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Abstract 

This Thesis has the objective of proposing an industrial procedure tailored to the company Unox 

S.p.A. for data analysis through advanced statistical techniques. Multivariate statistical 

methodologies are used to analyse the data collected from the ovens during cooking and 

washing processes. Process variables are analysed for both process understanding and data-

driven design. The design goal is to create a simple and intuitive user-machine interface in order 

to improve the user experience. First, cooking and washing modes are analysed in order to: (i) 

identify the least frequently used ones for future elimination or integration; (ii) propose further 

development and improvement of the most used ones (cooking types 1 and 2, selected in 85% 

of the cases). Then, we proposed a multivariate statistical approach for both process monitoring 

and predictive maintenance through exemplificative case studies. Process monitoring consists 

in real-time tracking of process condition through online measurements of process variables, 

whereas predictive maintenance is a maintenance strategy consisting in data-based equipment 

failure prediction. Process monitoring has been implemented for a specific oven through PCA 

method. The obtained process model allowed to describe 93% of data variability and to detect 

anomalies during cooking processes with respect to normal operating conditions in order to 

ensure the final product quality. Predictive maintenance has been implemented through a PLS-

DA model based on process variables. Specific equipment failures have been predicted by 

identifying abnormal patterns in the process variables for two case studies: failures of the gasket 

and the core probe. In both cases, two principal patterns leading to the technical intervention 

have been identified; the gasket patterns described 87% of the cases, whereas 71% of the core 

probe substitutions followed the defined patterns. Moreover, the model has been used for 

prediction in the second case study. It predicted correctly 87.5% of the cooking programs 

sequences. 

  



 

  



Riassunto 

Nell’era dell’Industria 4.0 i sistemi produttivi vengono dotati di un numero sempre maggiore 

di sensori e apparecchiature per la misura di differenti tipologie di variabili. Queste ultime 

rappresentano lo stato di uno specifico sistema e ne possono evidenziare eventuali 

malfunzionamenti o fasi non ottimizzate. La grande quantità di dati raccolti a frequenze elevate 

è pertanto una fonte preziosa di informazioni, la cui analisi può tuttavia risultare complessa e 

richiedere tempi molto lunghi. Attraverso l’utilizzo di tecniche statistiche multivariate si 

possono estrarre informazioni per l’ottimizzazione di processi e servizi, al fine di diminuire i 

costi di processo e manutenzione e migliorare la qualità dell’offerta in un mercato competitivo. 

L’obiettivo di questa Tesi consiste nel proporre per l’azienda Unox S.p.A. una procedura su 

misura finalizzata all’analisi dei dati attraverso tecniche statistiche avanzate. Unox è leader 

mondiale nel mercato dei forni professionali. Questi forni sono dotati di numerosi sensori per 

la misura delle variabili durante i processi di cottura e i dati raccolti vengono inviati attraverso 

Internet al cloud dell’azienda, dove vengono compressi e archiviati. In questa Tesi sono stati 

presi in considerazione dati relativi alla serie di forni MIND.Maps™ e, in particolare, alle 

categorie di forni Chef Top e Baker Top, appartenenti a tale serie. I risultati ottenuti dimostrano 

come la procedura di analisi dati proposta è in grado di fornire informazioni preziose per il 

monitoraggio e la predizione del comportamento delle singole apparecchiature, nell’ottica di 

un miglioramento continuo delle strategie di progettazione di prodotto e dei servizi offerti al 

cliente.  

La Tesi è organizzata secondo il seguente schema concettuale. 

Nel Capitolo 1 si presenta un’introduzione relativa al panorama industriale attuale e alle recenti 

innovazioni introdotte a livello di impresa con il concetto di Industria 4.0; successivamente si 

descrive brevemente la realtà aziendale di Unox S.p.A, azienda che ha fornito i dati oggetto del 

lavoro di Tesi, evidenziando le tipologie di forno prodotte e le opzioni di cottura/lavaggio 

implementate nel software installato nelle apparecchiature. Nella parte finale del capitolo si 

presentano gli obiettivi della Tesi. 

Nel Capitolo 2 vengono descritti i fondamenti matematici e i campi di applicazione delle due 

principali tecniche statistiche multivariate (PCA e PLS) utilizzate per l’analisi dei dati. 

Nel Capitolo 3 vengono analizzati i dati storici dei processi di cottura e di lavaggio registrati 

per tutte le apparecchiature connesse al cloud. Attraverso l’analisi dell’impiego dei forni sono 



state individuate le funzioni e le modalità più utilizzate e quelle meno utilizzate. Per quelle 

meno utilizzate l’eliminazione potrebbe essere presa in considerazione, mentre quelle più usate 

possono essere ulteriormente sviluppate o modificate. Infatti, l’obiettivo principale è quello di 

semplificare l’interfaccia del pannello per migliorare l’esperienza dell’utente. 

Per uno studio più approfondito dei dati vengono utilizzate le tecniche statistiche multivariate 

PCA e PLS. Questi metodi vengono implementati per il monitoraggio dei processi e la 

manutenzione predittiva. Il monitoraggio del processo (Capitolo 4) viene utilizzato per 

identificare anomalie nei programmi di cottura rispetto alle normali condizioni operative. Per 

ottenere un monitoraggio di alta precisione, è stato ottenuto un modello specifico per un singolo 

forno. Il modello di processo ottenuto riesce a catturate il 93% della varianza dei dati e viene 

implementato per il controllo del processo stesso al fine di ottenere le specifiche di prodotto 

desiderate. Infine, viene implementata la manutenzione predittiva allo scopo di includere la 

prevenzione nei servizi post vendita. Il Capitolo 5 illustra l’applicazione della manutenzione 

predittiva a due casi studio: la sostituzione della guarnizione e il malfunzionamento della sonda 

al cuore. Attraverso l’applicazione della tecnica PLS-DA sono stati ottenuti due modelli che 

individuano i pattern che seguono le variabili di processo durante le cotture che precedono 

l’intervento tecnico. In entrambi i casi, vi sono principalmente 2 pattern che descrivono 87% e 

71% dei casi per l’intervento alla guarnizione e alla sonda al cuore rispettivamente. Inoltre, con 

il modello della sonda al cuore si è riusciti a predire correttamente l’87.5% delle sequenze di 

cotture. La previsione dei guasti delle apparecchiature viene implementata per evitare 

l’interruzione del funzionamento del forno programmando gli interventi tecnici. Inoltre essa 

consente di effettuare la manutenzione solo quando vi è effettivamente la necessità diminuendo 

i costi rispetto alla manutenzione preventiva. 
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Introduction 

The fourth industrial revolution brings in advanced technologies that are meant to redefine the 

actual concepts of industry and society. Intelligent, autonomous and connected systems are 

going to affect everyday life and to create a costumer-centred industry. In a highly competitive 

and globalised market putting the costumers needs at the centre of each phase from design to 

after-sale services is the key for success. The new advanced technologies allow the companies 

to better understand the market through data collection and analysis and to design and optimise 

the products, the production processes and the services by diminishing the costs. Unox S.p.A. 

has already introduced some of the Industry 4.0 core technologies. Its professional ovens are 

equipped with smart sensors that measure the process variables during cooking and washing 

processes. Data are collected and sent through the Internet of Things structure to the cloud of 

the company where they are compressed and stored. The amount of data collected is enormous 

and its analysis is complex and time-consuming. However, data mining is necessary in order to 

extract useful information. Although some case-specific analysis have been already done by the 

company, there are no industrial procedures for data analysis. Therefore, the main objective of 

this Thesis is to propose an industrial procedure tailored to the company for data analysis 

through advanced statistical techniques. First, data are analysed for global cooking process 

understanding and data driven design. The aim of these analyses is the improvement of the user 

experience in the interaction with the machine. Then, advanced statistical techniques are 

implemented in product quality control and maintenance. Product quality control is gained 

through process monitoring; by ensuring the process variables to stay into the defined normal 

conditions the final desired quality is achieved. Maintenance can be optimised by the 

introduction of the predictive factor. Predictive maintenance allows carrying out maintenance 

activities at the first signs of imminent failures by avoiding both unnecessary repairs and 

catastrophic failure. This way failure prediction ensures cost reduction in the maintenance area, 

which is one of the largest expenses for a company.  

The Thesis is composed of five chapters. The first Chapter gives a brief introduction to the 

Industry 4.0 concept and its key technological components. The problem is then contextualised 

in the company collaborating in the study (Unox S.p.A.), highlighting the types of oven 

produced and the variety of cooking/washing options implemented in the equipment software. 

In the final part of the Chapter the objectives of the Thesis are presented. The second Chapter 
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describes the used multivariate statistical techniques: Principal Components Analysis (PCA) 

and Partial Least Squares analysis (PLS). Their mathematical fundamentals and results 

interpretation for practical use are reported. These methods are implemented for process 

monitoring and predictive maintenance with the use of Matlab® software and the PLS Toolbox. 

The third Chapter reports the analysis of the historical data of cooking and washing processes 

both for process understanding and for data-driven design. Through the study of the oven 

utilisation, cooking modes are analysed in order to: (i) identify the least frequently used ones 

for future elimination or integration; (ii) propose further development and improvement of the 

most used ones. In fact, the objective is to simplify the panel interface in order to improve the 

user experience. In the fourth Chapter, process monitoring is used to identify anomalies in 

cooking programs compared to normal operating conditions. In order to obtain a high precision 

monitoring and thus the desired product specifications, an oven-specific model is implemented 

through the PCA analysis. Finally, predictive maintenance is implemented (in the fifth Chapter) 

in order to include prevention in the after-sales services and thus to avoid interruption of oven 

operation. Two case studies are presented:  gasket and core probe substitutions. The prediction 

of specific equipment faults is carried out by applying the PLS-DA technique. 



 

Chapter 1 

Industry 4.0: a brief introduction 

In this Chapter the background, the definition and the basic components of Industry 4.0 concept 

are described. Then, the key role of data-driven techniques (such as process monitoring and 

predictive maintenance) applied to manufacturing industry is highlighted. Since these data-

driven techniques have been tested on a two-year dataset provided by Unox S.p.A, leader in 

professional ovens manufacturing, a brief description of the enterprise business and the 

provided dataset is given. Finally, the motivation and the objectives of the Thesis are described.  

1.1 Industry 4.0: an overview 
Industry 4.0 is a collective term used to define the current trend of integrating innovative 

production technologies and modern automation systems to improve working conditions, create 

new business models and increase the productivity and quality of production plants. The 

resulting race towards rapid implementation of technological innovation does not only impact 

on the manufacturing industry itself, but also on the service industry and society in general. In 

order to speed up the transfer from the old way of operating to the new one, a joint work between 

academy and industry is needed; on one hand, academic research would focus on defining, 

developing and sharing innovative models and methodologies; on the other hand, industry 

would focus on industrial machine update, intelligent products implementation and potential 

customers information.  

1.1.1 Background and definition 
The current industrial situation is the result of an historical path of development started in the 

18th century. As represented in Figure 1.1, the first industrial revolution was characterised by 

the introduction of mechanical production powered by steam and water. Then, work division 

(Taylorism) and electrical energy lead to the second industrial revolution in the 19th century. 

The third industrial revolution started in the 1970s, when advanced electronics and information 
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technology further developed the automation of production processes. Nowadays the so-called 

fourth industrial revolution is taking place. 

 

Figure 1.1. Historical timeline of industrial revolutions [Oztemel and Gursev, 2018] 

The definition of Industry 4.0, firstly introduced as a strategic initiative of the German 

government in 2011 (Kagermann et al., 2013), is not straightforward since continuous 

researches highlight different key aspects: from manufacturing digitalization (De Carolis et al., 

2017) to the generation of the so-called smart factories (Kagermann et al., 2013); from 

communication technology improvement (Igor et al., 2016) to systems automation (Oztemel, 

2010). Oztemel and Gursev (2018) in their review of Industry 4.0 recommend the following 

definition: “Industry 4.0 is a manufacturing philosophy that includes modern automation 

systems with a certain level autonomy, flexible and effective data exchanges encoring the 

implementation of next generation production technologies, innovation in design, and more 

personal and more agile in production as well as customized products.” This definition clearly 

indicates the main elements of Industry 4.0: systems with automatized decision-making 

capability and data exchange platforms (IoT, Cloud) supporting the innovation and invention 

of future generation technologies as well as more profitable utilization of data (Big Data).  

