 Sene 2
ol Mol 0- .3,5- N 04 L9 * 0- ".% % o LRGeS
q;,. . oo o [ R SRR o8 of 0,008 ‘e 1 Py -1
-1 0 1 -1 0 -1 1 -1 0 -1 0 1

Figure 3.5: Setup 1: Sparse centers initialization, no modeled control noise, dropout
applied

1.00
0.75
0.50
0.25
0.00

Figure 3.6: Setup 1: 83 % target reach performance.




68 Results

Learning plot

1.0 T v
I 1 1
o 1 1
O 1 1
E i i
(=]
= 0.51
e ! !
= 1 1
3 1 1
] 1 1
0'0 L T T T T T - T - T T
0 200 400 600 800 1000 1200 1400
£
%]
< 100 A
- 1 1
2 1 1
3 1 1
£ i i
= 501 T 1
2 1 1
; | |
3 1 1
ERNE 1 1
Q\ﬁ 0 200 400 600 800 1000 1200 1400
optimization steps
5 250 step 500 step 750 step 1000 step 1250 step
g12 1.2 1.2 1.2 1.2 1.0
311 11 11 11 11
= 1.0 1.0 1.0 1.0 1.0
L 0.8 0.8 0.8 0.8 0.8 05
g -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 '
" TP wtP e oy w®” e o 1
ol n'.‘. o ‘o L AP o ‘e . oo
c e® ¢ ¢.° e ° © .
KRR .@m 1 [y ..0: 14 o .o: 1 ..0...0 1
3 .i"i i. : . .o o : . 0
A et 2. 2, o 12, %‘c v
(=2 ° 0 9, Chd
= ) Q 1 e ) 1 ege % 0 1 e 2% . J
90 0] *%e®es, 01 WBoR.e 0 Jf Lan XX I .

Figure 3.7: Setup 2: Sparse centers initialization, zero-mean control noise, dropout
applied

1.00
0.75
0.50
0.25
0.00

—0.25 y
11 ~0.50

Figure 3.8: Setup 2: 86% target reach performance.




3.1 Simulation 69

Learning plot

L 1.0 . -
3 1 1
o ) )
© 1 1
i i i
(=]
2 0.5 1
E | |
— 1 1
3 1 1
S 1 1
0'0 L T T T T T - T - T T T
0 200 400 600 800 1000 1200 1400 1600
£
%]
£ 100 | |
2 1 1
° 1 1
£ i i
= 501 T 1
=] 1 1
% | |
8 1 1
3 0t— : : : — — : : :
< 0 200 400 600 800 1000 1200 1400 1600
optimization steps
§_ 250 step 500 step 750 step 1000 step 1250 step 1500 step
S12 12 12 12 12 12 1.0
2 14 14 ) 14 ) 14
208 08 08 08 08 08
g -0.6-0.20.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 0.5
4 U] o ‘.0 . & 0 .'3 oo % 1
g W, DL D e e
S o o ° .
8 14 1 11 ® o 00 14 o 11 . 11 .
4 Y o, - 0
K %‘0 ‘0,. M ° ° . . . . o ©
c 2 ¥ 0] k™ 3 ¥, 3 ¥ ()
k= ] ] (Y ] i " i i »
q;" 0 0 &:' ." 0 r‘ {’ 0 ‘.‘ {} 0 , oo ¢> 0 : o) “n} -1
L] L L)
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

Figure 3.9: Setup 3: Sparse centers initialization, overshooting control noise, dropout
applied

1.00
0.75
0.50
0.25
0.00

Figure 3.10: Setup 3: 100% target reach performance.




70 Results

Learning plot

=
o
L

total rollout cost
o
w
)

T P

0.0 1
0 200 400 600 800 1000 1200 1400 1600
£
wn
£100 Fmm—————e— T :
£ 1 1
: : :
£ 1 1
= 501 1 1
S 1 1
F : :
g 1 1
5 01— : : : — — : : :
© 0 200 400 600 800 1000 1200 1400 1600
optimization steps
1.5
§_ 250 step 500 step 750 step 1000 step 1250 step 1500 step
212 1.2 1.2 1.2 1.2 1.2 T 1.0
o l.1l 1.1 1.1 1.1 111 | 11
S 1.0 1.0 1.0 1.0 1.0 1.0
208 0.8 0.8 0.8 0.8 0.8
g_ -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 0.5
Py o, © 1
g l')"o. v.“’oo ~,’o‘ _"‘.i..
S a0 [ I .‘ « ° . .
o1y B 11, 00m.t [ 1] SN RS A S - 0
° o, N o3 oo fo:
c &. £ o Y o ’ 0 o900,
2 S e [ € » ..‘ x K3 '04 %
(];)0' 04¢ B 0¥ i, X 01> AATY 01 S -1
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

Figure 3.11: Setup 4: Sparse centers initialization, undershooting control noise,
dropout applied

1.00
0.75
0.50
0.25
0.00

g.’.oo
o‘q.o:(!.°:
X 0.50
0.25
0.00
-0.25 Y

0.9
1.0
X 11,5, -0.50

0.8

Figure 3.12: Setup 4: 67% target reach performance.




