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Summary

This thesis mainly deals with the extended linear quadratic control problem 2.1,
that is a special case of equality constrained quadratic program. 2.1 is a very
general problem formulation, and it is useful for itself, since a number of other
problems in optimal control and estimation of linear systems can be reduced
to this form. Furthermore, it arises as sub-problem in sequential quadratic
programs methods and interior-point methods for the solution of optimal con-
trol and estimation in case of non-linear systems and in presence of inequality
constraints.

This thesis can be divided into two parts. In the �rst part, we present and
analyze a number of methods for the solution of problem 2.1. These methods
have been implemented in e�cient C code and compared each other.

In the second part, we de�ne problem 8.1, that is an extension of problem 2.1
and takes into account also inequality constraints. Two interior-point methods
for the solution of problem 8.1 are presented and analyzed. Both methods have
been implemented in C code and compared each other.

The focus is on the �rst part: the main goal of this thesis is the e�cient
implementation and comparison of di�erent methods for solution of 2.1.
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Notation

In this thesis we use the following notation:

• matrices are written with capital letters, e.g. A; vectors and scalars are
written in small letters, e.g. x, α.

• the transpose of A is indicated as A′.

• the gradient of φ(x, u) with respect to the vector u is indicated as ∇uφ.

• the minimizer of the cost function φ(x) is indicated as x∗.

• the integer n is used as index for loops over the control horizon, n ∈
{0, 1, . . . , N}; the integer k is used as index for iterations of interior-point
methods. The same notation is used for the relative subscripts.

In the algorithms, we use the following notation:

• with {Qn} we mean the set of matrices {Q0, Q1, . . . , QN}; similarly for
vectors.

• the notation {xn}k indicates the set of vectors {x0, x1, . . . xN} at the k-th
iteration of an interior-point method; in order to keep the notation easier,
sometimes we use the notation xk instead.

• the notation x(0:n−1) indicates the sub-vector of the vector x with indexes
between 0 and n− 1 both inclusive.

• the notation A(n,0:n−1) indicates the elements on the n-th row of the ma-
trix A, with column indexes between 0 and n− 1 both inclusive.

• in the algorithms for the solution of problem 2.1, a sub-script in roman
style indicates the BLAS or LAPACK routine used to perform the oper-
ation, e.g. C ← A ·dgemm B means that the matrix C gets the result of
the product between the matrices A and B, computed using the BLAS
routine dgemm.
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Chapter 1

Introduction

This thesis deals mainly with a sub-problem often arising in model predictive
control, namely the extended linear quadratic control problem

min
un,xn+1

φ =

N−1∑
n=0

ln(xn, un) + lN (xN )

s.t. xn+1 = Anxn +Bnun + bn

(1.1)

where n ∈ {0, 1, . . . , N − 1} and

ln(xn, un) =
1

2

[
x′n u′n

] [ Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [ xn
un

]
+ ρn

lN (xN ) =
1

2
x′NQNxN + q′NxN + ρN

From a mathematical point of view, problem 1.1 is an equality constrained
quadratic program.

Our work consists in a theoretical study of a number of well known methods
for the solution of 1.1 and in the following e�cient implementation in C code.

The main contribution of our work consists in the systematic presentation
of existing methods, and on the comparison of their e�cient implementations
in terms of equally optimized C code.

The structure of this thesis is the following:

• This chapter, chapter 1, introduces the central argument and the structure
of this thesis.

• Chapter 2 introduces problem 1.1 and presents necessary and su�cient
conditions for its solution. It is shown how the solution of 1.1 can be
found solving a linear system of equations (the KKT system).

• Chapter 3 brie�y presents and compares two direct sparse solvers for the
solution of the KKT system associated with problem 1.1.
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• Chapters 4 to 6 present a number of methods for the solution of 1.1,
one for chapter. Each chapter contains the theoretical derivation of the
relative method in at least one way, the e�cient implementation, and the
performance analysis in terms of number of �oating-point operations and
use of sub-routines.

• Chapter 7 states and analyzes a test problem, and compares the methods
derived in the previous chapters in terms of execution time. Two series
of tests are performed: in the �rst one the methods are compared in
the solution of problem 1.1 on its own; in the second one the methods
are compared in the solution of problem 1.1 as sub-problem in an interior-
point method, avoiding the re-computation of quantities that are constant
among iterations.

• Chapter 8 introduces problem 8.1, that is an extension of problem 1.1 in-
cluding also inequality constraints (and thus deals with an general quadratic
program, with both equality and inequality constraints). Both necessary
and su�cient conditions for its solution are derived. It is shown how the
solution of 8.1 can be found solving a system of non-linear equations (the
KKT system for a general quadratic program).

• Chapter 9 presents two interior-point methods for the solution of 8.1: the
methods are derived in the case of a general quadratic program, then
the implementation is tailored in the case of problem 8.1. Methods per-
formance is compared in terms of �oating-point operations per iteration.
An important result in this chapter is the fact that problem 1.1 arises as
sub-problem in interior-point methods for the solution of problem 8.1.

• Chapter 10 states a test problem for problem 8.1 compares the behavior
of the two interior-point methods.

• Chapter 11 presents a few problems related to 1.1 and 8.1, and shows how
to tailor the methods presented in previous chapters to fully exploit the
special structure of these problems.

• Chapter 12 contains some brief conclusions.

• Appendix A brie�y introduces the hardware and the software used to write
the code and test it.

• Appendix B presents some useful algorithms performing basic linear al-
gebra operations, and states their complexity as number of �oating-point
operations. The BLAS or LAPACK routines implementing the di�erent
methods are brie�y described.

• Appendix C presents and tests a number of implementations of the BLAS
and LAPACK libraries.

• Finally, appendix D contains tables collecting data from numerical tests.



Chapter 2

Extended Linear Quadratic

Control Problem

In this chapter we present the problem we mainly deal with, namely the extended
linear quadratic control problem. We also derive necessary and su�cient condi-
tions for its solution, and show that the solution can be found solving a system
of linear equations (KKT system).

2.1 De�nition

The extended linear quadratic control problem can be used to represent a num-
ber of problems in optimal control and estimation of linear systems. It is also
a subproblem in sequential quadratic programming methods and interior-point
methods for non-linear and constrained optimal control and estimation: exam-
ples can be found in [JGND12].

The extended linear quadratic control problem is de�ned as

Problem 1. The extended linear quadratic control problem is the equality con-

strained quadratic program

min
un,xn+1

φ =

N−1∑
n=0

ln(xn, un) + lN (xN )

s.t. xn+1 = Anxn +Bnun + bn

(2.1)

where n ∈ {0, 1, . . . , N − 1} and

ln(xn, un) =
1

2

[
x′n u′n

] [ Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [ xn
un

]
+ ρn

lN (xN ) =
1

2
x′NQNxN + q′NxN + ρN
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In the above problem de�nition, the dynamic system model is linear (or
better a�ne) time variant, and that the cost function is quadratic, with weights
matrices time variant as well.

Problem 2.1 is an extension of the standard linear quadratic control problem,
de�ned as

Problem 2. The standard linear quadratic control problem is the equality con-

strained quadratic program

min
un,xn+1

φ =
1

2

N−1∑
k=0

[
x′n u′n

] [ Q S′

S R

] [
xn
un

]
+

1

2
x′NQNxN

s.t. xn+1 = Axn +Bun

(2.2)

where n ∈ {0, 1, . . . , N − 1}.

In this problem de�nition the dynamic system model is strictly linear and
time invariant, and the cost function is strictly quadratic and time invariant.

This work focuses on the extended linear quadratic control problem 2.1, and
deals with the most e�cient methods to solve it. Problem 2.2 is a special case of
problem 2.1, and thus can be solved using the methods derived for the latter. It
is also possible to tailor the algorithms in order to exploit the simpler structure
and obtain better performances.

2.1.1 Matrix form

From a mathematical point of view, the extended linear quadratic control prob-
lem is an equality constrained quadratic program. It can be rewritten in a more
compact form as

min
x

φ =
1

2
x′Hx+ g′x

s.t. Ax = b
(2.3)

where the state vector is

x =



u0

x1

u1

...
xN−1

uN−1

xN


and the matrices relative to the cost function and the constraints are

H =



R0

Q1 S′1
S1 R1

. . .

QN−1 S′N−1

SN−1 RN−1

QN


, g =



S0x0 + s0

q1

s1

...
qN−1

sN−1

qN


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A =


−B0 I

−A1 −B1 I
. . .

. . .

−AN−1 −BN−1 I

 , b =


A0x0 + b0

b1
...

bN−1

 .
The matrices H and A are large, sparse and highly structured: this structure
can be exploited to obtain e�cient algorithms.

Note In 2.3, the cost function does not contain a constant term, even if 2.1
does. The constant term does not in�uence the position of the minimum but
only its value, and we are interested only in the �rst: then we prefer to drop
the constant term, to keep the notation easier.

2.2 Optimality conditions

In the �rst part of this section we present necessary and su�cient conditions
for the solution of a general equality constrained quadratic program; later we
derive conditions for the speci�c case of the extended linear quadratic control
problem 2.1, exploiting the special form of this problem.

2.2.1 KKT conditions

Here we present �rst order necessary optimality condition, known as Karush-
Kuhn-Tucker (brie�y KKT) conditions, for x∗ to be a solution of a general
equality constrained quadratic program. For the general theory, see [NW06]

The Lagrangian function associated to a general equality constrained quadratic
program in the form 2.3 takes the form

L = L(x, π) = φ− π′(Ax− b) =
1

2
x′Hx+ g′x− π′(Ax− b).

In the special case of problem 2.1 it takes the form

L(x, π) =
1

2
x′Hx+ g′x− π′(Ax− b) =

=

N−1∑
n=0

ln(xn, un) + lN (xN )−
N−1∑
n=0

π′n+1(xn+1 −Anxn −Bnun − bn)

where

π =


π1

π2

...
πN


is the vector of the the Lagrangian multipliers associated to the N constraints
Ax− b = 0.

The �rst order necessary conditions for optimality (known as KKT condi-
tions) can be found setting to zero the gradients of the Lagrangian function with
respect to the vectors x and π,

∇xφ(x, π) =Hx+ g −A′π = 0 (2.4a)

∇πφ(x, π) =Ax− b = 0. (2.4b)
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The conditions are stated in the proposition:

Proposition 1 (First order necessary conditions). If x∗ is a solution of the

equality constrained quadratic program, then there exists a vector π∗ such that

Hx∗ + g −A′π∗ = 0 and Ax∗ − b = 0.

Proof. We immediately notice that condition 2.4b is the equality constraints
equation: if x∗ does not satisfy this condition, it can not be a solution since it
does not satisfy the constraints.

Thus, let x∗ be a solution: x∗ is a point satisfying the constraints Ax∗+b = 0
and is a global minimizer for the cost function in the feasible region de�ned by
the constraints, i.e. for each x satisfying the constraints Ax + b = 0 we have
φ(x∗) ≤ φ(x).

We notice that, if the point x∗ is on the constraints, given any other point x
on the constraint we have that the step ∆x = x−x∗ satis�es A∆x = Ax−Ax∗ =
b − b = 0, and thus a general vector along the constraint is in the kernel (or
null space) of the matrix A, and thus it is in the image of the null space matrix
Z. The matrix Z is de�ned as the matrix with full column rank whose columns
generate the null space of A; this implies AZ = 0.

The geometric interpretation of condition 2.4a is that the gradient of the cost
function in x∗ is orthogonal to the constraints. In fact the �rst condition can
be rewritten as Hx∗ + g = A′π∗, that means that the vector Hx∗ + g is in the
image of the matrix A′, Hx∗ + g ∈ Im(A′). The relation1 Ker(A) = Im(A′)⊥

implies that (Hx∗ + g) ⊥ Ker(A).
Now we want to show that, if condition 2.4a is false, then it is always possible

to �nd a step ∆x along the constraint and such that φ(x∗ + ∆x) < φ(x∗): in
particular, the step in the direction de�ned by the projection on the vector space
generated by the matrix Z of the opposite of the gradient of the cost function
computed in x∗ makes the job.

Let us suppose that condition 2.4a is false, this means (Hx∗+ g) 6⊥ Ker(A),
and then there exist a vector z ∈ Ker(A) such that (Hx∗ + g)′z 6= 0. This
implies that the projection of the gradient on the null space of the matrix A is
not zero, (Hx∗ + g)′Z 6= 0, and then also y = −(Hx∗ + g)′Z 6= 0. The vector y
is a vector in the null space of A: its expression in the larger space is Zy; this
is not the zero vector since y 6= 0 and Z ha full column rank.

As step we choose the scaled vector

∆x = (Zy)λ = ZZ ′(Hx∗ + g)(−λ)

with the scalar λ > 0. The point x = x∗ + ∆x satis�es the constraint, since
Ax = Ax∗ +AZyλ = b+ 0 = b, and the value of the cost function in x is

φ(x) =φ(x∗ + ∆x) =
1

2
(x∗)′Hx∗ + g′x∗ +

1

2
∆x′H∆x+ (Hx∗ + g)′∆x =

=φ(x∗) +
1

2
λy′Z ′HZyλ− (Hx∗ + g)′ZZ ′(Hx∗ + g)λ =

=φ(x∗) +
1

2
αλ2 − βλ.

1This relation can be proved in this way: if we use the notation < vi > to denote the
vector space generated by the vectors vi, we have that Im(A′) =< coli(A

′) >, where coli(A′)
is the i-th column of the matrix A′. We can now prove that Ker(A) = {x|Ax = 0} = {x|x ⊥
rowi(A)} = {x|x ⊥ coli(A′)} =< coli(A

′) >⊥= Im(A′)⊥.
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where in general α ∈ R and β > 0.
If α ≤ 0, we immediately have φ(x) ≤ φ(x∗) − βλ < φ(x∗), and thus x∗ is

not a minimizer, and then neither a solution.
If α > 0, we have that 1

2αλ
2 − βλ < 0 for λ < 2β

α : then for λ < 2β
α we have

again φ(x) < φ(x∗), and thus x∗ is not a minimizer, and then neither a solution.
This implies that condition 2.4a is a necessary condition for a point x∗ to be

a solution.

Conditions 2.4 can be rewritten in matrix form as the system of linear equa-
tions [

H −A′
−A 0

] [
x
π

]
=

[
−g
−b

]
, (2.5)

that in the case of problem 2.1 takes the form (for N = 3)

R0 B′0
Q1 S′1 −I A′1
S1 R1 B′1

Q2 S′2 −I A′2
S2 R2 B′2

Q3 −I
B0 −I

A1 B1 −I
A2 B2 −I





u0

x1

u1

x2

u2

x3

π1

π2

π3


=



−S0x0 − s0

−q1

−s1

−q2

−s2

−q3

−A0x0 − b0
−b1
−b2


This system is known as KKT system, and its solutions are the points where

the Lagrangian function is stationary: the solutions of problem 2.1 have to be
searched among them.

The KKT conditions 2.4 are in general only necessary; they become also
su�cient in case of convex cost function. In particular, in the case of equality
constrained quadratic program, we have that a point x∗ satisfying the KKT
conditions is a solution (i.e. a global minimizer) if the matrix H is positive
semi-de�nite, and it is the unique solution if the matrix H is positive de�nite.

Proposition 2 (First order su�cient conditions). If the point x∗ satis�es the
KKT conditions with the Lagrangian multiplier π∗ and H is positive semi-

de�nite, then x∗ is a global minimizer for the cost function φ, i.e. a solution

for the equality constrained quadratic program.

Proof. The vectors x∗ and π∗ satisfy the �rst KKT condition, and so Hx∗+g =
A′π∗. Let x be any point satisfying the constraints (i.e. Ax + b = 0), and let
∆x = x− x∗, then A∆x = A(x− x∗) = b− b = 0.

The value of the cost function at the point x is thus

φ(x) =
1

2
x′Hx+ g′x =

1

2
(x∗ + ∆x)′H(x∗ + ∆x) + g′(x∗ + ∆x) =

=

(
1

2
(x∗)′Hx∗ + g′x∗

)
+ ∆x′(Hx∗ + g) +

1

2
∆x′H∆x =

= φ(x∗) + (A∆x)′π∗ +
1

2
∆x′H∆x = φ(x∗) +

1

2
∆x′H∆x ≥ φ(x∗)

since the matrixH is positive semi-de�nite. Thus x∗ is a solution for the equality
constrained quadratic program.
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Proposition 3 (First order su�cient conditions for uniqueness). If the point

x∗ satis�es the KKT conditions with the Lagrangian multiplier π∗ and H is

positive de�nite, then x∗ is the unique global minimizer for the cost function φ,
i.e. the unique solution for the equality constrained quadratic program.

Proof. We already know from the previous proposition that φ(x∗) ≤ φ(x) for all
x satisfying the constraints. If there exist an x such that the previous relation
is an equation, we have

φ(x) = φ(x∗) +
1

2
∆x′H∆x,

that means 1
2∆x′H∆x = 0, and since H is positive de�nite, we necessarily have

∆x = x − x∗ = 0 and thus x = x∗. Thus x∗ is the unique solution for the
equality constrained quadratic program.

In the case of problem 2.1, since the matrix H is block diagonal, it is positive
(semi)-de�nite if and only if each block is positive (semi)-de�nite.

A su�cient condition for problem 2.1 to have an unique solution is that the
matrix H is positive de�nite; anyway, this is not necessary, since it holds the
weaker result

Proposition 4 (Su�cient conditions for uniqueness of the solution of 2.5). Let
A have full row rank and Z be the matrix whose columns are a base for the

kernel of the matrix A; if the reduced Hessian matrix Z ′HZ is positive de�nite,

then the KKT matrix is non-singular, and then the KKT system 2.5 has an

unique solution.

Proof. By de�nition of Z, we have that AZ = 0 and Z has full column rank.
We have to show that the KKT system is non-singular: thus we have to show
that the vectors u and v in the expression[

H −A′
−A 0

] [
u
v

]
= 0

are both zero.
The second equation gives −Au = 0, and thus u is in the null space of A,

and thus there exists the vector ũ such that u = Zũ.
The �rst equation gives Hu − A′v = 0; if we multiply both side for u′, we

have
u′Hu− u′A′v = u′Hu− (Au)′v = u′Hu = 0 (2.6)

since from the second equation we know that Au = 0. Inserting the expression
u = Zũ into 2.6, we have

u′Hu = ũ′Z ′HZũ = 0

and since by hypothesis Z ′HZ is positive de�nite, we have that u = 0. Inserting
this value in the �rst equation gives −A′v = 0, that implies v = 0 since A has
full row rank, and thus A′ has full column rank. Thus the vector[

u
v

]
= 0

and thus the KKT matrix is non-singular.
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Proposition 5 (Second order su�cient conditions). Proposition 4, together

with proposition 2, expresses the second order su�cient conditions for optimal-

ity.

Proof. The proof is an immediate consequence of propositions 4 and 2.

It is also possible to write a direct proof. Let x∗ be a point satisfying the
KKT conditions together with the Lagrangian multiplier π∗, and let x be any
other point satisfying the constraints. De�ned the step ∆x = x − x∗ 6= 0, we
have A∆x = A(x − x∗) = b − b = 0, and then ∆x is in the null space of A,
and can be written as ∆x = Zy for some vector y 6= 0. The value of the cost
function in x is

φ(x) =
1

2
x′Hx+ g′x = φ(x∗ + ∆x) =

=

(
1

2
(x∗)′Hx∗ + g′x∗

)
+ (Hx∗ + g)′∆x+

1

2
∆x′H∆x =

=φ(x∗) + (Hx∗ + g)Zy +
1

2
y′Z ′HZy = φ(x∗) +

1

2
y′Z ′HZy

and, since Z ′HZ is positive de�nite by hypothesis, φ(x) > φ(x∗): x∗ is the
unique global minimizer.

We can now study the speci�c case of problem 2.1; we have that

Proposition 6 (Su�cient conditions for the existence and uniqueness of the
solution of problem 2.1). Let the matrices[

Qn S′n
Sn Rn

]
and the matrix QN be positive semi-de�nite, and the matrices Rn be positive

de�nite for all n ∈ {0, . . . , N − 1}, then problem 2.1 has one and only one

solution.

Proof. We are proving the proposition only in the case N = 3, since there are
not conceptual di�culties to extend the proof to the general case, while there
are notation problems.

The �rst step consist in �nding the Z matrix; we notice that the matrix
A has size Nnx × N(nx + nu), and thus we are looking for a matrix of size
N(nx + nu) × Nnu with full column rank Nnu and whose columns are in the
kernel space of the matrix A. Since we have that

AZ =

 −B0 I 0 0 0 0
0 −A1 −B1 I 0 0
0 0 0 −A2 −B1 I




I 0 0
B0 0 0
0 I 0

A1B0 B1 0
0 0 I

A2A1B0 A2B1 B2

 = 0

the above Z matrix does the work.
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The Nnu × nu matrix Z ′HZ takes the form

Z′HZ =

 R0 +B′0Q1B0 +B′0A
′
1Q2A1B0 +B′0A

′
1A
′
2Q3A2A1B0 . . .

S1B0 +B′1Q2A1B0 +B′1A
′
2Q3A2A1B0 . . .

S2A1B0 +B′2Q3A2A1B0 . . .

B′0S
′
1 +B′0A

′
1Q2B1 +B′0A

′
1A
′
2Q3A2B1 B′0A

′
1S
′
2 +B′0A

′
1A
′
2Q3B2

R1 +B′1Q2B1 +B′1A
′
2Q3A2B1 B′1S

′
2 +B′1A

′
2Q3B2

S2B1 +B′2Q3A2B1 R2 +B′2Q3B2


and, since the H matrix is symmetric positive semi-de�nite, it is symmetric
positive semi-de�nite as well. In order to prove that it is positive de�nite we
have to show that, if x′Z ′HZx = 0, the necessarily the vector x = 0.

We notice that we can write the matrix Z ′HZ as the sum of four symmetric
positive semi-de�nite matrices each containing only matrices Qn, Sn and Rn
with the same index n:

Z ′HZ =

 R0 0 0
0 0 0
0 0 0

+

 B′0Q1B0 B′0S
′
1 0

S1B0 R1 0
0 0 0

+

+

 B′0A
′
1Q2A1B0 B′0A

′
1Q2B1 B′0A

′
1S
′
2

B′1Q2A1B0 B′1Q2B1 B′1S
′
1

S2A1B0 S2B1 R2

+

+

 B′0A
′
1A
′
2Q3A2A1B0 B′0A

′
1A
′
2Q3A2B1 B′0A

′
1A
′
2Q3B2

B′1A
′
2Q3A2A1B0 B′1A

′
2Q3A2B1 B′1A

′
2Q3B2

B′2Q3A2A1B0 B′2Q3A2B1 B′2Q3B2

 =

=

 I
0
0

R0

[
I 0 0

]
+

 B′0 0
0 I
0 0

[ Q1 S′1
S1 R2

] [
B0 0 0
0 I 0

]
+

+

 B′0A
′
1 0

B′1 0
0 I

[ Q2 S′2
S2 R2

] [
A1B0 B1 0

0 0 I

]
+

+

 B′0A
′
1A
′
2

B′1A
′
2

B′2

Q3

[
A2A1B0 A2B1 B2

]
.

Let the vector x be

x =

 x0

x1

x2

 .
The scalar x′Z ′HZx = 0 can be written as the sum of four terms bigger or

equal to zero: this implies that, in order to have 0 as sum, they have to be all
0.

The �rst one is

[
x′0 x′1 x′2

]  I
0
0

R0

[
I 0 0

]  x0

x1

x2

 = x′0R0x0 = 0

that implies x0 = 0, since the matrix R0 is positive de�nite.
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The second one is

[
0 x′1 x′2

]  B′0 0
0 I
0 0

[ Q1 S′1
S1 R2

] [
B0 0 0
0 I 0

] 0
x1

x2

 = x′1R1x1 = 0

that implies x1 = 0, since the matrix R1 is positive de�nite.
The third one is

[
0 0 x′2

]  B′0A
′
1 0

B′1 0
0 I

[ Q2 S′2
S2 R2

] [
A1B0 B1 0

0 0 I

] 0
0
x2

 = x′2R2x2 = 0

that implies x2 = 0, since the matrix R2 is positive de�nite.
In this way the whole vector x = 0, and so the matrix Z ′HZ is positive

de�nite, and by proposition 5 this means that problem 2.1 has one and only one
solution.

Note (Symmetry) Even if it is not necessary for the proof of the previous

proposition, it is usually requested to the matrices R0,

[
Qn S′n
Sn Rn

]
and QN

to be also symmetric: this would lead to more e�cient algorithms; on the other
hand, this is not a limitation, since it is always possible to rewrite a positive
semi-de�nite matrix in an equivalent symmetric form.

In what follows we assume that the above matrices are all symmetric.

2.2.2 Band diagonal representation of the KKT system

The KKT system of problem 2.1 can be written as

R0 B′0
B0 −I

−I Q1 S′1 A′1
S1 R1 B′1
A1 B1 −I

−I Q2 S′2 A′2
S2 R2 B′2
A2 B2 −I

−I Q3





u0

π1

x1

u1

π2

x2

u2

π3

x3


=



−S0x0 − s0

−A0x0 − b0
−q1

−s1

−b1
−q2

−s2

−b2
−q3


(2.7)

The advantage of this form is that the KKT system is represented in band
diagonal form, with band width depending on nx and nu but independent of N :
this implies that the system can be solved in time O(N(nx + nu)3) (where nx
is the length of the x vector and nu is the length of the u vector), using a band
diagonal generic solver. As a comparison, the solution of 2.7 by means of the use
of a dense LDL′ factorization requires roughly 1

3 (N(2nx + nu))3 �oating-point
operations.

This representation will also be useful in chapter 5 about the Riccati, since
it is possible to derive the Riccati recursion method as a block solution strategy
for this system.
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Chapter 3

Direct Sparse Solvers

In this chapter we directly solve the KKT system 2.7 using direct sparse solvers.
The system is large and sparse, and can be written in a band diagonal form,
with a bandwidth depending only on nx and nu and not on N : the solvers are
able to exploit this structure, and �nd the solution in a time of the order of
N(nx + nu)3.