A similar concept, mainly used in the USA, is the so-called Smart Manufacturing (Kang et al., 

2016). Indeed, the agency of the Department of Commerce NIST (National Institute of 

Standards and Technology) defines Smart Manufacturing as “fully-integrated and collaborative 

manufacturing systems that respond in real time to meet the changing demands and conditions 

in the factory, supply network, and customer needs.” Since both Smart Manufacturing and 

Industry 4.0 are based on the same principles, the two terms are considered equivalent. In the 



Industry 4.0: a brief introduction  5 
 

following paragraph, the key components of Industry 4.0 and Smart manufacturing are 

described. 

1.1.2 Key components 
The goal of Industry 4.0 is to enhance and improve the efficiency of operations and the 

productivity of new business models, services and products. In order to achieve it, an integration 

of computing and physical processes is needed, the so-called Cyber Physical System (CPS) 

described by Lee et al. (2014). The CPS interacts with the physical system and expands its 

capabilities through computation, communication and control. The interconnection between 

different pieces of equipment and the development of human-machine interfaces allow for 

instant control of the processes and the services with an orientation to the costumers need. The 

Cyber Physical Systems are made of two main elements: 

 a network of objects and systems communicating to each other through the Internet with 

a designated address; 

 a virtual environment that is created by a computer simulation of objects and behaviours 

of the real world. 

For the realisation of a CPS new technologies are needed: Internet of Things, smart sensors, 

advanced robotics, Big Data analytics, 3D printing, augmented reality, cloud computing and 

location detection (see Figure 1.2).    

The connection between communicating physical devices (smart sensors, industrial robots and 

location detection technology) and the network connectivity that enables these elements to 

exchange and collect data constitute the so-called Internet of Things (IoT) (Aztori et al., 2016). 

One of the most important physical devices are the smart sensors. Smart sensors are placed in 

strategical points of the system and measure process variables during the entire process. The 

measured data are collected and stored in a cloud system. The cloud storage is only one of the 

resources of cloud computing. Indeed, the American National Institute of Standards and 

Technology (NIST) defines cloud computing as (Mell and Grance, 2011): “a model for enabling 

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider interaction.” This 

powerful tool has applications in different areas of a company; in particular, it makes the 

handling of Big Data easy and efficient. In fact, a large amount of data is continuously generated 

from different sources and their interpretation and analysis is complex and time-consuming 
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(Yan et al., 2017). Data mining consists of process analysis and information extraction from 

large datasets in order to obtain meaningful value. Data mining techniques are mainly used for 

classification and prediction in order to allow data-based management decisions. Other 

important elements of factories stepping in the fourth industrial revolution are advanced 

robotics and augmented reality. Advanced robotics consists in autonomous and cooperating 

industrial robots that enables flexibility in factories in order to tailor products and services to 

customers. Augmented reality is an enhanced version of physical real-world environments 

augmented with computer-generated images and provides benefits in designing products and 

production systems, training, maintenance and logistics. For design purposes, 3D printing is a 

fundamental technology. It allows the printing of prototypes with reduced costs, but also spare 

parts can be produced reducing inventories and transports. Finally, location detection allows 

tracking spare parts for maintenance purposes and products for both logistic and customer 

satisfaction purposes. In general, all these new and advanced technologies are meant to put the 

costumer, directly or indirectly, at the centre of attention through tailored products and services. 

Companies need to undergo a significant change in their common practices and related attitude. 

This yields to a complete re-developments and re-establishment of processes, products and 

services. However, a well-defined road map to Industry 4.0 is needed due to current absence of 

practical guidelines. For this reason, both researchers and companies are looking for defining 

the best way to obtain the maximum advantage from the fourth industrial revolution. 

 

Figure 1.2. Basic technologies of Industry 4.0 
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1.1.3 Process monitoring and predictive maintenance 
Data mining is a key element of the fourth industrial revolution. Data manipulation and analysis 

is fundamental to obtain valuable information. Moreover, data analysis through advanced 

statistical techniques allow the implementation of process monitoring and predictive 

maintenance. These two elements meet the goals of Industry 4.0: they allow efficient control of 

the process, production optimization, cost reduction and improved customer satisfaction. 

Process monitoring consists in real-time tracking of process condition through online 

measurements of process variables. It is important both for safety reasons and for product 

quality. Indeed, process monitoring allows taking corrective action when the process departs 

from normal operating conditions in order to avoid the final product going out of specification. 

The normal operating conditions are expressed by a model of the system that detects anomalous 

path of processes from early stages. The model of the system can be obtained through different 

approaches: 

 State estimation approach: the online measurements are used to identify the theoretical 

state of the system on the basis of a fundamental model of the process; 

 Knowledge-based approach: the model is built from the knowledge about the process; 

 Multivariate statistical approach: the process model is empirically built through a 

multivariate statistic method based on historical data.  

The last approach is the one used in this Thesis and consists in the creation of a process model 

from a multivariate statistical method of past successful processes. There are multiple examples 

of applications of the multivariate statistical approach in literature. One of this is described by 

Nomikos and MacGregor (1994). They use the Multi-way Principal Component Analysis 

(MPCA) for obtaining the process model of a semi-batch emulsion polymerisation of styrene-

butadiene to make a latex rubber (SBR). The model is calculated from historical values of 

process variables of successful batches and the confidence limits for normal conditions are 

identified. The new batches are then projected into these limits in order to understand if they 

are normal or not while running. Another example of process monitoring using this approach 

is described by Largoni et al. (2015). They present the case of an industrial batch bioreactor 

used in avian vaccine manufacturing. Beside MPCA model, they use Multi-way Partial Least 

Square analysis (MPLS) to monitor the process with regard to the final product quality. They 

managed to predict not only whether the product would be or not on specification, but also the 

value of the quality parameter (in the case of on specification product). 



8     Chapter 1 
 

The same techniques can be also used for predictive maintenance. Unlike the time-driven 

approach of preventive maintenance relying on industrial or in-plant average-life statistics (i.e., 

mean-time-to-failure) to schedule maintenance activities, predictive maintenance (Mobley, 

2002) is a condition-driven approach. It uses direct monitoring of the mechanical condition, 

system efficiency, and other indicators to determine the actual mean-time-to-failure or loss of 

efficiency for each machine-train and system in the plant. It allows carrying out maintenance 

activities at the first signs of imminent failures by avoiding both unnecessary repairs and 

catastrophic failure. Predictive maintenance program is implemented through process variables 

monitoring and other non-destructive techniques (e.g., vibration monitoring, thermography, 

tribology). An example of application of predictive maintenance through process variables 

monitoring is presented by Marton et al. (2013). In this paper, a data driven approach based on 

PCA and PLS is used to detect abnormal patterns that lead an asynchronous generator to failure 

or malfunctioning and to predict these events in order to reduce maintenance costs. 

1.2 Unox 
This Thesis has been done in collaboration with Unox S.p.A., leader in professional cooking 

ovens market. The company produces different series of ovens and distributes them to more 

than 130 countries. Moreover, Unox offers after-sale services like cooking training, support and 

technical assistance. 

1.2.1 Ovens description 
Amongst all the ovens produced by Unox, the MIND.Maps™ series has been considered in this 

Thesis. It consists of two main categories: Chef Top MIND.Maps™ and Baker Top 

MIND.Maps™. As shown in Table 1.1, each category is split into two new sub-categories: 

ONE and PLUS; PLUS ovens are characterised by more advanced technical tools and a wider 

range of cooking options than ONE units. Each sub-category includes oven models with 

different hardware and software characteristics. 

Table 1.1. Categories, sub-categories, models and ovens analysed in the Thesis 

Categories Sub-categories Models  Ovens 
Chef Top 

MIND.MapsTM 
PLUS 36  616 
ONE 6  25 

Baker Top 
MIND.MapsTM 

PLUS 11  171 
ONE 4  14 
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The oven quantities reported in the last column of Table 1.1 do not reflect the actual amount of 

ovens sold by the enterprise, but they correspond to the number of ovens connected to the 

Internet cloud. Chef Top PLUS ovens represent 75% of the ovens registered in the database, 

whereas ONE ovens are the least connected as a choice of the users. 

In general, ovens operate by implementing 8 different cooking programs that are identified by 

a code number (from 2 to 11). In five cooking programs, the user sets autonomously the desired 

cooking parameters by setting their values as piecewise constant/linear functions. The 

maximum autonomy and control of the process the user can exert is reached with the program 

that gives the name to the series (MIND.Maps™). It allows the user to design manually the 

curve of the values of the parameters that the process will follow in each moment. Finally, the 

other three programs are pre-set programs, i.e. the process parameters are already set by the 

company. 

Code number 1 identifies a generic washing program set between two cooking phases. Washing 

programs quality is further specified by another key feature: the duration. Although washing 

duration slightly varies according to the oven model, five types of washing modes are identified: 

1. Type 1: 6-10 min; 

2. Type 2: 30-35 min; 

3. Type 3: 41-43 min; 

4. Type 4: 102-105 min; 

5. Type 5: 143-153 min. 

During a cooking program, some process variables are measured, recorded, collected and sent 

to the cloud through the Internet connection. The total number of variables is six: three of them 

are measured through the oven instrumentation, whereas the remaining three are manually or 

automatically set by the user whenever a pre-set program is chosen. The registered process 

variables are: 

 the temperature measured in the oven chamber; 

 the temperature measured by the core probe placed inside a food sample; 

 the temperature set for the cooking program: it corresponds to the set-point(s) at which 

the oven works; 

 the ventilation set-point: it is an integer value within the range [-4, 4], where negative 

integer values correspond to pulsed ventilation, positive values to continuous ventilation 

and zero means no ventilation in the oven; 
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 the humidity set-point: it is a percentage within the range [-100%, 100%], where 

negative values mean that the humidity is extracted from the oven; 

 the humidity measured in the oven chamber. 

1.2.2 Approaching Industry 4.0 

Unox wants to define its own path throughout the innovation and the digitalization that Industry 

4.0 philosophy brings in. Its goals is to improve the production process, but also to increase the 

quality of the after-sale services. As already mentioned, Unox collects the data from those ovens 

the clients agreed and/or had the possibility to connect to the Internet. Each oven is equipped 

with sensors that measure the variables values and transmits the information about the process 

state. Together with the measured ones, the other set variables are sent to the cloud through the 

Internet of Things structure. In the cloud, data are stored and compressed: the Big Data issue 

arise. The large amount of available data has to be studied and interpreted in order to get useful 

information. The dataset is actually used by the company to improve the technical services, but 

its potential is not fully developed. The information contained in the data can be further used to 

improve both products and services: some of the applications are shown in this Thesis as the 

following section describes. 

1.3 Thesis objectives 

The main objective of this Thesis is to propose an industrial procedure tailored to the company 

for data analysis through advanced statistical techniques. As previously stated, the large amount 

of available data can be studied and analysed in order to obtain useful information. First of all, 

the data of cooking and washing processes are analysed for both process understanding and 

data-driven design. Through the analysis of the measured and set variables, a global 

understanding of both cooking and washing processes is gained. Oven dataset is analysed to 

highlight the most and least used oven functions/modes in order to propose both further 

development of frequently used ones and adjustment/replacement of the least frequently used. 

The main goal of these actions is to simplify the panel interface in order to improve the user 

experience. PCA and PLS methodologies for data mining are implemented for process 

monitoring and predictive maintenance. Process monitoring is used to identify anomalies in the 

cooking programs with respect to the normal operating condition. In order to have high 

precision monitoring an oven-specific model can be obtained from a PCA model. Process 
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monitoring allows the user to have a tight control of the process in order to obtain the desired 

product. Predictive maintenance is implemented in order to include prevention into the after-

sale offered services. The prediction of equipment failures is fundamental in order to avoid 

interruption of oven operation. Indeed, maintenance can be scheduled and action can be taken 

before the problems actually arise. Moreover, useless technical interventions dictated by 

preventive maintenance can be avoided with cost reduction. The prediction of specific 

equipment failures can be carried out through the application of the PLS-DA technique. 

  



 

 

 



 

Chapter 2 

Mathematical background 

In this Chapter the theoretical background on the multivariate statistical techniques used in this 

Thesis (PCA and PLS) is presented, focusing both on mathematical fundamentals and results 

interpretation for practical use. The methodologies described in this Chapter have been 

implemented for process monitoring and predictive maintenance tasks in Matlab® software, 

with the help of PLS Toolbox (Eigenvector Research, Inc., Wenatchee, WA, USA, 2015).  