71

3.1 Simulation

Learning plot

1000

800

600

400

200

1000

1000 step

800
-0.6

400

200

S o o
150 3N0||0J |e30}

T
o o o
o

WIS Ul SMOJY} ||NJSSDIINS %,

optimization steps

2.0
15
1.0

N = oo
= - O
indino Adijod

-0.2

-0.2

-0.6

N
=]
7

©
IS
7

0.5

0.0

0.5

S123udd pajyblam

0.0 0.5

0.5 -0.5

0.0

-0.5

-0.5

0.0

-0.5

Figure 3.13: Setup 5: Sparse centers initialization, overshooting control noise, dropout

not applied

Figure 3.14: Setup 5: 91% target reach performance.




72 Results
Learning plot

5] i i

8 ) )

© 1 1

E i i

(=]

2 0.5 1

E | |

— 1 1

8 1 1

S 1 1

0'0 L T T T T T - T - T T T
0 200 400 600 800 1000 1200 1400 1600

£

%]

c 100
- T

2 1 :

] 1 1
£ i i
= 501 T T

=] 1 1
f i i

8 1 1

3 ot : : : — : :
< 0 200 400 600 800 1000 1200 1400 1600

optimization steps

§_ 250 step 500 step 750 step 1000 step 1250 step 1500 step 1.0
] %.2 %.2 %.2 %.2 %.2 %.2 :
2 1%1 14 ) 14 ) 14

08 0:8 0:8 0:8 0:8 0.8

g -0.6-0.20.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 0.5
0 2.0 2.0 2.0 . 2.0 N 2.0 oy 2.0 Y] 1
9 . L . i! . ’a .

€ 1.5 1.5 ° 1.5 4 'ak' 1.5 -i}f 154 %% 1.5 &

8 3 ¢ ¢k

L] (]

E 1.0 4 / 1.0 4 N 1.0 4 ': i 1.0 4 . 1.04 . ‘o: 109 ‘,‘.,0

-CC» °®, e ° . ®o %o,

' 0.5 1 0.5 A 0.5 w » | 051 > 0.5 % °| 0.5 Sod ©

=z > > g A J o -1

—-0.50.0 0.5 —-0.50.0 0.5 —-0.50.0 0.5 -0.50.0 0.5 -0.50.0 0.5 -0.50.0 0.5

Figure 3.15: Setup 6: Line centers initialization, overshooting control noise, dropout

applied

1.00
0.75
0.50
0.25
0.00

Figure 3.16: Setup 6: 98% target reach performance.




3.1 Simulation

73

Learning plot

total rollout cost

100 200

300

400

500

600

% successfull throws in sim

100 200

250 step

1.2

11

1.0

policy output

0.8

300
optimization steps

400

500 step

500

1.2

11

1.0

0.8

-0.6

-0.2

600

1.2

weighted centers
=
o

1.2 1

1.0 1

081 o

D

-0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

Figure 3.17: Setup 7: Line centers initialization, overshooting control noise, dropout

not applied

1.00
0.75
0.50
0.25
0.00

Figure 3.18: Setup 7: 24% target reach performance.




74 Results

Learning plot

0.75 A

total rollout cost
o
w
o
.

)
1
0.25 t
1
000- T ! T T T T T T T
0 250 500 750 1000 1250 1500 1750
£
@ 100
< !
@ 1
3 75 1
2 1
< 1
Z 5014 T
=] 1
) 1
&S 25 I
(o} 1
o 1
7 04 1
= 0 250 500 750 1000 1250 1500 1750
optimization steps
1.25
'g_ 250 step 500 step 750 step 1000 step 1250 step 1500 step 1.00
£1.2 1.2 1.2 1.2 1.2 1.2 ’
311 | 11 11 11 11 11
> 10 1.0 1.0 1.0 1.0 1.0 0.75
go08 0.8 0.8 0.8 0.8 0.8
g -0.6 -02 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 -0.6 -0.2 0.2 0.50
0.25
«
8151 151 15 P 05
A 4
% 0.0
T 1.0 e 1.0 1 1.0 ° %
E L3 4 (3
2 ) .. } ‘. -0.5
B o .
205 0.5 0.5 » .9..
T T T T T T T T -1.0
-05 0.0 05 -05 00 05 05 -05 0.0 05

Figure 3.19: Setup 8: Focus centers initialization, overshooting control noise, dropout
applied

1.00
0.75
0.50
0.25
0.00

Figure 3.20: Setup 8: 98% target reach performance.