We investigate the solvers MA57 and PARDISO, two of the best solvers for
the solution of sparse symmetric linear systems. We present the two solvers in
brief; the reader can �nd more information consulting the relative web-sites or
literature, for example [Duf04] and [SG11].

3.1 MA57

MA57 is a direct solver for symmetric sparse systems of linear equations; it is
part of HSL1 software.

It is designed to solve the linear system of equations

AX = B

where the n × n matrix A is large sparse and symmetric, and not necessarily
de�nite, and the right-hand side B may have more that one column. The
algorithm performs an LDL′ factorization of the matrix A, implemented using
a multi-frontal approach.

The solver uses the BLAS library to perform matrix-vector and matrix-
matrix operations: this means it can exploit a BLAS implementation optimized
for the speci�c architecture. It also uses (optionally) the MeTiS library, per-
forming partitioning of graphs.

The code consists in a number of routines; the one of interest for us are:

1HSL, a collection of Fortran codes for large-scale scienti�c computation. See
http://www.hsl.rl.ac.uk/
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i IRN(i) JCN(i) A(i)
1 1 1 2.0
2 2 1 3.0
3 3 2 4.0
4 3 3 1.0
5 4 3 5.0
6 5 2 6.0
7 5 5 1.0

Table 3.1: A matrix 3.1 stored in sparse format.

• MA57I/ID initializes with default values the arrays holding the control
parameters.

• MA57A/AD analyzes the structure of the matrix A and chooses the pivot
sequence; this routine makes use of MeTiS, if available.

• MA57B/BD factorizes the matrix A using the information from the previous
call to the routine MA57A/AD.

• MA57C/CD solves the system Ax = b (or AX = B in case of multiple right
hand sides) using the factorization computed by the previous call to the
routine MA57B/BD.

• MA57D/DD solves the system Ax = b using iterative re�nement and the
factorization computed by the previous call to the routine MA57B/BD.

The routine named MA57X is the single-precision version, while the routine
named MA57XD is the double-precision version. In our tests we use only the
double-precision version.

The matrix A has to be stored in sparse format, using two vectors of integers
to store the row and column index of each entry, and a vector of reals to store
the value of each entry. Since the matrix A is symmetric, only one of the entries
aij and aji needs to be stored; eventual zero entries on the diagonal do not need
to be stored. For example, the matrix

A =


2 3
3 0 4 6

4 1 5
5 0

6 1

 (3.1)

may be stored as in table 3.1, where IRN is the vector of the row indexes
JCN is the vector of the column indexes. We notice that the row and column
indexes use the FORTRAN notation, starting from 1. The test problem is the
mass-spring problem 7.2, with nx = 128, nu = 8 and N = 50.

3.2 PARDISO

PARDISO2 is a software package for the solution of large sparse system of linear
equations, both symmetric and non-symmetric. It is designed to solve a set of

2see also the reference web-site http://www.pardiso-project.org.
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i IA(i) JA(i) A(i)
1 1 1 2.0
2 3 2 3.0
3 6 2 0.0
4 8 3 4.0
5 9 5 6.0
6 10 3 1.0
7 4 5.0
8 4 0.0
9 5 1.0

Table 3.2: A matrix 3.1 stored in compressed sparse row format.

large sparse linear systems of equations

AX = B

where the n×nmatrixA is a large sparse squared matrix, that may be symmetric
de�nite or inde�nite, or non-symmetric. The package contains direct sparse
solvers and multi-recursive iterative sparse solvers, performing LU , LDL′ or
LL′ factorizations of the A matrix.

In this work we test the software version 4.1.2 for Linux and X86 architecture;
we only make use of the direct sparse solver for the solution of large sparse
symmetric non-de�nite systems of linear equations.

The solvers use the BLAS and LAPACK libraries to perform basic linear
algebra operations: thus they can exploit libraries optimized for the speci�c
architecture, if available.

The solution process is divided into three phases, and it is possible to perform
them in any of the combinations 11, 12, 13, 22, 23, 33, where the �rst digit
indicates the starting phase and the second digit indicates the ending phase.
The three phases are:

1. Analysis.

2. Numerical factorization.

3. Solution and iterative re�nement.

There are also an initialization function, and an additional phase, called -1, used
to release all the internal memory for the matrices.

The matrix A has to be stored in compressed sparse row format: the entries
are stored one row at a time starting from the �rst one, and inside each row
the entries are stored in increasing order of column. A real vector A contains
the entries values, an integer vector JA contains the column indexes, and an
integer vector IA (of size n + 1) is such that IA(i) is the index in the A and
JA vectors of the �rst element of the row i, and IA(n + 1) is the index of the
�rst element outside the table (and thus the number of elements in the A and
JA vectors is IA(n + 1) − 1). Furthermore all the diagonal entries have to be
stored explicitly. For example, the A matrix 3.1 has to be stored as in the table
3.2. We notice that the row and column indexes use the FORTRAN notation,
starting from 1.
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MA57 PARDISO
phase time (s) % time (s) %

create A and B 0.033544 4.7 0.026609 0.8
initialization 0.000012 0.0 0.001402 0.0
analysis 0.133541 18.7 2.081128 65.8

factorization 0.534067 74.6 0.975534 30.9
solution 0.014367 2.0 0.076888 2.4

total 0.715531 100.0 3.161561 99.9

Table 3.3: Comparison between the computational time needed by the di�er-
ent components of the solvers MA57 and PARDISO. In the table,
'time' means wall clock time, measured in seconds.

3.3 Performance analysis

In this section we analyze the performance of the two direct sparse solvers in the
solution of the KKT system 2.7 associated with the extended linear quadratic
control problem 2.1.

3.3.1 Cost of the di�erent parts of the solvers

Here we compare the cost in term of computational time of the di�erent parts
of the two solvers.

We solve an instance of the mass-spring test problem 7.2 with nx = 128,
nu = 8, N = 50. The results are in table 3.3.

There is some substantial di�erence between the solvers. First of all, the
MA57 solver is more than 4 times faster than the PARDISO solver. Further-
more, the analysis phase in the PARDISO solver takes the best part of the
computational time, while in the case of the MA57 solver, it is the factorization
phase that takes the best part of the computational time.

3.3.2 Comparative test

In a model predictive control framework, a new input sequence has to be com-
puted at each sampling time, solving a problem that has the same structure.
This means that the initialization and the analysis phases can be computed just
once, o�-line.

In the pictures 3.1a and 3.1b there are plots of the computational time needed
by the two solvers, just considering the creation of A and B, the factorization
and the solution phases (not the initialization and the analysis phases). The test
problem is again the mass-spring problem 7.2. The tables with the numerical
data are D.1 and D.2, in the appendix D.

In �gure 3.1a nx and nu are �xed, and just N is varied. Apart from the
numerical oscillations (larger in the case of PARDISO than in MA57 even av-
eraging on the same number of tests), both solvers appear linear in N , even if
MA57 is faster.

In �gure 3.1b N is �xed, while nx and nu are varied. Our test problem
requires nu ≤ nx/2, and often in the tests it holds nu � nx: the computational
time then is just slightly a�ected by the variation of nu, as long as nu � nx.
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On the other hand, the computational time appears to be cubic for large values
of nx, and slower for small values. The PARDISO solver seems to be slightly
faster for small values of nx, while it is quite slower (up to 4 times) for large
values of nx.

In conclusion, the MA57 solver shows best performances over the PARDISO
solver in the solution of the extended linear quadratic control problem 2.1.
Anyway, both methods are not competitive with respect to the tailored methods
presented in following chapters.
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Figure 3.1: Comparison of the performance of the solvers PARDISO and
MA57 in the solution of the problem 2.1, using as test problem
the mass-spring problem 7.2.



Chapter 4

Schur Complement Method

The KKT system 2.7 may be solved even by using the Schur complement of the
KKT matrix. This approach is producing matrices whose non-zero elements
are all around the diagonal, packed into sub-matrices. Thus the sparsity of the
KKT matrix is preserved. Furthermore, it is possible to work just on the dense
sub-matrices, using the standard BLAS and LAPACK routines. The drawback
of this approach is the need for the Hessian matrix H to be positive de�nite
instead of just positive semi-de�nite. The method has the same asymptotic
complexity as the direct sparse solvers in chapter 3, namely N(nx + nu)3, but
it is faster in practice.

4.1 Derivation

This section is divided into two parts: in the �rst part we derive the Schur
complement method for the solution of a general equality constrained quadratic
program. In the second part we specialize the method in the case of problem
2.1.

General case

The use of the Schur complement method for the solution of the general equality
constrained quadratic program is discussed in [NW06].

We consider the KKT system of the general equality constrained quadratic
program 2.3, that is in the form[

H −A′
−A 0

] [
x
π

]
= −

[
g
b

]
. (4.1)

We can rewrite 4.1 in the equivalent form{
Hx−A′π = −g
−Ax = −b

(4.2)
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more convenient for our purposes. It is di�cult to handle the system written in
this form since the vector x in the second equation is already isolated but the
matrix A is not invertible in general.

The method requires the matrix H to be invertible: since it is already posi-
tive semi-de�nite by previous hypothesis, this means that it is positive de�nite.
Because of the block diagonal form, the matrix H is positive de�nite if and only
if every single block is positive de�nite. In particular, this requires both Qi and
Ri to be positive de�nite (even if this is not su�cient in general).

Since the matrix H is invertible, we can isolate the vector π by multiplying
the �rst equation in 4.2 by AH−1 and summing it with the second equation in
4.2, obtaining the equivalent system{

AH−1A′π =b+AH−1g

Hx =A′π − g
(4.3)

The matrix Ψ = AH−1A′ is the Schur complement of the matrix H in the KKT
matrix. It is positive de�nite since the matrix H−1 is positive de�nite, and the
matrix A has full row rank. In this way we can solve the �rst equation in 4.3
for π, and afterward substitute its value in the second equation in 4.3 and solve
it for x.

Problem 2.1 case

The use of Schur complement method for the solution of model predictive control
problems can be found also in [WB10].

In the special case of problem 2.1, the matrix AH−1A takes the form (for
N = 3)

AH−1A′ =

 Q̃1 +B0R̃1B
′
1 −Q̃1A

′
1 − S̃′1B′1 . . .

−A1Q̃1 −B1S̃1 Q̃2 +A1Q̃1A
′
1 +B1S̃1A

′
1 +A1S̃

′
1B1 +B1R̃1B

′
1 . . .

0 −A2Q̃2 −B2S̃2 . . .

0

−Q̃2A
′
2 − S̃′2B′2

Q̃3 +A2Q̃2A
′
2 +B2S̃2A

′
2 +A2S̃

′
2B2 +B2R̃2B

′
2


where [

Q̃i S̃′i
S̃i R̃i

]
=

[
Qi S′i
Si Ri

]−1

.

The vector b+AH−1g takes the form

b+AH−1g =

 A0x0 + b0 −B0R̃0(S0x0 + s0) + Q̃1q1 + S̃′1s1

b1 − (A1Q̃1 +B1S̃1)q1 − (A1S̃
′
1 +B1R̃1)s1 + Q̃2q2 + S̃′2s2

b2 − (A2Q̃2 +B2S̃2)q2 − (A2S̃
′
2 +B2R̃2)s2 + Q̃3q3


and the vector A′π − g takes the form

A′π − g =


−B′0π1 − (S0x0 + s0)

π1 −A′1π2 − q1

−B′1π2 − s1

π2 −A′2π3 − q2

−B′2π3 − s2

π3 − q3

 .
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4.2 Implemetation

In this section we show that the matrix Ψ preserves sparsity, and its non-zero
entries are grouped in dense sub-matrices displaced around the diagonal. The
implementation is exploiting this structure, obtaining better performances.

To start with, the matrix H has the block diagonal structure

H =


R0

Q1 S′1
S1 R1

Q2 S′2
S2 R2

Q3


where the �rst block is nu×nu, the following N−1 blocks are (nu+nx)× (nu+
nx), and the last block is nx × nx.

As already stated before, in this chapter H is assumed to be invertible (and
thus positive de�nite): each single block is also invertible (and thus positive def-
inite). Instead of explicitly compute the inverse H−1, we compute the Cholesky
factorization of each single block and invert the resulting triangular matrix. We
prefer to use these triangular matrices since we can exploit the useful triangular
form in the following computations.

Instead of storing the mainly zero H matrix, we only store the diagonal
blocks. We use a single array containing one after the other the single blocks,
each saved in column-major order, with the upper triangular part of each block
containing the matrix elements and the strictly lower triangular part containing
just zeros. In this way the number of stored �oating points is n2

u+(N −1)(nu+
nx)2 + n2

x, while saving all the H matrix the number of stored �oating points
would be N2(nu + nx)2.

We compute the Cholesky factorization of each block, using the LAPACK
routine dpotrf1, and computing the upper factor: after the call to dpotrf, in
the upper triangular part of each block there is the upper factor of the Cholesky
factorization. The overall upper factor U (such that H is thus factorized as
H = U ′U) is thus

U =


U0,22

U1,11 U1,12

0 U1,22

U2,11 U2,12

0 U2,22

U3,11


where Ui,11 and Ui,22 are upper triangular matrices and Ui,12 is a full matrix.

We compute the inverse of each upper factor matrix using the LAPACK
routine dtrtri2. Since the inverse of an upper triangular matrix is an upper

1See appendix B for a description of the BLAS and LAPACK routines, and B.4 for the
description of the dpotrf routine.

2See appendix B.5.
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triangular matrix, the inverse U−1 of the U matrix is

U−1 =



Ũ0,22

Ũ1,11 Ũ1,12

0 Ũ1,22

Ũ2,11 Ũ2,12

0 Ũ2,22

Ũ3,11


where Ũi,11 and Ũi,22 are upper triangular matrices and Ũi,12 is a full matrix.

The Schur complement Ψ can be rewritten as

Ψ = AH−1A′ = A(U ′U)−1A′ = AU−1(U ′)−1A′ = AU−1(U−1)′A′

= (AU−1)(AU−1)′ = ΦΦ′

that is the product of the matrix Φ and its transposed Φ′.
The next step is the computation of Φ = AU−1. We exploit the fact that

Ũi,11 and Ũi,22 are upper triangular matrices, using the specialized routine
dtrmm3, requiring approximately half of the �oating-point operations compared
to the general matrix multiplication routine dgemm4. The matrix Φ = AU−1

takes the form

Φ = AU−1 =

=

−B0 I
−A1 −B1 I

−A2 −B2 I




Ũ0,22

Ũ1,11 Ũ1,12

0 Ũ1,22

Ũ2,11 Ũ2,12

0 Ũ2,22

Ũ3,11

 =

=

−B0Ũ0,22 Ũ1,11 Ũ1,12 0 0 0

0 −A1Ũ1,11 −A1Ũ1,12 −B1Ũ1,22 Ũ2,11 Ũ2,12 0

0 0 0 −A2Ũ2,11 −A2Ũ2,12 −B2Ũ2,22 Ũ3,11

 =

=

 Φ0,22 Φ1,11 Φ1,12

Φ1,21 Φ1,22 Φ2,11 Φ2,12

Φ2,21 Φ2,22 Φ3,11


and has size Nnx ×N(nu+ nx).

We compute only the upper triangular part of the matrix Ψ = (AU−1)(AU−1)′.
We make use of the specialized routines dtrmm, dsyrk5 and dlauum6, the �rst
two require approximately half and the latter a sixth of the �oating-points op-
erations compared to the general matrix multiplication routine dgemm. The Ψ
matrix is a symmetric positive de�nite Nnx × Nnx matrix, and has a block
tridiagonal form with blocks of size nx × nx. It takes the form

Ψ = AH−1A′ = (AU−1)(AU−1)′ =

 Ψ11 Ψ12 0
Ψ′12 Ψ22 Ψ23

0 Ψ′23 Ψ33


3see appendix B.1.2
4see appendix B.1.1
5see appendix B.1.3
6see appendix B.1.4
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where in general

Ψ11 =Φ0,22Φ′0,22 + Φ1,11Φ′1,11 + Φ1,12Φ′1,12 =

=B0Ũ0,22Ũ
′
0,22B

′
0 + Ũ1,11Ũ

′
1,11 + Ũ1,12Ũ

′
1,12 =

=B0R̃0B
′
0 + Q̃1

Ψnn =Φn−1,21Φ′n−1,21 + Φn−1,22Φ′n−1,22 + Φn,11Φ′n,11 + Φn,12Φ′n,12 =

=(An−1Ũn−1,11)(An−1Ũn−1,11)′+

+ (An−1Ũn−1,12 +Bn−1Ũn−1,22)(An−1Ũn−1,12 +Bn−1Ũn−1,22)′+

+ Ũn,11Ũ
′
n,11 + Ũn,12Ũ

′
n,12 =

=An−1Q̃n−1A
′
n−1 +An−1S̃

′
n−1B

′
n−1 +Bn−1S̃n−1A

′
n−1+

+Bn−1R̃n−1B
′
n−1 + Q̃n

Ψn,n+1 =Φn,11Φ′n,21 + Φn,12Φ′n,22 =

=− Ũn,11Ũ
′
n,11A

′
n − Ũn,12(AnŨn,12 +BnŨn,22)′ = −Q̃nA′n − S̃′nB′n

ΨN,N =ΦN−1,21Φ′N−1,21 + ΦN−1,22Φ′N−1,22 + ΦN,11Φ′N,11 =

=(AN−1ŨN−1,11)(AN−1ŨN−1,11)′+

+ (AN−1ŨN−1,12 +BN−1ŨN−1,22)(AN−1ŨN−1,12 +BN−1ŨN−1,22)′+

+ ŨN,11Ũ
′
N,11 =

=AN−1Q̃N−1A
′
N−1 +AN−1S̃

′
N−1B

′
N−1 +BN−1S̃N−1A

′
N−1+

+BN−1R̃N−1B
′
N−1 + Q̃N

where

R̃0 = R−1
0 ,

[
Q̃n S̃′n
S̃n R̃n

]
=

[
Qn S′n
Sn Rn

]−1

, Q̃N = Q−1
N .

The following step is the factorization of the symmetric positive de�nite
matrix Ψ. It can be done e�ciently exploiting the block tridiagonal structure
of Ψ: the upper factor Ū will be block diagonal banded as well, with just the
main and the immediately upper block diagonals non-zero. In fact we have that

Ψ = Ū ′Ū =

 U ′11 0 0
U ′12 U ′22 0
0 U ′23 U33

 U11 U12 0
0 U22 U23

0 0 U33

 =

=

 U ′11U11 U ′11U12 0
U ′12U11 U ′12U12 + U ′22U22 U ′22U23

0 U ′23U22 U ′23U23 + U ′33U33

 =

 Ψ11 Ψ12 0
Ψ′12 Ψ22 Ψ23

0 Ψ′23 Ψ33


and thus in general

U ′11U11 = Ψ11

U ′n−1,n−1Un−1,n = Ψn−1,n n = 2, . . . , N

U ′n,nUn,n = Ψn,n − U ′n−1,nUn−1,n n = 2, . . . , N

This leads to the following algorithm: the general block Un,n on the diagonal can
be found subtracting to the corresponding block in Ψ the symmetric product
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of the block immediately above, Ψn,n − U ′n−1,nUn−1,n, and then calling the
LAPACK routine dpotrf, implemeting the Cholesky factorization. The block
immediately on the right can be found as Un,n+1 = (U ′n,n)−1Ψn,n+1, using the

BLAS routine dtrsm7.
The following step is the solution of the system

AH−1A′π = b+AH−1g.

The right hand side can be build using only matrix-vector operations, as b +
(AU−1)((U−1)′g)=̇β. The system can be solved by forward and backward sub-
stitution,

Ū ′Ūπ = Ū ′γ = β ⇒ Ūπ = γ = (Ū ′)−1β ⇒ π = Ū−1γ = Ū−1(Ū ′)−1β

using tailored routines.
The �rst triangular system we have to solve is U ′11 0 0

U ′12 U ′22 0
0 U ′23 U33

 γ1

γ2

γ3

 =

 U ′11γ1

U ′12γ1 + U ′22γ2

U ′23γ2 + U ′33γ3

 =

 β1

β2

β3


leading to the forward substitution procedure

γ1 = (U ′11)−1β1

γ2 = (U ′22)−1(β2 − U ′12γ1)

γ3 = (U ′33)−1(β3 − U ′23γ2)

where the required matrix-vector operations are implemented in the BLAS rou-
tines dgemv8 and dtrsv9.

The second triangular system we have to solve is U11 U12 0
0 U22 U23

0 0 U33

 π1

π2

π3

 =

 U11π1 + U12π2

U22π2 + U23π3

U33π3

 =

 γ1

γ2

γ3


leading to the backward substitution procedure

π1 = U−1
11 (γ1 − U12π2)

π2 = U−1
22 (γ2 − U23π3)

π3 = U−1
33 γ3

The last step is the solution of the system

Hx = A′π − g.

The product at the right hand side can be computed as
−B′0
I −A′1

−B′1
I −A′2

−B′2
I


 π1

π2

π3

 =


−B′0π1

π1 −A′1π2

−B′1π2

π2 −A′2π3

−B′2π3

π3

 .
7See appendix B.3.2.
8See appendix B.2.1.
9See appendix B.3.1.
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We have already computed the Cholesky factorization of the block diagonal
matrix H, and the inversion of each block factor, and so the system can be
solved by two triangular matrix-vector multiplications in each single block,

u0 = Ũ0,22Ũ
′
0,22(−B′0π1 − S0x0 − s0)[

xn
un

]
=

[
Ũn,11 Ũn,12

0 Ũn,22

] [
Ũ ′n,11 0

Ũ ′n,12 Ũ ′n,22

] [
πn −A′nπn+1 − qn
−B′nπn+1 − sn

]
, n = 1 . . . N − 1

xN = ŨN,11Ũ
′
N,11(πN − qN )

obtaining the vector x.
In the following algorithm 1 we present the overall algorithm, and we com-

pute the complexity of the algorithm as number of �oating-point operations up
to the quadratic terms. A subscript indicates each BLAS or LAPACK routine
used to perform algebra operations.

The asymptotic cost of the algorithm is

N

((
19

3
n3
x + 8n2

xnu + 3nxn
2
u +

2

3
n3
u

)
+

(
35

2
n2
x + 15nxnu +

7

2
n2
u

))
,

that is linear in N and cubic in both nx and nu. The above cost is pretty large
compared to the cost of the Riccati recursion method, as we will see in the
chapter 5.

4.3 Performance analysis

4.3.1 Cost of sub-routines

We can use pro�ling tool gprof10, that is part of the gcc tools collection, to
analyze the cost of the di�erent routines. In order to obtain more complete infor-
mation, in this section we use BLAS and LAPACK libraries obtained compiling
source code11 with the �ag -pg.

In table 4.1 there is the cost in percentage of the most expensive routines,
taken from the �at pro�le produced by gprof: this pro�le shows how much
time is spent in each routine. The test problem is the mass-spring problem 7.2
with nx = 128, nu = 1 and N = 10. There are only 4 routines using at least
the 5% of the computational time, and they all are part of BLAS, and the �rst
3 (covering together 84.04%) are part of the level-3 BLAS. This shows as the
implementation of the BLAS library is a key factor to have high performances.