2.1 Principal Component Analysis 
Principal Components Analysis (PCA) is a multivariate statistical method generally used to 

analyse datasets with a high number of variables. Since industrial processes are becoming ever 

more heavily instrumented and data are collected with ever higher frequency, PCA is one of 

the best technique to compress the huge amount of available data and to extract information 

from process variables. Its goal is to obtain a model that not only provides useful information 

about the studied system but that can also be used for process monitoring. The theoretical 

background of the method is explained in the following section.  

2.1.1 PCA method 
Mathematically, PCA is based on the eigenvector decomposition of the covariance of data 

matrix X (I ✕ J), where I is the number of observations and J is the number of collected 

variables. When the initial matrix is mean-centred (see pre-processing treatments §2.3), the 

covariance of X is calculated as: 

cov(𝐗) =
𝐗′𝐗

𝐼−1
 .                                                                                         (2.1) 

PCA method writes the matrix X of rank ℎ as the sum of ℎ matrices of rank 1, as follows: 

𝐗 = 𝐌1 + 𝐌2 + 𝐌3 + ⋯ + 𝐌ℎ .                                                                                         (2.2) 
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Each of these matrices can be written as the outer product of column vectors 𝐭ℎ and 𝐩ℎ, 

respectively named as scores and loadings. Equation 2.2 can therefore be reformulated as: 

𝐗 = 𝐭1𝐩1
′ + 𝐭2𝐩2

′ + 𝐭3𝐩3
′ + ⋯ + 𝐭ℎ𝐩ℎ

′                                                                                   (2.3) 

or, in a matricial form, as: 

𝐗 = 𝐓𝐏′,                                                                                                                                (2.4) 

where T is the matrix that contains score vectors as columns, while 𝐏′ is made of loading 

vectors as rows. The loading vectors are the eigenvectors of the covariance matrix cov(𝐗); then, 

for each 𝐩𝑖, the following equation is valid: 

cov(𝐗)𝐩𝑖 = 𝜆𝑖𝐩𝑖 ,    i = 1,..., h                                                                                              (2.5) 

where 𝜆𝑖 is the eigenvalue associated with the eigenvector 𝐩𝑖. The loading vectors contain 

information on how variables relate to each other. The score vectors contain information on 

how the samples relate to each other and can be written as the linear combination of the original 

data matrix and the corresponding loading vector, as follows: 

𝐗𝐩𝑖 = 𝐭𝑖,    i = 1,..., h.                                                                                                           (2.6)                                                              

Each (𝐭𝑖, 𝐩𝑖) pair is arranged in descending order according to the associate eigenvalue 𝜆𝑖, that 

becomes a metric of the amount of variance described by each pair. The first pair capture the 

largest amount of information and each subsequent pair captures the greatest possible amount 

of variance remaining at that step. After an adequate truncation, the first 𝐾 pairs can represent 

the initial system using less factors than the original variables.  

The above defined vectors and eigenvalues have been calculated by applying the Singular Value 

Decomposition (SVD) algorithm implemented in Matlab® since it avoids numerical issues due 

to finite precision representation of real numbers. The algorithm decomposes the X matrix into 

the product of three matrices (see Figure 2.1), where the columns of U and V are orthonormal 

and D is diagonal matrix with positive real values. In particular, V is the loading matrix, D is a 

diagonal matrix whose terms are the eigenvalues of 𝐗 and the score matrix is defined as the 

product UD. 
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Figure 2.1. Schematic view of Singular Value Decomposition of matrix X 

From a graphical point of view, principal components concept is represented in Figure 2.2 

through an example for two variables. The first principal component direction is found by fitting 

the data with a line passing through the origin of the axes. The best fitting is found by 

minimizing the distance between each point and its projection on the fitting line or, 

equivalently, by maximising the distances between the projection of the points and the origin 

of the axes (SVD algorithm approach).  

 
Figure 2.2. Graphical representation of: (a) loadings and (b) scores of a two variables PCA 
analysis [Geladi and Kowalski, 1986] 

As it can be seen in Figure 2.2b, the distances of each point from the origin along the PC 

direction are the components of the score vector, the eigenvalue is the sum of the squared 

distances from the origin of each projection and the eigenvector is the versor that goes from the 

origin to the direction of the associated PC. Its projections on the axes of the plot (the direction 
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cosines) are the loadings, 𝐩1 and 𝐩2 (Figure 2.2a); in other words, they are the proportional 

contribution of each variable to the eigenvector. In general, when all the principal components 

are individuated, the variation around the origin for each PC is calculated as the sum of squared 

distances of each sample projection on PC from the origin (definition of eigenvalue) and divided 

by the sample size minus one (𝐼 − 1). Then, the variance captured by each PC is expressed as 

percentage of the total variance captured by all the PCs in order to highlight the importance of 

the principal components.  

The original dataset can be generally described by extracting its first 𝐾 principal components 

without significant information loss. The value of parameter 𝐾 must be lower than the smaller 

dimension of the matrix X and it is determined by looking at the cumulative variance 

represented by the PCs. A limit value for the minimum cumulative variance captured by the 

model can be set to find out the number of PCs needed to achieve it. Otherwise, a more accurate 

way to define 𝐾 can be used: the cross-validation technique. In this procedure, the dataset is 

generally divided into segments and a PCA model is calibrated on the matrix generated by 

extracting one of the segments. The model is then validated through the process data not used 

in the model calibration. The procedure is iteratively repeated and the prediction error is 

calculated in order to evaluate the model predictive power. This error is called Root Mean 

Square Error of Cross-Validation (RMSECV) and is calculated at each iteration 𝑗 as follows: 

𝑅𝑀𝑆𝐸𝐶𝑉𝑗 = √
𝑃𝑅𝐸𝑆𝑆𝑗

𝐼
 ,                                                                                                       (2.7) 

where PRESS is the Prediction Error of Sum of Squares. It is calculated as the sum of the 

squared difference of each sample value and its prediction (𝑥̂𝑖𝑗) through Eq. 2.8: 

𝑃𝑅𝐸𝑆𝑆𝑗 = ∑ (𝑥𝑖𝑗 − 𝑥̂𝑖𝑗)
2𝐼

𝑖=1 .                                                                                                 (2.8) 

The calculated error is then plotted as a function of the number of PCs used. The more PCs that 

describe large amounts of systematic variance are added to the model, the more the error 

decreases; alternatively, the more PCs describing only small noise variance are added, the more 

the error increases. 

When the number of principal components 𝐾 is chosen, the X matrix can be written as: 

𝐗 = 𝐭1𝐩1
′ + 𝐭2𝐩2

′ + ⋯ + 𝐭𝐾𝐩𝐾
′ + 𝐄,                                                                                      (2.9) 

where E is the so-called residual matrix. The decomposition of the X matrix described by Eq. 

2.9 is graphically represented in Figure 2.3: the 𝐾 score vectors with (I×1) dimensions are 
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collected in the (I×K) T matrix, the 𝐾 loading vectors with (1×J) dimensions are collected in 

the (K×J) P matrix and the residuals form a (I×J) E matrix. 

 
Figure 2.3. Decomposition of matrix X in scores, loadings and residuals 

This way the PCA model is obtained and an example of its graphical representation can be seen 

in Figure 2.4: a three variables system represented by two principal components.  

 
Figure 2.4. Graphical representation of PCA results of a system with three variables and 
two PCA (blue axes): the green circles are the samples, the black ellipse represents the 
confidence limits and the red points are samples with high values of model evaluation 
statistics [Wise et al., 2006] 

The figure represents the samples as green circles in the three variables space that actually 

dispose themselves into a hyperplane identified by the directions of the two principal 
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components (blue axes). By considering the new coordination axes, the dimension of the system 

can be reduced. In this case the reduction is of one dimension only, but in larger system the 

reduction is higher and is essential for monitoring purposes. In order to achieve these goals the 

confidence limits can be identified (black ellipse) and the new samples can be projected on the 

hyperplane: through the location of the new samples projections the process can be controlled. 

This type of graphic is going to be used in Chapter 4 of this Thesis for process control. 

2.1.2 Model evaluation statistics 
There are some parameters that can be calculated in order to evaluate how the model represents 

the data: the Q and the T2 Hotelling statistics. 

Q statistic is the Euclidean distance of a point from the hyperplane generated by the retained 

PCs. It is used to evaluate the lack of model fit and it is calculated as the sum of squares of each 

row of 𝑬, as follows: 

𝑄𝑖 = 𝐞𝑖𝐞𝑖
′ = 𝐱𝑖(𝐈 − 𝐏𝐾𝐏𝐾

′ )𝐱𝑖
′,    i = 1,..., K                                                                        (2.10)                                             

where 𝐞𝑖 is the 𝑖𝑡ℎ row of E, 𝐱𝑖 is the 𝑖𝑡ℎ sample in X, 𝐏𝐾 is the matrix of the first 𝐾 loading 

vectors retained in the PCA model and I is the identity matrix. Each row of the residual matrix 

E represents the Q contributions of a given sample and each component of  𝐞𝑖 shows how much 

each variable contributes to the overall Q statistic. The Q statistic indicates how well the 

samples are represented by the model. 

The Hotelling T2 statistic is the sum of normalised squared scores defined by the following 

equation: 

𝑇𝑖
2 = 𝐭𝑖𝛌−1𝐭𝑖

′ = 𝐱𝑖𝐏𝐾𝛌−1𝐏𝐾
′ 𝐱𝑖

′,     i = 1,..., K                                                                      (2.11) 

where 𝐭𝑖 is the 𝑖𝑡ℎ row of scores matrix 𝐓𝐾 and 𝛌 is a diagonal matrix of the first 𝐾 eigenvalues. 

The T2 statistic is a measure of the distance from the multivariate mean to the projection of the 

point on the PCs hyperplane and it is a metric to quantify the variability within the model.  

Confidence limits are established in order to control the process and to define when a Q or T2 

value is considered statistically acceptable. They are based on the assumption of normal 

distribution of the scores. In fact, PCA models have the additional advantage that the scores 

produced which are linear combinations of the original variables, are more normally distributed 

than the original variables themselves. This is a consequence of the central limit theorem, which 

can be stated as follows: if the sample size is large, the theoretical sampling distribution of the 
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mean can be approximated closely with a normal distribution. Since typically the sampling size 

is large, we would expect the scores, which are a weighted sum like a mean, to be approximately 

normally distributed. The confidence limits on T2 is then calculated as follows: 

𝑇𝐾,𝐼,𝛼
2 =

𝐾(𝐼2−1)

𝐼(𝐼−𝐾)
𝐹𝐾,𝐼−1,𝛼                                                                                                       (2.12) 

where 𝐾 is the number of principal components, 𝐼 is the number of samples and 𝐹𝐾,𝐼−1,𝛼 is the 

critical value of the F-distribution with K, (I -1) degrees of freedom and 𝛼 significance level. 

The T2 confidence interval defines the hyperspace in which the projection of the samples are 

located in normal conditions. In a two PCs model this limit is an ellipse, while in three PCs 

model it is an ellipsoid whose semi-axes 𝐬 can be calculated as: 

𝑠𝑖 = √𝜆𝑖𝑇𝐾,𝐼,𝛼
2 ,      i = 1,..., 3.                                                                                               (2.13) 

The Q limit 𝑄𝛼 defines the distance off the plane or the space that is considered unusual for the 

point location. It is calculated as: 

𝑄𝛼 = 𝛳1 [
𝑐𝛼√2𝛳2ℎ0

2

𝛳1
+ 1 +

𝛳2ℎ0(ℎ0−1)

𝛳1
2 ]

1

ℎ0

                                                                              (2.14) 

where 𝑐𝛼 is the standard normal deviate corresponding to the upper (1−α) percentile, ℎ0 is 

defined by Eq. 2.15 and 𝛳𝑟 by Eq. 2.16. 

ℎ0 = 1 −
2𝛳1𝛳2

3𝛳2
2                                                                                                                     (2.15) 

𝛳𝑟 = ∑ 𝜆𝑖
𝑟ℎ

𝑖=𝐾+1 ,       r = 1,..., 3                                                                                            (2.16) 

where 𝐾 is the number of principal components retained by the PCA model and ℎ is the rank 

of X. 

An example of graphical representation of confidence limits and samples with high values of 

Q and T2 statistics is reported in Figure 2.4. The sample with a high value of Q is not represented 

by the model in a statistical satisfactory way; in fact, it is far distant from the hyperplane 

generated by the two PCs. The sample with high value of T2 is located on the hyperplane defined 

by the principal components but it is out of the confidence limits represented by the ellipse. 
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2.1.3 Multi-way Principal Component Analysis method 
In most cases, variables are measured with a certain frequency during the entire duration of a 

process (sample). Time becomes the third dimension of the initial data matrix as shown by 

Figure 2.5. Data have to be manipulated in order to obtain a two-dimensional matrix for PCA 

analysis.  