3.2 Laboratory 75

Learning plot

% 0.6
o
o
=
E 0.4 1
IS
Z 0.2 I
8
<] ik
- 00 T T T T
0 100 200 300 400 500 600 700
£
wn
=
= 100 A s v
E
o
e
=
= 501
=)
g
o
2 0 100 200 300 400 500 600 700
xX P
optimization steps
250 step 500 step
1.2 1.2
5
211 1.1 1.0
3
? 1.0 1.0
3 0.5
20.8 0.8
-0.2 0.2
g 1.2 1 1.2 r..: {é" 1
2 of o
@ 1.0 " atg 1.0{  Qerwd 2.
[v] :;"‘.o‘
S S Al A 0
£ 0.8 0.8 1 o
o
° -1
; 0.6 T T T T T 0'6 h T T T T T L
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Figure 3.21: Setup 9: Focus centers initialization, overshooting control noise, dropout
not applied

1.00
0.75
0.50
0.25
0.00

Figure 3.22: Setup 9: 93% target reach performance.

3.2 Laboratory

As stated in section 2.3, it was not feasible to replicate the whole
task in laboratory yet, but it was indeed possible to collect some bullet
trajectories in order to test the Model of section 2.2.1 on real data, the
process of data collection is described in section 2.3.1.




76 Results

The results presented in this section were all collected with the same
Intel 3D camera? at sampling frequency of 60H z.

3.2.1 Model learning

The few example trajectories presented in section 2.3.1 are quite
noisy, even if the worst outliers are removed, the same is true for all
collected trajectories, therefore said data should not be used in such
state. To reduce the white noise component a low-pass filter, with
cutofl frequency Fj, = 0.1Hz, was applied to the trajectories before
computing velocities and extracting the targets for Model Learning.

An example of such pre-processing is offered in figs. 3.23 and 3.24,
in particular fig. 3.23 shows one of the trajectory collected during a
laboratory session, the figure contains on the left the 3D plot of the
trajectory, comparing the noisy and the filtered version, while on the
right the velocities norms of the noisy and filtered trajectory are shown
against time. The filtered plots are compatible with the equivalent
plots obtained from the simulative data presented in fig. 2.9.

Instead, fig. 3.24 (left) shows both the noisy and filtered versions
of the velocity components of the same trajectory in fig. 3.23, as well
as the velocity deltas (right plot) from the original noisy trajectory
in blue, and from the filtered trajectory in green, overlaid to the first.
These diagrams in particular show that the filtering is able to mitigate
most of the white noise effects, since the blue boxplots have all higher
interquartile range. In particular the filtered plots of the deltas of x
and y velocity components have null interquartile range and are just
constant zero, which is expected, instead the box of the z component
has still some oscillation around its average, which again, is expected.

Finally, fig. 3.25 presents the results of the same test performed in
section 3.1.1 for 22 trajectory trials collected in laboratory. In this
case the patterns are slightly different from fig. 3.2, but all 3 smoothed
plots show clearly decreasing patters, the Rollout MSE is especially
improving with the increase of training data. Most importantly, the
performance of target prediction are compatible with those achieved
by the model in simulation, therefore encouraging to test the policy
on the real system once fixed the know issues.

Nonetheless, it was possible to run the MC-PILCO algorithm on the
collected data (fig. 3.25) to verify if it is possible to train an optimal
policy 3 for the considered task, the policy learning plot is presented

2model
3optimal w.r.t. the learned model




3.2 Laboratory 77

6.0 -

= 1 NOiSy —— v norm filt

—_— filt vV norm noisy Iy
5.5 - /]

o /]

4.5 - \\ /

4.0 N ol

oO_O.o-o
o N®@©

1.25
1.00
0.75
0.50 , , | | | ,
Y 0.25 0.88 0.0 0.1 0.2 0.3 0.4 0.5

0.00 086 X

0.92 35

Figure 3.23: [a,b], (a): Example of a trajectory collected in laboratory (dashed red)
and its filtered version (continuous blue). (b): the velocity norm along the trajectory
of the original trajecotry (orange) and the velocity norm of the filtered trajectory
(blue).

= — V, filt
===V, noisy 1.0
— V, filt
: ===V, noisy
— V, filt
V., noisy

0.5 1

0.0 4

LEN —0.5 A

0.0 0.1 0.2 0.3 0.4 0.5 X y z

Figure 3.24: [a,b], (a): The velocity components from the example trajectory of
fig. 3.23, comparing the original velocities (dashed) with the velocities from the
filtered trajectory (continuous) (b): the velocity deltas from the same trajectory
in a boxplot, comparing the deltas from the noisy trajectory (blue) and the deltas
computed from the filtered trajectory (green).

and discussed in section 3.2.2.

In addition, we performed the same test of fig. 3.25 applying the
mean function of eq. (2.16) to the GP models, results are shown
in fig. 3.26, it is possible to notice that the trend of all curves is
asymptotically the same of fig. 3.25, what changes is the initial part
of the graphs, where performances are lower for the second test with
mean function, the mean function has the effect of bootstrapping
performances.