The program gprof produces also a call graph, giving useful information
about the structure of the call graph between routines: this also shows the
total time spent in a routine and its sub-routines. We notice that the Cholesky
factorization routine dpotrf with its sub-routines accounts for the 39.3% of
the total computational time, that is much more than the theoretical (in the

approximation nx � nu)
2/3n3

x+n2
xnu

19/3n2
x+8n2

xnu
= 10.6%. Analogously, the triangular

matrix inversion routine dtrtri with its sub-routines accouts for the 19.3%, and

10See appendix A
11The standard BLAS and LAPACK implementations can be found at the web sites

www.netlib.org/blas and www.netlib.org/lapack.
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Algorithm 1 Schur complement method for the solution of problem 2.1

Require: (x0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, QN , qN )

U0,22 ←dpotrf chol(R0) . 1
3n

3
u + 1

2n
2
u �ops

for n = 1→ N − 1 do[
Un,11 Un,12

0 Un,22

]
←dpotrf chol

([
Qn S′n
Sn Rn

])
. (N − 1)( 1

3 (nx + nu)3 + 1
2 (nx + nu)2) �ops

end for

UN,11 ←dpotrf chol(QN ) . 1
3n

3
x + 1

2n
2
x �ops

Ũ0,22 ←dtrtri U
−1
0,22 . 1

3n
3
u �ops

for n = 1→ N − 1 do[
Ũn,11 Ũn,12

0 Ũn,22

]
←dtrtri

[
Un,11 Un,12

0 Un,22

]−1

. (N − 1) 1
3 (nx + nu)3 �ops

end for

ŨN,11 ←dtrtri U
−1
N,11 . 1

3n
3
x �ops

Φ0,22 ← −B0 ·dtrmm Ũ0,22 . nxn
2
u �ops

for n = 1→ N − 1 do[
Φn,11 Φn,12

Φn,21 Φn,22

]
←
[

Ũn,11 Ũn,12

−An ·dtrmm Ũn,11 −An ·dgemm Ũn,12 −Bn ·dtrmm Ũn,22

]
. (N − 1)(n3

x + 2n2
xnu + nxn

2
u) �ops

end for

ΦN,11 ← ŨN,11

Ψ11 = Φ0,22 ·dsyrk Φ′0,22 + Φ1,11 ·dlauum Φ′1,11 + Φ1,12 ·dsyrk Φ′1,12

. 1
3n

3
x + 2n2

xnu + 1
2n

2
x + 2nxnu �ops

Ψ12 = Φ1,11 ·dtrmm Φ′1,21 + Φ1,12 ·dgemm Φ′1,22 . n3
x + 2n2

xnu �ops

for n = 2→ N − 1 do
Ψnn = Φn−1,21 ·dsyrk Φ′n−1,21 +Φn−1,22 ·dsyrk Φ′n−1,22 +Φn,11 ·dlauum Φ′n,11 +

Φn,12 ·dsyrk Φ′n,12

. (N − 2)( 4
3n

3
x + 2n2

xnu + 3
2n

2
x + 2nxnu) �ops

Ψn,n+1 = Φn,11 ·dtrmm Φ′n,21 + Φn,12 ·dgemm Φ′n,22

. (N − 2)(n3
x + 2n2

xnu) �ops
end for

ΨN,N = ΦN−1,21 ·dsyrk Φ′N−1,21 + ΦN−1,22 ·dsyrk Φ′N−1,22 + ΦN,11 ·dlauum Φ′N,11

. 4
3n

3
x + n2

xnu + 1
2n

2
x + nxnu �ops



4.3 Performance analysis 29

U11 ←dpotrf chol(Ψ11) . 1
3n

3
x + 1

2n
2
x �ops

for n = 2→ N do

Un−1,n ←dpotrf (U ′n−1,n−1)−1Ψn−1,n . (N − 1)n3
x �ops

Un,n ←dpotrf chol(Ψn,1−U ′n−1,n ·dsyrk Un−1,n) . (N − 1)( 4
3n

3
x + 3

2n
2
x) �ops

end for

φ0,2 ← Ũ0,22 ·dtrmv (s0 + S0 ·dgemv x0) . 2nxnu + n2
u �ops

for N = 1→ N − 1 do
φn,1 ← Ũn,11 ·dtrmv qn + Ũn,12 ·dgemv sn . (N − 1)(n2

x + 2nxnu) �ops

φn,2 ← Ũn,22 ·dtrmv sn . (N − 1)n2
u �ops

end for

φN,1 ← ŨN,11 ·dtrmv qN . n2
x �ops

β1 ← b0 +A0 ·dgemv x0 + Φ0,22 ·dgemv φ0,2 + Φ1,11 ·dtrmv φ1,1 + Φ1,12 ·dgemv φ1,2

. 3n2
x + 4nxnu �ops

for n = 2→ N − 1 do
βn ← bn−1 + Φn−1,21 ·dgemv φn−1,1 + Φn−1,22 ·dgemv φn−1,2 + Φn,11 ·dtrmv

φn,1 + Φn,12 ·dgemv φn,2
. (N − 2)(3n2

x + 4nxnu) �ops
end for

βN ← bN−1+ΦN−1,21 ·dgemvφN−1,1+ΦN−1,22 ·dgemvφN−1,2+ΦN,11 ·dtrmvφN,1
. 3n2

x + 2nxnu �ops

γ1 ←dtrsv (U ′11)−1β1 . n2
x �ops

for n = 2→ N do

γn ←dtrsv (U ′n,n)−1(βn − U ′n−1,n ·dgemv γn−1) . (N − 1)3n2
x �ops

end for

πN ←dtrsv U
−1
n,nγN . n2

x �ops
for n = N − 1→ 1 do

πn ←dtrsv U
−1
n,n(γn − Un,n+1 ·dgemv πn+1) . (N − 1)3n2

x �ops
end for

u0 = Ũ0,22 ·dtrmv (Ũ ′0,22 ·dtrmv (−B′0 ·dgemv π1 − (s0 + S0x0)))
. 2nxnu + 2n2

u �ops
for n = 1→ N − 1 do[

xn
un

]
=

[
Ũn,11 Ũn,12

0 Ũn,22

]
·dtrmv

([
Ũ ′n,11 0

Ũ ′n,12 Ũ ′n,22

]
·dtrmv

[
πn −A′n ·dgemv πn+1 − qn
−B′n ·dgemv πn+1 − sn

])
. (N − 1)(2(nx + nu)2 + 2n2

x + 2nxnu) �ops
end for

xN = ŨN,11 ·dtrmv

(
Ũ ′N,11 ·dtrmv (πN − qN )

)
. 2n2

x �ops

return ({xn}, {un})
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routine percentage
dsyrk 40.31
dtrsm 26.74
dtrmm 16.99
dgemv 5.08
others 10.88

Table 4.1: Cost of the most expensive routines in the Schur complement
method, using as test problem the mass-spring problem 7.2, with
nx = 128, nu = 1 and N = 10. Only routines using at least 5% of
the computational time are reported in the table.

the rank-k update with triangular matrices routine dlauum with its subroutines

for the 11.2% instead of the theoretic
1/3n3

x+n2
xnu

19/3n2
x+8n2

xnu
= 5.8%.

The e�cient implementation of the above routines is the bottle neck in the
implementation of the Schur method for the solution of the extended linear
quadratic control problem.

4.3.2 Comparative test

In �gure 4.1a and 4.1b there are plots comparing the performance of the Schur
complement method (the algorithm developed in this chapter) with the direct
sparse solver MA57 (analyzed in chapter 3). MA57 shows a better performance
compared to PARDISO, the other direct sparse solver considered. The test
problem is the mass-spring problem 7.2, and as usual nu ≤ nx/2. The tables
containing all the data are D.3 and D.4.

In �gure 4.1a nx and nu are �xed, and the only N is varied. The behav-
ior of the Schur complement method algorithm is clearly linear in N , and the
algorithm is at least twice as fast as the MA57 solver.

In �gure 4.1b N is �xed, while nx and nu are varied. The algorithm behaves
approximately as the MA57 solver: the value of nu in�uences just slightly the
computational time, as long as nu � nx holds. Anyway, the Schur complement
method algorithm is approximately 2.5 times faster than the MA57 solver, at
least for large systems.

However, our current version of the algorithm implementing the Schur com-
plement method crashes for large systems: the problem seems to be connected
with to the large quantity of memory needed to store the data within the algo-
rithm, that is quadratic in nx. In the case of N = 10, using the MKL BLAS
the crash happens for nx > 340. Further work is needed to investigate and �x
the problem.
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Figure 4.1: Comparison of the performances of the direct sparse solver MA57
and the Schur complement method algorithm in the solution of
the problem 2.1, using as test problem the mass-spring problem
7.2.
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Chapter 5

Riccati Recursion Method

The Riccati recursion is a well known method for the solution of the standard
linear quadratic control problem 2.2, and the algorithm can be modi�ed for the
solution of problem 2.1. The Riccati recursion methods for the solution of 2.2
and 2.1 have asymptotic complexity N(nx + nu)3 (the same as the methods
considered in chapters 3 and 4) but in practice they are faster.

5.1 Derivation

There are several ways to derive the Riccati recursion methods for the solution
of problems 2.2 and 2.1. In what follows we consider:

• direct derivation from the cost function expression

• derivation using dynamic programming

• derivation as block factorization procedure for the solution of the KKT
system.

In this section we derive Riccati recursion methods for the solution of both
problems 2.2 and 2.1, using the three considered methods.

5.1.1 Derivation from the Cost Function Expression

This derivation technique can be found also in [FM03].
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Standard Linear Quadratic Control Problem

In this chapter we use a equivalent expression for the standard linear quadratic
control problem 2.2:

min
un,xn+1

φ =

N−1∑
n=0

[
x′n u′n

] [ Q S′

S R

] [
xn
un

]
+ x′NPxN

s.t. xn+1 = Axn +Bun

(5.1)

The di�erence is the absence of the factor 1
2 , and the use of P instead of QN .

In this section we show that the solution of the problem 5.1 is the input
sequence un obtained as linear feedback from the state xn with a time variant
gain matrix Kn,

un = Knxn

computed using the Riccati recursion.

The matrix R is assumed to be symmetric positive de�nite, and the matrix[
Q S′

S R

]
to be symmetric positive semi-de�nite.

The �rst step in solving 5.1 is to rewrite the cost function φ in a more
useful form. We notice that for each sequence of generic squared matrices Pn,
n ∈ {0, 1, . . . , N} of size nx × nx, we have

0 = x′0P0x0 − x′0P0x0 + x′1P1x1 − x′1P1x1 + · · ·+ x′NPNxN − x′NPNxN =

= x′0P0x0 − x′NPNxN +

N−1∑
n=0

(x′n+1Pn+1xn+1 − x′nPnxn) =

= x′0P0x0 − x′NPNxN +

N−1∑
n=0

(
(Axn +Bun)′Pn+1(Axn +Bun)− x′nPnxn

)
=

= x′0P0x0 − x′NPNxN +

N−1∑
n=0

([
x′n u′n

] [A′
B′

]
Pn+1

[
A B

] [xn
un

]
− x′nPnxn

)
=

= x′0P0x0 − x′NPNxN +

N−1∑
n=0

[
x′n u′n

] [ A′Pn+1A− Pn A′Pn+1B
B′Pn+1A B′Pn+1B

] [
xn
un

]
.

Adding this expression to the cost function expression in 5.1, we obtain

φ =x′0P0x0 + x′N (P − PN )xN+

+

N−1∑
n=0

[
x′n u′n

] [ Q+A′Pn+1A− Pn S′ +A′Pn+1B
S +B′Pn+1A R+B′Pn+1B

] [
xn
un

]
.

Choosing the ending value of the sequence Pn as PN = P the term x′N (P −
PN )xN vanishes. Choosing the remaining element of the sequence such that the
expression of Pn is obtained from Pn+1 as

Pn = Q+A′Pn+1A− (S +B′Pn+1A)′(R+B′Pn+1B)−1(S +B′Pn+1A) (5.2)
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we have that the quadratic terms of the cost function factorize as

φ = x′0P0x0+

+

N−1∑
n=0

[
x′n u′n

] [(S′ +A′Pn+1B)(R+B′Pn+1B)−1(S +B′Pn+1A) S′ +A′Pn+1B
S +B′Pn+1A R+B′Pn+1B

] [
xn
un

]
=

= x′0P0x0+

+

N−1∑
n=0

[
x′n u′n

] [(S +B′Pn+1A)′

R+B′Pn+1B

]
(R+B′Pn+1B)−1 [S +B′Pn+1A R+B′Pn+1B

] [xn
un

]
=

= x′0P0x0 +

N−1∑
n=0

v′n(R+B′Pn+1B)−1vn

where
vn = (S +B′Pn+1A)xn + (R+B′Pn+1B)un.

Equation 5.2 is the well known expression of the Riccati recursion.
In the last expression of the cost function the term x′0P0x0 is a constant, and,

since the matrix (R+B′Pn+1B) is positive de�nite (as R is positive de�nite and
Pn+1 is at least positive semi-de�nite, as shown in 5.1.4), the sum at the second
term is positive or zero, and the minimum 0 can only be obtained choosing
vn = 0 for each n. This implies

un = (R+B′Pn+1B)−1(S +B′Pn+1A)xn=̇Knxn.

This proves that the optimal input sequence can be written as a linear feedback
from the state, with a time variant gain matrix obtained using the Riccati
recursion.

The optimal value of the cost function is

φ∗ = x′0P0x0.

The Riccati recursion method for the solution of problem 2.2 is summarized
in algorithm 1.

Extended Linear Quadratic Control Problem

Also in the case of problem 2.1, in this chapter we use an equivalent expression

min
un,xk+1

φ =

N−1∑
n=0

1

2

[
x′n u′n

] [ Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [ xn
un

]
+ ρn+

+
1

2
x′NPxN + p′xN + π

s.t. xn+1 = Anxn +Bnun + bn
(5.3)

where we use P , p and π instead of QN , qN and ρN .
In this section we show that the solution of problem 5.3 is an input sequence

un obtained as a�ne feedback from the state xn with a time variant gain matrix
Kn and constant kn,

un = Knxn + kn



36 Riccati Recursion Method

Algorithm 1 Riccati recursion method for the solution of problem 2.2

Pn+1 ← P
for n = N − 1→ 0 do

Re,n ← R+B′Pn+1B

Kn ← −R−1
e,n(S +B′Pn+1A)

Pn ← Q+A′Pn+1A−K ′nRe,nKn

end for

for n = 0→ N − 1 do

un ← Knxn

xn+1 ← Axn +Bun

end for

obtianed using the Riccati recursion.

Again the matrices Rn are assumed to be symmetric positive de�nite, and

the matrices

[
Qn S′n
Sn Rn

]
to be symmetric positive semi-de�nite.

Also in this case the �rst step to solve 5.3 is to rewrite the cost function.
Like we presented in the solution procedure of problem 5.1, for each sequence
of general matrices Pn of size nx × nx holds the expression

0 =
1

2
x′0P0x0 −

1

2
x′NPNxN +

1

2

N−1∑
n=0

(
x′n+1Pn+1xn+1 − x′nPnxx

)
=

=
1

2
x′0P0x0 −

1

2
x′NPNxN+

+
1

2

N−1∑
n=0

((Anxn +Bnun + bn)′Pn+1(Anxn +Bnun + bn)− x′nPnxx) =

=
1

2
x′0P0x0 −

1

2
x′NPNxN+

+
1

2

N−1∑
n=0

([
x′n u′n

] [ A′nPn+1An − Pn A′nPn+1Bn
B′nPn+1An B′nPn+1Bn

] [
xn
un

]
+

+2
[
b′nPn+1An b′nPn+1Bn

] [ xn
un

]
+ b′nPn+1bn

)

In a similar way, given any sequence of generic vectors pn of length nx, holds
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the expression

0 = p′0x0 − p′NxN +

N−1∑
n=0

(
p′n+1xn+1 − p′nxn

)
=

= p′0x0 − p′NxN +

N−1∑
n=0

(
p′n+1(Anxn +Bnun + bn)− p′nxn

)
=

= p′0x0 − p′NxN +

N−1∑
n=0

([
p′n+1An − p′n p′n+1Bn

] [ xn
un

]
+ p′n+1bn

)
The cost function can thus be rewritten as

φ =
1

2
x′0P0x0 + p′0x0 +

1

2
x′N (P − PN )xx + (p− pN )′xn + π+

+

N−1∑
n=0

(
1

2

[
x′n u′n

] [ Qn +A′nPn+1An − Pn S′n +A′nPn+1Bn
Sn +B′nPn+1An Rn +B′nPn+1Bn

] [
xn
un

]
+

+
[
q′n + b′nPn+1An + p′n+1An − p′n s′n + b′nPn+1Bn + p′n+1Bn

] [ xn
un

]
+

+
1

2
b′nPn+1bn + p′n+1bn + ρn

)
.

Choosing again the sequence Pn such that PN = P , the term 1
2x
′
N (P −

PN )xN is zero. Choosing the remaining elements of the sequence such that the
expression of Pn is obtained from Pn+1 satisfying the Riccati recursion

Pn = Qn+A′nPn+1An−(Sn+B′nPn+1An)′(Rn+B′nPn+1Bn)−1(Sn+B′nPn+1An)

we have that the term quadratic in
[
x′n u′n

]′
in the cost function factorizes as

1

2

[
x′n u′n

] [(Sn +B′nPn+1An)′

Rn +B′nPn+1Bn

]
(Rn+B′nPn+1Bn)−1

[
Sn +B′nPn+1An Rn +B′nPn+1Bn

] [xn
un

]
=

= v′n(Rn +B′nPn+1Bn)−1vn=̇v′nHnvn

where again

vn = (Sn +B′nPn+1An)xn + (Rn +B′nPn+1Bn)un

and the matrix Hn = (Rn +B′nPn+1Bn)−1 is positive de�nite.
The cost function expression becomes

φ =
1

2
x′0P0x0 + p′0x0 + (p− pN )′xn + π+

+

N−1∑
n=0

(
1

2
v′nHnvn + (b′nPn+1bn + p′n+1bn + ρn)+

+
[
q′n + b′nPn+1An + p′n+1An − p′n s′n + b′nPn+1Bn + p′n+1Bn

] [ xn
un

])
.

The aim at this point is to handle also the linear term in
[
x′n u′n

]′
such that

it can be rewritten as a term in vn. Choosing the sequence pn such that pN = p
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the term (p − pN )′xN is zero. Choosing the remaining terms of the sequence
such that the expression of pn is obtained from pn+1 as

q′n + b′nPn+1An + p′n+1An − p′n =

= (s′n + b′nPn+1Bn + p′n+1Bn)(Rn +B′nPn+1Bn)−1(Sn +B′nPn+1An),

that means

pn = qn +A′n(Pn+1bn + pn+1)−
− (Sn +B′nPn+1An)′(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1)),

the linear term becomes

(sn+B′n(Pn+1bn+pn+1))(Rn+B′nPn+1Bn)−1 [Sn +B′nPn+1An Rn +B′nPn+1Bn

] [xn
un

]
=

= (sn +B′n(Pn+1bn + pn+1))(Rn +B′nPn+1Bn)−1vn=̇g′nvn.

The cost function expression �nally becomes

φ =
1

2
x′0P0x0+p′0x0+π+

N−1∑
n=0

(
1

2
v′nHnvn + g′nvn + (

1

2
b′nPn+1bn + p′n+1bn + ρn)

)
and it must be minimized as a function of vn. We notice that the term outside
the sum is a constant, while for each n the minimum of the positive de�nite
quadratic function is obtained setting the gradient with respect to vn to zero:

∇vn
(

1

2
v′nHnvn + g′nvn + (

1

2
b′nPn+1bn + p′n+1bn + ρn)

)
= Hnvn + gn = 0.

This means vn = −H−1
n gn, and then

(Sn +B′nPn+1An)xn + (Rn +B′nPn+1Bn)un =

= −(Rn +B′nPn+1Bn)(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))

and �nally

un =− (Rn +B′nPn+1Bn)−1(Sn +B′nPn+1An)xn−
− (Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1)) =

=Knxn + kn.

This shows that the optimal input sequence un can be obtained as a time variant
a�ne feedback from the state.

The optimal value of the cost function is thus

φ∗ =
1

2
x′0P0x0 + p′0x0 +

(
π +

N−1∑
n=0

(
−1

2
g′nH

−1
n gn +

1

2
b′nPn+1bn + p′n+1bn + ρn

))

=
1

2
x′0P0x0 + p′0x0 + π0



5.1 Derivation 39

where

π0 = π +

N−1∑
n=0

(
1

2
b′nPn+1bn + p′n+1bn + ρn−

−1

2
(sn +B′n(Pn+1bn + pn+1))′(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))

)
The Riccati recursion method for the solution of problem 2.1 is stated in

algorithm 2.

Algorithm 2 Riccati recursion method for the solution of problem 2.1

Pn+1 ← P
pn+1 ← p
for n = N − 1→ 0 do

Re,n ← Rn +B′nPn+1Bn

Kn ← −R−1
e,n(Sn +B′nPn+1An)

Pn ← Qn +A′nPn+1An −K ′nRe,nKn

kn ← −R−1
e,n(sn +B′n(Pn+1bn + pn+1))

pn ← qn +A′n(Pn+1bn + pn+1)−K ′nRe,nkn

end for

for n = 0→ N − 1 do

un ← Knxn + kn

xn+1 ← Anxn +Bnun + bn

end for

5.1.2 Derivation using Dynamic Programming

In this section we derive the same Riccati recursion methods for the solution
of both problems 2.2 and 2.1 using dynamic programming. This derivation
technique can be found also in [Jør05].

Standard Linear Quadratic Control Problem

Using dynamic programming, it is possible to �nd the solution of problem 2.2
by solving a sequence of sub-problems of increasing size. The solution of the
general sub-problem of size n is an input sequence of length n, obtained adding
a new element to the sequence solution of length n − 1 obtained solving the
sub-problem of size n− 1. The procedure is based on the fact that the optimal
input sequence for the problem of size n contains as sub-sequence the optimal
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input sequence for the problem of size n − 1. The solution can thus be build
starting from the last stage N − 1, solving a trivial problem of size 1. Then, at
stage N − 2, the solution is expanded with another term, computed solving a
trivial problem of size 1, and so on. In what follows there are the details.

Let us de�ne ϕn the element of the cost function at time n,

ϕn =
[
x′n u′n

] [ Q S′

S R

] [
xn
un

]
,

and φn the cost function between time n and N ,

φn =

N−1∑
i=n

[
x′i u′i

] [ Q S′

S R

] [
xi
ui

]
+ x′NPNxN =

N−1∑
i=n

ϕi + x′NPNxN .

We notice that, given the system dynamic xn+1 = Axn + Bun and the
generic input sequence ui, i ∈ {n, . . . , N − 1}, the state sequence depends only
on the initial state xn. This means that the cost function value depends only
on the input sequence ui and initial state xn. Furthermore, the optimal input
sequence u∗i (i.e. the input sequence minimizing the cost function φn) is in
general a function of the initial state xn.

Let us de�ne the minimum value V ∗n of the cost function φn as

V ∗n = min
ui,xi+1

φn.

The above discussion implies that also the minimum value V ∗n (obtained for the
optimal input sequence u∗i (xn), i ∈ {n, . . . , N−1}) is function only of the initial
state xn: we stress this using the notation V

∗
n (xn).

The possibility to use the dynamic programming approach for the computa-
tion of the optimal input sequence is based on the following result, a particular
instance of Bellman's principle of optimality:

Proposition 7. If u∗i (xn), i ∈ {n, . . . , N − 1} is the optimal input sequence for
the cost function φn, then u

∗
i (xn+1), i ∈ {n+ 1, . . . , N − 1} is an optimal input

sequence for the cost function φn+1.

Proof. The proof is by contradiction. Let us assume that the optimal input
sequence for the cost function φn+1 is ûi(xn+1), i ∈ {n+ 1, . . . , N − 1}. This in
particular means that

φn+1(xn+1, {ûn+1, . . . , ûN−1}) < φn+1(xn+1, {u∗n+1, . . . , u
∗
N−1})

for all the possible values of the initial state xn+1.
In this way it is possible to build the input sequence {u∗n, ûn+1, . . . , ûN−1}

for the cost function φn such that

φn(xn, {u∗n, ûn+1, . . . , ûN−1}) = ϕn(xn, u
∗
i ) + φn+1(xn+1, {ûn+1, . . . , ûN−1}) <

< ϕn(xn, u
∗
n) + φn+1(xn+1, {u∗n+1, . . . , u

∗
N−1}) = φn(xn, {u∗n, u∗n+1, . . . , u

∗
N−1})

and then u∗i is not the optimal input sequence for the cost function φn, against
the hypothesis.
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The previous proposition implies that it is possible to build an optimal input
sequence for the cost function φn adding the proper element u

∗
n(xn) to the input

sequence u∗i (xn+1), i ∈ {n+1, . . . , N−1}, optimal for the reduced cost function
φn+1. The problem of �nding the optimal input sequence for the cost function
φn+1 is then a sub-problem (of size N − 1 − (n + 1) + 1 = N − n − 1) of the
problem of �nding the optimal input sequence for the cost function φn (that is
a problem of size N − 1− n+ 1 = N − n).

This implies that the input sequence can be build step by step from the last
stage. The problem of �nding the optimal input u∗N−1(xN−1) for the cost func-
tion φN−1 is a trivial problem of size 1. Once solved, the problem of �nding the
optimal input u∗N−2(xN−2) such that the sequence {u∗N−2(xN−2), u∗N−1(xN−2)}
is optimal for the cost function φN−2 is again a trivial problem of size 1. The
procedure is iterated step by step till the initial stage, �nding the input sequence
{u∗0(x0), . . . , u∗N−1(x0)} as function of x0.

At the initial stage 0, the state x0 is known, and then it is possible to
compute the actual value of the input sequence.

In the following we explicitly compute the input sequence using the proce-
dure described above. At each stage the minimum value of the cost function
takes the form

V ∗n (xn) = x′nPnxn

where Pn is a symmetric positive semi-de�nite matrix.
At the last stage N , the cost function is a function only of xN , and takes

the form
V ∗N (xN ) = φN = x′NPNxN = x′NPxN ,

where PN = P is a symmetric positive semi-de�nite matrix by hypothesis.
At the general stage n, we assume that the optimal value of the cost function

at the stage n + 1 is V ∗n+1(xn+1) = x′n+1Pn+1xn+1 (with Pn+1 symmetric and
positive semi-de�nite), due to the optimal input sequence {u∗n+1, . . . , u

∗
N−1}.

Using this input sequence, we have to minimize the cost function

φn =ϕn(xn, un) + V ∗n+1(xn+1) = ϕn(xn, un) + V ∗n+1(Axn +Bun) =

=
[
x′n u′n

] [ Q S′

S R

] [
xn
un

]
+ (Axn +Bun)′Pn+1(Axn +Bun) =

=
[
x′n u′n

] [ Q+A′Pn+1A S′ +A′Pn+1B
S +B′Pn+1A R+B′Pn+1B

] [
xn
un

]
.

(5.4)
only with respect to un.

We notice that φn(xn) is a quadratic function of the input un, with an
Hessian matrix R+B′Pn+1B symmetric positive de�nite (since R is symmetric
positive de�nite and Pn+1 is symmetric positive semi-de�nite): this means that
there is an unique minimizer. A necessary and su�cient condition to �nd the
minimum is to set to zero the gradient of the cost function with respect to un,

∇un
(ϕn(xn, un) + V ∗n+1(xn+1)) = 2(S +B′Pn+1A)xn + 2(R+B′Pn+1B)un = 0

and so

u∗n(xn) = −(R+B′Pn+1B)−1(S +B′Pn+1A)xn = Knxn. (5.5)

We thus found that the optimal input is a linear feedback from the state.
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Using the expression 5.5 in 5.4, the optimal value of the cost function φn is

V ∗n (xn) =

=x′n
[
Q+A′Pn+1A− (S +B′Pn+1A)′(R+B′Pn+1B)−1(S +B′Pn+1A)

]
xn =

=x′n [Q+A′Pn+1A−K ′n(R+B′Pn+1B)Kn)]xn =

=x′nPnxn

where Pn is a symmetric positive semi-de�nite matrix. In fact it is symmetric
since it is the sum of three symmetric matrices. And it is positive semi-de�nite:
V ∗n (xn) = x′nPnxn ≥ 0 for all possible xn, since it is the minimum of the cost
function φn ≥ 0, that is a sum of positive semi-de�nite quadratic forms.

The minimum value of the cost function φ0 = φ is obtained at the �rst stage
n = 0, as

V ∗0 (x0) = x′0P0x0.