 
Figure 2.5. 3D data matrix and unfolding for MPCA 

There are several methods to convert a three-dimensional data matrix to a two-dimensional one, 

but Multi-way Principle Components Analysis (MPCA) is the most straightforward approach 

(Wise and Gallagher, 1996). It is equivalent to performing a PCA on a two-dimensional matrix 

obtained from the 3D matrix by the so-called unfolding. Depending on the aim of the analysis, 

the unfolding is mainly done in two ways (Figure 2.5): 

 Variable-wise unfolding: the horizontal (J×K) slices at fixed I are placed one below the 

other along the time axis. In this configuration the variables information is kept together 

and the evolution path of a single variable can be followed in time through the single 

sample. 
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 Batch-wise unfolding: the vertical (I×J) slices at fixed time are placed side by side to 

the right along the variable axis. In this configuration the sample information is kept 

together and the evolution path of a single sample can be followed through the single 

variable in time. 

2.2 Partial Least Squares 
Similarly to PCA approach, Partial Least Squares (PLS) regression is a statistical method based 

on the concept of creating models that represent complex systems with a number of factors 

smaller than the number of original variables; however, the aim of PLS is to correlate two 

datasets (generally, process variables data with product quality outputs) with prediction 

purposes. 

2.2.1 PLS method 
PLS is a statistical technique that can be used to create models relating one or more product 

quality measurements (Y) to collected process variables (X). The main goal of PLS is to find 

factors that capture the greatest amount of variance in the predictor variables (X) and best 

correlate X with predicted variables (Y). These factors correspond to the principal components 

of PCA since they are the direction of maximum variability, but, unlike PCs, they are rotated 

in order to predict the dependent variables of Y matrix. The directions of maximum variability 

are called latent variables (LVs). The number of latent variables retained in a model depend on 

the captured variance and on the prediction power of the model. The predictor matrix X and the 

predicted matrix Y are then decomposed as product of a score matrix (T and U respectively) 

and loading matrix (P and Q respectively) plus an error matrix (E and F respectively): 

𝐗 = 𝐓𝐏′ + 𝐄 = ∑ 𝐭𝑎𝐩𝑎
′ + 𝐄𝐴

𝑎=1 ,                                                                                         (2.17)  

𝐘 = 𝐔𝐐′ + 𝐅 = ∑ 𝐮𝑎𝐪𝑎
′ + 𝐅𝐴

𝑎=1 ,                                                                                        (2.18) 

where A is the number of significant LVs retained in the model. Each score vector is expressed 

as linear combination of the original data matrix as: 

𝐭𝑎 = 𝐗𝐰𝑎,                                                                                                                            (2.19) 

𝐮𝑎 = 𝐘𝐪𝑎.                                                                                                                           (2.20) 
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𝐭𝑎 and 𝐮𝑎 are not independent, but they are linked by the “inner-relationship” 𝐮𝑎 = 𝑏𝑎𝐭𝑎. In 

Eq. 2.19 additional proportionality vectors 𝐰𝑎 (𝑎 = 1,2, … , 𝐴) are introduced: they are called 

weights and their aim is to maintain the orthogonality property of the scores. They have the 

same dimensionality of the loading vectors and express the contribution of each variable to the 

model definition. The PLS model is calculated by implementing Equations from 2.17 to 2.20 

into an algorithm whose goal is to minimize the error matrices ||E|| and ||F||. The Multi-way 

Partial Least Squares (MPLS) analysis is led by performing a PLS on a two dimensional matrix 

obtained by unfolding the 3D matrix as previously seen in §2.1.3.  

2.2.2 Partial Least Squares – Discriminant Analysis 
Partial Least Squares – Discriminant Analysis (PLS-DA) is a specific PLS analysis used when 

the predicted variables Y are categorical. It means that the predicted values are restricted to a 

specific range and then divided into categories through thresholds. The predicted variables can 

be defined as: 

1. a column vector of numbers indicating class assignment for each sample (row): for 

example 𝐲 = [1 1 3 2]′; 

2. a matrix of one or more columns containing logical zeros (= not in class) or ones (= in 

class) for each sample (row).  

For example, 𝐘 = [
1 0
1 0
0 1

]. 

The first option is used when classes are liked by some type of interdependence, while the 

second option allows the use of classes without any relationship at all. In the second case, each 

column of the Y matrix corresponds to a different class and a one value appears only if the 

sample in the X matrix belongs to that class. This specific structure of Y ensures independence 

between classes. PLS-DA calculates the prediction probability and the classification threshold 

for each modelled class. The prediction probability is the probability of each sample to belong 

to a class. It is obtained by fitting the predicted y-values from the model to a normal distribution 

and calculating the probability of observing a given y-value. If there are two classes, the 

probability of a sample to belong to class 1 is calculated as: 

𝑃(𝑦,1)

(𝑃(𝑦,1)+𝑃(𝑦,0))
,                                                                                                                       (2.21) 
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where y is the y-value predicted by PLS-DA model for a sample, P(y,1) and P(y,0) are the 

probabilities of measuring the given y-value for a class 1 sample and a class 0 sample 

respectively. These two probabilities are estimated by the y-values observed in the calibration 

data.  

 
Figure 2.6. Graphical representation of a 2 classes PLS-DA model predictions (blue and 
green bars) and fitting functions to normal distribution (blue and green lines): the red dashed 
line represents the threshold 

Figure 2.6 presents the model predictions of the calibration samples belonging to two different 

classes: the blue bars indicate the values predicted for samples of class 0 and the green ones the 

predictions for class 1. The distribution of each class is fitted to a normal one and the blue and 

green curves are obtained. As it can be seen, the curves cross only once and the corresponding 

x-value is the threshold between the classes (this happens because the number of samplings 

belonging to each class is balanced; otherwise, there would be more than one crossing points). 

It means that the probability of measuring a value of 0.44 for class 1 is equal to the probability 

of measuring the same value for a class 0 sample. Because of the previous normalization, the 

threshold represents the 50% probability of a sample to belong to class 1 (or 0). It divides the 

entire range of y-values into two areas: samples located in the left part of the graph have a higher 

probability of belonging to class 0 and vice versa. Finally, the validation samples are divided 

into the two classes by comparing their predicted y-value to the threshold and calculating their 

prediction probability. 
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2.3 Pre-processing treatments 
PCA and PLS analysis is based on a data matrix with a defined structure. The collected samples 

are located on the rows of the matrix while the measured variables represent its columns. 

However, the variables are usually reported with different units and their own mean/variance 

could be different, as reported in Figure 2.7a. For this reason, data pre-processing treatments 

are often required.  

 
Figure 2.7. Data preprocessing of: (a) raw data, (b) results of mean-centering, (c) results of 
variance-scaling and (d) results of auto-scaling [Geladi and Kowalski, 1986] 

Because of SVD algorithm requests (previously explained), data have to be mean-centred. The 

mean of each variable (column) is calculated by Eq. 2.22: 

𝑥̅𝑗 =
∑ 𝑥𝑖𝑗

𝐼
𝑖=1

𝐼
                                                                                                                          (2.22) 

where 𝑥𝑖𝑗 is the measured value of variable 𝑗 for sample 𝑖 in the matrix. Then, each value of 

the matrix is diminished by the mean of its own column, i.e. the mean profile is subtracted 

from the trajectory of the single variable (see Figure 2.7b). This way, a minor deviation from 

the mean profile is highlighted and its rejection is possible to ensure a tight control on the 

process. 

When process variables have different measurement scales, variance-scaling is used in order to 

obtain unitary variance for all them. The procedure consists of dividing all the values by their 

standard deviations, calculated as follows: 

𝜎𝑗 =
√∑ (𝑥𝑖𝑗−𝑥̅𝑗)𝐼

𝑖=1

𝐼
 .                                                                                                               (2.23) 
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Variance-scaling allows treating all the variables with the same weight and avoids prevailing 

of large measurement scale. The results of this pre-process treatment can be seen in Figure 2.7c. 

Finally, auto-scaling is a pre-processing treatment where data are both mean-centred and 

variance-scaled (see Figure 2.7d). The methods explained in this Chapter are going to be used 

in the following sections: PCA is used for process monitoring case study presented in Chapter 

4, whereas PLS-DA is implemented in Chapter 5 for the predictive maintenance case studies.



 

 

 



 

Chapter 3 

Preliminary analysis 

In this Chapter, the available datasets are described: one Matlab table with cooking programs 

description, the .csv files with the process variables collected for each oven and one Excel file 

with information about all the technical interventions. Then, some preliminary analysis is run 

in order to get global understanding of the cooking and washing processes. The study of oven 

utilisation is fundamental for data-driven design: on the basis of the most and the least used 

functions and modes, the panel interface could be modified and simplified in order to improve 

user experience. 

3.1 Datasets description 
The datasets used for the analysis in this Thesis are extracted from Unox cloud and, after proper 

data manipulation, a Matlab table, a .csv file for each oven and an Excel table are obtained. The 

Matlab table contains information about all the cooking and washing programs of all the ovens.  

 

Figure 3.1. Example of Matlab table structure 

Figure 3.1 shows the structure of the Matlab table: each row represents a cooking or washing 

program, while the columns contain the information about the programs. The data used in this 

Thesis are the following: 

 final user/types of user: refectory, restaurant, deli (gastronomy) or pastry/bakery; 

 timezone: geographical location of the user; 

 model: code model of the oven; 
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 cooking step: number of steps made during the program (“0” is the washing step); 

 detergent: amount of detergent used during the washing; 

 initial and end time: starting and finishing time of each program; 

 energy: amount of energy used during the program; 

 flags: index of interruption of an infinite program (i.e. without ending time setting); 

 device: ID of the specific oven; 

 kind of cooking: typology of program (“1” is a washing program). 

A .csv file is available for each oven. It contains the samplings of the process variables taken 

every 30 seconds during each cooking program. The samplings are chronologically ordered 

without separation between different programs. The collected process variables are 6: the 

chamber temperature, the probe temperature, the temperature set by the user, the fan velocity, 

the set humidity and the measured humidity. Finally, an Excel table with all the technical 

interventions is available. It reports the datetime, the type of oven and the description of all 

technical interventions made by the technical service. 

3.2 Data conversion and selection 
Time dataset is saved in Unix format; the counting is in milliseconds and starts from the 1st of 

January 1970. Firstly, the dataset is filtered to select the programs that were registered in the 

period 2016-2017. 

Table 3.1. Number of programs distributed by year 

Year N° Programs % Programs 
2017 615902 72.62 
2016 233733 27.18 
other 10302 1.20 

As it can be seen in Table 3.1, almost 73% of data belong to 2017, the 27% to 2016 and the 

remaining 1% (10302 programs) is related to different years due to synchronisation issues or 

time setting manipulation by final users. This last information is not implemented in the analysis 

due to its low contribution if compared to the data related to 2016/2017. 

3.3 Reference time period selection 
In order to calculate cooking and washing frequency for each oven, the actual operating time 

period has been identified as follows: 
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 the initial time is set equal to the time of the first cooking program registered for each 

oven (each oven is sold/connected to the Internet in different moments); 

 the final time is chosen as the moment when the last cooking program was performed 

by the oven. 

For the final time choice, another option has been initially considered: setting the final time as 

the moment of dataset download from the cloud. In order to take a decision, different time-

profiles of the ovens have been studied. As it can be seen in Figure 3.2, the registration periods 

of different ovens start and stop at different moments (maybe because the ovens have been 

incidentally disconnected from the Internet, hence interrupting data transmission). If the 

moment of data download would have been chosen, some errors would have been introduced 

during the frequency calculation: for example, for device “213” this would mean dividing the 

number of cooking programs by 18 months instead of 6 months (it is the period of time in which 

the oven was operative). For this reason, the final time of utilization of each oven is set as the 

time of its last registered cooking program. 

 

Figure 3.2. Time profiles of cooking programs of 6 different devices 

Moreover, Figure 3.2 shows that some time-profiles present a rapid step up and down, like the 

ones of device “82” close to cooking programs 200 and 1500; this behaviour indicates that for 

a certain period of time the oven registered a wrong date and then it returned to the actual date 

time. These wrong steps have been eliminated: the counting for the operative time stops when 

a step starts, the duration between the cooking programs with the wrong date calculated and 

added to the total amount; then the counting starts again when the step comes back to acceptable 
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time values. The actual operating period is calculated with this procedure and it is used as 

reference for both cooking and washing programs. Finally, the number of cooking/washing 

programs is divided by the resulting operating period to obtain the weekly cooking/washing 

frequency of the specific oven. 