3.2.2 Policy learning

The policy, presented in section 2.2.3, is very constrained on the
shooting direction, if the model predicts unnatural evolution of the




78 Results

Target distance
= Target distance (exp smooth)
Rollout MSE
Rollout MSE (exp smooth)
GPs MSE 7
| == GPs MSE (exp smooth)

errors

1072 A W

0 5 10 15 20
trials

Figure 3.25: Model learning test on 22 throwing trials collected in laboratory
(section 2.3.1), starting with the model trained on the data of one single exploration
trial, for each test trial of the plot, the model is tested by means of: (i) distance
over the z —y plane of the predicted target from the actual landing; (ii) MSE of
the Rollout prediction over the trajectory; (iii) MSE of the GPs on the targets. For
each error computed in this test its curve is plotted (dashed) in comparison with its
exponential smoothing (continuous) computed with a = 0.5.

At each trial, after testing the Model, the GPs are retrained with the new data.




3.2 Laboratory 79

Target distance
=== Target distance (exp smooth)

Rollout MSE
Rollout MSE (exp smooth)
GPs MSE 7]
| == GPs MSE (exp smooth)
1071 3 £\ —
|
&
o
o
1072 ] Y
|
Lo | w
0 5 10 15 20

trials

Figure 3.26: Same experiment of fig. 3.25, GPs equipped with mean function.

particles along the x,y directions, then the training process will never
converge to optimal, since eq. (2.26) cannot handle such motions by
definition. In any case, such effects are not present in the data presented
to the model (figs. 3.23 and 3.24) mostly thanks to the estimation
of the camera pose (described in section 2.3.1), and it is reasonable
to expect for the policy update step to converge to a certain level of
performance. Of course, expectations on the final performance should
be lowered w.r.t. the simulative trials, indeed we cannot expect to
have such precision to reach a target bin of the same dimensions as the
one used in the simulated trials. We ran MC-PILCO with the data
collected from 22 tossing trials collected in laboratory, with sparse
centers initialization, no modeled tossing noise and with dropout. The
reason we didn’t perform the test with some modeled noise, is that
the tossing system is not yet implemented in laboratory, therefore it is
unknown. In fig. 3.27 it is possible to observe that the policy training
yields a policy that is optimal w.r.t. the trained model, if we consider a
target bin of radius 0.13m, which is reasonable. For reference, consider
that an office trash can has radius of about 0.15m.

In fig. 3.27 the learning plot of the execution of MC-PILCQO’s policy
update with the Model trained on real data can be observed, the plots




80 Results
are very simular to those of figs. 3.5, 3.7, 3.9, 3.11 and 3.13.
Learning plot
1.001 ; ;
1 1
7 1 1
[=} 4
g 075 ' '
E i i
3 .
3 "% 1 !
T 0.251 | |
s . h
000- T T T T ! T ! T
0 200 400 600 800 1000
£
® 100 Fe——==n == v
< i i
£ 75 1 1
o 1 1
£ i i
Z 501 T T
= 1 1
7} 1 1
S 251 1 1
o 1 1
(5] 1 1
2 0+ 1 1
& 0 200 400 600 800 1000
optimization steps
2.0
B 250 step 500 step 750 step 1000 step
512+ 1.2 12 12 —
o
S 114 11 11 . 15
> 1.0 1.0 1.0 1.0
=081 08 08 0.8 o
06 -02 02 0.6 02 02 06 02 02 0.6 02 02 ‘
o R o 0.5
° o0 ae o®o » .
El.s- 157 %o de L 15 Wk e e | g5 _*‘ ° Lo
= ‘v & .
109 3% ;c.{ﬁg:. 109 L ase 1.041° , 2 . 104 °°n. . 0.0
3 & PR A o Degtet & ‘:". ° . e ° . -’.!. o
£ 0.5 L S 0.5 . 054 .
=) $.58 8 8y .-::’;:u S, 2 4z,
£ 0.0 ot °% 0.0 g UTSTT, 001" & TR . -05
1 0 1 -1 0 -1 0 1

Figure 3.27: Execution of MC-PILCO with the model from 22 tossing trials collected
in laboratory. Performances of target reach is simulations are computed with target
radius=0.13m.




Chapter 4

Comments

It is clear that the approach presented in this thesis is working
quite well in the simulated environment, which proves that given a
sufficiently precise dynamics model, the policy learning of MC-PILCO
is able to learn tasks whose outcome have long term dependencies to
the control actions. The performance of the policy yieled with MC-
PILCO is about the same of the result shown in [1] for the category
ball in simulations, but it is evident that the two approaches take two
different routes.

Without considering the difficulties of setting up the tossing system
with the robotic manipulator, while this approach requires much more
preliminar work for a physical implementation (3D tracking system)
the actual training time required to the manipulator, in terms of
exploration trials, is very limited.

Even in simulations, the approach of [1] requires hundreds of tossing
trials in order to teach the robot to toss the ball, while this Model-
Based approach only required a single exploration throw, in addition
to the few trials needed to estimate the noise.

For example, if the tossing system tested in laboratory (see sec-
tion 2.3.2) is precise enough in applying the desired initial speed at the
nominal release point, the policy trained in fig. 3.27 should already be
adequate to control the tossing. If that were true, we would have suc-
cessfully trained the robot, without it actually doing any exploratory
trials, if not, then we shoud estimate the system noise like it was done
in section 2.2.1.1 and apply an adequate tossing noise in the policy
update step.