Once the process is at the �rst stage n = 0, the value of x0 is known, and used to
compute the actual value of u∗0 with 5.5. In turns, the system dynamic equation
gives x1 = Ax0 + Bu0, and so it is possible to compute the actual value of the
sequences of states and inputs iterating this procedure till the last stage n = N .

Extended Linear Quadratic Control Problem

We can repeat the procedure presented in the previous part also in the case of
problem 2.1. Let us de�ne ϕn the element of the cost function at time n,

ϕ =
1

2

[
x′n u′n

] [ Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [ xn
un

]
+ ρn

and φn the cost function between n and N ,

φn =

N−1∑
i=n

ϕn +
1

2
x′NPxN + p′xN + π.

The minimum of the cost function φn is de�ned again as

V ∗n = min
ui,xi+1

φn.

The system dynamic equation is xn+1 = Anxn +Bnun + bn.
In the case of 5.3, at each stage the minimum value of the cost function takes

the form
V ∗n (xn) = x′nPnxn + p′nxn + πn

where Pn is a symmetric positive semi-de�nite matrix.
At the �nal stage n = N , the cost function is function only of xN , and takes

the value

V ∗N (xN ) = φN (xN ) =
1

2
x′NPNxN + p′NxN + πN =

1

2
x′NP xN + p′xN + π,

where the matrix PN = P is symmetric and positive semi-de�nite by hypothesis.
At the general stage n, assuming that the optimal value of the cost function

at the stage n + 1 is V ∗n+1(xn+1) = 1
2x
′
n+1Pn+1xn+1 + p′n+1xn+1 + πn+1, with
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Pn+1 symmetric and positive semi-de�nite, we have to minimize with respect
to un the cost function

φn(xn, un) =ϕ(xn, un) + V ∗n+1(xn+1) =

=ϕn(xn, un) + V ∗n+1(Anxn +Bnun + bn) =

=
1

2

[
x′n u′n

] [Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [xn
un

]
+ ρn+

+
1

2
(Anxn +Bnun + bn)′Pn+1(Anxn +Bnun + bn)+

+ p′n+1(Anxn +Bnun + bn) + πn =

=
1

2

[
x′n u′n

] [Qn +A′nPn+1An S′n +A′nPn+1Bn
Sn +B′nPn+1An Rn +B′nPn+1Bn

] [
xn
un

]
+

+
[
q′n + (b′nPn+1 + p′n+1)An s′n + (b′nPn+1 + p′n+1)An

] [xn
un

]
+

+ ρn +
1

2
b′nPn+1bn + p′n+1bn + πn

We notice that this is a quadratic function of un, with the Hessian matrix
Rn + B′nPn+1Bn symmetric positive de�nite (since Rn is symmetric positive
de�nite and Pn+1 is symmetric positive semi-de�nite): this means that there is
an unique minimizer. A necessary and su�cient condition to �nd the minimum
is to set to zero the gradient of the cost function with respect to un,

∇un
(ϕn(xn, un) + V ∗n+1(xn+1)) =

= (Sn+B′nPn+1Bn)xn+(Rn+B′nPn+1Bn)un+(sn+B′n(Pn+1bn+pn+1)) = 0

and so

u∗n(xn) =− (Rn +B′nPn+1Bn)−1(Sn +B′nPn+1An)xn−
− (Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))

=Knxn + kn.

We thus found that the optimal input is an a�ne feedback from the state.
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The optimal value of the cost function φn(xn, un) is

V ∗n (xn) = φNn (xn, u
∗
n(xn)) =

=
1

2
x′n
[
Qn +A′nPn+1An+

+(S′n +A′nPn+1Bn)Kn +K ′n(Sn +B′nPn+1An) +K ′n(Rn +B′nPn+1Bn)Kn

]
xn+

+ [qn +A′n(Pn+1bn + pn+1) +K ′n(sn +B′n(Pn+1bn + pn+1))+

+(Sn +A′nPn+1Bn)kn + k′n(Rn +B′nPn+1BB)Kn

]
+

+

[
1

2
k′n(Rn +B′nPn+1Bn)kn + (sn +B′n(Pn+1bn + pn+1))′kn + ρ+

+
1

2
b′nP

′
n+1bn + p′n+1bn + πn

]
=

=
1

2
x′n
[
Qn +A′nPn+1An−

− (Sn +B′nPn+1An)′(Rn +B′nPn+1Bn)−1(Sn +B′nPn+1An)
]
xn+

+ [qn +A′n(Pn+1bn + pn+1)−

−(Sn +B′nPn+1An)′(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))
]′
xn+

+

[
−1

2
(sn +B′n(Pn+1bn + pn+1))′(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))+

+ρn +
1

2
b′nPn+1bn + p′n+1bn + πn

]
=

1

2
x′n
[
Qn +A′nPn+1An −K ′n(Rn +B′nPn+1Bn)Kn

]
xn+

+
[
qn +A′n(Pn+1bn + pn+1)−K ′n(Rn +B′nPn+1Bn)kn

]′
xn+

+

[
−1

2
k′n(Rn +B′nPn+1Bn)kn + ρn +

1

2
b′nPn+1bn + p′n+1bn + πn

]
=x′nPnxn + p′nxn + πn

where Pn is a symmetric positive semi-de�nite matrix. In fact it is symmetric
since it is the sum of three symmetric matrices. And it is positive semi-de�nite,
since its expression is the same (a part form the time variant matrices) as in the
standard linear quadratic control problem case.

The minimum of the cost function φN0 = φ is obtained at the �rst stage
n = 0, as

V ∗0 (x0) = x′0P0x0 + p′0x0 + π0.

5.1.3 Derivation from the KKT System

It is possible to derive the Riccati recursion methods directly from the expression
of the KKT system 2.7. The procedure is the same for both problems 2.2 and
2.1. This derivation technique can be found also in [RWR98].
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We report the expression of the KKT system for 2.1 (in the case N = 3)

R0 B′0
B0 −I

−I Q1 S′1 A′1
S1 R1 B′1
A1 B1 −I

−I Q2 S′2 A′2
S2 R2 B′2
A2 B2 −I

−I P





u0

π1

x1

u1

π2

x2

u2

π3

x3


=



−S0x0 − s0

−A0x0 − b0
−q1

−s1

−b1
−q2

−s2

−b2
−p


The derivation is based on the fact that, the last block of 4 rows

−I QN−1 S′N−1 A′N−1

SN−1 RN−1 B′N−1

AN−1 BN−1 −I
−I P



πN−1

xN−1

uN−1

πN
xN

 =


−qN−1

−sN−1

−bN−1

−p

 (5.6)

(that is a linear system with 4 equations and 5 variables) can be reduced to the
equivalent equation in two variables

−πN−1 + PN−1xN−1 = −pN−1 (5.7)

where PN−1 and pN−1 are matrices of a particular form. This equation has
the exact same form of the last row in 5.6: we can thus substitute in the KKT
matrix the block of 4 rows 5.6 with the single row 5.7, and so on. At the end
there is a system of 3 equations in 3 variables, that can be immediately solved.

Here we show the computations in details. At the general step, we have that
the last 4 rows in the modi�ed KKT matrix are

−I Qn S′n A′n
Sn Rn B′n
An Bn −I

−I Pn+1




πn
xn
un
πn+1

xn+1

 =


−qn
−sn
−bn
−pn+1

 . (5.8)

We can eliminate xn+1 using the third equation in 5.8 xn+1 = Anxn+Bnun+bn,
obtaining −I Qn S′n A′n

Sn Rn B′n
Pn+1An Pn+1Bn −I




πn
xn
un
πn+1

 =

 −qn
−sn

−(Pn+1bn + pn+1)

 .
(5.9)

We eliminate also πn+1 using third the equation in 5.9 πn+1 = Pn+1(Anxn +
Bnun + bn) + pn+1, obtaining[

−I Qn +A′nPn+1An S′n +A′nPn+1Bn
Sn +B′nPn+1An Rn +B′nPn+1Bn

] πn
xn
un

 =

=

[
−(qn +A′n(Pn+1bn + pn+1))
−(sn +B′n(Pn+1bn + pn+1))

]
(5.10)
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Finally we can eliminate un using the second equation in 5.10

(Sn +B′nPn+1An)xn + (Rn +B′nPn+1Bn)un = −(sn +B′n(Pn+1bn + pn+1)),

obtaining

−πn + Pnxn = −pn

where

Pn = Qn+A′nPn+1An−(S′n+A′nPn+1Bn)(Rn+B′nPn+1Bn)−1(Sn+B′nPn+1An)
(5.11)

and

pn = qn +A′n(Pn+1bn + pn+1)−
− (S′n +A′nPn+1Bn)(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1)).

Equation 5.11 is again the Riccati recursion.

In the end we have to solve the system R0 B′0
B0 −I

−I P1

 u0

π1

x1

 =

 −(S0x0 + s0)
−(A0x0 + b0)

−p1


giving

u0 = −(R0 +B′0P1B0)−1(S0x0 + s0 +B′0(p1 + P1(A0x0 + b0))) =

= −(R0 +B′0P1B0)−1(S0 +B′0P1A0)x0 − (R0 +B′0P1B0)−1(s0 +B′0(P1b0 + p1))

It is possible to build the entire sequences xn and un using in an switching
way one after the other the third equation of 5.8:

xn+1 = Anxn +Bnun + bn,

(that is the equation describing the dynamic of the system), and the second
equation of 5.10:

un = −(Rn +B′nPn+1Bn)−1(Sn +B′nPn+1An)xn −
−(Rn +B′nPn+1Bn)−1(sn +B′n(Pn+1bn + pn+1))

= Knxn + kn

(that characterizes the optimal control law as an a�ne feedback from the state).

The sequence πn can be obtained from the value of πn+1 and the �rst equa-
tion in 5.9,

πn = qn +Qnxn + S′nun +A′nπn+1,

with initial value

πN = PxN + p.
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5.1.4 Properties of the Sequence Pn

In this section we present a few properties of the sequence Pn computed using
the Riccati recursion

Pn = Qn+A′nPn+1An−(Sn+B′nPn+1An)′(Rn+B′nPn+1Bn)−1(Sn+B′nPn+1An)

in the time variant form: the sequence exists, and Pn is a symmetric and positive
semi-de�nite matrix, in the hypothesis that the matrices

P and

[
Qn S′n
Sn Rn

]
are symmetric and positive semi-de�nite. Furthermore, if they are also positive
de�nite, then also Pn is positive de�nite as well.

The proof can be found by induction. At the �rst step, the matrix PN = P
exists and is symmetric positive semi-de�nite by hypothesis.

At the general step, provided that Pn+1 exists and is symmetric and positive
semi-de�nite, Pn exists, since the matrix (Rn +B′nPn+1Bn) is positive de�nite
and thus invertible (Rn is positive de�nite by hypothesis and Pn+1 is positive
semi-de�nite from the previous step).

Furthermore, Pn is symmetric, since it is the sum of three symmetric matri-
ces, provided that Pn+1 is symmetric from the previous step.

Finally, Pn is positive semi-de�nite. In order to prove this, we notice that
the expression of the matrix Pn in the Riccati recursion

Pn = (Qn+A′nPn+1An)−(Sn+B′nPn+1An)′(Rn+B′nPn+1Bn)−1(Sn+B′nPn+1An)

is the Schur complement of the matrix (Rn +B′nPn+1Bn) in the matrix[
Qn +A′nPn+1An (Sn +B′nPn+1An)′

Sn +B′nPn+1An Rn +B′nPn+1Bn

]
=

=

[
Qn S′n
Sn Rn

]
+

[
A′nPn+1An A′nPn+1Bn
B′nPn+1An B′nPn+1Bn

]
=

=

[
Qn S′n
Sn Rn

]
+

[
A′n
B′n

]
Pn+1

[
An Bn

]

that is positive semi-de�nite, since it is the sum of two matrices positive semi-
de�nite. This implies that also the matrix Pn is positive semi-de�nite.

In fact, given the symmetric positive semi-de�nite matrix M represented in
2 × 2 block form, where the Z block is positive de�nite (and then invertible),
we can decompose it using a sort of block UDU ′ decomposition,

M =

[
X Y ′

Y Z

]
=

[
I Y ′Z−1

0 I

] [
X − Y ′Z−1Y 0

Y Z

]
=

=

[
I Y ′Z−1

0 I

] [
X − Y ′Z−1Y 0

0 Z

] [
I 0

Z−1Y I

]
.

We notice then that the matrices on the left and the right of the last expression
are invertible, and the it is possible to isolate the matrix in the middle[

X − Y ′Z−1Y 0
0 Z

]
=

[
I −Y ′Z−1

0 I

] [
X Y ′

Y Z

] [
I 0

−Z−1Y I

]
.
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Then, for each vector v of length equal to the size of the X matrix, we have
that

v′(X − Y ′Z−1Y )v =
[
v′ 0

] [ X − Y ′Z−1Y 0
0 Z

] [
v
0

]
=

=
[
v′ 0

] [ I −Y ′Z−1

0 I

] [
X Y ′

Y Z

] [
I 0

−Z−1Y I

] [
v
0

]
≥ 0

since the M matrix is positive semi-de�nite by hypothesis. This implies that
also the Schur complement of Z in M , Z − Y ′Z−1Y , is positive semi-de�nite.

Finally, assuming the further hypothesis that the matrices

P and

[
Qn S′n
Sn Rn

]
are positive de�nite, it is possible to prove that also Pn is positive de�nite at
each step. The proof is again by induction. At the �rst step it is true that
PN = P is positive de�nite by hypothesis.

At the general step, the expression of the matrix Pn in the Riccati recursion

Pn = (Qn+A′nPn+1An)−(Sn+B′nPn+1An)′(Rn+B′nPn+1Bn)−1(Sn+B′nPn+1An)

is the Schur complement of the matrix (Rn +B′nPn+1Bn) in the matrix[
Qn +A′nPn+1An (Sn +B′nPn+1An)′

Sn +B′nPn+1An Rn +B′nPn+1Bn

]
=

=

[
Qn S′n
Sn Rn

]
+

[
A′nPn+1An A′nPn+1Bn
B′nPn+1An B′nPn+1Bn

]
=

=

[
Qn S′n
Sn Rn

]
+

[
A′n
B′n

]
Pn+1

[
An Bn

]

that this time is positive de�nite, since it is the sum of a matrix positive de�nite
and a matrix at least positive semi-de�nite. This implies that also the matrix
Pn is positive de�nite.

In fact, given a generic symmetric positive de�nite matrix M represented
in 2 × 2 block form, we can decompose it using again a sort of block UDU ′

decomposition,

M =

[
X Y ′

Y Z

]
=

[
I Y ′Z−1

0 I

] [
X − Y ′Z−1Y 0

0 Z

] [
I 0

Z−1Y I

]
since the matrix Z is positive de�nite and then invertible.

We can thus write the inverse of the matrix M as

M−1 =

[
X Y ′

Y Z

]−1

=

[
I 0

−Z−1Y I

] [
(X − Y ′Z−1Y )−1 0

0 Z−1

] [
I −Y ′Z−1

0 I

]
=

=

[
(X − Y ′Z−1Y )−1 0

−Z−1Y (X − Y ′Z−1Y )−1 Z−1

] [
I −Y ′Z−1

0 I

]
=

=

[
(X − Y ′Z−1Y )−1 −(X − Y ′Z−1Y )−1Y ′Z−1

−Z−1Y (X − Y ′Z−1Y )−1 Z−1 + Z−1Y (X − Y ′Z−1Y )−1Y ′Z−1

]
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The matrix M−1 is positive de�nite because it is the inverse of the positive
de�nite matrix M . This implies that also the sub-matrix on the top left corner
(X − Y ′Z−1Y )−1 is positive de�nite, and its inverse X − Y ′Z−1Y (the Schur
complement of the matrix Z in M) is positive de�nite too.

5.2 Implementation

In many applications, and in our test problem, nx is (much) larger than nu: we
optimize our implementation for this case. Provided that, the most expensive
part of the Riccati recursion is the computation of the matrix A′PnA. A trivial
implementation of the computation of A′PnA requires roughly 4n3

x �oating-
point operations. Anyway it is possible to exploit the special structure of this
expression to do better: Pn is a symmetric matrix (and in general just positive
semi-de�nite), and it is multiplied on the right by A and on the left by the
transpose A′. Exploiting this we can write an algorithm to compute of the
expression A′PnA with an asymptotic cost of 3n3

x �oating-point operations.
Making the further assumption that Pn is positive de�nite (as often in practice),
we can write an algorithm with asymptotic cost of 7

3n
3
x.

We wrote three implementations of the Riccati recursion method:

• the general form of the algorithm, using the general matrix-matrix multi-
plication routine for all operations;

• a form exploiting the symmetry of the Pn matrix;

• a form requiring Pn to be symmetric positive de�nite, in the two versions
computing the upper or lower Cholesky factor.

5.2.1 Genaral form

In this �rst subsection we consider the general form of the algorithm, and use
only the general matrix-matrix multiplication routine dgemm1. The asymptotic
complexity of the algorithm is N(4n3

x + 6n2
xnu + 3nxn

2
u + 1

3n
3
u) �oating-point

operations, worst than the specialized forms of the algorithm.
Anyway, this algorithm can show some advantages for small systems, since

the implementation of the routine dgemm is usually more e�cient, and thus
for small matrices it is usually faster than specialized routines like dtrmm2 or
dsyrk3.

In the computation of the product A′PnA, that is where the most part of
the computational time is spent (at least for large systems), we are exploiting
the symmetry of Pn to use the routine dgemm where it is more e�cient: in fact,
the best performance is obtained if, in the product, the �rst factor is transposed
and the second is not. Since Pn is symmetric Pn = P ′n, and thus we have that

A′PnA = A′P ′nA = A′(P ′nA)

and thus we can use the routine dgemm both time in the more e�cient situation.

1See appendix B.1.1.
2See appendix B.1.2.
3See appendix B.1.3.
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It is also possible to obtain a further slightly improvement, compared to
the algorithm stated in the previous section, in the computation of the term
K ′nRe,nKn in the Pn update formula. In fact the matrix Re,n is symmetric
positive de�nite, and thus it is possible to compute its Cholesky factorization,

Re,n = ΛnΛ′n.

We thus have

K ′nRe,nKn = (Sn +B′nPn+1An)′R−1
e,nRe,nR

−1
e,n(Sn +B′nPn+1An) =

= (Sn +B′nPn+1An)′R−1
e,n(Sn +B′nPn+1An)

= (Sn +B′nPn+1An)′(Λ−1
n )′Λ−1

n (Sn +B′nPn+1An)

= (Λ−1
n (Sn +B′nPn+1An))′Λ−1

n (Sn +B′nPn+1An) = L′nLn

where Ln is de�ned as

Ln=̇Λ−1
n (Sn +B′nPn+1An)

In this way a multiplication and a linear triangular system solution are avoided,
saving 2nxn

2
u and nxn

2
u �oating-points operations.

It is also possible to obtain similar improvement in the computation of the
term K ′nRe,nkn in the pn update formula, but this time the savings would be
in the quadratic terms, and thus in general non in�uential. We have

K ′nRe,nkn = L′nln

where ln is de�ned as

ln=̇Λ−1
n (rn +B′n(Pn+1bn + pn+1)).

Also the computation of the input un is in�uenced, becoming

un = Knxn + kn = (−Λ′n)−1Lnxn + (−Λ′n)−1ln = (−Λ′n)−1(Lnxn + ln),

where again the di�erence in the computational time a�ects a quadratic term.
Regarding the space needs, also the sequence of the nu × nu matrices Λi needs
to be saved, in addition to the sequences of the nu×nx matrices Li (of the same
size of ki) and the nu × 1 vectors li (of the same size of ki).

In the following algorithm 3 we compute the complexity per iteration up to
the quadratic terms, that is(

4n3
x + 6n2

xnu + 3nxnu +
1

3
n3
u

)
+

(
5n2

x + 7nxn
2
u +

5

2
n2
u

)
�oating-point operations. We denote with a subscript the name of the used
BLAS or LAPACK routines.

5.2.2 Form exploiting the symmetry of Pn

The algorithm presented in this part exploits the symmetry of the matrices of
the sequence Pn to obtain an algorithm with asymptotic complexity of N(3n3

x+
5n2

xnu + 3nxn
2
u + 1

3n
3
u) �oating-point operations.
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Algorithm 3 Riccati recursion method for the solution of 2.1, general form

Require: (x0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, P, p)
Pn+1 ← P
pn+1 ← p
for n = N − 1→ 0 do

Re,n ← Rn +B′n ·dgemm (P ′n+1 ·dgemm Bn) . 2n2
xnu + 2nxn

2
u − nxnu �ops

Λn ←dpotrf chol(Re,n) . 1
3n

3
u + 1

2x
2
u �ops

Ln ←dtrsm Λ−1
n (Sn + (P ′n+1Bn)′ ·dgemm An) . 2n2

xnu + nxn
2
u �ops

Pn ← Qn +A′n ·dgemm (P ′n+1 ·dgemm An)− L′n ·dgemm Ln
. 4n3

x + 2n2
xnu − n2

x �ops
ln ←dtrsv Λ−1

n (rn +B′n ·dgemv (Pn+1 ·dgemv bn + pn+1))
. 2n2

x + 2nxnu + n2
u �ops

pn ← qn +A′n ·dgemv (Pn+1bn + pn+1)− L′n ·dgemv ln . 2n2
x + 2nxnu �ops

end for

for n = 0→ N − 1 do
un ←dtrsv −(Λ′n)−1(Ln ·dgemv xn + ln) . 2nxnu + n2

u �ops
xn+1 ← An ·dgemv xn +Bn ·dgemv un + bn . 2n2

x + 2nxnu �ops
end for

return ({xn}, {un})

It is possible to write the symmetric matrix Pn as the sum of a lower tri-
angular matrix and an upper triangular matrix in such a way that one is the
transposed of the other: Pn = Π + Π′. The cost to obtain the lower triangu-

lar matrix Π is nx(nx−1)
2 copies of �oating point numbers and nx �oating-point

divisions. Substituting this expression into A′PnA we have

A′PnA = A′(Π + Π′)A = A′ΠA+A′Π′A = (A′Π′A)′ +A′Π′A

and thus also the matrix A′PnA can be written as the sum of a matrix and its
transposed. The advantage of this procedure is that it is possible to compute Π′ ·
A in n3

x �oating-point operations (instead of roughly 2n3
x) using the specialized

BLAS routine dtrmm. The choice of Π′ instead of Π has the advantage of exploit
the used column-major order of data in memory.

The following multiplication A′ · (ΠA) has no structure, and so requires
2n3

x �oating-point operations; again the fact that the �rst factor is transposed

exploits the data order in memory. The �nal sum requires nx(nx+1)
2 �oating-

point sums and nx(nx−1)
2 copies of �oating-point numbers.

The asymptotic complexity in the computation of the term A′PnA is thus
of 3n3

x instead of 4n3
x �oating-point operations.

All the remaining parts of the algorithm are as in the previous version, with
the only exception of the use of the specialized routine dsyrk (approximately
requiring the half of the �oating-point operations compared to dgemm) in the
computation of the product L′nLn.

In the following algorithm 4 we compute the complexity per iteration up to
the quadratic terms, that is(

3n3
x + 5n2

xnu + 3nxn
2
u +

1

3
n3
u

)
+

(
7n2

x + 8nxnu +
5

2
n2
u

)
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�oating-point operations.

Algorithm 4 Riccati recursion method for the solution of 2.1, form exploiting
the symmetry of the matrix Pn

Require: (x0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, P, p)
Pn+1 ← P
pn+1 ← p
for n = N − 1→ 0 do

Re,n ← Rn +B′n ·dgemm (P ′n+1 ·dgemm Bn) . 2n2
xnn + 2nxn

2
u − nxnu �ops

Λn ←dpotrf chol(Re,n) . 1
3n

3
u + 1

2n
2
u �ops

Ln ←dtrsm Λ−1
n (Sn + (P ′n+1B

′
n)′ ·dgemm An) . 2n2

xnu + nxn
2
u �ops

Compute Πn

Compute A′n ·dgemm (Π′n ·dtrmm An) . 3n3
x − n2

x �ops
Pn ← Qn + (A′n(Π′nAn))′ +A′n(Π′nAn)− L′n ·dsyrk Ln

. n2
xnu + 2n2

x + nxnu �ops
ln ←dtrsv Λ−1

n (rn +B′n ·dgemv (Pn+1 ·dgemv bn + pn+1))
. 2n2

x + 2nxnu + n2
u �ops

pn ← qn +A′n ·dgemv (Pn+1bn + pn+1)− L′n ·dgemv ln . 2n2
x + 2nxnu �ops

end for

for n = 0→ N − 1 do
un ←dtrsv −(Λ′n)−1(Ln ·dgemv xn + ln) . 2nxnu + n2

u �ops
xn+1 ← An ·dgemv xn +Bn ·dgemv un + bn . 2n2

x + 2nxnu �ops
end for

return ({xn}, {un})

5.2.3 Form requiring Pn to be positive de�nite

Assuming that Pn is symmetric positive de�nite (and thus invertible), we can
obtain an algorithm with asymptotic complexity N( 7

3n
3
x+4n2

xnu+2nxn
2
u+ 1

3n
3
u).

As already seen, a su�cient condition for this is that Qn, n = 0, ..., N − 1 and
P are positive de�nite.

As already said, the most expensive part of the Riccati recursion algorithm
is the computation of the term A′PnA at each iteration. Exploiting the fact
that Pn is symmetric positive de�nite, we can factorize it using the Cholesky
factorization, obtaining the upper Pn = U ′U or lower Pn = LL′ factor; the cost
is 1

3n
3
x + 1

2n
2
x + 1

6nx. Then the term A′PnA is computed as

A′PnA = A′U ′UA = (UA)′UA or A′PnA = A′LL′A = (L′A)′(L′A).

The advantage is that U and L are respectively upper and lower triangular,
and the computation of the product UA or L′A requires only n3

x �oating-point
operations using the specialized routine dtrmm; and the product of the transpose
of the matrix UA or L′A by the matrix UA or L′A itself requires only n3

x + n2
x

using the specialized routine dsyrk. In total the algorithm requires 7
3n

3
x+ 3

2n
2
x+

1
6nx �oating point operations.