3.4 Cooking programs analysis 
The analysis of cooking programs is led in order to obtain a full insight of user utilisation and 

use the resulting information for design purposes: programs with low frequency of utilisation 

can be integrated into others or eliminated, while those with high frequency can be further 

improved and/or used to implement new specific oven functions.  

First, the database is studied in an overall view by highlighting the most frequently used and 

the least frequently used ovens. Before implementing data analysis, some filters are introduced: 

1. all the washing programs are excluded to focus only on cooking programs (kind of 

cooking ≠ “1”); 

2. all the cooking programs with duration smaller than 1/2/3/5 minutes are excluded 

because they are considered as technical maintenance events or errors; 

3. all the ovens with a total number of cooking programs smaller than 5 are excluded 

because they are not statistically relevant; 

4. the ovens with a total period of registration smaller than one week are excluded. 

 
Table 3.2. Results of cooking duration based filtering for Chef Top, Baker Top and total ovens 

 Chef Top Baker Top Total ovens 

Filter 
N° of 

eliminated 
programs 

% of 
eliminated 
programs 

N° of 
eliminated 
programs 

% of 
eliminated 
programs 

N° of 
eliminated 
programs 

% of 
eliminated 
programs 

< 1 min 1102 0.2 4536 2 5641 0.7 

< 2 min 13063 2.5 24599 10.7 37902 4.9 

< 3 min 24793 4.7 35749 15.6 60993 7.9 

< 5 min 52583 10.0 50292 21.9 103801 13.5 

 

In order to choose the minimum duration time for the cooking programs retained in the analysis 

(point 2), different thresholds have been tested to avoid the elimination of useful data, as 

reported in Table 3.2. Note that the percentage of eliminated cooking programs is different 

between Chef Top and Baker Top ovens: the filters always eliminate a smaller percentage of 



Preliminary analysis  31 
 

cooking programs for the first category than for the second one. This fact gives an indication 

about the general use of the ovens: program duration is smaller for Baker Top ovens than Chef 

Top ones. In fact, 22% of the cooking programs last less than 5 minutes (against the 10% of 

Chef Top typology). In order to avoid the elimination of almost 11% of Baker Top cooking 

programs with a 2-minutes filter, the 1-minute filter is chosen. In terms of total ovens, only 

0.7% of programs are eliminated with this filter. After filtering, the total number of ovens 

considered decreases from 826 to 800. Then, the weekly frequency of cooking programs 

utilisation is calculated. The number of ovens for each frequency is represented in the histogram 

chart in Figure 3.3 (3 high frequency ovens are removed). Note that the distribution range is 

wide, since it goes from 0 to 180 cooking programs per week. 96.7% of the ovens perform less 

than 100 cooking programs per week: this is a high value considering that it means 14 cooking 

programs per day and that the average cooking program duration is 47 minutes. However, half 

of the ovens has a frequency smaller than 20 cooking programs per week (the red dot line in 

the chart), whereas the mean (the red dashed line in the chart) indicates a value of 29.2 cooking 

programs per week (about 4 a day). This means that, even if there are ovens with high 

frequency, the major part have a low cooking frequency. 

 
Figure 3.3. Distribution of weekly frequency of cooking programs utilization of all ovens. 
The vertical red dot line indicates the median value, the vertical red dashed line indicates 
the mean 

The frequencies are then studied in terms of comparison between Chef Top and Baker Top 

ovens: their frequencies distributions are represented in Figure 3.4. Because of the difference 

in the total number of ovens between the two categories, the amount of weekly cookings for 
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each category is related to the percentage of the total number of ovens registered for each 

category. 

 
Figure 3.4. Comparison between distributions of weekly frequency of cooking programs 
utilization of Chef Top (blue) and Baker Top (red) ovens. The vertical red dot line indicates 
the median value, the vertical red dashed line indicates the mean 

As in the previous analysis, both distributions have high percentage of ovens in the left part of 

the chart, the low frequency area. However, the maximum for Baker ovens is 174 whereas for 

Chef ovens is 122. Moreover, 92.3% of Chef ovens remain under the limit of 100 cooking 

programs per week, whereas the percentage of Baker ovens with less than 100 cooking 

programs per week is 98.5%. The highest peaks of the two distributions have different locations: 

13% of the Chef Top ovens show 8 cooking programs per week, whereas 12% of the Baker Top 

ovens cook 14 times a week. This trend is confirmed by both mean and median: they present 

higher values for Baker Top ovens than for Chef Top ones. All these differences indicate that 

Baker Top ovens users cook more often, but the mean duration of a cooking program is 

significantly lower than the one of Chef Top cooking programs. In particular, the mean duration 

for Baker Top ovens is 24 minutes, while Chef Top cooking programs last 58 minutes on 

average (this tendency was anticipated by Table 3.2). Similar results are obtained if Chef Top 

PLUS and Baker Top PLUS ovens are compared.  

Before studying the typologies of cooking programs used by high and low frequency ovens, a 

general view of cooking program utilisation is presented. 
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Figure 3.6. Cooking programs analysis for all the ovens 

As shown in Figure 3.6, the most used cooking programs are types 1 and 2; in other words, the 

users prefer setting the cooking parameters autonomously in 85% of the cases (both by setting 

them at the beginning of the process or saving them for future cooking). Unox pre-set programs 

are selected in 12% of the cases: the most used pre-set program is cooking type 6 (8%). Finally, 

percentages smaller than 1% are obtained for cooking types 3 and 5. Although these two last 

programs could not be eliminated/integrated in other programs due to their significance in terms 

of marketing strategy, the other programs with small percentage could be integrated or 

improved through final user feedback. Finally, since the first two types are the most used 

programs some simplifications or improvements can be implemented for a better user 

experience.  

The typologies of high and low frequency ovens are now studied and Figure 3.7 shows the 

cooking programs of the 10 most used (left) and the 10 least used ovens (right). It can be 

immediately noticed that, for both cases, cooking types 1 and 2 prevail. However, they occupy 

different pie portions in the two charts. For the high-frequency ovens the cooking type 2 

dominates in the user preference with a percentage of 71%, whereas 28% of the cooking is run 

in the first cooking mode. The two modes are more balanced for the ovens used less frequently: 

the first program is selected in 48% of cases, whereas cooking type 2 has a 45% of preference. 

Furthermore, note that (excluding the two main programs) the other kinds of cooking programs 

represent a total percentage of 6% for the least used ovens, whereas they contribute for the 1% 

for the most frequently used ovens. Once more, the importance of the first two cooking 

programs is highlighted, especially for the most frequently used ovens. Since among them there 

are ovens with up to 170 cooking programs per week (see Figure 3.3), the implementation of 

new features for these two programs appears fundamental for the improvement of user 

experience.  
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Figure 3.7. Comparison of the 10 most used (left) and 10 least used (right) ovens by type of 
cooking programs 

At this point, it is of great interest to study if the same behaviour is shown by the ovens of the 

two categories Chef Top and Baker Top classes; the comparison is shown in Figure 3.8.  

Knowing that, in general, Baker Top ovens have a higher cooking frequency than Chef Top 

ones, the two categories follow the same trend described in the comparison between most and 

least used ovens. Although the first two cooking types are the most used for both categories, 

Baker Top ovens show 78% of cooking type 2 against 15% of type 1, whereas Chef Top models 

use cooking type 1 in 45% of cases against 36% of type 2. Moreover, Chef Top ovens use 

different cooking programs, whereas only cooking type 6 has a percentage higher or equal to 

1% in Baker Top ovens. The results obtained are compatible with the main use of the ovens of 

the two categories; as the name says, Baker Top ovens are mainly used in bakery, where the 

variety of plates to cook is not as large as in restaurants/canteens where Chef Top ovens are 

mainly employed. Moreover, the fermentation processes in bakery are very sensible to changes 

in process parameters; the user thus could prefer to save the cooking settings used in a 

successful cooking and use them rather than change them (cooking type 2). Nonetheless, it is 

possible to use Chef Top ovens in bakery and vice versa, so the exact individuation of a typical 

behaviour is not straightforward. Similar analyses have been carried out for all the other sub-

categories but they are not discussed here due to the low number of registered ovens/cooking 

programs. 
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Figure 3.8. Comparison between Chef Top (left) and Baker Top ovens (right) 

3.5 Washing programs analysis 
The aim of this analysis is to study the washing programs (kind of cooking = “1”) used by 

different types of ovens. It would allow the company to understand the user habits in order to 

implement useful improvements to the washing system.  

The different types of washing programs are tagged by a code that varies locally, depending on 

the specific language of final user; this issue caused some problems in washing type 

identification due to foreign language characters recognition issues during data extraction 

phase. Moreover, washing categories could not be split into groups according to their duration 

because the programs could have been interrupted by the user before the usual washing protocol 

end. The problem was solved by: (i) grouping all the washing programs with the same 

untranslated code; (ii) assigning them to the most similar coded category in terms of mean 

duration time. The following cases have been removed from the analysis: 

 washings that last more than 3 hours: when the detergent finishes during the program, 

the oven waits for a new one and the registration period does not stop at the end of the 

time program; 

 washing programs that are only used by Unox commercials to show the washing 

capability of the ovens during product presentation; 

 washing programs without name or enough information for the analysis; 

 washing programs associated to ovens with a higher number of washings than cooking 

programs: these ovens are commonly used by Unox commercials in product 

presentation.  
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In addition to these filters, the same filters previously described for cooking programs selection 

are maintained and the same operating period is considered to calculate washing frequencies, 

in order to get a common basis for the following analysis. The total number of ovens after 

filtering decreases from 800 to 771 because not all the ovens have a registered washing activity.  

Following the same procedure as for cooking programs, the weekly frequencies of washing 

programs utilisation are obtained and split into different categories. The distribution of washing 

frequencies for all the ovens is represented in Figure 3.9. Washing frequencies go from 0.05 to 

19.05 washings per week, but they are mainly concentrated in the left part of the chart (low 

frequencies). In fact, 91.5% of the ovens are washed less than once a day. Moreover, ovens are 

washed 3 times a week on average, while the median indicates a value of 2.1: half of the ovens 

are washed less than twice a week. Another relevant result is that 5.1% of the ovens are washed 

less than once a month. The fact that ovens are washed so rarely has a negative impact on their 

performances (beside the smell of burning dirt). Dirt accumulates all over the oven, also on the  

 
Figure 3.9. Distribution of weekly frequency of washing programs utilization for all the 
ovens. The vertical red dot line indicates the median value, the vertical red dashed line 
indicates the mean 

resistances, hence slowing down the energy transfer; the resulting temperature field is not 

uniform even though the fans partially compensate for this effect. Moreover, lack of washing 

can have consequences on safety; the thick fat layer accumulated on the resistances can create 

hotspots and even start to burn. For this reason, the company has introduced an automatic 

washing program after a certain amount of chicken cooking programs. However, fat 

accumulates not only during chicken cooking programs and the introduction of an automatic 
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washing program after a pre-set amount of cooking programs should be taken into account; the 

choice has to be based mainly on the type of cooking programs and their duration. From 

expertise analysis, it has to be noticed that cooking programs of Baker Top ovens are usually 

cleaner than the Chef Top. For example, cooking bread (Baker Top) does not dirty the oven as 

much as cooking chicken (Chef Top).  

 
Figure 3.10. Comparison between distributions of weekly frequency of washing programs 
utilization of Chef Top (blue) and Baker Top (red) ovens. The vertical red dot line indicates 
the median value, the vertical red dashed line indicates the mean 

This hypothesis is partially confirmed by Figure 3.10 that represents the comparison between 

distributions of weekly frequency of washing programs utilization of Chef Top and Baker Top 

ovens. Even though both distributions are located in the low-frequency area (left part), the 

Baker Top distribution shows an initial pick of 26% of the ovens that are washed about once a 

month or less. Chef Top distribution is smoother and reaches a maximum value of 14% of the 

ovens in correspondence with a washing frequency of 3 times a month. Moreover, half of the 

Baker Top ovens are washed less than 1.2 times a week, while 50% of Chef Top ones are 

washed less than 2.4 times a week. However, the range of washing frequency values for Baker 

Top ovens is wider than the one associated to Chef Top units (some Baker Top ovens are 

washed more than 17 times a week). This difference in the ranges is also highlighted by the 

differences in the mean values that are smaller than the median values. Baker Top ovens are 

washed on average 2.3 times a week whereas in Chef Top ones the washing program is activated 

3.1 times a week. The same analysis has been done for other sub-categories, but the results are 

similar to those previously explained and they are not discussed in this Thesis.  
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Finally, in order to have a complete insight of the oven utilisation, the study of the different 

washing programs is carried out. 