The results presented in this chapter are quite promising, therefore
we can define a short-term objective, that is to finalize the experiments
with the ball tossing in laboratory, in order to validate all experiments
performed in this thesis, this will require most probably to build a
custom gripper.

81



82 Comments

Then as long term objective, once reached satisfactory performance
with the ball, it would be interesting to perform the same task with
different objects, as it was done in [1]. This work will likely reveal the
differences between the two approaches in terms of implementation
difficulties, since to track the evolution of complex objects like hammers,
rods, pens it is also necessary to track their orientation in addition to
the position along the trajectory. Therefore for each class of objects,
we will need to perform several tossing trials, like in section 2.3.1, but
it will be necessary to perform a complete pose estimation for each
sample image.

Finally if we can estimate (or define) the complete geometry of
the objects, then using standard physics principles we can bootstrap
the Model learning exploiting the inertial properties of rigid objects,
defining for example a mean function like in section 2.2.1 or defining a
custom kernel. Hopefully, this could allow to appreciate the differences
in terms of efficiency of MC-PILCO’s Model-Based approach w.r.t.
unsupervised learning techniques like the one that [1] relied on.

Furthermore, a better noise reduction for the data collection will
likely improve the Model’s performance, this should be done both at
the source with a more robust acquisition and also with the trajectories
data with some filtering more adequate that a simple low-pass.




Appendix A

Gaussian Processes

Gaussian Processes (GPs) are Supervised Learning tools for both
regression and classification problems. Whereas a classification task
aims at predicting discrete class labels, a regression task is concerned
with the prediction of continuous quantities. For example, in a business
application, one may attempt to predict the price of a house as a
function of some features of the building. This appendix will introduce
all the notions and concepts regarding GP regression (GPR) needed
to understand the work developed for this thesis, many insights and
techincal details will be omitted, refer to [35] for deeper explainations.

Let define:

D={(xzi,y;) | i=1,...,n} (A.1)

as a training set with n observations, where x; denotes an input vector
(covariates) of dimension D and vy, the respective scalar output or
target (dependent variable); the input vectors can be aggregated as
columns in a D x n matrix, called design matrix X, while the targets
can be collected in a vector Y, so it is possible to define the training
set as: D= (X,Y).

The main interest is to infer the relationship between inputs and
targets, i.e. the conditional probability distribution of the targets given
the inputs.

There is not a single way to view and interpret GPs, in the following
we will present two equivalent interpretations: one looking at the
space of parameters of the GP, one interpreting the GP as defining a
distribution over functions, and inference taking place directly in the
space of functions.

83



84 Gaussian Processes

A.1 Parameters-space View

GP regresssion assumes the following Bayesian probabilistic model:

ny(.’.B,’lU)‘f‘G

~ ./\/’(0,0722) (A4.2)

This model assumes that the input vectors @& are mapped to the
respective observation y by means of a parametrized function f(-,w)
plus additive noise €. The noise is assumed to follow an independent,
identically distributed zero-mean Gaussian distribution with variance
o2. Moreover, this model assumes that an observation y is fully
determined by its input @ and the parameters w of the function,
with uncertainty defined by ¢, resulting in the independence of each
observations y; from other observations y; and inputs x; (i # 7).

This assumed model directly originates the likelihood, the probability

density of the observations given the parameters:

p(Y[X,w) (A.3)

which can be factored over cases in the training set (because of the
independence assumption) to give:

1 (y; — f(zi,w))?)
e e

Wexm—zigw—f(x,w)l?) — N(f(X w),021)
(A.4)

’:]:

p(Y|X,’w) =

n
1

because it is assumed: p(y;|x;, w) = N (f(z;,w),02).

Where |z] is the Euclidean norm of a vector z. In the Bayesian
formalism it is necessary to define a pior probability distribution over
the parameters w, expressing the belief over w before looking at Y .
This can be done for example modeling the prior as:

w~N(0,Z) (A.5)

In the simplest case, the function f(-,w) is a linear function:

flx,w) =zlw (A.6)




A.2 Function-space View 85

and the likelihood becomes:
p(Y X, w) = N(XTw,021) (A7)

Given a previously unobserved input vector x., also called test
sample, the prediction of the respective target value f, is computed
averaging over all possible parameter values, weighted by their posterior
probability.