The use of the upper U or lower L factor in the algorithm in�uences the
performance. In fact, even if the cost is the same as number of �oating-point
operations, the computation of U is faster than the computation of L because
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of the data order in memory. On the other hand, the computation of the prod-
uct UA is slower than the computation of the product L′A, again because of
the data order in memory. Which of the two version is the more e�cient is
really case sensitive, and should be tested for the speci�c BLAS and LAPACK
implementation, as well as for the problem and problem size.

In the following algorithm 5 we compute the cost per iteration up to the
quadratic terms, that is(

7

3
n3
x + 4n2

xnu + 2nxn
2
u +

1

3
n3
u

)
+

(
15

2
n2
x + 10nxnu +

5

2
n2
u

)
�oating-point operations.

Algorithm 5 Riccati recursion method for the solution of 2.1, form requiring
Pn to be symmetric positive de�nite, version computing the upper Cholesky
factor of Pn

Require: (x0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, P, p)
Pn+1 ← P
pn+1 ← P
for n = N − 1→ 0 do

Un ←dpotrf chol(Pn+1) . 1
3n

3
x + 1

2n
2
x �ops

Re,n ← Rn + (Un ·dtrmm Bn)′ ·dsyrk (UnBn) . n2
xnu + nxn

2
u + nxnu �ops

Λn ←dpotrf chol(Re,n) . 1
3n

3
u + 1

2n
2
u �ops

Ln ←dtrsm Λ−1
n (Sn + (UnBn)′ ·dgemm (Un ·dtrmm An))

. n3
x + 2n2

xnu + nxn
2
u �ops

Pn ← Qn + (UnAn)′ ·dsyrk (UnAn)− L′n ·dsyrk Ln
. n3

x + n2
xnu + n2

x + nxnu �ops
ln ←dtrsv Λ−1

n (rn +B′n ·dgemv (Pn+1 ·dsymv bn + pn+1))
. 2n2

x + 2nxnu + n2
u �ops

pn ← qn +A′n ·dgemv (Pn+1bn + pn+1)− L′n ·dgemv ln . 2n2
x + 2nxnu �ops

end for

for n = 0→ N − 1 do
un ←dtrsv −(Λ′n)−1(Ln ·dgemv xn + ln) . 2nxnu + n2

u �ops
xn+1 ← An ·dgemv xn +Bn ·dgemv un + bn . 2n2

x + 2nxnu �ops
end for

return ({xn}, {un})

5.3 Performance analysis

5.3.1 Cost of sub-routines

We can use the pro�ler tool gprof4 to analyze the cost of the di�erent routines,
by compiling the code with the optimization �ag -pg. Also the BLAS and
LAPACK libraries used in this part are compiled with the optimization �ag
-pg.

In table 5.1 there is the cost in percentage of the BLAS and LAPACK
routines, taken from the �at pro�le produced by pgrof.

4See appendix A.
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algorithm 3 algorithm 4 algorithm 5
routine percentage percentage percentage
dgemm 98.29 66.09 5.99
dtrmm unused 29.40 42.16
dsyrk unused 1.06 43.57
dtrsm 0.16 0.25 4.43
dgemv 0.64 1.09 1.23
dpotrf 0.00 0.00 0.00
others 0.91 2.11 2.62

Table 5.1: Cost of BLAS and LAPACK routines, using as test problem the
mass-spring problem 7.2, with nx = 256, nu = 8 and N = 10.

In the case of algorithm 3, almost all the computational time is due to routine
dgemm. In the case of algorithm 4, dgemm is the most expensive routine, but also
dtrmm has an important percentage. The case of algorithm 5 is more complex,
with routines dtrmm and dsyrk each covering more than 40%.

It is interesting that routine dpotrf5 (performing Cholesky factorization)
accounts for 0% in all cases: in fact it is a LAPACK routine performing a
blocked version of the Cholesky factorization, and it makes use of other BLAS
and LAPACK routines. Thus the time spent in the routine itself is almost null.

The pro�ler gprof also produces a call graph, giving useful information
about the total time spent in a routine also taking into account the calls to sub-
routines. In the case of algorithm 5, it is interesting the fact that routine dpotrf
and its subroutines accounts for 34.4%, that is much more the theoretical value
13.5% (computed in the approximation nx � nu).

5.3.2 Comparative test

In this part we compare the performance in terms of computational time of four
implementation of the Riccati recursion method, namely algorithm 3, algorithm
4 and algorithm 5 in the two version where the upper or lower Cholesky factor
of the Pn matrix is computed. The test problem is the mass-spring problem 7.2
with nu ≤ nx/2. The tables containing all the data are D.5, D.6, D.7 and D.8.

In �gure 5.1a nx and nu are �xed and only N is varied. The behavior of the
algorithm is clearly linear. With this particular choice of nx and nu algorithms
3 and 4 are actually faster than algorithm 5, even if the latter has a lower
asymptotic complexity in terms of �oating-point operations.

In �gure 5.1b N and nu are �xed and nx is varied. The value nu is kept
�xed since it has very little in�uence on the computational time, holding the
condition nx � nu. The computational time is clearly a cubic function of nx
for large systems. Algorithm 3 is the fastest for small and medium values of nx,
while algorithm 5 (in both versions) is faster for large values of nx.

5.3.3 Conclusions

The asymptotic cost of the algorithms becomes important just for large sys-
tems. The use of specialized routines is useful just for large matrices, since in

5See appendix B.4.
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Figure 5.1: Comparison of the performance of four implementation of the Ric-
cati recursion method for the solution of the problem 2.1, using
as test problem the mass-spring problem 7.2: algorithm 3 (blue),
algorithm 4 (green), algorithm 5, computing the upper Cholesky
factor (black) or lower Cholesky factor (red).
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general they are slower for small ones. For small systems, the best solution is
thus the general form algorithm 3, using only routine dgemm for matrix-matrix
multiplication.

For large systems, the best solution is algorithm 5 requiring Pn to be sym-
metric positive de�nite. Anyway, the performance is lower than the theoretical
one due to the poor performance of the LAPACK routine dpotrf compared to
the others BLAS routines. For small systems, this problem can partially be
solved with the use of a recursive algorithm (as ric2 presented in the appendix
C) and e�cient implementation in assembly of the base cases.



Chapter 6

Condensing Methods

Another approach for the solution of problem 2.1 consists in rewrite the problem
from the form of a large sparse equality constrained quadratic program to a small
dense system of linear equations, whose matrix is positive de�nite and has size
Nnu ×Nnu. The solution of this system can be computed using the Cholesky
factorization in time proportional to (Nnu)3, plus the time needed to build the
system.

6.1 Derivation

We consider two di�erent methods, and show how they lead to the same system
of linear equaitons:

• the �rst one is the null space method for the solution of a generic equality
constrained quadratic program

• the second one is the state elimination method: it explicitly uses the
system dynamic equation to eliminate the states from the problem formu-
lation and rewrite it as a small dense unconstrained quadratic program,
whose solution is found setting its gradient to zero.

6.1.1 Null space method

This section is divided into two parts: in the �rst part we derive the null space
method in the case of a generic equality constrained quadratic program. In the
second one we use the method in the special case of problem 2.1. The use of
null space method for the solution of the general equality constrained quadratic
program can be found in [NW06].
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General method

In this �rst part we present the null space method for the solution of the generic
equality constrained quadratic program

min
x

1

2
x′Hx+ g′x

s.t. Ax = b
(6.1)

In what follows, we suppose that the matrix A (of size m × n) has full row
rank m and that the matrix H (of size n × n) is symmetric positive semi-
de�nite. Furthermore, we suppose that the reduced Hessian matrix Z ′HZ (of
size (n − m) × (n − m)) is positive de�nite, where Z (of size n × (n − m)) is
a matrix with full column rank whose columns are a basis for the kernel (or
null space) of the matrix A, AZ = 0 (this gives the name to the method). In
chapter 2 we have already derived conditions on the matrices of problem 2.1
under which these hypotheses hold.

In the given hypothesis, we already know that the unique solution of 6.1 is
given by the solution of the KKT system[

H −A′
−A 0

] [
x
π

]
= −

[
g
b

]
. (6.2)

Let Y be a n×m matrix such that the n× n matrix [Y |Z] has full rank n
(Y is not unique). Then we have that each vector x can be decomposed as

x = Y xy + Zxz.

Inserting this expression into the second equation in 6.2, we have that

Ax = A(Y xy + Zxz) = AY xy +AZxz = AY xy = b

since AZ = 0 by de�nition of Z. This means that the vector Y xy satis�es the
constraints.

From the expression A [Y |Z] = [AY |AZ] = [AY |0] we notice that AY is a
squared matrix of size m ×m with full rank, since A has full row rank m and
[Y |Z] has full rank n. This means that we can compute the value of xy as

xy = (AY )−1b.

Inserting the decomposition x = Y xy + Zxz into the �rst equation in 6.2,
and using the above expression for xy, we have

Hx−A′π = HY xy +HZxz −A′π = HY (AY )−1b+HZxz −A′π = −g.

Multiplying on the right both sides for Z ′ and rearranging the terms we have

Z ′HZxz = −Z ′(g +HY (AY )−1b)

since the term Z ′A′π = (AZ)′π = 0.
Since the reduced Hessian matrix Z ′HZ is positive de�nite by hypothesis,

we can �nally solve the above equation for xz:

xz = −(Z ′HZ)−1Z ′(g +HY (AY )−1b).
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Problem 2.1 case

We show the computations in the special case N = 3, since in this way the
matrices are not excessively large, and it is easy to extend the procedure to the
general N .

We have already computed a possible expression for the matrix Z in chapter
2. In this part we rearrange the components of the vector x in a more handy
way: in what follows we assume

x =


u0

u1

u2

x1

x2

x3

 .

The problem matrices thus take the form

H =


R0

R1 S1

R2 S2

S′1 Q1

S′2 Q2

Q3

 =

[
R̄ S̄
S̄′ Q̄

]
, g =


S0x0 + s0

s1

s2

q1

q2

q3

 =

[
s̄
q̄

]

A =

 −B0 I
−B1 −A1 I

−B2 −A2 I

 , b =

 A0x0 + b0
b1
b2


and the Z matrix and a suitable Y matrix take the form

Z =


I 0 0
0 I 0
0 0 I
B0 0 0
A1B0 B1 0
A2A1B0 A2B1 B2

 =

[
I

Γu

]
, Y =


0 0 0
0 0 0
0 0 0
I 0 0
0 I 0
0 0 I

 =

[
0
I

]

The Z and Y matrices are not unique, and the actual value of the Y matrix
in�uences the numerical properties of the method, but we do not care about
this since we make all the computations analytically. We then choose the easier
form for the matrix Y . We notice that, with these choices for the matrices Y
and Z, the decomposition of the vector x is

x =


u0

u1

u2

x1

x2

x3

 = Y xy + Zxz =

[
0
I

]
xy +

[
I

Γu

]
xz =

[
xz

xy + Γuxz

]

and then xz is actually the input vector,

xz =

 u0

u1

u2

 .
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With these de�nitions, we have that the vector xy is

xy = (AY )−1b =

 I 0 0
−A1 I 0

0 −A2 I

−1  A0x0 + b0
b1
b2

 =̇Γbb =

=

 I 0 0
A1 I 0
A2A1 A2 I

 A0x0 + b0
b1
b2

 =

 A0x0 + b0
A1(A0x0 + b0) + b1

A2(A1(A0x0 + b0) + b1) + b2


and �nally xz is

xz = −(Z ′HZ)−1
(
Z ′(g +HY xy)

)
=̇− H̄−1ḡ

where

H̄ = Z ′HZ =
[
I Γ′u

] [ R̄ S̄
S̄′ R̄

] [
I

Γu

]
= R̄+ Γ′uS̄

′ + S̄Γu + Γ′uQ̄Γu =

=

 R0 0 0
0 R1 0
0 0 R2

+

 0 B′0S
′
1 B′0A

′
1S
′
2

0 0 B′1S
′
2

0 0 0

+

 0 0 0
S1B0 0 0
S2A1B0 S2B1 0

+

+

B
′
0Q1B0 +B′0A

′
1Q2A1B0 +B′0A

′
1A
′
2Q3A2A1B0

S1B0 +B′1Q2A1B0 +B′1A
′
2Q3A2A1B0

S2A1B0 +B′2Q3A2A1B0

. . .

. . .

. . .

B′0S
′
1 +B′0A

′
1Q2B1 +B′0A

′
1A
′
2Q3A2B1

R1 +B′1Q2B1 +B′1A
′
2Q3A2B1

S2B1 +B′2Q3A2B1

B′0A
′
1A
′
2Q3B2

B′1S
′
2 +B′1A

′
2Q3B2

R2 +B′2Q3B2



=

R0 +B′0Q1B0 +B′0A
′
1Q2A1B0 +B′0A

′
1A
′
2Q3A2A1B0

B′1Q2A1B0 +B′1A
′
2Q3A2A1B0

B′2Q3A2A1B0

. . .

. . .

. . .

B′0S
′
1 +B′0A

′
1Q2B1 +B′0A

′
1A
′
2Q3A2B1

B′1Q2B1 +B′1A
′
2Q3A2B1

B′2Q3A2B1

B′0A
′
1S
′
2 +B′0A

′
1A
′
2Q3B2

B′1A
′
2Q3B2

B′2Q3B2


and

ḡ = Z ′(g +HY xy) =
[
I Γ′u

]([ s̄
q̄

]
+

[
S̄
Q̄

]
Γbb

)
=

=
[
I Γ′u

] [ s̄+ S̄Γbb
q̄ + Q̄Γbb

]
= s̄+ S̄Γbb+ Γ′u(q̄ + Q̄Γbb) =

=



s0 + S0x0 +B′0(q1 +Q1(A0x0 + b0)) +B′0A
′
1(q2 +Q2(A1(A2x0 + b0) + b1)+

+B′0A
′
1A
′
2(q3 +Q3(A2(A1(A0x0 + b0) + b1) + b2))

s1 + S1(A0x0 + b0) +B′1(q2 +Q2(A1(A0x0 + b0) + b1))+

+B′1A
′
2(q3 +Q3(A2(A1(A0x0 + b0) + b1) + b2))

s2 + S2(A1(A0x0 + b0) + b1)) +B′2(q3 +Q3(A2(A1(A0x0 + b0) + b1) + b2))


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6.1.2 State elimination

A di�erent approach, leading to the same system of linear equations, is the state
elimination method: exploiting the fact that it is possible to write the future
states xk, k ∈ {1, . . . , N} as function of the initial state x0 and the (unknown)
inputs uk, k ∈ {0, 1, . . . , N − 1}, it is possible to eliminate the states from the
formulation of problem 2.1, dropping the direct dependence on the state vector.

The method consist of two phases: the preprocessing phase, rewriting the
problem in the form of an unconstrained quadratic program, with a cost de�nite
positive cost function in the only inputs uk; and the solution phase, where the
unconstrained quadratic program is solved by setting its gradient to zero.

We derive the method directly in the case of problem 2.1, for a general value
of N .

Let us de�ne the unknown input vector as

ū =


u0

u1

...
nN−1


that is a vector of size Nnu × 1.

Our purpose is to rewrite the cost function φ as a quadratic function of the
only ū, given the initial state vector x0 of size nx × 1, and the system dynamic
equation

xk+1 = Akxk +Bkuk + bk. (6.3)

The cost function can be rewritten as

φ =

N−1∑
n=0

(
1

2
x′nQnxn + x′nS

′
nun +

1

2
u′nRnun + q′nxn + s′nun + ρn

)
+

+
1

2
x′NQNxN + q′NxN + ρN =

=
1

2

N∑
n=1

x′nQnxn +

N−1∑
n=1

x′nS
′
nun +

1

2

N−1∑
n=0

u′nRnun +

N∑
n=1

q′nxn+

+

(
x′0S

′
0u0 +

N−1∑
n=0

s′nun

)
+

(
1

2
x′0Q0x0 + q′0x0 +

N∑
n=0

ρn

)
=

=
1

2
x̄′Q̄x̄+

1

2
x̄′S̄′ū+

1

2
ū′S̄x̄+

1

2
ū′R̄U + q̄′x̄+ s̄′ū+ ρ̄,

where we de�ne the scalar ρ̄ = 1
2x
′
0Q0x0 + q′0x0 +

∑N
n=0 ρn and the matrices

x̄ =


x1

x2

...
xN

 , Q̄ =


Q1 0 . . . 0

0 Q2
. . .

...
...

. . .
. . . 0

0 . . . 0 QN

 , S̄ =


0 . . . . . . 0

S1
. . .

...
. . .

. . .
...

0 . . . SN−1 0



R̄ =

 R0 0
. . .

0 RN−1

 , q̄ =

 q1

...
qN

 , s̄ =

 s0 + S0x0

...
sN−1


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of size: x̄ is Nnx × 1, Q̄ is Nnx ×Nnx, S̄ is Nnu ×Nnx, R̄ is Nnu ×Nnu, q̄
is Nnx × 1 and r̄ is Nnu × 1.

Using equation 6.3, the state vector can be written as

x̄ = Φxx0 + Γuū+ Γbb̄ (6.4)

where

Φx =

 A0

A1A0

AN−1 . . . A1A0

 , Γu =


B0 0 . . . 0

A1B0 B1
. . .

...
...

...
. . . 0

AN−1 . . . A1B0 AN−1 . . . A2B1 . . . BN−1



Γb =


I 0 . . . 0

A1 I
. . .

...
...

...
. . . 0

AN−1 . . . A1 AN−1 . . . A2 . . . I

 , b̄ =

 b0
...

bN−1


Substituting 6.4 into the cost function expression, we obtain the formulation

as a function of the only ū

φ = φ(ū) =
1

2
ū′H̄ū+ ḡ′ū+ ρ̄

where

H̄ = Γ′uQ̄Γu + Γ′uS̄
′ + S̄Γu + R̄

ḡ = Γ′uQ̄(Φxx0 + Γbb̄) + S̄(Φxx0 + Γbb̄) + Γ′uq̄ + s̄

ρ̄ =
1

2
(Φxx0 + Γbb̄)

′Q̄(Φxx0 + Γbb̄) + q̄′(Φxx0 + Γbb̄) + ρ̄

The matrix H̄ is Nnu ×Nnu, the vector ĝ is Nnu × 1 and ρ̂ is a scalar.
We notice that the H̄ matrix is exactly the same as in the null space method,

and that the matrices Φx and Γb are used only in the expression Φxx0 + Γbb̄.
Then de�ning

Φxx0 + Γbb̄ = Γbb

where

b =


A0x0 + b0

b1
...

bN−1


we �nd again for ḡ the expression

ḡ = Γ′uQ̄Γbb+ S̄Γbb+ Γ′uq̄ + s̄

that is the exactly same as in the null space method.
The H̄ matrix is positive de�nite, since it coincides with the reduced Hessian

Z ′HZ matrix of the null space method, that is positive de�nite by hypothesis.
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The H̄ matrix is then invertible, and so the minimum of the cost function is
unique, and can be found setting to zero the gradient of the cost function with
respect to ū:

∇φ(ū) = H̄ū+ ḡ = 0 ⇒ ū∗ = −H̄−1ḡ.

The value of ρ̂ does not in�uence the minimizer ū∗ but just the value of the
minimum of the cost function: since we are only interested in the value of the
minimizer and not on the value of the minimum, we avoid the computation of
ρ̂.

6.2 Implementation

In the case of the condensing methods, the implementation plays a key role in
the performance of the algorithm: in fact, the matrices de�ned in the previous
section have a lot of structure, and exploiting this fact it is possible to write
algorithms using much less space and time.

As we have already seen, the algorithm consist in two parts: a �rst part
(preprocessing phase), where the H̄ matrix and the ḡ vector are build; and
a second part (solution phase) where the system of linear equations is solved.
The Ĥ matrix is symmetric positive de�nite by hypothesis, and so we can solve
the system of linear equations using the Cholesky factorization. The Ĥ matrix
has size Nnu, and then the cost for the factorization of the matrix is roughly
1
3 (Nnu)3, cubic in both the horizon length N and the input number nu.

In the previous chapters we saw algorithms for the solution of 2.1 in time
linear in N and cubic in both nx and nu: then the �eld of application of the
condensing methods is necessary the case of problems with small values of the
horizon length N and the number of inputs nu.

In the condensing phase, it is usually possible to use two di�erent approaches
in the construction of matrices, leading to di�erent complexities: an approach
produces algorithm with higher complexity in N and lower in nx, while on the
opposite the other approach produces algorithms with lower complexity in N
and higher in nx. Since the solution phase is already cubic in N , we choose the
�rst approach, in the hope to obtain an algorithm with good performances in
the case of large value of nx. This is true, since following this approach it is
possible to obtain an algorithm quadratic in nx, while the algorithms presented
in the previous chapters are cubic in nx.

We notice that the Q̄, S̄ and R̄ matrices are mainly zeros, and can become
very large (especially Q̄, of size Nnx × Nnx): the only function of these zeros
is to keep the sub-matrices Qk, Sk, Rk in the correct position during matrix
multiplications. Then it is possible to avoid the construction of these matrices,
and instead explicitly perform the correct matrix multiplications using the sub-
matrices, at the cost of a larger number of calls to the matrix multiplication
routine dgemm1. The number of calls to this routine is linear in N .

The largest matrix is Γb, of size Nnx ×Nnx; it is used only in the product
Γbb, that is a vector of size Nnx × 1. In the case N = 3 this product is written

1See appendix B.1.1.
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as

Γbb =

 I 0 0
A1 I 0
A2A1 A2 I

 A0x0 + b0
b1
b2

 =

 A0x0 + b0
A1(A0x0 + b0) + b1

A2A1(A0x0 + b0) +A2b1 + b2

 =

=

 A0x0 + b0
A1(A0x0 + b0) + b1

A2(A1(A0x0 + b0) + b1) + b2


where in the last term we are stressing the fact that it is possible to exploit the
structure of the matrix Γb and directly build Γbb̄ in an e�cient way.

The Γbb vector is initialized computing A0x0 + b0 in the block of index 0
and, for each i, copying bi in the block of index i (where the indexes refer to
the blocks of size nx × 1, starting from index 0). The Γbb vector is built from
the top to the bottom: the expression of the block of index i is obtained by
multiplying Ai on the right by the block of index i− 1, and adding the result to
the already copied bi. In this way the creation of Γbb requires Nn

2
x �oating-point

multiplications (and roughly the same number of �oating-point sums), plus the
initial copy of Nnx �oating-point numbers (not considered in the complexity
computation).

After this, the most expensive part of the condensing phase is the compu-
tation of the Γ′uQ̄Γu matrix. There are at least two di�erent approaches: the
�rst one consists on the computation the product using the dgemm routine, and
working only on the sub-matrices to avoid zero multiplications. The second one
is similar to the procedure used for the computation of the term A′PnA of the
Riccati recursion in the case of P symmetric positive de�nite: namely, Cholesky
factorization of Q̄ = LL′, computation of L′Γu and of Γ′uQ̄Γu = (L′Γu)′L′Γu
using specialized routines. The problem with this second approach is that the
Cholensky factorization of the matrix Q̄ requires N 1

3n
3
x �oating-point opera-

tions, while the �rst approach is quadratic in nx. We choose the �rst one.

The �rst step in the computation of Γ′uQ̄Γu is the creation of the matrix Γu,
of size Nnx ×Nnu. In the case N = 3, it is

Γu =

 B0 0 0
A1B0 B1 0
A2A1B0 A2B1 B2

 .
We noticed that an e�cient procedure to build this matrix is in two steps, each
consisting on a loops over the horizon. In the �rst loop, Bi is copyed in the
block of indexes (i, i) (where the indexes refer to the blocks of size nx × nu,
starting from index 0). In the second loop, the matrix Ai is multiplied on the
right by the block row with row index i− 1 and column indexes from 0 to i− 1
(both inclusive), and the result is written in the row block with row index i and
column indexes from 0 to i − 1 (again both inclusive). N − 1 calls to dgemm

are performed, and each time the �rst factor is a matrix of constant size, while
the second factor is a matrix with constant number of rows and a number of
columns equal to i+ 1. The total cost of this step is N(N−1)

2 n2
xnu �oating-point

multiplications (and roughly an equal number of �oating-point sums), plus the
initial copy of Nnxnu �oating-point numbers (not considered).

The next step is the creation of the matrix Q̄Γu, again of size Nnx ×Nnu.
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In the case N = 3 it is

Q̄Γu =

 Q1B0 0 0
Q2A1B0 Q2B1 0
Q3A2A1B0 Q3A2B1 Q3B2

 .
For each i, the matrix Qi+1 is multiplied on the right by the row block from the
Γu matrix with row index i and column indexes from 0 to i (both inclusive).
The result is written in the row block from the Q̄Γu matrix with row index i and
column indexes from 0 to i (both inclusive). N calls to dgemm are performed, and

the cost of this step is N(N+1)
2 n2

xnu �oating-point multiplications (and roughly
the same number of �oating-point sums).

The last step consists in the creation of the matrix Γ′uQ̄Γu, of size Nnu ×
Nnu. There are at lest two approaches to perform this computation. One
consist in the explicit performance of the multiplication Γ′u · Q̄Γu, avoiding the
multiplications when one of the factor is a zero block and computing the only
lower (or upper factor). The complexity is roughly 1

3N
3nxn

2
u �oating point

multiplications: the sum of the exponents of the terms N , nx and nu is 6.
Instead, it is possible to write an algorithm with sum of the exponents equal

to 5 in the following way: we notice that for N = 3 the matrix Γ′uQ̄Γu is

Γ′uQ̄Γu = Γ′u·Q̄Γu =

B′0 B′0A
′
1 B′0A

′
1A
′
2

0 B′1 B′1A
′
2

0 0 B′2

 Q1B0 0 0
Q2A1B0 Q2B1 0
Q3A2A1B0 Q3A2B1 Q3B2

 =

=

B
′
0(Q1B0 +A′1(Q2A1B0 +A′2(Q3A2A1B0)))

B′1(Q2A1B0 +A′2(Q3A2A1B0))

B′2(Q3A2A1B0)

. . .