 
Figure 3.11. Washing programs analysis for all the ovens 

The results of the global analysis on washing programs reported in Figure 3.11 show that there 

is no predominance of any of the 5 washing typologies, although there is a slight tendency to 

use the fastest ones: 65% of washings use the first three programs. Moreover, note that 20% of 

washings use the washing type 5. This means that users prefer to run short or long programs, 

while intermediate programs are less used. These results can be linked to the washing frequency 

through Figure 3.12: it shows the programs of the 30 most washed and the 30 least washed 

programs. 

 
Figure 3.12. Comparison of 30 most used (left) and 30 least used (right) ovens by type of 
washing programs 

All the programs are used both from very frequently used and infrequently used ovens, even 

though for the most used ovens a preference for longer programs is shown. In fact, there is a 

prevalence of washing types 4 and 5 for the most frequently used ovens, while the least 

frequently used use mainly shorter programs: in 70% of cases one of the first three washing 

modes is used. Moreover, it can be noticed that washing type 3 is always the least used for all 
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the type of ovens. For this type of program the integration with the washing type 2 can be taken 

into consideration since there is a difference of only 10 minutes of duration. However, the most 

important aspect highlighted by the results is that the ovens that are washed more frequently 

are also the ones with longer programs and vice versa. This result is contradictory to what one 

may expect; in fact, if the oven is frequently washed, less dirt accumulates and shorter programs 

are enough to clean it up. However, it can be explained by considering that ovens that are 

frequently washed with long programs are the one that perform dirtier cooking.  

Since the cleanliness and dirtiness have been linked to the category to which the oven belongs, 

the washing programs typology analysis is run over both Chef Top and Baker Top ovens. The 

results of the comparison is reported in Figure 3.13. There is no significant differences between 

the two categories: all the washing programs show very similar percentages of usage. Washing 

types 1 and 2 have the same percentage in both cases while there is only a slight increment of 

type 5 and a subsequent decrease of type 3 for the Baker Top ovens (and vice versa). This result 

contradicts the hypothesis that Baker Top ovens perform cleaner cooking, but confirms the fact 

that ovens from both categories can be used by different users to cook different type of food, 

so there is not a net distinction of user type. 

 

Figure 3.13. Comparison between Chef Top (left) and Baker Top ovens (right) 

The analysis of different sub-categories produces results similar to those presented above and 

are not reported in this Thesis. 

 



 



 

Chapter 4 

Case study 1: Process monitoring 

In this Chapter an exemplificative case study of process monitoring is shown. Process 

monitoring is obtained through a PCA model based on historical data collected for the Baker 

oven “1816”. Although the model is oven-specific, the proposed procedure can be used for each 

oven in the database to detect (during early stages of the program) the cooking programs that 

do not follow the normal operating conditions.  

4.1 Oven and data selection  
In this Thesis, the process monitoring procedure is described for a specific oven. Theoretically, 

a model could be obtained for all the ovens or for a specific category of ovens, but increasing 

the number of ovens the model would include different behaviours, hence becoming less 

sensitive to small variations and changes.  

The oven presented in this Thesis as an illustrative case study is a Baker one with a low weekly 

washing frequency. The oven identified by the ID number “1816” has been chosen because it 

belongs to the 26% of the Baker ovens that are washed less than once per month (the major 

category represented in Figure 2.10). In fact, it has registered only one washing program during 

the 5 months of operating period. Moreover, the oven presents a low weekly frequency of 

cooking programs: it registered 2.5 cooking programs per week on average.  

As already mentioned in Chapter 3, the samplings of the process variables are stored in a .csv 

file for each oven. Since the different cooking programs are not discernible in these files, they 

are identified through the Matlab table that contains starting and finishing time of all the 

programs (see §2.1). Crossing the information given by these two files allows identifying the 

process variables associated to a specific cooking program (as shown in Figure 4.1). Moreover, 

since a batch-wise unfolding approach is not directly feasible due to the different duration of 

each cooking program, a preliminary downsampling procedure is conducted by selecting the 

same number of equidistant time samples for each cooking program. In this case, the total 

number of cooking programs identified for this oven is 82. For each program, 20 evenly spaced 
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rows are selected; the programs with less than 20 rows are eliminated. After this step, the 

number of cooking programs is reduced to 52: this means that 30 cooking programs last less 

than 10 minutes. It is important to notice that all the cooking processes of the oven are run using 

the cooking type 1. Finally, the 3D data matrix is created as shown in Figure 4.1: the 52 cooking 

programs are arranged along the vertical side (samples), the 6 process variables along the 

horizontal side and the 20 sampling times recede into the figure. 

 
Figure 4.1. Graphical representation of 3D matrix creation and unfolding for PCA analysis 

4.2 Pre-processing and unfolding 
In order to implement PCA analysis, batch-wise unfolding is carried out on the 3D matrix. The 

vertical slices (I×J) at constant time sampling are placed side by side along the variable axis. 

The resulting 2D matrix (represented in Figure 4.1) has 52 rows and, as columns, the 6 variables 

set/measured at the first sampling time, then the 6 variables for the second one and so on to the 

last one (sample 20). The final matrix dimension is 52×120. 

Before PCA implementation, pre-processing treatments are done on the matrix. Since the 

analysis is run with the SVD algorithm and the process variables have different measurement 

scales, data matrix auto-scaling is performed.  
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4.3 Process model 
In order to select the number of principal components to retain in the model, the PCA analysis 

is run with all the possible principal components (i.e., the minor size of the matrix) and the 

graphical representation in Figure 4.2 is obtained.  

 
Figure 4.2. Graphical representation of the cumulative variance captured by the principal 
components 

Figure 4.2 represents the monotonically increasing profile of the cumulative variance with 

respect to the number of principal components. It allows the evaluation of the contribution of 

each subsequent PC to the total cumulative variance. The curve reaches 99% with the 10th 

principal component, but a value of cumulated variance higher than 95% can be achieved with 

5 components. As pointed out in Table 4.1, the first component captures the largest amount of 

variance (56% of the variance in data is represented by the first PC). The second one captures 

21% of variance and the third one another 10% of data variability. In summary, 86% of data 

variability is explained with only three principal components. From the fourth principal 

component the captured variance is less than 5%.  

Table 4.1. Variance captured by the first three principal components 

PC % Variance 
Captured 

% Cumulative 
Variance Captured 

1 55.98 55.98 
2 20.54 76.52 
3 9.79 86.31 
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Figure 4.3. Time profiles of variable contributions to PC1 (left) and to PC2 (right) 

As already mentioned, the number of retained principal components is chosen on the basis of 

the percentage of the cumulative variance described. For this first explorative PCA analysis, 

86% of the variance is considered enough to represent the system since information loss is low; 

for this reason, a three principal components PCA model is built.  

In Figure 4.3 the time profiles of the contribution of the original variables to the definition of 

the principal components are shown: the left chart represents the contributions of each original 

variable to the definition of PC1, whereas the right one shows the contributions to PC2. Only 

these two PCs are shown because they capture the highest amount of data variance. As it can 

be seen, the measured humidity has no effect on both PCs, whereas the set humidity has a 

positive effect on both of them (similar values). The set temperature has symmetrical effects on 

the PCs. For both PCs, it has a constant profile after a small initial variation: it assumes positive 

values for the first PC, whereas negative values for the second. The set ventilation has a positive 

effect on both PCs. The profiles start from (almost) the same positive value and at the 6th 

sampling moment decrease for the first PC and increase for the second one. Then, they both 

stabilise around a fixed value with slight variations. As expected, the chamber temperature and 

the probe temperature vary in the same way for both PCs, even though there is a small difference 

between the two profiles for PC2. Both profiles start from positive values, vary till the 6th 

sampling time and then stabilise to a constant value. However, while for the first PC they 

increase and stabilise to a positive value, for the second one they decrease and stabilise to a 

negative value. Set ventilation, chamber and probe temperatures present correlated patterns: in 

fact, the two temperatures vary at the beginning when set ventilation is constant, whereas set 
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ventilation starts to vary when the two temperatures are almost constant. This fact represents 

the actual behaviour of the system. During the preheating phase, when ventilation is set by 

default to 4 (constant), the goal is to heat up the oven in minimum time. This default choice can 

be explained by considering the heat transfer mechanism. Heat is first transferred from the hot 

serpentine to the adjacent air by conduction and then it is transferred to the whole oven by 

convection. In order to reach the goal and since forced convention (created through external 

ventilation) has a higher heat transfer rate than natural convection (without external ventilation), 

the maximum ventilation is used. Then, when the oven reaches the set temperature, the 

ventilation varies according to the user settings. Finally, the slight variation towards zero of the 

measured temperature profiles at the end of the cooking can be ascribed to oven door opening 

for final food quality check. 

4.4 Model evaluation statistics 
Once PCA model is built, T2 Hotelling and Q statistics are evaluated as explained in Chapter 2. 

The cooking programs that present high values of these statistics usually present anomalies and 

should be examined one by one to assess if they must actually be neglected in model calibration.  

4.4.1 T2 Hotelling statistic 
The scores plot is reported in Figure 4.4; the cooking programs are represented with different 

colours and numbers in chronological order as the colorbar shows. Moreover, the dashed line 

ellipsoid represents the 95% confidence limits of the Hotelling T2 statistics. It can be seen that 

cooking programs 50 and 52 are located out of the limits. This means that they present some 

values in the process variables that are far away from the multivariate mean of oven “1861” 

cooking programs. However, while cooking 50 departs from the ellipsoid mainly along PC3 

direction, cooking 52 is located out of the confidence limits along the first two principal 

components directions. Since PC1 and PC2 represent the highest percentage of data variability, 

the samples located far from the confidence limits in these directions are the ones that present 

the largest distances from the multivariate mean. The variable profiles of the 52th cooking 

present anomalies if compared to the other cooking programs included in the model. This 

statement is confirmed by Figure 4.5 where the T2 statistic values of each cooking program are 

represented by a bar. In fact, cooking 52 assumes the largest value and is represented by the 

highest bar in the plot. Cooking programs 50 and 26 also (slightly) overcome the red dashed 
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line that represents the 95% confidence limits, but their T2 values are smaller than the one 

related to the 52th cooking.  

 
Figure 4.4. 3D scores plot of the cooking programs of oven “1816”: the colorbar on the 
right represents the chronological sequence of the programs and the ellipsoid defines the 
confidence limits 

As already noted, the T2 statistic points out samples that do not follow the normal operating 

conditions, but are still in the subspace defined by the principal components retained in the 

model. In order to understand the reason of the high values, the time profiles of the 6 process 

variables of programs with high T2 values are studied and compared to the time profiles of the 

cooking with the lowest T2 value. First, the cooking program that is more similar to the mean 

profile is studied; in this case, it is cooking 14, because it is associated to the minimum value 

of T2. The variable profiles of cooking 14, shown by Figure 4.6, represent normal operating 

conditions for the considered oven. In particular, the set temperature and ventilation are set 

equal to 120°C and 4, respectively. The measured and set humidity assume zero value. The 

only variables that change are the temperature in the chamber and the temperature of the probe 

placed inside the food. They both start at 37°C, increase for about three minutes, then overcome 

the set-point. However, since the set-point on the temperature is used to control the chamber 

temperature, this last stabilizes slightly above the set-point (120°C), whereas the probe 

temperature increases to a maximum of 137°C and then gradually decreases. Note that 

temperature drops for both the two measured temperature profiles. The fast rate of temperature 

decrease and rise around 13.5 min can be attributed to door opening and closing for quality food 
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checking, respectively. This behaviour has not been considered as an anomaly since it belongs 

to normal operating conditions.  

 
Figure 4.5. Hotelling T2 statistic for each considered cooking program of oven “1861”: the 
red dashed line represents the confidence limit of 95% 

Cooking program 14 has been considered as the reference state for the cooking programs in 

oven “1861” in order to compare it with programs with high values of T2 statistic. As an 

exemplificative case, the cooking program with the highest T2 statistic (number 52, as shown 

in Figure 4.5) is now considered. Its process variables profiles are reported in Figure 4.7. The 

most important difference between this program and the reference case is the temperature set 

value (30°C, the minimum possible for the oven). Another difference consists in the variation 

of the temperature profiles for both the probe and the oven chamber. Unlike program number 

14, the two temperatures do not increase concurrently, but, apart from an initial transient, the 

chamber temperature decreases as the probe temperature increases. This behaviour is due to the 

fact that the food placed in the oven is at a low temperature (8.8 °C). When heating is switched 

on, the temperature in the chamber rapidly increases and reaches the set-point, whereas the core 

probe does not measure this trend. In fact, the temperature rise has an immediate effect only on 

the external layer of the food, which is heated up and presents preliminary superficial water 

evaporation. The evaporation causes a small decrease in the food internal temperature (after 

about 2.4 min) because the latent heat is absorbed from both the chamber and the food core. 