Thus, the predictive distribution for fi £ f(z.,w) at z,:

p(fulre, X, Y) = f p(fulzew)p(w| X, Y)dw — (AS)

The posterior distribution over the weights, is computed by Bayes’
rule:

p(Y | X, w)p(w)
p(Y[X)

Where the term at denominator is a normalizing constant also called

p(’lU‘X,Y) -

(A.9)

marginal likelihood. Moreover it is independent of the parameters w
and is given by:

p(Y]X) = j p(Y X, w)p(w)dw (A.10)

The posterior eq. (A.9) combines the likelihood and the prior, and
captures everything known about the parameters, it can be computed
analytically given the model. For example with the linear model in

eq. (A.6):

p(w]| X, Y) ~ N(w, A7)
1
w=—A"'XY (A.11)
O-R
A=02XXT 1%}

The predictive distribution of f. in this case becomes:

p(felze, XY zN(:E*TﬁJ,a:ZA_lx*) (A.12)

A.2 Function-space View

This interpretation uses a Gaussian process (GP) to describe a
distribution over functions. Formally, a GP is defined as a collection
of random variables, any finite number of which have a joint Gaussian




86 Gaussian Processes

distribution.
Given a real function f(x), a GP can be completely defined by its
mean function m(x) and covariance function or kernel k(x,x’) as:

m(x) = E[f(z)]

Wo.a!) = E[(f(2) —m@)(f)—m(@)]
The GP is then written as:
f(x) ~GP(m(x), k(z,z')) (A.14)

In the simplest case, the mean function can be zero, or can be
defined a priori exploiting some knowledge of the problem.
A classical covariance function is the squared exponential (SE):

k(z,2) = Mexp(—||lz —2'||$) (A.15)

which has been exploited in this project. It is possible to see that the
SE is almost unity if the input points are very close, and decreases
as their distance increases. It can be shown that the SE covariance
function corresponds to the linear model in appendix A.1 with an
infinite number of basis functions. SE can also be obtained from the
linear combination of an infinite number of Gaussian-shaped basis
functions.

A Gaussian process is defined as a collection of random variables,
representing the value of the function f(x) at location @. This implies
a consistency property, also known as the marginalization property.
This simply means that (y;,ys) ~N(u,2) > y; ~ N (p1,%11).

Considering a zero-mean GP, a distribution over functions can be
completely defined by means of a covariance function, for example one
can draw from the distribution of functions evaluated at any number
of points, by choosing the input points: X . and defining the relative
covariance matrix:

f, ~ N(0,K(X.,X.))
K(X*,X*) = (kr(zc*i,w*j))ij
X = [ZB*l,...,ZII*n]

(A.16)

As in the appendix A.1 the main interest is to predict the target
value f, of a previously unobserved input point ., in the following we
will present the prediction both in absence and in presence of noise in
the observations.




A.2 Function-space View 87

A.2.1 Prediction with Noiseless Observation data

In this case, the assumed model is:

y=f(x) (A.17)

Which is conceptually equivalent to the model in eq. (A.2) with o,, = 0.
We could rewrite the train set in matrix form as: D = (X ,f), where
f = f(X). The joint distribution of f and f, = f(X) is then defined,

according to the prior, as:

[ff] N <0’ [f?(g*’,?) ?(gfc))b (A18)

It is possible then, to define the posterior probability of f, given D
and X ., by conditioning the joint Gaussian prior distribution on the
observations, which results in:

o
I
=

pa

X, X)'f,
OD—-K(X. X)K(X,X)'K(X,X.,))
(A.19)

A.2.2 Prediction with Noisy Observation data

A more realistic assumption is that the available observations are
not the desired function values themselves, but noisy versions of them:

D=(X,Y)

y=f(z)+e (.20

Like in eq. (A.2), it is assumed additive independent identically
distributed Gaussian noise ¢ with variance o2. Therefore, the prior on
the noisy observations becomes:

cov(Y) = K(X,X)+021 (A.21)

Therefore, the introduction of noise in eq. (A.18) results in:
Y K(X,X)+02I K(X,X.)
R QRIS e A2

Finally, the predictive distribution for f, can be obtained exactly
like in eq. (A.19):




88 Gaussian Processes

f.|X..X,Y ~N(f., cou(f,))
f. = K(X.,X)o
cov(f.)) = K(X., X.) - K(X.,X)[K(X,X)+02I] 'K(X,X.))
(A.23)

where
a=[K(X,X)+o2I]"lY (A.24)

Notice that the vector a can be computed once and be used for all
successive predictions.

In the case that there is only one test point x,, the notation can be
compacted, eq. (A.23) and eq. (A.24) are reduced to:

f'*:K*Ta

A .25
V[E] = k(@e,2) — KT (K +020) 'K, (A.25)

with K, = K(X,x,) and K = K(X, X).
In this case f, is used as predicted value of f,, while V[f,] is its
respective variance, and it is interpreted as value of uncertainty of the

prediction.

A.2.3 Selection of Hyperparameters - Hints

Following the approach presented in appendix A.2, a GP is fully
determined once a Dataset D and a covariance function k are defined.

Covariance functions, like eq. (A.15) are defined by some hyper-
parameters, therefore it is required to select for each hyparameter a
proper value in a way that the regression performance of the final
model is maximized.