. . .

. . .

B′0(0 +A′1(Q2B1 +A′2(Q3A2B1)))

B′1(Q2B1 +A′2(Q3A2B1))

B′2(Q3A2B1)

B′0(0 +A′1(0 +A′2(Q3B2)))

B′1(0 +A′2(Q3B2))2

B′2(Q3B2)


In the last formulation we want to stress the fact that it is possible to build the
matrix Γ′uQ̄Γu in two steps: the �rst step is carried on in place, on the matrix
Q̄Γu, and consists in a loop on i from N − 1 to 1 (both inclusive). For each i,
the A′i matrix is multiplied on the right by the row block from the Q̄Γu matrix
with row index i, and the result is added to the row block from the Q̄Γu matrix
with row index i− 1. The second step consists in the creation of the matrix Ĥ
of size Nnu × Nnu, and is again a loop on i from N − 1 to 0. For each i the
matrix B′i is multiplied on the right by the row block from the just modi�ed
matrix Q̄Γu with index i, and the result is written on the row block from the
Ĥ matrix with index i.

The LAPACK routine dpotrf2 for the computation of the Cholesky factor-
ization requires only the lower or upper triangular matrix. Then we decide to
build only the lower triangular part of Γ′uQ̄Γu. The resulting matrix Ĥ is

Ĥ =B′0(Q1B0 +A′1(Q2A1B0 +A′2(Q3A2A1B0))) 0 0
B′1(Q2A1B0 +A′2(Q3A2A1B0)) B′1(Q2B1 +A′2(Q3A2B1)) 0

B′2(Q3A2A1B0) B′2(Q3A2B1) B′2(Q3B2)


2See appendix B.4.
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The �rst step requires N − 1 calls to dgemm and N(N−1)
2 n2

xnu �oating-point
multiplications (and roughly the same number of sums), the second N calls and
N(N+1)

2 nxn
2
u �oating-point multiplications (and roughly the same number of

sums).
Another optimization that can be performed in the computation of Ĥ is the

following: it is possible to avoid the storing of all the zeros in the matrices Γu
and Q̄Γu, saving almost half of the space. Furthermore it is possible to choose
a representation of data in memory that minimizes cache misses. In fact, in
the construction of Ĥ operations are performed on sub-matrices that are block
rows. Then it is convenient to save these blocks contiguously in memory. Both
MATLAB and our C implementation are using the column-major order, and
then it is convenient to save Γu and Q̄Γu as a long horizontal concatenation of
these block rows: in this way, the data within each block is saved contiguously
in memory, one column after the other, without jumps. For example, for N = 3,

Γu is actually saved in memory as the nx × N(N+1)
2 nu matrix:

Γ̃u =
[
B0 A1B0 B1 A2A1B0 A2B1 B2

]
,

and Q̄Γu as the nx × N(N+1)
2 nu matrix:

˜̄QΓu =
[
Q1B0 Q2A1B0 Q2B1 Q3A2A1B0 Q3A2B1 Q3B2

]
.

In the computation of H, the two terms S̄Γu and Γ′uS̄
′ need to be built and

added. In the case N = 3

S̄Γu =

 0 0 0
S1 0 0
0 S2 0

 B0 0 0
A1B0 B1 0
A2A1B0 A2B1 B2

 =

 0 0 0
S1B0 0 0
S2A1B0 S2B1 0


and then S̄Γu is a strictly lower triangular matrix. Since the matrix Ĥ contains
only the lower triangular part of H, only the matrix S̄Γu needs to be computed,
and not Γ′uS̄

′.
Regarding the phase of the solution of the system H̄ū+ ḡ = 0, the symmetric

positive de�nite matrix H̄ is factorized using the Cholesky factorization. The
system is then solved with forward and backward substitutions for the solution
of the two resulting triangular systems, obtaining the input vector ū. The state
vector is then obtained as

x̄n+1 = Anx̄n +Bnūn + bn.

In the following algorithm 6 we summarize the condensing algorithm and
we compute its complexity as number of �oating-point operations up to the
quadratic terms in nx and nu.

It is interesting to analyze how the computational cost is distributed among
the di�erent parts of the overall algorithm. We choose to divide the algorithm
into the following parts, with the asymptotic number of �oating-point opera-
tions:

create Γu : n2
xnuN

2 �ops

create Q̄Γu : n2
xnuN

2 �ops
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Algorithm 6 Condensing method for the solution of the extended linear
quadratic control problem

Require: (x0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, QN , qN )

s̄0 ← s0 + S0 ·dgemv x0 . 2nxnu �ops
q̄0 ← q1

for n = 1→ N − 1 do
s̄n ← sn
q̄n ← qn+1

end for

for n = 0→ N − 1 do
(Γu)(n,n) ← Bn

end for

for n = 1→ N − 1 do
(Γu)(n,0:n−1) ← An ·dgemm (Γu)(n−1,0:n−1) .

N(N−1)
2 (2n2

xnu − nxnu) �ops
end for

for n = 1→ N do

(Q̄Γu)(n−1,0:n−1) ← Qn ·dgemm (Γu)(n−1,0:n−1)

. N(N+1)
2 (2n2

xnu − nxnu) �ops
end for

(Γbb)0 ← A0 ·dgemv x0 + b0 . 2n2
x �ops

for n = 1→ N − 1 do
(Γbb)n ← An ·dgemv (Γbb)n−1 + bn . (N − 1)2n2

x �ops
end for

ḡ0 ← s̄0 + (Γ′u)(0,0:N−1) ·dgemv q̄(0:N−1) + (Q̄Γ′u)(0,0:N−1) ·dgemv (Γbb)(0:N−1)

. N4nxnu �ops
for n = 1→ N − 1 do

ḡn ← s̄n + Sn ·dgemv (Γbb)n−1 + (Γ′u)(n,n:N−1) ·dgemv q̄(n:N−1) +
(Q̄Γ′u)(n,n:N−1) ·dgemv (Γbb)(n:N−1)

. (N − 1)2nxnu + N(N−1)
2 4nxnu �ops

end for

for n = 0→ N − 1 do
H̄(n,n) ← Rn

end for

for n = 1→ N − 1 do
H̄(n,0:n−1) ← H̄(n,0:n−1) + Sn ·dgemm (Γu)(n,0:n−1) . N(N−1)

2 2nxn
2
u �ops

end for
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for n = N − 1→ 1 do
(Q̄Γu)(n−1,0:n−1) ← A′n ·dgemm (Q̄Γu)(n,0:n−1)

. N(N−1)
2 (2n2

xnu − nxnu) �ops
end for

for n = 0→ N − 1 do
H̄(n,0:n) ← H̄(n,0:n) +B′n ·dgemm (Q̄Γu)(n,0:n) . N(N+1)

2 (2nxn
2
u) �ops

end for

L←dpotrf chol(H̄) . 1
3 (Nnu)3 + 1

2 (Nnu)2 �ops
ū←dtrsm −L−1((L′)−1ḡ) . 2(Nnu)2 �ops

x̄1 = A0 ·dgemv x0 +B0 ·dgemv ū0 + b0 . 2n2
x + 2nxnu �ops

for n = 1→ N − 1 do
x̄n+1 = An ·dgemv x̄n +Bn ·dgemv ūn + bn . (N − 1)(2n2

x + 2nxnu) �ops
end for

return ({ūn}, {x̄n})

create ḡ : 2nxnuN
2 + 2n2

xN �ops

create H̄ : n2
xnuN

2 + 2nxn
2
uN

2 �ops

compute ū : 1
3n

3
uN

3 �ops

compute x̄ : nxnuN
2 �ops

The asymptotic complexity of the overall algorithm (condensing phase and
system solution phase) is

3n2
xnuN

2 + 2nxn
2
uN

2 +
1

3
n3
uN

3

�oating-point operations, that is quadratic in nx and cubic in both nu and N :
the algorithm can have some advantages over the methods presented in the
previous chapters for large values of the number of states nx.

6.3 Performance analysis

In this section we analyze the performance of our implementation of the algo-
rithm 6. As test problem, we choose a medium size instance of the mass-spring
problem 7.2, with nx = 40, nu = 2 and N = 30.

6.3.1 Cost of the di�erent parts of the algorithm

In this part we analyze in practice the cost of the di�erent parts of our imple-
mentation of the condensing method. In the test we used the MKL BLAS. The
percentage of the total computational time needed by the di�erent parts is in
table 6.1. Most part of the time is used to compute Γu, Q̄ · Γu and �nally the
matrix H̄ (out of which, especially the part Γ′u · (Q̄Γu)), while for this problem
size the time needed to actually solve the system is only 5.5%.
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part percentage
compute Γu 23.6

compute Q̄ · Γu 25.7
compute ḡ 9.9
compute H̄ 32.9
compute ū 5.5
compute x̄ 2.3

Table 6.1: CPU time needed by the di�erent parts of the condensing method
algorithm, for a problem of size nx = 40, nu = 2 and N = 30.

routine percentage
dgemm 94.77
dgemv 4.36
dtrsm 0.25
dpotrf 0.0
others 0.62

Table 6.2: Cost in percentage of the total computation time of the di�erent
BLAS and LAPACK routines, using as test problem the mass-
spring problem 7.2 with nx = 40, nu = 2 and N = 30.

In an interior-point method framework, a sequence of equality constrained
quadratic programs (all with the same An and Bn matrices and di�erent Qn,
Sn and Rn matrices) needs to be solved, one problem at each iteration of the
interior-point method. Then the matrix Γu can be computed just once for all
problems in the sequence, saving a good percentage of the computation time.
Even more, in case of diagonal Qn and inequality constraints just in the form of
box constraints on the states or inputs (i.e. in the form xn,min ≤ xn ≤ xn,max

and un,min ≤ un ≤ un,max), the computation of the matrix Q̄ ·Γu requires order
of N2nxnu instead of N

2n2
xnu, and then it is possible to save another important

percentage of the computation time: in the case of the problem considered in
table 6.1, the total saving is around 50%.

6.3.2 Cost of sub-routines

In this part we analyze how the computational cost is distributed among the
di�erent BLAS and LAPACK routines: this can be done easily using the pro�ler
gprof3 and compiling the solver code and the BLAS and LAPACK libraries
using the �ag -pg. The test problem is the mass-spring test problem 7.2, with
nx = 40, nu = 2, N = 30. The results are presented in table 6.2.

The major part of the computation time is used by the BLAS matrix-matrix
multiplication routine dgemm (94.77%), followed by the BLAS matrix-vector
multiplication routine dgemv (4.36%).

The limiting factor in the performances of our implementation of the con-
densing method is then the e�cient implementation of the level-3 BLAS dgemm

routine.

3See appendix A.
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Figure 6.1: Comparison of the performances of our implementations of algo-
rithm 3 (blue) and 6 (red). The test problem is the mass-spring
problem 7.2. nx = 50 and nu = 5 �xed, N varying.

6.3.3 Comparative test

In this part we compare the performance of our implementation of algorithm 6
with our implementation of algorithm 3. The test problem is the mass-spring
problem 7.2.

In �gure 6.1 nx = 50 and nu = 5 are �xed, and N is varied. It is clear
that the condensing method is not linear in N . It is interesting to see that it
is almost quadratic, even if the cost function is cubic: in fact, for the size of
the test problem, the quadratic cost for the construction of the matrix Ĥ is
dominant with respect to the cubic cost for the factorization of the matrix Ĥ.

In �gure 6.2a and 6.2b N is �xed (to N = 10 and N = 100 respectively)
while nx and nu are varied. The condensing method is roughly quadratic in nx,
and the value of nu is in�uencing the computational time much more than in the
case of the methods presented in the previous chapter. In fact, the condensing
method seems to be linear in nu for large values of nx, and faster (in theory
quadratic) for small values of nx.

If the number of inputs nu and the horizon length N have modest values,
the condensing method is faster than Riccati recursion methods, especially for
large values of the number of states nx.
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Figure 6.2: Comparison of the performances of our implementations of algo-
rithm 3 (blue) and 6 (red). In the case of algorithm 3, the plots
are only for nu = 1, since the results are almost the same for the
other values. The test problem is the mass-spring problem 7.2.
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Chapter 7

Test problems as Extended

Linear Quadratic Control

Problem

In this chapter we present a test problem as an instance of the extended linear
quadratic control problem, and compare the solvers derived in the previous
chapters.

7.1 Mass-spring system

7.1.1 Problem de�nition

We use the mass-spring system as test problem for our implementations of the
di�erent methods for the solution of problem 2.1. The mass-spring system
consists in a chain of p masses (all of value 1) connected by springs (all of
constant 1); furthermore a spring connects the �rst mass to a wall, and another
spring connects the last mass to another wall. m forces (inputs) acts on the
�rst m masses. This test problem is actually an instance of 2.2, but the solvers
developed for 2.1 will be used for its solution.

The system can be modeled as the system of p second order linear di�erential
equations

q̈1 = −2q1 + qq + f1

q̈i = qi−1 − 2qi + qi+1 + fi, i = 2, . . . ,m

q̈i = qi−1 − 2qi + qi+1, i = m+ 1, . . . , p− 1

q̈p = qp−1 − 2qp

where qi is the deviation from the equilibrium point of the i-th mass and fi is
the force acting on the i-th mass.
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This system can be transformed into a system of 2p �rst order linear di�er-
ential equations introducing the speed vi = q̇i:

q̇i = vi, i = 1, . . . , p

v̇1 = −2q1 + qq + f1

v̇i = qi−1 − 2qi + qi+1 + fi, i = 2, . . . ,m

v̇i = qi−1 − 2qi + qi+1, i = m+ 1, . . . , p− 1

v̇p = qp−1 − 2qp

We choose as states vector the vector x(t) ∈ R2p, where the �rst p com-
ponents are the deviations qi(t) from the equilibrium point of the p masses at
time t, and the last p components are the speeds vi(t) of the masses at time t.
We choose as inputs vector the vector u(t) ∈ Rm of the forces, and as output
the vector y(t) ∈ Rp consisting in the �rst p components of x(t). With these
de�nitions, the system can be rewritten in more compact form as the linear
continuous time invariant state space system

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Cx(t)
(7.1)

where

x(t) =



q1

...
qp
v1

...
vp


, u(t) =

 f1

...
fm

 , y(t) =

 qi
...
qp



Ac =

[
0p×p Ip×p
Tp×p 0p×p

]
, Bc =

 0p×m
Im×m

0(p−m)×m

 , C =
[
Ip×p 0p×p

]
and Tp×p is the p× p tridiagonal matrix

Tp×p =



−2 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −2


.

We want to study a little more this system. The matrix Ac is invertible since
it has full rank. Its eigenvalues are the zeros of the characteristic polynomial,
that is

0 = det(λI −Ac) = det

([
λI −I
−T λI

])
.

It is possible to write the above expression in a more useful way: �rst of all
we notice that λI is invertible, since the matrix Ac is invertible and thus does
not have 0 as eigenvalue. Then, since the determinant of the inverse matrix
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is the inverse of the determinant1, given the matrix M =

[
A B
C D

]
with A

invertible, it holds the relation

det(M) =
1

det(M−1)
=

1

det

([
A B
C D

]−1
) =

=
1

det

([
I −A−1B
0 I

] [
A−1 0

0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]) =

=
1

1 · det(A−1) · det((D − CA−1B)−1)) · 1
= det(A) det(D − CA−1B).

Thus we have that the characteristic polynomial can be obtained as

det

([
λI −I
−T λI

])
= det(λI) det(λI − λ−1T ) = 0

that, since λ 6= 0, implies

det(λI − λ−1T ) = (λ−1)p det(λ2I − T ) = 0 ⇒ det(λ2I − T ) = 0

where p is the size of T .
The matrix λ2I − T has a lot of structure, and is (in the case p = 3)

λ2I − T =

 λ2 + 2 −1 0
−1 λ2 + 2 −1
0 −1 λ2 + 2


and its determinant can be written recursively as

det((λ2I − T )p) = (λ2 + 2) det((λ2I − T )p−1)− det((λ2I − T )p−2)

with base cases

det((λ2I − T )1) = λ2 + 2 and det((λ2I − T )2) = (λ2 + 2)2 − 1.

Furthermore, we notice that the system is controllable for each value of p.
We show this fact in the case p = 3 (the generalization being trivial), and only
one input m = 1. The �rst 5 powers of the matrix Ac take the form:

Ac =

[
0 I
T 0

]
, A2

c =

[
T 0
0 T

]
, A3

c =

[
0 T
T 2 0

]
, A4

c =

[
T 2 0
0 T 2

]
, A5

c =

[
0 T 2

T 3 0

]
and so on. Because of the shape of the matrix Bc, the controllability matrix is[

Bc AcBc A2
cBc A3

cBc A4
cBc A5

cBc
]

=

=

[
0 col1(I) 0 col1(T ) 0 col1(T 2)

col1(I) 0 col1(T ) 0 col1(T 2) 0

]
1In fact, given M and its inverse M−1, we have 1 = det(I) = det(MM−1) =

det(M) det(M−1).
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and it has full rank 2p = 6 since in general (for k < p)

col1(T k) =



∗
...
∗
1
0
...
0


with the 1 in position of index k + 1 (where the index starts from 1).

System 7.1 can be discretized with sampling time Ts = 1, obtaining the
linear discrete time invariant system

xk+1 = Adxk +Bduk

yk = Cdxk

The problem can be written in the form of problem 2.1 as:

min
{un,xn+1}

φ =

N−1∑
n=0

(
1

2

[
x′n u′n

] [Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [xn
un

]
+ ρn

)
+

+
1

2
x′NQNxN + q′NxN + ρN

s.t. xn+1 = Anxn +Bnun + bn
(7.2)

where

Qn = I2p×2p, Sn = 0m×2p, Rn = Im×m,

qn = 02p×1, sn = 0m×1, ρn = 0,

An = Ad, Bn = Bd, bn = 02p×1,

for each n ∈ {0, 1, . . . , N − 1} (and n = N for Qn, qn, ρn).

7.1.2 Small size example

In this part we want to study a small instance of problem 7.2. Choosing p = 2
masses (and thus nx = 2p = 4), m = 1 forces (and thus nu = m = 1), N = 20
as horizon length, and initial state vector x0 =

[
5 10 15 20

]
, we have the

continuous time system

ẋ(t) = Acx(t) +Bcu(t)

of matrices

Ac =


0 0 1 0
0 0 0 1
−2 1 0 0

1 −2 0 0

 , Bc =


0
0
1
0

 .
The eigenvalues of the matrix Ac are given by the zeros of the function

(λ2 + 2)2 − 1 = 0, ⇒ λ1,2 = ±i, λ3,4 = ±i
√

3,
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that are two couples of complex-conjugate numbers with zero real part. The
two associate modes are persistent (not converging nor diverging) and precisely
sinusoids of periods T1 = 2π and t2 = 2π√

3
. Since the two periods are irrational,

the states of the system are limited non-periodic functions of the time, and
precisely sums of sinusoids: this is con�rmed by the impulsive response of the
system in �gure 7.1a.

The discrete time system is obtained by sampling the continuous time system
with sampling time Ts = 1. Remembering that the general solution at time t is

x(t) = eAc(t−t0)x(t0) +

∫ t

t0

eAc(t−τ)Bcu(τ)dτ,

and that the system matrices are constant, and assuming the input to be con-
stant between two sampling times, we have the expression of the discrete time
system

xn+1 = x(tn+1) = eAcTsx(tn) +

∫ tn+1

tn

eAc(tn+1−τ)Bcu(τ)dτ =

= eAcTsxn +

∫ Ts

0

eActdtBcun = Adxn +Bdun.

Since the matrix Ac is invertible, the matrices of the discrete time system
can be found as

Ad = eAcTs and Bd = A−1
c (eAcTs − I)Bc.

Otherwise, Ad and Bd can be found as the top left and top right sub-matrices
of the matrix

E = exp

([
AcTs BcTs
01×2 01×1

])
.

Anyway, the matrices of the discrete time system are

Ad =


0.1899 0.3504 0.7057 0.1358
0.3504 0.1899 0.1358 0.7057
−1.2755 0.4341 0.1899 0.3504

0.4341 −1.2755 0.3504 0.1899

 , Bd =


0.4233
0.0364
0.7057
0.1358


In �gure 7.1b there is a plot of the solution of problem 7.2 in the case nx = 4,

nu = 1 and N = 20, computed using one of the developed methods. We can see
that the states are correctly controlled to zero in the control horizon time.
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7.2 Comparison tests

In this section we perform a few tests to compare the performances of the
solution methods derived in the previous chapters. In a �rst part we compare
the methods in the solution of problem 2.1 on its own. In a second part we
compare the methods in the solution of problem 2.1 as a subproblem in an
interior-point method: in this case, some quantities needs to be computed only
once for a sequence of problems.

7.2.1 Comparison in the solution of 2.1 on its own

In this part we compare the performances of our implementation of the methods
presented in the previous chapters in the solution of test problem 7.2. Two series
of tests are performed, one keeping n = 10 and the other keeping N = 100.

For all methods but condensing one, we choose to keep nu �xed to 1, since
all the tests performed in the previous chapters show that its value has very
little in�uence on the computational time, as long as the condition nu � nx
holds. On the contrary, in the case of condensing method, the value of un greatly
in�uences the computation time.

In �gure 7.2a there is a plot of the tests for N = 10. It is clear that there
are two classes of methods.

The �rst class contains direct sparse solvers, Schur complement method and
Riccati recursion methods. All methods in this class have an asymptotic com-
plexity of N(nx + nu)3 and have a similar behavior: their curve is just shifted
up or down. Direct sparse solvers have the worst performances, since they are
not tailored for the speci�c problem 2.1. Riccati recursion method, in its dif-
ferent versions, has the best performance. Schur complement method is in the
middle, but our current implementation crashes for large systems (in this case
for nx = 512 or larger).

The second class contains only the condensing method, that has an asymp-
totic complexity of N2n2

xnu + N2nxn
2
u + (Nnu)3. The computation cost is

quadratic in nx, and then the method is suitable for large values of nx: in this
case, the �rst term in the complexity expression is usually dominant. In the
approximation of nx � nu, the asymptotic complexity is N2n2

xnu, quadratic in
both N and nx, and linear in nu.

In conclusion, the best method has to be chosen between Riccati recursion
methods and condensing method, depending on the problem size.

7.2.2 Comparison in the solution of 2.1 as subproblem in
an interior-point method

In this case, a sequence of problems has to be solved, one for each iteration of
the interior-point method: all of them have the same An, Bn and bn matrices
(the matrices describing the dynamic of the system), while the matrices of the
cost function vary among iterations. This is showed in detail in chapter 9.

The condensing method presented in chapter 6 can exploit this: in fact,
the Γu and Γbb matrices are constant among the iterations of the interior-point
method, and then can be computed only once for the entire sequence of prob-
lems, saving approximately n2

xnuN
2 �oating-point operations in the following

iterations of the interior-point method.
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Figure 7.2: Comparison of all methods presented in the previous chapters:
PARDISO (black); MA57 (blue); Schur complement method
(cyan); Riccati recursion methods, general form (green) and form
assuming Pn positive de�nite (yellow); condensing method (red).
Test problem is 7.2.
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In this part we compare again the Riccati recursion method and the con-
densing method as sub-routines in an interior-point method: the computation
time of the Riccati recursion method is exactly the same, while in the case of
the condensing method we compute Γu and Γbb o�-line.

Comparing the plot in �gure 7.3 with the one in �gure 6.2, we notice that
the trend of the computation time of the condensing method is the same in both
pictures, but that it is slightly lower in �gure 7.3: then, in case of use of the
solver as a routine in an interior-point method, it is slightly wider the range of
problem sizes for which the condensing method is the fastest.

7.2.3 Comparison between the C and MATLAB imple-
mentations of the same algorithm

In this part we want to compare the performance of the same algorithm im-
plemented in C and MATLAB: we use the Riccati recursion method presented
in algorithm 3, since it can be implemented in MATLAB code without use of
MEX �les.

The comparison is justi�ed by the fact that both our C code and MATLAB
use the same BLAS version: then the test can show the e�ciency of the two
languages. The tables with the results are in appendix D.5; a picture of the
computation time for N = 10, nu = 1 and nx ∈ {10, 20, 40, 60, 80, 100, 140, 200}
is in �gure 7.4.

For small systems the MATLAB implementation is roughly an order of mag-
nitude slower than the C one. As the size of the problem increases, the ratio
between the MATLAB implementation time and the C implementation time
gets closer to 1.

This shows that the code written in MATLAB is slow, and then programs
working on small matrices are slow as well. Anyway, MATLAB uses the opti-
mized MKL BLAS for the performance of matrix operations, and then programs
working with large matrices are fast, since most of the computation time is spent
in the optimized BLAS routines.

This test also shows the importance of the BLAS implementation used to
perform matrix operations: a program written in C code and making use of a
rather slow BLAS implementation may turn out to be slower than the same
program written in MATLAB and making use of an e�cient BLAS implemen-
tation.
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varying.

Figure 7.3: Comparison of the performances of our implementations of al-
gorithm 3 (blue) and 6 (red) as sub-routine in an interior-point
method. In the case of algorithm 3, the plots are only for nu = 1.



7.2 Comparison tests 83

1 1.5 2 2.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

log
10

(n
x
)

lo
g

1
0
(w

a
ll 

c
lo

c
k
 t
im

e
)

Riccati recursion, general form

 

 

C code

Matlab code

Figure 7.4: Comparison of the performances of our implementations of algo-
rithm 3 in C code (blue) and MATLAB code (red). The test prob-
lem is problem 7.2, with nx ∈ {10, 20, 40, 60, 80, 100, 140, 200},
nu = 1 and N = 10.
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Chapter 8

Extended Linear Quadratic

Control Problem with

Inequality Constraints

In this chapter we take into consideration an extension of problem 2.1, including
also inequality constraints together with equality constraints.