Although this effect is usually negligible and is not measured, here it is intensified by the 

humidity absorption set by the user. Then the probe temperature increases to a final value of 

22.5°C, while the chamber temperature slowly decreases under the set-point. 
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Moreover, a difference in ventilation setting can be noticed: in cooking program 52 it is set 

equal to 2 against the maximum value (4) of program 14. This partially explains the difference 

in the temperature rate of change. Finally, the reason why cooking 52 is considered an 

“abnormal” cooking is that the oven was used to warm up some cold food at low temperature 

while all the other are programs are used to cook the food. 

As reported in Figure 4.5, the cooking program 50 presents a high T2 value. It has been studied 

in the same way as presented before. The discussion is not reported here; yet, program 50 has 

been eliminated together with cooking program 52 since similar differences in the process 

variables have been detected. 

4.4.2 Q statistic 
Q statistic is evaluated to detect the cooking processes that are not represented by the model. 

Unlike the T2, the Q statistic underlines the points that are not included in the subspace defined 

by the first three principal components. As reported in Figure 4.8, the programs that overcome 

the confidence limit of 95% are number 25, 26, 48, 49 and 51. Cooking program 26 has the 

highest bar in the plot, meaning that its behaviour is the worst represented by the model. Its 

variables profiles are reported in Figure 4.9. If compared to the profiles of program 14, 

significant differences are not detected. In cooking program 26 the chamber and the probe 

temperatures increase at first while the ventilation is set to 4 by default: this is the preheating 

range. 

Figure 4.7. Variables time profiles of cooking program 52 
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Figure 4.8. Q statistic for each considered cooking program of oven “1861”: the red dashed 
line represents the confidence limit of 95% 

Then, when the preheating finishes, the ventilation assumes the value set by the user and a 

negative pick is registered. It can be interpreted as the oven opening (that corresponds to a 

temperature decrease) in order to place the food and then door closing that allows the 

temperature to increase again. Since this behaviour is also present after 4 min in program 14 (it 

is not so evident due to the effect of downsampling), it is not considered as an anomaly. The 

same downsampling effect can be seen on the measured temperatures of cooking program 26; 

there is not an evident pick just before the process end that indicates the door opening/closing 

to check the food, like in program 14. It is barely visible around 14 min. In general, the Q 

statistic high value of cooking program 26 is not justified from a physical point of view; the 

time profiles of the process variables do not present anomalies and process behaviour do not 

differ from a normal cooking process. For this reason, sample 26 is not excluded from the 

database. 

On the contrary, for other cooking programs the high values of Q statistic are justified by 

looking at their process variables time profiles. As shown in Figure 4.10, temperature profiles 

of chamber and core probe of cooking program 49 are very irregular. They start from about 

80°C and they never reach the set-point. The profiles decrease many times during the cooking 

duration because of the oven door opening and no preheating phase is registered (users can 

choose to skip it). In fact, the ventilation is initially set to “3” (not to the default value “4”) and 

then switched to “4”. It can be concluded that cooking program 49 does not represent the normal 
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conditions of a general cooking for the studied oven. For this reason, it is eliminated from the 

database as an outlier. 

 
Figure 4.9. Variables time profiles of cooking program 26 

This analysis is done for all the other programs that are not well represented by the model and, 

when physical explanation for high values of statistics are found, the program is eliminated. In 

the studied model, cooking programs number 48, 49, 50, 51 and 52 are eliminated and the new 

model can be developed.  

 

Figure 4.10. Variables time profiles for cooking program 49 
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4.5 Final process monitoring model 
After outliers elimination, the final PCA model is recalculated by following the same procedure 

described in the previous sections. The retained number of principal components is maintained 

equal to 3 and the model captures 93% of the total variance; with an elimination of only 5 

samples the model gains a 7% in the captured variance.  

 

Figure 4.11. 3D scores plot of the cooking programs of oven “1816” final model 

Figure 4.11 represents the score plot of the model obtained. Samples 25 and 26 are placed out 

of the confidence limits. The common characteristic of the two cooking programs is the 

variation in the ventilation set by the user after the preheating phase (as it can be seen in Figure 

4.9 for cooking 26). Even though this condition is not represented by the model, the captured 

variance reaches a high value without eliminating these two samples and the model is retained.  

However, if higher accuracy is needed, the presented procedure can be repeated iteratively and 

the definitive model can be found. 

The obtained model can be used for future monitoring of cooking programs of the selected 

oven. Then, the programs running in conditions different from the normal ones can be detected. 

The user can identify these cooking programs and modify the operating conditions in order to 

match the product specifics. Moreover, the intervention of the technical service can be 

requested in order to detect malfunctioning through further analysis.  

 



 



 

Chapter 5 

Case study 2: Predictive maintenance 

Prediction of equipment damage or rupture would allow the client service to take action before 

problems actually arise during normal operation. In this context, PLS-DA methodology is a 

suitable tool to predict abnormal process conditions leading to oven malfunctioning. In this 

Chapter the application of PLS-DA technique to two case studies dealing respectively with 

gasket and core probe damage prevention is discussed. 

5.1 Gasket substitution 
Oven gasket is used to guarantee both perfect insulation and uniform temperature profiles inside 

the oven. However, process operation at critical conditions such as high temperatures and high 

humidity may reduce gaskets lifetime, hence lowering oven performances. Although the 

company has already implemented technical solutions to decrease gasket damage occurrence, 

no data-driven procedure is currently available to predict damage/rupture events. Although 800 

ovens are linked to the company cloud storage, the total number of gasket substitutions 

registered in 2016/2017 is equal to 15. On the one hand, it means that the technical solutions 

implemented by the company are already efficient; on the other hand, the low number of 

registered damages limits the activity related to this case study for PLS-DA model calibration. 

Further data should be collected to validate the model in a statistically sound way. 

The available data have been rearranged as shown in Figure 5.1. Each row of X matrix contains 

the values of the 6 process variables (chamber, core probe and set temperatures, ventilation and 

measured and set humidity) sampled at 20 evenly spaced time points for 20 consecutive cooking 

programs. In total, the number of columns of matrix X is 2400 (6 variables × 20 sampling times 

per cooking program × 20 cooking programs). This matrix structure has been chosen to consider 

gasket damage dependence on previous oven history. The response matrix Y is reduced to a 

column vector y, whose ith component assumes value “0” if no technical intervention is 

registered for the final cooking program of the sequence represented in the ith row of X matrix, 

or “1” in case of gasket substitution after the 20th program. The total number of rows of X and 
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y is 30 in order to have the same proportion of sequences of cooking programs with gasket 

substitution (15) and sequences of cooking programs without technical intervention (15). 

Although this choice reduces the samples to a small number, it avoids the misbalance between 

classes and allows maintaining the predictive capability of the model. If class “0” would contain 

a larger number of samples than class “1”, PLS-DA analysis would not detect the differences 

between the two. In fact, it would create a model that interprets the cooking sequences with a 

technical intervention as abnormal as other cooking sequences without intervention, only due 

to their distance from the multivariate mean. This way the prediction would not be accurate 

even with a high number of latent variables. 

 

 

Figure 5.1. Graphical representation of data matrix X and vector y structure used for PLS DA analysis 

In order to select the sequences of cooking programs belonging to class “0”, 50 simulations are 

run. For each simulation, 15 sequences are randomly chosen and included in X matrix. The 

following results are related to the case with the best prediction for y vector.  

The auto-scaled X matrix and the response vector y are used to calibrate a model with a PLS-

DA analysis. As previously mentioned, this type of analysis is based on the rotation of the 

principal components in order to explain the variability in y (i.e. to highlight the differences 

between the cooking sequences followed by a technical intervention and those that are not). As 
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shown in Table 5.1, 86% of the y variability (and 22% of the variability of the X matrix) is 

explained with only 2 latent variables. 
Table 5.1. Variance captured by the first four latent variables for both X and y-block 

 X-Block y-Block 

LV % Variance 
Captured 

% Cumulative  
Variance Captured 

% Variance  
Captured 

% Cumulative Variance 
 Captured 

1 17.27 17.27 34.51 34.51 

2 4.74 22.01 51.62 86.13 

3 5.76 27.77 9.79 95.92 

4 5.68 33.44 2.63 98.55 

The prediction power of a model is evaluated through its ability of fitting the calibration data. 

Even though the 2 LVs model is able to assign all the samples to their original class, its 

prediction power is not sufficient: the model has a low coefficient of determination R2 (0.86). 

For this reason a 4 LVs model is calculated; the model reaches a R2 of 0.99 with only two more 

latent variables. The fitting of the model is shown in Figure 5.2. The blue spots are the samples 

predictions made by the model versus their original values (measured). The y vector contains 

zero and one values (because of its construction), while the predictions show distributions that 

spread in a wider range. If these distributions were fitted to a normal one, they would cross each 

other in correspondence to the threshold. This means that a predicted y-value of 0.46 has a 50% 

chance of being in class “1” (or “0”). By setting this threshold of 50% of probability, the two 

area of the classes are delimitated: samples with higher values than 0.46 have a higher 

probability of belonging to class “1” and vice versa.   

Figure 5.2. Capacity of 4 LVs model of fitting the measured data: the blue spots are the 
samples predictions, the horizontal dashed line represents the threshold and the red and the 
green lines represent the fitting and the identity line respectively 
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In Figure 5.2 there are no spots crossing the threshold meaning that all the predictions are 

accurate. Moreover, we obtained high goodness-of-fit since the red line (fitting) and the 1:1 

green line are almost overlapped. 

 

Figure 5.3. Mean weights of the 6 variables on the 1st (a) and 2nd LV (b): the blue bar 
represents the mean weights of all the cooking programs and the red and the yellow bars 
represent the mean of the last 10 and 5 programs before the intervention respectively  

The effect of each of the 6 measured/set variables and their importance is studied through their 

weights on the principal LVs. The variables mean weights on the first and the second latent 

variable are shown in Figure 5.3: the blue bar represents the mean weights of all the cooking 

programs and the red and the yellow bars represent the mean of the last 10 and 5 programs 

before the intervention, respectively. The first latent variable is characterised by low 

temperatures (Figure 5.3a); with respect to the ones of user set and core probe, the chamber 

temperature is lower and it diminishes especially in the last 5 cooking programs. This result is 

justified by the gradual sealing loss of the gasket that does not provide a perfect insulation, thus 

preventing the achievement of the temperature set-point (the temperature in the chamber is 

lower than the one set). The humidity has a positive contribution; the cooking programs before 

the technical intervention have high values of humidity. As it could be expected, high humidity 

conditions can ruin the gasket. Finally, the ventilation gives a small negative contribution to the 

first LV; the cooking programs are characterised by pulsed ventilation.  

The second latent variable (Figure 5.3b) is characterised by positive values of chamber 

temperature and ventilation that increase in the last 5 cooking programs. This means that 52% 
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of the cooking programs have high temperatures in the chamber and continuous ventilation. 

Negative contribution to the second LV is given by the set temperature. At first glance, the anti-

correlation between the chamber temperature and the set one seems contradictory, especially if 

compared to the previous results. However, it points out the existence of a new behaviour that 

is analysed through the variables time profiles of the programs sequence that occupies the 29th 

row of the X matrix (Figure 5.4). 

 

Figure 5.4. Time profiles of chamber temperature (blue) and set temperature (yellow) of the 
programs sequence occupying the 29th row of X: the dashed lines represent the starting point 
of a new cooking program 

In general, the profiles are irregular with both positive and negative peaks. The peaks of the 

chamber temperature can be explained by: 

 the oven opening that causes significant heat loss; 

 the changes in the set-point. 

The peaks in the set temperature profile are due to the user action that changes the set-point 

temperature during the cooking process. In particular, the negative deflections are very 

pronounced. The chamber temperature profile cannot follow properly the set-point profile when 

it goes down to low values because of the absence of a cooling system; the dispersion of the 

excess heat takes place only through transfer to the food and to the outside of the oven. 