The process of defining a covariance function and its hyperparam-
eters is typically referred as training of a GP. A common training
approach consists in selecting the hyperparameters by maximization
of the so called marginal likelihood of the training samples:

p(y|X) = f Pyl X )p(E| X )df (A.26)

The term marginal likelihood refers to the marginalization over
the function values f, following the Gaussian process model, both the




A.2 Function-space View 89

prior and the likelihood are Gaussian: f|X ~ N(0, K), y|f ~ N (f,021),
resulting in:

y~N(0,K +021) (A.27)

With these considerations in mind, it is possible to yield a convenient
expression of the log marginal likelihood:

1 1
log p(y| X)) = —2yT(K +o2l) Ly — ilog K +021|— Zlog27r (A.28)

Note that K depends on the covariance function and its hyperpa-
rameters 6, therefore it is possible, for example, to perform gradient
ascent by computing d6 = Vylog p(y|X).




90

Gaussian Processes




Bibliography

[1] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser,
“Tossingbot: Learning to throw arbitrary objects with residual
physics,” 2019.

2] A. Elatta, L. P. Gen, F. L. Zhi, Y. Daoyuan, and L. Fei, “An
overview of robot calibration,” Information Technology Journal,
vol. 3, no. 1, pp. 7478, 2004.

3] R. Y. Tsai, R. K. Lenz et al., “A new technique for fully au-
tonomous and efficient 3 d robotics hand/eye calibration,” IEEE

Transactions on robotics and automation, vol. 5, no. 3, pp. 345358,
1989.

[4] A. A. Ata, “Optimal trajectory planning of manipulators: a review,”

Journal of Engineering Science and technology, vol. 2, no. 1, pp.
32-54, 2007.

[5] T. Chettibi, H. Lehtihet, M. Haddad, and S. Hanchi, “Minimum
cost trajectory planning for industrial robots,” Furopean Journal
of Mechanics-A/Solids, vol. 23, no. 4, pp. 703-715, 2004.

[6] S. S. Perumaal and N. Jawahar, “Automated trajectory planner
of industrial robot for pick-and-place task,” International Journal
of Advanced Robotic Systems, vol. 10, no. 2, p. 100, 2013. [Online].
Available: https://doi.org/10.5772/53940

[7] S. D. Han, S. W. Feng, and J. Yu, “Toward fast and optimal
robotic pick-and-place on a moving conveyor,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 446453, 2019.

[8] H. Liu, X. Lai, and W. Wu, “Time-optimal and jerk-continuous
trajectory planning for robot manipulators with kinematic

constraints,” Robotics and Computer-Integrated Manufacturing,
vol. 29, no. 2, pp. 309-317, 2013.

[9] P.-C. Huang and A. K. Mok, “A case study of cyber-physical
system design: Autonomous pick-and-place robot,” in 2018 IEEE

91


https://doi.org/10.5772/53940

92 BIBLIOGRAPHY

24th international conference on embedded and real-time computing
systems and applications (RTCSA). 1EEE, 2018, pp. 22-31.

[10] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srini-
vasa, M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and
T. Fuhlbrigge, “Extrinsic dexterity: In-hand manipulation with ex-

ternal forces,” in 201 IEEFE International Conference on Robotics
and Automation (ICRA), 2014, pp. 1578-1585.

[11] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 200/ IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CHS37566), vol. 3. 1TEEE, 2004, pp. 2149-2154.

[12] F. Amadio, A. D. Libera, R. Antonello, D. Nikovski, R. Carli,
and D. Romeres, “Model-based policy search using monte carlo
gradient estimation with real systems application,”
arXi:2101.12115, 2021.

arXiv preprint

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An intro-
duction. MIT press, 2018.

[14] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based
and data-efficient approach to policy search,” in ICML, 2019.

[15] A. Dalla Libera and R. Carli, “A data-efficient geometrically
inspired polynomial kernel for robot inverse dynamic,” IEEE
Robotics and Automation Letters, vol. 5, no. 1, pp. 24-31, 2019.

[16] D. Romeres, D. K. Jha, A. DallaLibera, B. Yerazunis, and
D. Nikovski, “Semiparametrical gaussian processes learning of
forward dynamical models for navigating in a circular maze,”

in 2019 International Conference on Robotics and Automation
(ICRA). 1EEE, 2019, pp. 3195-3202.

[17] D. Romeres, M. Zorzi, R. Camoriano, and A. Chiuso, “Online
semi-parametric learning for inverse dynamics modeling,” in 2016
IEEFE 55th Conference on Decision and Control (CDC). 1EEE,
2016, pp. 2945-2950.

[18] D. Nguyen-Tuong and J. Peters, “Using model knowledge for
learning inverse dynamics,” in 2010 IEEFE international conference
on robotics and automation. IEEE, 2010, pp. 2677-2682.




BIBLIOGRAPHY 93

[19] A. Dalla Libera, F. Amadio, D. Nikovski, R. Carli, and D. Romeres,
“Control of mechanical systems via feedback linearization based
on black-box gaussian process models,” in 2021 European Control

Conference (ECC). 1EEE, 2021, pp. 243-248.

[20] Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving pilco
with bayesian neural network dynamics models,” in Data-Efficient
Machine Learning workshop, ICML, vol. 4, no. 34, 2016, p. 25.