8.1 De�nition

In this section we de�ne the extended linear quadratic control problem with
inequality constraints, an extension of problem 2.1. The problem is de�ned as

Problem 3. The extended linear quadratic control problem with inequality con-

straints is the quadratic program with equality and inequality constrains

min
un,xn+1

φ =

N−1∑
n=0

ln(xn, un) + lN (xN )

s.t. xn+1 = Anxn +Bnun + bn

Cnun +Dnxn ≥ dn
DNxN ≥ dN

(8.1)

where n ∈ N = {0, 1, . . . , N − 1} and

ln(xn, un) =
1

2

[
x′n u′n

] [ Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [ xn
un

]
+ ρn

lN (xN ) =
1

2
x′NQNxN + q′NxN + ρN

The de�nition of this problem is exactly the same of problem 2.1, a part
from the presence of the inequality constraints on the state and input.



86 Extended Linear Quadratic Control Problem with Inequality Constraints

8.1.1 Matrix From

Problem 8.1 can be seen as a particular case of the generic quadratic program
with equality and inequality constraints,

min
x

φ =
1

2
x′Hx+ g′x

s.t. Ax = b

Cx ≥ d

(8.2)

where the state vector is

x =



u0

x1

u1

...
xN−1

uN−1

xN


and the matrices relative to the cost function and the constraints are

H =



R0

Q1 S′1
S1 R1

. . .

QN−1 S′N−1

SN−1 RN−1

QN


, g =



S0x0 + s0

q1

s1

...
qN−1

sN−1

qN



A =


−B0 I

−A1 −B1 I
. . .

. . .

−AN−1 −BN−1 I

 , b =


A0x0 + b0

b1
...

bN−1



C =


C0

D1 C1

. . .

DN−1 CN−1

DN

 , d =


d0 −D0x0

d1

...
dN−1

dN


8.2 Optimality Conditions

In this section we derive optimality conditions for the solution of a general
quadratic program (meaning with this the quadratic program with both equality
and inequality constraints). The general theory can be found in [NW06].

The �rst order necessary optimality conditions for x∗ to be a solution of the
quadratic program 8.2 are again the KKT conditions, usually derived from the
Lagrangian function associated with the quadratic program.

The Lagrangian function of the quadratic program 8.2 takes the form

L = L(x, π, λ) =
1

2
x′Hx+ g′x− π′(Ax− b)− λ′(Cx− d),
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where π and λ are the vectors of the Lagrange multipliers relative to the equality
and inequality constraints.

The �rst order necessary conditions for optimality are the KKT conditions

Hx∗ + g −A′π∗ − C ′λ∗ = 0 (8.3a)

Ax∗ − b = 0 (8.3b)

Cx∗ − d ≥ 0 (8.3c)

λ∗ ≥ 0 (8.3d)

(λ∗)′(Cx∗ − d) = 0 (8.3e)

Because of the conditions on the sign of 8.3c and 8.3d, equation 8.3e implies
that, if the i-th constraint is active, (Cx∗ − d)i = 0, then the relative Lagrange
multiplier can be positive or null, λi ≥ 0. But, if the i-th constraint is inactive,
(Cx∗ − d)i > 0, then the relative Lagrange multiplier has to be null, λi = 0.

The KKT conditions in the form 8.3 are useful for the derivation of interior-
point methods in chapter 9. Anyway, for the purposes of this chapter, we prefer
another characterization.

Let us denote with E the set of the equality constraints, and with I the
set of the inequality constraints. The constraints can be divided into two cate-
gories: the active set, containing all the equality constraints and the inequality
constraints that are active in x∗ (i.e. such that 8.3c is an equality); and the
inactive set, containing all the others inequality constraints (i.e. the constraints
that are inactive in x∗, such that 8.3c is strictly positive). We denote the active
set at the point x∗ as A(x∗).

Furthermore, let us consider the uni�ed notation for both the equality and
inequality constraints

Ax− b ≥ 0

where the matrix A and the vector b contains the coe�cient of both the equality
and the inequality constraints. Using the de�nition of active set, we have that,
at the point x,

(Ax− b)i = 0 for i ∈ A(x)

(Ax− b)i > 0 for i 6∈ A(x)

The Lagrangian function can be rewritten as

L = L(x, λ) =
1

2
x′Hx+ g′x− λ′(Ax− b)

and the KKT conditions can be rewritten as

Hx∗ + g −
∑

i∈A(x∗)

A′iλ
∗
i = 0 (8.4a)

(Ax∗ − b)i = 0 for i ∈ A(x∗) (8.4b)

(Ax∗ − b)i > 0 for i 6∈ A(x∗) (8.4c)

λ∗i ≥ 0 for i ∈ I ∩ A(x∗) (8.4d)

where Ai is the i-th row of the matrix A. The meaning of 8.4a is that Hx∗ +
g, the gradient of the cost function in x∗, is orthogonal to the constraints in
the active set. Conditions 8.4b and 8.4c imply that the point x∗ is feasible.
Condition 8.4d assure that the gradient of the cost function points towards the
growing half-hyperplane of each inequality constraint in the active set.



88 Extended Linear Quadratic Control Problem with Inequality Constraints

Proposition 8 (First order necessary conditions). If x∗ is a solution for the

quadratic program 8.2, then there exists a vector λ∗ such that the KKT condi-

tions 8.4 hold.

Proof. We show that, if one or more of the conditions 8.4 is not satis�ed, then
the point x∗ is not a solution for 8.2.

If the point x∗ does not satisfy 8.4b or 8.4c, it is not a feasible point, and
then it is not a solution.

If condition 8.4a is not satis�ed, we can repeat the proof of proposition 1 and
�nd a step ∆x = x − x∗ along the active constraints such that φ(x) < φ(x∗).
As matrices A and b in the proof of 1 we use the matrices of the constraints in
the active set.

If condition 8.4d is not satis�ed, then λ∗i < 0 for at least one index i ∈ A(x∗).
Let us assume that λ∗j < 0. The idea of the proof is that it is possible to �nd
a small step moving away from the j-th constraint while keeping on the other
active constraints, and arriving in a feasible point. For a small length of the
step, the cost function decreases.

Let us see the details. Let x be a feasible point such that Aix − bi = 0 for
i ∈ A(x∗), i 6= j, and Ajx−bj > 0. Let us de�ne the direction ∆x = x−x∗, and
δx = ∆xε, ε > 0 a small step in the direction ∆x. Then Aiδx = (Aix−Aix∗)ε =
(bi − bi)ε = 0 for i ∈ A(x∗), i 6= j, and Ajδx = (Ajx−Ajx∗)ε > (bi − bi)ε = 0.

The projection of the gradient of the cost function along the step δx is

δx′(Hx∗ + g) =
∑

i∈A(x∗),i6=j

δx′A′iλ
∗
i + δx′A′jλ

∗
j = 0 + ε(Aj∆x)′λ∗j = −εβ < 0

The value of the cost function in the point x̂ = x∗ + δx is

φ(x̂) = φ(x∗ + δx) = φ(x∗) + δx′(Hx∗ + g) +
1

2
δx′Hδx = φ(x∗)− βε+

1

2
αε2

where α = ∆x′H∆x ∈ R and β > 0.

If α ≤ 0, then φ(x̂) ≤ φ(x∗) − βε < φ(x∗), and then x∗ is not a global
minimizer.

If α > 0, the quantity 1
2αε

2 − βε < 0 for ε < 2β
α : then, for ε <

2β
α , it holds

φ(x̂) < φ(x∗), and then x∗ is not a global minimizer.

Proposition 9 (First order su�cient conditions). If the point x∗ satis�es the
KKT conditions 8.4 with the Lagrangian multiplier λ∗, and the matrix H is

positive semi-de�nite, then x∗ is a global minimizer for the cost function, i.e. a

solution for the quadratic program.

Proof. Let x be any feasible point other than x∗, then Aix = bi for i ∈ E and
Aix ≥ bi for i ∈ I∩A(x∗). Then the step ∆x = x−x∗ satis�es Ai∆x = bi−bi =
0 for i ∈ E and Ai∆x = Aix−Aix∗ ≥ bi − bi = 0 for i ∈ I ∩ A(x∗).

Let us rewrite condition 8.4a as Hx∗ + g =
∑
i∈E A

′
iλ
∗
i +

∑
i∈I∩A(x∗)A

′
iλ
∗
i .

Then

∆x′(Hx∗ + g) =
∑
i∈E

∆x′A′iλ
∗
i +

∑
i∈I∩A(x∗)

∆x′A′iλ
∗
i ≥ 0 (8.5)
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The value of the cost function in x is

φ(x) =φ(x∗ + ∆x) =
1

2
(x∗ + ∆x)′H(x∗ + ∆x) + (x∗ + ∆x)′g =

=φ(x∗) + ∆x′(Hx∗ + g) +
1

2
∆x′H∆x ≥ φ(x∗)

using the positive de�niteness of H and expression 8.5.

Note The geometrical interpretation of 8.5 is that the projection of the gra-
dient of the cost function Hx∗ + g on a general feasible step ∆x is positive or
null, and then the cost function keeps steady or increases along the direction of
∆x.

Proposition 10 (First order su�cient conditions for uniqueness). If the point
x∗ satis�es the KKT conditions 8.4 with the Lagrangian multiplier λ∗, and the

matrix H is positive de�nite, then x∗ is the unique global minimizer for the cost
function, i.e. the unique solution for the quadratic program.

Proof. The beginning of the proof is as in the previous proposition. The value
of the cost function in x is

φ(x) = φ(x∗) + ∆x′(Hx∗ + g) +
1

2
∆x′H∆x > φ(x∗)

since H is positive de�nite and ∆x 6= 0 (and then ∆x′H∆x>0) and ∆x′(Hx∗+
g) ≥ 0.

Proposition 11 (Second order su�cient conditions for uniqueness). Let the

matrix Â be the matrix of the constraints in the active set, and let it have full

row rank. Let Z be a matrix whose columns are a base for the null space of Â. If
the point x∗ satis�es the KKT conditions 8.4 with the Lagrangian multiplier λ∗,
the Hessian matrix H is positive semi-de�nite and the reduced Hessian matrix

Z ′HZ is positive de�nite, then x∗ is the unique global minimizer, i.e. the unique
solution for the quadratic program.

Proof. Let x∗ be a point satisfying the KKT conditions 8.4 together with the
Lagrangian multiplier λ∗, and let x be any other feasible point.

If x is on the active constraints, then Aix = bi for i ∈ A(x∗). Let us de�ne
∆x = x − x∗ 6= 0, then Ai∆x = Aix − Aix∗ = bi − bi = 0 for i ∈ A(x∗), and
then the vector ∆x is in the null space of the matrix Â, and can be written as
∆x = Zy, and y 6= 0 since Y has full column rank.

The projection of the gradient of the cost function on the vector ∆x is

∆x′(Hx∗ + g) =
∑

i∈A(x∗)

∆x′A′iλ
∗
i = 0.

The value of the cost function in x is

φ(x) = φ(x∗ + ∆x) = φ(x∗) + ∆x′(Hx∗ + g) +
1

2
∆x′H∆x =

= φ(x∗) +
1

2
∆x′H∆x > φ(x∗)
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since H is positive de�nite and y 6= 0.
If x is not on the active constraints, let us assume that x is not on the j-th

constraint. This means Ajx > bj , while for the other constraints Aix ≥ bi,
i ∈ A(x∗), i 6= j. Let us de�ne the step ∆x = x − x∗, then Aj∆x > 0 and
Ai∆x ≥ 0, i ∈ A(x∗).

The projection of the gradient of the cost function on the step ∆x is

δx′(Hx∗ + g) = ∆x′A′jλ
∗
j +

∑
i∈A(x∗),i6=j

∆x′A′iλ
∗
i ≥ ∆x′jA

′
jλ
∗
j > 0

The value of the cost function in x is

φ(x) = φ(x∗ + ∆x) = φ(x∗) + ∆x′(Hx∗ + g) +
1

2
∆x′H∆x ≥

≥ φ(x∗) + ∆x′(Hx∗ + g) > φ(x∗)

This proves that x∗ is the global minimizer.



Chapter 9

Interior-point methods

In this chapter we present two interior-point methods for the solution of quadratic
programs with both equality and inequality constraints: a basic primal-dual
method, and one of the best interior-point methods in practice, namely the
Mehrotra predictor-corrector method. One important result is that, thanks to
the speci�c form of the inequality constraints, problem 2.1 arises as a subprob-
lem in an interior-point method for the solution of 8.1.

9.1 Derivation

The presentation of interior-point methods for the solution of a general quadratic
program can be found also in [NW06].

In this section we derive two interior-point methods for the solution of the
quadratic program 8.2:

min
x

1

2
x′Hx+ g′x

Ax = b

Cx ≥ d

The Mehrotra predictor-corrector method is a development of the basic
primal-dual method: the derivation process for the basic method then coincides
with the �rst part of the derivation process for the Mehrotra's one.

9.1.1 Basic primal-dual method

The algorithm is a solution strategy for the KKT conditions 8.3. Introducing
the vector of the slack variables t = Cx − d ≥ 0 (of length l, the number of
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inequality constraints), they can be rewritten as

Hx+ g −A′π − C ′λ = 0 (9.1a)

Ax− b = 0 (9.1b)

Cx− d− t = 0 (9.1c)

λ′t = 0 (9.1d)

(λ, t) ≥ 0 (9.1e)

that is a non-linear system of equations, due to the 9.1d, with the further
requirement on the sign of λ and t 9.1e. Because of 9.1e, equation 9.1d is
equivalent to λiti = 0 for each i, and thus it can be rewritten as λ1t1

...
λltl

 = ΛTe = 0

where Λ and T are the diagonal matrices whole diagonal element are the com-
ponents of vectors λ and t, and e is a vector of length l of just ones,

Λ =


λ0

λ1

. . .

λl−1

 , T =


t0

t1
. . .

tl−1

 , e =


1
1
...
1

 .
We can use the Newton method to �nd the solution of the system 9.1, that

is an iterative method to �nd the zeros of the non-linear function f(x), or
equivalently the solutions of the system f(x) = 0. It can be derived easily as
follows: if x∗ is a solution (and so f(x∗) = 0) and xk the current guess for
the solution, and we suppose to reach the solution x∗ in one step, the Taylor
expansion of f(x∗) around xk gives:

0 = f(x∗) ' f(xk) +∇f(xk)(x∗ − x) = f(xk) +∇f(xk)∆x

where ∇f(xk) is the Jacobian matrix of the function f(x) computed at the point
x = xk. The Newton step is then

∆x = −∇f(xk)−1f(xk).

In our case, we have the non-linear function

f(x, π, λ, t) =


Hx−A′π − C ′λ+ g

Ax− b
Cx− t− d

ΛTe

 ,
whose Jacobian matrix is

∇f(x, π, λ, t) =


H −A′ −C ′ 0
A 0 0 0
C 0 0 −I
0 0 T Λ

 .
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The pure Newton step is given by the solution of the linear system
H −A′ −C ′ 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆xaff

∆πaff

∆λaff

∆taff

 = −


Hxk −A′πk − C ′λk + g

Axk − b
Cxk − tk − d

ΛkTke

 ,
(9.2)

where using the subscript k we want to stress the quantities depending on the
current guess (xk, πk, λk, tk). This step is also the predictor (or a�ne-scaling)
step of the Mehrotra predictor-corrector method.

The new iterate is computed with a linear search along the Newton step,

(xk+1, πk+1, λk+1, tk+1) = (xk, πk, λk, tk) + γαaff(∆xaff ,∆πaff ,∆λaff ,∆taff)

where αaff is chosen to take the longest step possible in the direction of the
Newton step without violating the condition (λ, t) ≥ 0,

αaff = max{α ∈ [0, 1] | (λ, t) + α(∆λaff ,∆taff) ≥ 0},

and γ ∈ [0, 1) is a scalar close to one, ensuring that the conditions (λ, t) > 0
hold strictly.

The quantity

µk =
λ′ktk
l
,

that is the average value of the dot product between λ and t, is called the
duality gap, and is often used as a measure of the optimality of the current
guess (xk, πk, λk, tk).

In algorithm 6 it is summarized the basic interior-point method.

Algorithm 6 Basic primal-dual interior-point method

Initialize (x0, π0, λ0, t0)

Compute µ0 =
λ′0t0
l

while µk > µmin and k < kmax do

Compute (∆xaff ,∆πaff ,∆λaff ,∆taff) solving 9.2
Compute αaff = max{α ∈ [0, 1]|(λ, t) + α(∆λaff ,∆taff) ≥ 0}
Compute (xk+1, πk+1, λk+1, tk+1) = (xk, πk, λk, tk)+

+γαaff(∆xaff ,∆πaff ,∆λaff ,∆taff)

Compute µk =
λ′ktk
l

end while

9.1.2 Mehrotra's predictor-corrector method

In this part we present a development of algorithm 6, leading to the Mehrotra's
predictor-corrector method.

The Newton step computed in the basic algorithm is the predictor step in
the Mehrotra's method. We notice that, using the a�ne step and the fact that
∆Λaffe = λaff and ∆Taffe = taff , the value of the equation 9.1d becomes

(Λk+∆Λaff)(Tk+∆Taff)e = ΛkTke+Λktaff+Tkλaff+∆Λaff∆Taffe = ∆Λaff∆Taffe
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instead of zero. We can thus take into account this second order term to compute
a correction term.

It may also be an advantage to use a less aggressive approach and replace 0
with a positive quantity in the equation 9.1d. This may ensure the quantities
λk and tk to be strictly positive, and thus satisfy the constraint 9.1e strictly
(this gives the name to the methods, since λk and tk are in the interior of the
quadrant (λ, t) ≥ 0). The choice of the quantity µke gives a vector with the
same value of the measure parameter µk, but pointing toward the center of
the so called central path (a region leading toward the solution). A centering
parameter σ ∈ [0, 1) is used to control the importance of this centering term.

For the choice of the parameter σ, it is usually used the following heuristic:
�rst of all it is computed the maximum length of the step that can be taken
along the a�ne-scaling direction without violating the constraints 9.1e as

αaff = max{α ∈ [0, 1] | (λ, t) + α(∆λaff ,∆taff) ≥ 0},

and it is then computed the duality gap of the relative point as

µaff =
(λk + αaff∆λaff)′(tk + αaff∆taff)

l
.

The value of the parameter σ is thus chosen as

σ =

(
µaff

µk

)3

.

If the a�ne step leads to a great improvement toward the solution, the ratio
µaff/µk is small, and then a small centering step is taken. On the contrary, if
the a�ne step leads to a poor improvement toward the solution, the ratio is
large, and thus a larger centering step is taken, with the hope that this will lead
to larger steps toward the solution in the following iterations.

We can compute the centering-corrector part of the Mehrotra predictor-
corrector method as the centering-corrector step

H −A′ −C ′ 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆xcc

∆πcc

∆λcc

∆tcc

 =


0
0
0

−∆Λaff∆Taffe+ σµke

 , (9.3)

where in the right hand side there are both the second order corrector and the
centering terms.

The overall search direction is
∆x
∆π
∆λ
∆t

 =


∆xaff

∆πaff

∆λaff

∆taff

+


∆xcc

∆πcc

∆λcc

∆tcc


and can be obtained directly by solving the system

H −A′ −C ′ 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆x
∆π
∆λ
∆t

 = −


Hxk −A′πk − C ′λk + g

Axk − b
Cxk − tk − d

ΛkTke+ ∆Λaff∆Taffe− σµke

 ,
(9.4)
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The length of the maximum step that can be taken in this direction without
violating the constraint 9.1e is

αmax = max{α ∈ [0, 1] | (λk, tk) + αmax(∆λ,∆t) ≥ 0}.

The actual step length is then chosen as

α = γαmax

with γ ∈ (0, 1) to ensure that the condition 9.1e holds strictly; in order to
accelerate convergence, the value of γ may be chosen approaching 1 as the
current iterate gets closer to the solution.

We notice that the point (xk+1, πk+1, λk+1, tk+1) = (xk, πk, λk, tk)+α(∆xk,∆πk,∆λk,∆tk)
is not feasible with respect to the equality constraints, while, on the contrary,
the points (xaff , πaff , λaff , taff) and (xcc, πcc, λcc, tcc) are.

The Mehrotra's predictor-corrector interior-point method is summarized in
algorithm 7.

Algorithm 7 Mehrotra's predictor-corrector interior-point method

Initialize (x0, π0, λ0, t0)

Compute µ0
λ′0t0
l

while µk > µmin and k < kmax do

Compute (∆xaff ,∆πaff ,∆λaff ,∆taff) solving 9.2
Compute αaff = max{α ∈ [0, 1]|(λ, t) + α(∆λaff ,∆taff) ≥ 0}
Compute µaff = (λk+αaff∆λaff )

′(tk+αaff∆taff )
l

Compute σ = (µaff

µk
)3

Compute (∆xcc,∆πcc,∆λcc,∆tcc) solving 9.3
Compute (∆xk,∆πk,∆λk,∆tk) = (∆xaff ,∆πaff ,∆λaff ,∆taff)+

+(∆xcc,∆πcc,∆λcc,∆tcc)
Compute αmax = max{α ∈ [0, 1]|(λ, t) + α(∆λk,∆tk) ≥ 0}
Compute (xk+1, πk+1, λk+1, tk+1) = (xk, πk, λk, tk)+

+γαmax(∆xk,∆πk,∆λk,∆tk)

Compute µk+1 =
λ′k+1tk+1

l
end while

9.1.3 Computation of the steps as equality constrained
quadratic programs

The most expensive part of the procedure is the computation of the predictor
and centering-corrector steps. In this part we show that the computation of
these two steps is equivalent to the solution of two equality constrained quadratic
programs.

The two linear systems 9.2 and 9.3 have the same matrix, that can be fac-
torized just once: then the total cost to compute the two steps is just slightly
larger than the cost to compute one.

It is possible to rewrite the systems in a more useful form. Considering a
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system with a general right hand side in the form
H −A′ −C ′ 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆x
∆π
∆λ
∆t

 =


rH
rA
rC
rT

 ,
we can eliminate the variable ∆t, obtaining H −A′ −C ′

A 0 0
ΛkC 0 Tk

 ∆x
∆π
∆λ

 =

 rH
rA

rT + ΛkrC

 .
Finally, by eliminating ∆λ and changing all the signs on the second equation,
we get[

H + C ′T−1
k ΛkC −A′

−A 0

] [
∆x
∆π

]
=

[
rH + C ′T−1

k (rT + ΛkrC)
−rA

]
.

In particular, in order to �nd the predictor step we have to solve system 9.2,
that can be rewritten as[

H + C ′T−1
k ΛkC −A′

−A 0

] [
∆xaff

∆πaff

]
=

=

[
−
(
(H + C ′T−1

k ΛkC)xk −A′πk + (g − C ′(λk + T−1
k Λkd))

)
Axk − b

]
,

that is the KKT system of the equality constrained quadratic program

min
x

1

2
∆x′aff(H + C ′T−1

k ΛkC)∆xaff+

+
(
− (H + C ′T−1

k ΛkC)∆xk + g − C ′(λk + T−1
k Λkd)

)′
∆xaff

s.t. A∆xaff = 0

since the term −A′πk is not in�uencing the value of ∆xaff , but just the one of
the Lagrangian multiplier ∆πaff .

1

It may be convenient rewrite the KKT system to �nd the iterates instead of
the steps, as[

H + C ′T−1
k ΛkC −A′

−A 0

] [
xaff

πaff

]
=

[
−
(
g − C ′(λk + T−1

k Λkd)
)

−b

]
,

(where xaff = xk + ∆xaff and πaff = πk + ∆πaff) that is the KKT system of the
equality constrained quadratic program

min
x

1

2
x′aff(H + C ′T−1

k ΛkC)xaff + (g − C ′(λk + T−1
k Λkd))′xaff

s.t. Axaff = b
(9.5)

1In fact, the solution of the KKT system[
H −A′
−A 0

] [
x
π

]
= −

[
g
b

]
can be written analiticly, using the Schur complement: π is π = (AH−1A′)−1(b + AH−1g),
and thus a term in the form −A′y in g is equivalent to sum −y to the right hand side; x is
Hx = A′(AH−1A′)−1b+A′(AH−1A′)−1AH−1g− g, and thus a term in the form −A′y in g
cancels itself.
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Similarly, in order to �nd the centering-corrector step we have to solve the
system 9.3, that can be rewritten as[

H + C ′T−1
k ΛkC −A′

−A 0

] [
∆xcc

∆πcc

]
=

[
C ′T−1

k (−∆Λaff∆Taff + σµke)
0

]
,

that is the KKT system of the equality constrained quadratic program

min
x

1

2
∆x′cc(H + C ′T−1

k ΛkC)∆xcc +
(
C ′T−1

k (∆Λaff∆Taff − σµke)
)′

∆xcc

s.t. A∆xcc = 0
(9.6)

that, once again, has the same Hessian matrix as 9.5.

9.2 Implementation

In this section we specialize the interior-point methods presented in the previous
section to the speci�c case of problem 8.1. The discussion of interior-point
methods for the solution of model predictive control problems can be found also
in [RWR98].

9.2.1 Basic primal-dual method
The �rst step in the application of algorithm 6 to the case of problem 8.1 is the
computation of the modi�ed Hessian matrix Ĥ = H + C ′(T−1Λ)C (where we
are dropping the subscript k to keep the notation simpler). An important result

is that, given the special shape of the C matrix, the modi�ed Hessian matrix Ĥ
has the exact same shape of the Hessian matrix H, namely block diagonal with
block of the same size. For example, in the case N = 3, we have

C′T−1ΛC =

=


C′0

D′1
C′1

D′2
C′2

D′3




(T−1Λ)0
(T−1Λ)1

(T−1Λ)2
(T−1Λ)3



C0

D1 C1

D2 C2

D3

 =

=


C′0(T−1Λ)0C0

D′1(T−1Λ)1D1 D′1(T−1Λ)1C1

C′1(T−1Λ)1D1 C′1(T−1Λ)1C1

D′2(T−1Λ)2D2 D′2(T−1Λ)2C2

C′2(T−1Λ)2D2 C′2(T−1Λ)2C2

D′3(T−1Λ)3D3

 .