However, these heat transfer processes are slow and during the time intervals needed to reach 

the low set-point, the chamber temperature turns out to be higher than the set one. This 

observation explains the anti-correlation between the two variables. Finally, it can be concluded 
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that these sudden changes in temperature act on the gasket deteriorating its elastic properties 

and thus its insulation capacity. 

Summing up, a technical intervention to the gasket is preceded by: 

 in 35% of cases, cooking programs with high humidity, low temperatures and pulsed 

ventilation; 

 in 52% of cases, cooking programs with frequent changes in set temperature which 

determine a gap between the chamber temperature (which is high) and the set 

temperature (which is low) and continuous ventilation. 

5.2 Core probe intervention 
The following analysis is run on technical interventions on core probe with the aim of predicting 

malfunctioning and failure. This would avoid the interval between the damage and the 

substitution during which the client is not able to exploit all the oven potentiality and he/she is 

forced to change cooking program with negative consequences on the final product. If this may 

not seem a big problem for restaurants or canteens, the repeatability of the result is fundamental 

for large distributions where all the recipes are fixed and strictly followed. 

The core probe is placed inside the food needed to be cooked and it is usually exposed to a wide 

range of temperatures that goes from some grades below zero to almost 300°C. The food 

temperature and the cooking conditions can damage the sensors or the core probe in general. 

The total number of this type of intervention is 21 during 2016/2017. 
 

Table 5.2. Variance captured by the first six latent variables for both X and y block 
 X-Block y-Block 

LV % Variance 
Captured 

% Cumulative  
Variance Captured 

% Variance  
Captured 

% Cumulative Variance 
 Captured 

1 10.19 10.19 41.81 41.81 

2 8.53 18.72 28.56 70.38 

3 16.72 35.44 7.93 78.30 

4 7.09 42.53 10.49 88.79 

5 4.67 47.21 6.54 95.34 

6 2.60 49.81 3.39 98.73 

 

The X matrix and the y vector are built as shown in Figure 5.1 for the previous case study. X-

block has the dimensions of 2400 columns per 42 rows, while the y vector is composed of 21 

cooking programs sequences followed by technical interventions (class “1”) and 21 sequences 
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without intervention (class “0”). As in the previous case, the 21 cooking sequences without 

technical intervention are chosen randomly from the ovens that do not present technical 

interventions at all during the studied period. The randomness component of the dataset makes 

necessary a large number of simulations: here the best case is presented. Before the PLS-DA 

analysis is started, both X and y are split into calibration and validation dataset with the 

proportion 80/20. After auto-scaling, the model is calibrated on a (34 × 2400) X-block and (34 

× 1) y-block. As it can be seen in Table 5.2, the first 3 latent variables capture 78% of the y 

variance with only 35% of the X variance. Like the previous case study, the model is able to 

perfectly predict all the samples, but fitting is not close enough to the real data. Since goodness-

of-fit is important to obtain a reliable predictive model, the number of latent variables is 

increased to 6 obtaining a model that captures 99% of the y variance and 50% of the X one.  

 

Figure 5.5. Mean weights of the 6 variables on the 1st (a) and 2nd LV (b): the blue bar 
represents the mean weights of all the cooking programs and the red and the yellow bars 
represent the mean of the last 10 and 5 programs before the intervention, respectively  

Figure 5.5 shows the mean weights of the measured/set variables on the first two LVs: the blue 

bar represents the mean weights of all the cooking programs, while the red and the yellow bars 

represent the mean of the last 10 and 5 programs respectively. The major contribution to the 

first latent variable is the ventilation (Figure 5.5a). It assumes positive values (i.e. continuous 

ventilation) that increase for the last 5 programs. Ventilation is the key element in heat exchange 

through forced convection (like in this case); the higher the air speed, the higher the heat 

exchange and the temperature variation. Besides low set-point temperature and heat dispersion, 
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this aspect contributes to the negative trend of the chamber temperature. The high rate of heat 

exchange between the chamber and the food – that has a lower temperature in the last 5 cooking 

programs – produces a decrease in the chamber temperature even below the set-point.  

42% of cooking programs represented by the first LV are characterized by chamber 

temperatures that are constantly lower than the set-point. Probe and set temperatures also have 

a decreasing trend: they assume high values during the first cooking programs and then their 

contributions is almost null during the last 5 programs. This could be explained by the fact that 

the initial high temperatures measured by the core probe could have damaged the core probe 

itself. Finally, the first LV is characterised by positive and almost constant values of humidity 

both set and measured. The predominant contribution to the second latent variable is given by 

the chamber temperature; the cooking process run before the technical intervention presents 

low chamber temperature values for the 5 immediately preceding cooking programs. Low 

chamber temperature means low heat exchange rate and thus high time-contact between the 

core probe and the cold food. Low temperature could have damaged the core probe. In fact, 

core probe temperature assume negative values during the last cooking programs. Notice also 

the inversion of the core probe temperature contribution: the first cooking programs are 

characterised by positive values, while the last 5 programs assume negative values. In almost 

30% of cases, the core probe damage is preceded by cooking programs that register firstly high 

core probe temperature and then low. This inversion can cause mechanical problems to the core 

probe itself. A similar but opposite inversion can be observed for the ventilation. It goes from 

negative values to positive ones in the last 5 programs, i.e. the first cooking programs are run 

with pulsed ventilation while the last 5 present continuous ventilation. Finally, the humidity 

gives a small contribution to the second LV that in absolute value increases for the last 

programs. 

Even though core probe temperature gives some contributions to both latent variables, it is not 

the predominant variable that indicates a core probe malfunctioning or damage as one could 

imagine. However, in both LVs it assumes a decreasing trend that could be associated to sudden 

variations in the measured temperature. 

Summing up, the core probe substitution is preceded by: 

 in 42% of cases, cooking programs with high continuous ventilation, chamber 

temperature constantly lower than the set-point, decreasing temperatures with high 

initial values for the probe core (that could have damaged it) and relatively high 

humidity; 
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 in 29% of cases, cooking programs with low chamber temperature, inversion in the core 

probe temperature contribution from positive to negative values and change in the type 

of ventilation from pulsed to continuous. 

Finally, the model can be validated. The data used for validation are collected in a (8 × 2400) 

matrix and processed in the calibrated PLS-DA model for core probe damage prediction. 

Table 5.3. Confusion matrix of PLS-DA prediction 

  Actual class 

  No intervention Fault 

Predicted class 
No intervention 37.5% 0 

Fault 12.5% 50% 

The results of the prediction are shown in the confusion matrix of Table 5.3. The model is able 

to correctly predict the outcome of 87.5% of the cooking sequences; furthermore, the only 

sample that has not been properly classified corresponds to a normal cooking sequence 

misclassified as a set of cooking programs with final technical intervention. This means that a 

cooking sequence that leads to a technical intervention is always identified; this fact guarantees 

the reliability of the obtained model. However, the fact that technical interventions can be done 

on ovens that works properly means money loss. Further data should be collected to improve 

the performance of the current model.  

In general, it can be stated that the proposed methodology is useful for the identification of the 

patterns that precede a technical intervention. The process variables express the state of the 

system allowing the prediction of failures and malfunctioning. The strength of this method 

consists of its ability of including in the model multiple patterns and process variable 

covariation to predict the appropriate moment to perform maintenance. 



 



 

Conclusions 

In this Thesis an industrial procedure for data analysis through advanced statistical techniques 

is proposed. Some specific analyses are run in order to extract valuable information from the 

large amount of available data. Cooking and washing processes are studied for data-driven 

design purposes. Through user preferences study, most and least frequent used modes are 

identified and their improvement through simplification or new features introduction would 

positively affect the user experience.  

Multivariate statistical techniques are then used for process monitoring and predictive 

maintenance. Process monitoring is implemented through PCA analysis and a model is obtained 

to detect cooking processes that do not follow normal operating conditions. The aim is to take 

action on the process in order to reject disturbances that can affect the product quality thus 

keeping the process under control. In order to obtain a highly sensitive model an oven-specific 

one has been created. The analysis of the cooking processes with high values of Q and T2 

statistics was used to define oven normal operating conditions and delete outliers. In order to 

evaluate the outliers exclusion their effect on the captured variance of the model have been 

considered, too. The final model was able to capture 93% of the data variance with only 3 PCs. 

The same procedure can be applied to other ovens or to categories or sub-categories to obtain 

a model that can be automatically implemented as the controlling law for the processes. 

Predictive maintenance is implemented through PLS-DA technique to two different technical 

interventions: gasket and core probe substitutions. The aim is to predict a failure before it occurs 

in order to avoid production interruptions and money loss. In both case studies, the amount of 

data used for model calibration and validation was limited because of the short time period 

taken into consideration. In fact, for the gasket substitution the validation of the model was not 

even possible. In the core probe case study the validation was done on a small database (8 

samples). Moreover, because of the lack of data, the approach tried for model creation was the 

one of predicting the events just before their occurrence, i.e. the prediction of the last cooking 

program before the technical intervention was implemented. Despite all these inconveniences, 

models describing the data variance in a satisfactory way were obtained. Moreover, the main 

patterns that lead to technical interventions were characterized. In both cases, the main patterns 

in the variables behaviour of the 20 cooking processes before the intervention were described 

through two latent variables. The variables profiles were then linked to physical effects on the 
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damaged equipment. Finally, the prediction power of the model was tested for the core probe 

intervention and 87.5% of the cooking sequences were correctly predicted. Only one cooking 

programs sequence was misclassified as followed by a technical intervention. This means that 

the model was able to predict all the failures; this is an important result that guarantees the 

reliability of the obtained model. However, the fact that a needless intervention can be 

performed on the oven because of the wrong prediction means money loss. For this reason, the 

model has to be further improved through the use of a larger dataset for both calibration and 

validation. The presented procedure can be implemented for different failures detection with 

great benefits for both clients and company through costs reduction. 



 

Nomenclature 

a, i, j  = generic subscripts 

A = number of latent variables 

𝑐𝛼 = standard normal deviate 

cov(X) = covariance of matrix X 

D = diagonal matrix of SVD decomposition containing the eigenvalues 

E = residual matrix  

||E|| = norm of matrix E 

ei = ith row vector of residual matrix E 

ei' = transpose of residual vector ei 

F = residual matrix of matrix Y 

||F|| = norm of matrix F 

𝐹𝐾,𝐼−1,𝛼 = F statistical distribution 

h = rank of matrix X 

I = number of samplings 

I = identity matrix  

J = number of collected variables 

K = number of principal components 

M = matrix of rank 1 

P = loading matrix  

P' = transpose of loading matrix P 

PK = matrix of the first K retained loading vectors 

PK' = transpose of loading matrix PK 

P(y, i) = probability of measuring the given y value for a class ‘i’ sample 

pi = ith column vector of the loading matrix P 

pi' = transpose of loading vector pi 

Q = loading matrix 

Q' = transpose of matrix Q 

𝑄𝛼 = Q statistic limit 

qa = ath column vector of loading matrix Q 

qa' = transpose of loading vector qa 
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𝑠𝑖 = ith ellipsoid semi-axes 

T = score matrix 

TK = matrix of the first K retained score vectors 

𝑇𝐾,𝐼,𝛼
2  = confidence limits of T2 Hotelling statistic 

ti = ith column vector of score matrix T 

ti' = transpose of score vector ti 

U = matrix of SVD decomposition/score matrix of matrix Y 

ua = ath column vector of the score matrix U 

V = matrix of SVD decomposition corresponding to loading matrix 

wa = ath weights vector 

X = process data matrix 

X' = transpose of matrix X 

xi = ith row vector of matrix X 

xi' = transpose of vector xi 

𝑥𝑖𝑗 = ijth value of matrix X 

𝑥̂𝑖𝑗 = ijth predicted value of matrix X 

𝑥̅𝑗 = mean value of the jth column elements of matrix X 

Y = quality measurements matrix 

𝑦𝑖𝑗 = ijth value of matrix Y 

Greek letters 

α = confidence level 

λ = eigenvalue 

λ = diagonal matrix 

λ-1 = inverse of diagonal matrix λ 

𝜎 = standard deviation 

Acronyms 

CPS = Cyber Physical System 

IoT = Internet of Things 

MPCA = Multi-way Principal Component Analysis 

MPLS = Multi-way Partial Least Squares 

PC= Principal component 

PCA = Principal Components Analysis 
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PLS = Partial Least Squares 

PLS-DA = Partial Least squares – Discriminant Analysis 

PRESS = Predicted Residual Error Sum of Squares  

RMSECV = Root Mean Square Error of Cross-Validation 

SVD = Singular Value Decomposition 
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