[21] D. J. Mackay, “Bayesian methods for adaptive methods,” PhD
thesis. California Institute of Technology, 1992.

[22] 1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[23] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep re-
inforcement learning in a handful of trials using probabilistic
dynamics models,” Advances in neural information processing
systems, vol. 31, 2018.

[24] S. Geva and J. Sitte, “A cartpole experiment benchmark for
trainable controllers,” IEEE Control Systems Magazine, vol. 13,
no. 5, pp. 40-51, 1993.

[25] M. Cutler and J. P. How, “Efficient reinforcement learning for
robots using informative simulated priors,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 1EEE,
2015, pp. 2605-2612.

[26] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassil-
iades, and J.-B. Mouret, “Black-box data-efficient policy search
for robotics,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2017, pp. 51-58.

[27] A. J. McHutchon et al., “Nonlinear modelling and control using
gaussian processes,” Ph.D. dissertation, Citeseer, 2015.

[28] P. Parmas, C. E. Rasmussen, J. Peters, and K. Doya, “Pipps:
Flexible model-based policy search robust to the curse of chaos,”

in International Conference on Machine Learning. PMLR, 2018,
pp. 4065-4074.

[29] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiw:1312.6114, 2013.




94 BIBLIOGRAPHY

[30] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic back-
propagation and approximate inference in deep generative models,”
in International conference on machine learning. PMLR, 2014,
pp. 1278-1286.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” nature, vol. 323, no.

6088, pp. 533-536, 1986.

[32] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010,
pp. 177-186.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural

networks from overfitting,” The journal of machine learning re-
search, vol. 15, no. 1, pp. 1929-1958, 2014.

[34] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian pro-
cesses for data-efficient learning in robotics and control,” IEEE

transactions on pattern analysis and machine intelligence, vol. 37,
no. 2, pp. 408-423, 2013.

[35] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning. Springer, 2003, pp. 63—71.

[36] R. E. Caflisch, “Monte carlo and quasi-monte carlo methods,” Acta
numerica, vol. 7, pp. 1-49, 1998.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[38] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050-1059.

[39] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” 2017.

[40] A. Koubaa et al., Robot Operating System (ROS). Springer, 2017,
vol. 1.

[41] B. Siciliano, O. Khatib, and T. Kroger, Springer handbook of
robotics. Springer, 2008, vol. 200.




BIBLIOGRAPHY 95

[42] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the
barrier to entry of complex robotic software: a moveit! case study,”
arXiw preprint arXiv:1404.53785, 2014.

[43] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep,
A. Rodriguez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar,
G. Raiola, M. Ludtke, and E. Fernandez Perdomo, “ros_control:
A generic and simple control framework for ros,” The Journal
of Open Source Software, 2017. [Online]. Available: http:
//www.theoj.org/joss-papers/joss.00456,/10.21105.joss.00456.pdf

[44] E. Olson, “Apriltag: A robust and flexible visual fiducial sys-
tem,” in 2011 IFEE International Conference on Robotics and
Automation, 2011, pp. 3400-3407.

[45] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Soft-
ware Tools, 2000.

[46] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual
servoing: a generic software platform with a wide class of robot
control skills,” IEEE Robotics and Automation Magazine, vol. 12,
no. 4, pp. 40-52, December 2005.

[47] R. Szeliski, Computer wvision: algorithms and applications.
Springer Science & Business Media, 2010.

[48] M. A. Fischler and R. C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography,” Commun. ACM, vol. 24,
no. 6, p. 381-395, jun 1981. [Online|. Available: https:
//doi.org/10.1145/358669.358692

[49] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://
pybullet.org, 2016-2021.



http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
http://pybullet.org
http://pybullet.org

	Abstract [ENG]
	Abstract [ITA]
	Introduction
	Model-Based Reinforcement Learning
	Gradient-Based Policy Search with GPs
	Model-based policy gradient
	GPR and one-step-ahead predictions
	Long-term predictions with GP dynamical models
	Moment matching
	Particle-based method


	Monte Carlo gradient estimation for MB Policy Search with GPs
	Model Learning
	Speed-Integration Model
	Kernel choice
	Model Optimization

	Policy Update
	General-Purpose Policy
	Gradient computation
	Dropout



	Industrial Robotics Application: Tossingbot
	Simulations in Gazebo
	Control of Robot Tossing
	Bullet Release

	Learning a Robot Tossing Policy with MC-PILCO
	Model definition
	Modeling of Tossing noise

	Cost Function
	Tossing Policy
	Centers initialization


	Laboratory Experiments
	Collecting data for Model Learning
	Control of Robot Tossing


	Results
	Simulation
	Model learning
	Policy learning
	Noise models
	Dropout effects on policy learning


	Laboratory
	Model learning
	Policy learning


	Comments
	Gaussian Processes
	Parameters-space View
	Function-space View
	Prediction with Noiseless Observation data
	Prediction with Noisy Observation data
	Selection of Hyperparameters - Hints


	Bibliography