Furthermore, the above matrix is symmetric positive semi-de�nite (since it
holds (λ, t) ≥ 0, and thus the matrices (T−1Λ)n are diagonal positive semi-
de�nite): this means that at each iteration of the interior-point method we have
to solve two problems in the form 2.1, using one of the methods studied in the
previous chapters.

We decide to test our implementations of the interior-point methods using
algorithm 3 to solve problem 2.1, since this algorithm has shown itself to have
good performances for a wide range of system size.

Algorithm 3 requires the data in the form of the matrices associated to the
cost function formulation 2.1, instead of the matrix form 2.3. We thus have
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to compute how these matrices look like. We use for problem 2.1 the notation
introduced in chapter 5.

From the previous discussion about the shape of the matrix C ′(T−1Λ)C, we
already know that

R̂0 = R0 + C ′0(T−1Λ)0C0

R̂i = Ri + C ′i(T
−1Λ)iCi i = 1 . . . , N − 1

Ŝi = Si + C ′i(T
−1Λ)iDi i = 1 . . . , N − 1

Q̂i = Qi +D′i(T
−1Λ)iDi i = 1 . . . , N − 1

P̂ = P +D′N (T−1Λ)NDN

In the computation of the predictor step, we prefer to solve system 9.5 ob-
taining xk instead of ∆xk, and to compute the predictor step as ∆xk = xaff−xk.
The linear term of the cost function is

ĝaff = g − C ′(λ+ (T−1Λ)d) =

=


S0x0 + s0

qi
s1

q2

s2

p3

−

C ′0

D′1
C ′1

D′2
C ′2

D′3



λ0 + (T−1Λ)0(d0 −D0x0)
λ1 + (T−1Λ)1d1

λ2 + (T−1Λ)2d2

λ3 + (T−1Λ)3d3



=


(S0 + (T−1Λ)0C

′
0D0)x0 + s0 − C ′0(λ0 + (T−1Λ)0d0)

q1 −D′1(λ1 + (T−1Λ)1d1)
s1 − C ′1(λ1 + (T−1Λ)1d1)
q2 −D′2(λ2 + (T−1Λ)2d2)
s2 − C ′2(λ2 + (T−1Λ)2d2)
p3 −D′3(λ3 + (T−1Λ)3d3)


and thus

Ŝ0 = S0 + (T−1Λ)0C
′
0D0, p̂aff = p3 −D′3(λ3 + (T−1Λ)3d3)

and the matrices ŝaff and q̂aff are

ŝaff =

 s0 − C ′0(λ0 + (T−1Λ)0d0)
s1 − C ′1(λ1 + (T−1Λ)1d1)
s2 − C ′2(λ2 + (T−1Λ)2d2)

 , q̂aff =

 q0 −D′0(λ0 + (T−1Λ)0d0)
q1 −D′1(λ1 + (T−1Λ)1d1)
q2 −D′2(λ2 + (T−1Λ)2d2)

 .
We notice that from the form of ĝaff we do not have any information about the
value of q̂aff,0, but this is not in�uencing the solution. The value of x0 is the
value of the system state at the time n = 0.

About the matrices relative to the equality constraints, we notice that these
constraints are unchanged with respect to the problem formulation 2.1, and thus
the matrices An, Bn, and bn are unchanged.

In the following we show exactly how to compute the di�erent components
of the predictor step. At each iteration k + 1 of the interior point method, the
Riccati recursion algorithm 3 is used to obtain the value of xaff . The relative
predictor step is obtained easily as

∆xaff = xaff − xk.
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The steps ∆πk and ∆λk are obtained by computing the values πaff and λaff , and
by taking the di�erences with respect to the previous values πk and λk. The
value of the Lagrangian multiplier πaff is obtained as

πaff,n = q̂aff,n + Q̂nxaff,n + Ŝ′nuaff,n +A′nπaff,n+1

with initial value

πaff,N = P̂ xaff,N + p̂aff ,

and the step as

∆πaff = πaff − πk.

The value of taff is obtained from equation 9.1c, as

taff = Cxaff − d =


C0uaff,0 +D0x0 − d0

C1uaff,1 +D1xaff,1 − d1

C2uaff,2 +D2xaff,2 − d2

D3xaff,3 − d3

 ,
and then

∆taff = taff − tk.

Finally, the value of ∆λaff is directly obtained as

∆λaff = −T−1
k Λk(∆taff + Tke) = −T−1

k Λk(∆taff + tk) = −T−1
k Λktaff .

In the following algorithm 8 we present the basic primal-dual interior-point
method for the solution of problem 8.1, and we compute the complexity per
iteration of the interior-point method up to quadratic terms.

The total cost per iteration, considering also the quadratic terms, isN [(4n3
x+

6n2
xnu + 3nxn

2
u + 1

3n
3
u) + (9n2

x + 9nxnu + 5
2n

2
u) +nl(2n

2
x + 2nxnu + 2n2

u + 5nx +
5nu)] + 2n2

x + nl(2n
2
x + 3nx); the asymptotic complexity per iteration is thus

N

[(
4n3

x + 6n2
xnu + 3nxn

2
u +

1

3
n3
u

)
+ nl

(
2n2

x + 2nxnu + 2n2
u

)]
.

Using the version 5 of the Riccati recursion, and exploiting the symmetry of the
matrices Qn and Rn and the positive semi-de�niteness of the diagonal matrix
T−1
k Λk, it can be lowered up to

N

[(
7

3
n3
x + 4n2

xnu + 2nxn
2
u +

1

3
n3
u

)
+ nl

(
n2
x + 2nxnu + n2

u

)]
.

Since the number of iterations needed by the interior-point method to converge
depends weakly on the problem size, we have that also the asymptotic complex-
ity of the interior-point method is the same.

9.2.2 Mehrotra's predictor-corrector method

In the case of the Mehrotra's predictor-corrector method, we have to compute
also the centering-corrector step ∆xcc by solving system 9.6. The linear term
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Algorithm 8 Basic primal-dual interior-point method for the solution of prob-
lem 8.1

Require: (x̄0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, {Cn}, {Dn}, {dn}, P, p)
((x0, u0), π0, λ0, t0)← ((0, 0), 0, e, e)

µ0 ← λ′0t0
l

while µk > µmin and k < kmax do

for n = 0→ N − 1 do
Q̂n ← Qn +D′n(T−1

k Λk)nDn . N(2n2
xnl + nxnl) �ops

Ŝn ← Sn + C ′n(T−1
k Λk)nDn . N(2nxnunl) �ops

R̂n ← Rn + C ′n(T−1
k Λk)nCn . N(2n2

unl + nunl) �ops
q̂aff,n ← qn −D′n(λn + (T−1

k Λk)ndn) . N(2nxnl) �ops
ŝaff,n ← sn − C ′n(λn + (T−1

k Λk)ndn) . N(2nunl) �ops
end for

P̂ ← P +D′N (T−1
k Λk)DN . 2n2

xnl + nxnl �ops
p̂aff ← p−D′N (λn + (T−1

k Λk)NdN ) . 2nxnl �ops

(xaff , uaff)← RiccatiSolver(x̄0, {Q̂n}, {Ŝn}, {R̂n}, {q̂aff,n}, {ŝaff,n}, . . .
. . . {An}, {Bn}, {bn}, P̂ , p̂aff)

. N((4n3
x + 6n2

xnu + 3nxn
2
u + 1

3n
3
u) + (5n2

x + 7nxnu + 5
2n

2
u)) �ops

πaff,N ← P̂Nxaff,N + p̂aff,N . 2n2
x �ops

for n = N − 1→ 0 do
πaff,n ← q̂aff,n + Q̂nxaff,n + Ŝ′nuaff,n +A′nπaff,n+1

. N(4n2
x + 2nxnu) �ops

end for

taff,0 ← C0uaff,0 +D0x0 − d0 . 2nunl �ops
for n = 1→ N − 1 do

taff,n ← Cnuaff,n +Dnxaff,n − dn . (N − 1)(2nxnl + 2nunl) �ops
end for

taff,N ← DNxaff,N − dN . 2nxnl �ops

((∆xaff ,∆uaff),∆πaff ,∆taff) = ((xaff , uaff), πaff , taff)− ((xk, uk), πk, tk)

for n = 0→ N do

∆λaff,n ← −(T−1
k Λk)ntaff,n

end for

αaff ← max{α ∈ [0, 1]|(λ, t) + α(∆λaff ,∆taff) ≥ 0}
((xk+1, uk+1), πk+1, λk+1, tk+1)← ((xk, uk), πk, λk, tk)+

+γαaff((∆xaff ,∆uaff),∆πaff ,∆λaff ,∆taff)

µk+1 ←
λ′k+1tk+1

l

end while

return ({un}k)
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of the cost function is

ĝcc = C ′T−1
(
∆Λaff∆Taff − σµke

)
=



C ′0T
−1
0 (∆λaff,0∆taff,0 − σµk)

D′1T
−1
1 (∆λaff,1∆taff,1 − σµk)

C ′1T
−1
1 (∆λaff,1∆taff,1 − σµk)

D′2T
−1
2 (∆λaff,2∆taff,2 − σµk)

C ′2T
−1
2 (∆λaff,2∆taff,2 − σµk)

D′3T
−1
3 (∆λaff,3∆taff,3 − σµk)


and thus p̂cc = D′3T

−1
3 (∆λaff,3∆taff,3 − σµk) and the matrices ŝcc and q̂cc are

ŝcc =

 C ′0T
−1
0 (∆λaff,0∆taff,0 − σµk)

C ′1T
−1
1 (∆λaff,1∆taff,1 − σµk)

C ′2T
−1
2 (∆λaff,2∆taff,2 − σµk)

 , q̂cc =

 D′0T
−1
0 (∆λaff,0∆taff,0 − σµk)

D′1T
−1
1 (∆λaff,1∆taff,1 − σµk)

D′2T
−1
2 (∆λaff,2∆taff,2 − σµk)


where again from the form of ĝcc we do not have any information about the
actual value of q̂cc,0, but this is not a�ecting the solution. The initial state x0

is this time set to the zero vector.
About the computation of the di�erent components of the centering-corrector

step, we use a modi�ed version of the Riccati recursion algorithm for the com-
putation of ∆xcc, exploiting the fact that in this case bn = 0, and re-using the
matrices Ln and Λn already computed (the notation is the same used in the
chapter about the Riccati recursion, and thus in this context Λn is the lower
factor in the Cholesky factorization of the matrix Re,n).

The algorithm for the computation of the ∆xcc and ∆ucc is summarized
in the following algorithm 9, with the quadratic terms of the computational
complexity. The computational cost of the algorithm is quadratic, and counts
for N(4n2

x + 8nxnu + 2n2
u) �oating-point operations.

Algorithm 9 Modi�ed Riccati recursion method for the computation of ∆xcc

and ∆ucc

Require: ({qn}, {sn}, {An}, {Bn}, p, {Λn}, {Ln})
pn+1 ← p
for n = N − 1→ 0 do

ln ←dtrsv −Λ−1
n (sn +B′n ·dgemv pn+1) . 2nxnu + n2

u �ops
pn ← qn +A′n ·dgemv pn+1 − L′n ·dgemv ln . 2n2

x + 2nxnu �ops
end for

x0 ← 0
for n = 0→ N − 1 do

un ←dtrsv −(Λ′n)−1(Ln ·dgemv xn + ln) . 2nxnu + n2
u �ops

xn+1 ← An ·dgemv xn +Bn ·dgemv nu . 2n2
x + 2nxnu �ops

end for

return ({xn}, {un})

The value of the increment in the Lagrange multiplier ∆πcc is obtained using
the relation

∆πcc,n = q̂cc,n + Q̂n∆xcc,n + Ŝ′n∆ucc,n +A′n∆πcc,n+1

with initial value
∆πcc,N = P̂∆xcc,N + p̂cc.
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The value of ∆tcc is obtained from the equation

C∆xcc −∆tcc = 0

giving

∆tcc = C∆xcc =


C0∆ucc,0

C1∆ucc,1 +D1∆xcc,1

C2∆ucc,2 +D2∆xcc,2

D3∆xcc,3

 .
Finally, ∆λcc is obtained from the relation

Tk∆λcc + Λk∆tcc = −∆Λaff∆Taff + σµke

giving
∆λcc = −T−1

k Λk∆tcc − T−1
k (∆Λaff∆Taff − σµke).

In the following algorithm 10 we present the Mehrotra's predictor-corrector
interior-point method for the solution of problem 8.1. We also compute the
complexity per iteration up to quadratic terms, that isN [(4n3

x+6n2
xnu+3nxn

2
u+

1
3n

3
u) + (17n2

x + 19nxnu + 9
2n

2
u) + nl(2n

2
x + 2nxnu + 2n2

u + 9nx + 9nu)] + 4n2
x +

nl(2n
2
x + 5nx). This means that each iteration of the Mehrotra's predictor-

corrector interior-point method requires N((8n2
x + 10nxnu + 2n2

u) + nl(4nx +
4nu)) + 2n2

x + 2nxnl �oating-points operations more compared to the basic
primal-dual interior-point method.

Anyway the asymptotic complexity per iteration is the same as the basic
primal-dual interior-point method (algorithm 8), and is

N

[(
4n3

x + 6n2
xnu + 3nxn

2
u +

1

3
n3
u

)
+ nl

(
2n2

x + 2nxnu + 2n2
u

)]
,

just using algorithm 3 for the computation of the a�ne step. This cost can be
lowered up to

N

[(
7

3
n3
x + 4n2

xnu + 2nxn
2
u +

1

3
n3
u

)
+ nl

(
n2
x + 2nxnu + n2

u

)]
using algorithm 5.
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Algorithm 10 Mehrotra's predictor-corrector interior-point method for the
solution of problem 8.1

Require: (x̄0, {Qn}, {Sn}, {Rn}, {qn}, {sn}, {An}, {Bn}, {bn}, {Cn}, {Dn}, {dn}, P, p)
((x0, u0), π0, λ0, t0)← ((0, 0), 0, e, e)

µ0 ← λ′0t0
l

while µk > µmin and k < kmax do

for n = 0→ N − 1 do
Q̂n ← Qn +D′n(T−1

k Λk)nDn . N(2n2
xnl + nxnl) �ops

Ŝn ← Sn + C ′n(T−1
k Λk)nDn . N(2nxnunl) �ops

R̂n ← Rn + C ′n(T−1
k Λk)nCn . N(2n2

unl + nunl) �ops
q̂aff,n ← qn −D′n(λn + (T−1

k Λk)ndn) . N(2nxnl) �ops
ŝaff,n ← sn − C ′n(λn + (T−1

k Λk)ndn) . N(2nunl) �ops
end for

P̂ ← P +D′N (T−1
k Λk)DN . 2n2

xnl + nxnl �ops
p̂aff ← p−D′N (λn + (T−1

k Λk)NdN ) . 2nxnl �ops

((xaff , uaff),Λ, L)← RiccatiSolver(x̄0, {Q̂n}, {Ŝn}, {R̂n}, {q̂aff,n}, {ŝaff,n}, . . .
. . . {An}, {Bn}, {bn}, P̂ , p̂aff)

. N((4n3
x + 6n2

xnu + 3nxn
2
u + 1

3n
3
u) + (5n2

x + 7nxnu + 5
2n

2
u)) �ops

πaff,N ← P̂Nxaff,N + p̂aff,N . 2n2
x �ops

for n = N − 1→ 0 do
πaff,n ← q̂aff,n + Q̂nxaff,n + Ŝ′nuaff,n +A′nπaff,n+1

. N(4n2
x + 2nxnu) �ops

end for

taff,0 ← C0uaff,0 +D0x0 − d0 . 2nunl �ops
for n = 1→ N − 1 do

taff,n ← Cnuaff,n +Dnxaff,n − dn . (N − 1)(2nxnl + 2nunl) �ops
end for

taff,N ← DNxaff,N − dN . 2nxnl �ops

((∆xaff ,∆uaff),∆πaff ,∆taff) = ((xaff , uaff), πaff , taff)− ((xk, uk), πk, tk)

for n = 0→ N do

∆λaff,n ← −(T−1
k Λk)ntaff,n

end for

αaff ← max{α ∈ [0, 1]|(λ, t) + α(∆λaff ,∆taff) ≥ 0}
µaff ← (λk+αaff∆λaff )

′(tk+αaff∆taff )
l

σ ← (µaff

µk
)3
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for n = 0→ N − 1 do
ŝcc,n ← C ′n(T−1

k (∆λaff∆taff − σµke))n . N(2nunl) �ops
q̂cc,n ← D′n(T−1

k (∆λaff∆taff − σµke))n . N(2nxnl) �ops
end for

q̂cc,N ← D′NT
−1
N (∆λaff∆taff − σµke)N . 2nxnl �ops

(xcc, ucc)← ModifiedRiccatiSolver({q̂cc,n}, {ŝcc,n}, {An}, {Bn}, p̂cc, {Λn}, {Ln})
. N(4n2

x + 8nxnu + 2n2
u) �ops

∆πcc ← P̂∆xcc,N + p̂cc . 2n2
x �ops

for n = N − 1→ 0 do
∆πcc,n ← q̂cc,n + Q̂n∆xcc,n + Ŝ′n∆ucc,n +A′n∆πcc,n+1

. N(4n2
x + 2nxnu) �ops

end for

∆tcc,0 ← C0∆ucc,0 . 2nunl �ops
for n = 1→ N − 1 do

∆tcc,n ← Cn∆ucc,n +Dn∆xcc,n . (N − 1)(2nxnl + 2nunl) �ops
end for

∆tcc,N ← DN∆xcc,N . 2nxnl �ops

for n = 0→ N do

∆λcc,n ← −(T−1
k Λk)n∆tcc,n − (T−1

k (∆λaff∆taff − σµke))n
end for

((∆xk,∆uk),∆πk,∆λk,∆tk)← ((∆xaff ,∆uaff),∆πaff ,∆λaff ,∆taff)+
+((∆xcc,∆ucc),∆πcc,∆λcc,∆tcc)

αmax ← max{α ∈ [0, 1]|(λ, t) + α(∆λk,∆tk) ≥ 0}
((xk+1, uk+1), πk+1, λk+1, tk+1)← ((xk, uk), πk, λk, tk)+

+γαmax((∆xk,∆uk),∆πk,∆λk,∆tk)

µk+1 ←
λ′k+1tk+1

l

end while

return ({un}k)
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Figure 9.1: Comparison of the computation time per iteration for our imple-
mentations of interior-point methods 8 and 10, and the cost of the
Riccati recursion method 3 for the solution of problem 2.1. The
test problem is 10.1, with nx ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512},
nu = 1 and N = 10. The time is wall clock time in seconds

9.3 Performance analysis

In this part we compare the performance of our implementations of the two
interior-point methods 8 and 10. The test problem is 10.1.

In �gure 9.1 there is a comparison of the wall clock time needed by the two
implementations, together with the time needed by the Riccati recursion algo-
rithm 3, used as sub-routine by both interior-point methods. The computation
time is very similar for the two solvers, and the di�erence is relevant only in
the case of very small systems. For medium and large values of nx, it is almost
impossible to distinguish the three curves.

In conclusion, the di�erence in complexity between the interior point meth-
ods 8 and 10 is quadratic in theory, and negligible in practice.
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Chapter 10

Test Problems as Extended

Linear Quadratic Control

Problem with Inequality

Constraints

In this chapter we de�ne a test problem as an instance of problem 8.1, and we
compare each other the performances of the two interior-point methods (algo-
rithms 8 and 10) in the solution of this problem.

10.1 Problem de�nition

The test problem is the mass-spring problem with inequality constraints. The
problem de�nition is the same that in the case of the mass-spring problem
considered as an instance of problem 2.1, with the di�erence that there are also
constraints on the maximum absolute value of the input action.

In fact, the input has to satisfy the constraints

−umax ≤ un ≤ umax

for n ∈ {0, 1, . . . , N − 1}, where umax is the maximum absolute value of the
input. The relation can be written as

{
un ≥ −umax

−un ≥ −umax
⇒

[
I
−I

]
un ≥

[
−I
−I

]
umax.
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The problem can be written in the form of problem 8.1 as:

min
{un,xn+1}

φ =

N−1∑
n=0

(
1

2

[
x′n u′n

] [Qn S′n
Sn Rn

] [
xn
un

]
+
[
q′n s′n

] [cxn
un

]
+ ρn

)
+

+
1

2
x′NQNxN + q′NxN + ρN

s.t. xn+1 = Anxn +Bnun + bn

Cnun +Dnxn ≥ dn
(10.1)

where

Qn = I2p×2p, Sn = 0m×2p, Rn = Im×m,

qn = 02p×1, sn = 0m×1, ρn = 0,

An = Ad, Bn = Bd, bn = 02p×1,

Cn =

[
Im×m
−Im×m

]
, Dn = 02m×2p, dn = −e2m×1umax

for each n ∈ N = {0, 1, . . . , N − 1} (and n = N for Qn, qn, ρn), where e2m×1 is
a vector of 2m ones.

10.2 Small size example

We consider again the case of a system with p = 2 masses (and thus nx = 2p = 4
states) and m = 1 forces (and thus nu = m = 1 inputs), with horizon length
N = 20 and initial state vector x0 =

[
5 10 15 20

]
; anyway this time the

input is constrained between -5 and 5.
In �gure 10.1 there is a comparison between the solution of test problem

10.1 (with inequality constraints) and the solution of test problem 7.2 (without
inequality constraints). We notice that, when the input is constrained, it takes
a longer time to control to zero the states, and that their oscillations are larger
in absolute value. Anyway, in both cases the input is able to control to zero the
states in the given control horizon of length 20.

10.3 Comparison between the two interior-point

methods

In this section we compare the two interior-point methods in algorithms 8 and
10 for the solution of test problem 10.1.

We want to compare their performance in the solution of the small size
problem presented in the previous section. We choose as stopping criteria a
value of µk smaller than µmin = 10−5. The initial guess is a zero vector for
x0 and π0, and a vector of just ones for λ0 and t0: it satis�es the constraint
(λ, t) ≥ 0 strictly, as requested by the interior-point methods. Anyway, this
starting guess is infeasible with respect to the equality constraints and does not
satis�es the other KKT equations.

In �gure 10.2a there is a plot of the value of µk as function of the iteration
number. It is interesting to notice that, even if the Mehrotra's method is con-
verging in less iterations, in the �rst ones the value of µk is actually increasing
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Figure 10.1: Comparison between the solution for the test problem with (red
line) and without (blue line) the inequality constraints; in the
top picture there is the input, in the bottom one there is the �rst
component of the state vector.
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(blue line) and the Mehrotra's predictor-corrector method (red
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instead of decreasing. On the other hand, in the case of the basic primal-dual
algorithm the value of µk decreases at each iteration. Both methods shows a
faster convergence rate near the solution.

In �gure 10.2b there is a plot of the 2-norm of the residuals of the input
vector with respect to the 'optimal' solution (that is a solution obtained for
a large number of iterations): it is interesting to notice that the norm of the
residuals of the solution computed using the Mehtotra's method is always lower
than the norm of the residuals computed using the basic primal-dual algorithm,
even when the value of µk is larger. Furthermore, the value of the residuals is
decreasing at each iteration for both methods, and in the case of the Mehrotra's
method there is an important improvement for k = 6, when the iterate is almost
the same as the optimal solution.

It is also interesting to study the shape of the control vector produced at dif-
ferent iterations of the two interior-point methods. Comparing the two methods
in �gure 10.3a and 10.3b, we notice that the basic interior-point method con-
verges slower and the early iterations have the shape as the solution of problem
7.2 instead of the shape of the optimal solution. On the other hand, the shape
of iterates produced the Mehrotra's predictor-corrector method is similar to the
one of the optimal solution also in early iterations.
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Chapter 11

Problems variants

In this chapter we present a few variants of problems 2.2, 2.1 and 8.1, and we
show how they can be rewritten in the same form as problems 2.2, 2.1 and 8.1:
then they can be solved using the algorithms developed in previous chapters.
Furthermore, we suggest how to tailor these algorithms to exploit the special
structure of the problems.

11.1 Variants of problem 2.2

In this section we present a few problems that are variations of problem 2.2.
Since problem 2.1 is an extension of problem 2.2, they can be seen as variants
of problem 2.1 as well.

11.1.1 Output in the cost function

In this case, in the formulation of the cost function there is the output vector
instead of the state vector. The output vector is de�ned as a linear function of
the state vector, yn = Cxn. Then we consider the problem

min
{yn+1,un}

φ =
1

2

N−1∑
n=0

(y′nQyn + u′nRun) +
1

2
y′NQNyN

s.t. xn+1 = Axn +Bun

yn = Cxn
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We can use the de�nition of the output vector to rewrite the cost function as

φ =
1

2

N−1∑
n=0

(y′nQyn + u′nRun) +
1

2
y′NQNyN =

=
1

2

N−1∑
n=0

(x′nC
′QCxn + u′nRun) +

1

2
x′NC

′QNCxN =

=
1

2

N−1∑
n=0

(
x′nQ̄xn + u′nRun

)
+

1

2
x′N Q̄NxN

and the problem formulation as

min
{yn+1,un}

φ =
1

2

N−1∑
n=0

(
x′nQ̄xn + u′nRun

)
+

1

2
x′N Q̄NxN

s.t. xn+1 = Axn +Bun

that is an instance of problem 2.2. In general the matrix Q̄ = C ′QC is symmetric
positive semi-de�nite, even if the matrix Q is positive de�nite: for example, in
case of a smaller number of outputs than states, Q̄ is rank de�cient.

In general it is not possible to exploit the speci�c form of this problem to
obtain better algorithms.

11.1.2 Input variation in the cost function

In this case, in the formulation of the cost function there is also a penalty term
for the variation of the input vector ∆un = un − un−1: then we consider the
problem

min
{xn+1,un}

φ =
1

2

N−1∑
n=0

(x′nQxn + u′nRun + ∆u′nS∆un) +
1

2
x′NQNxN

s.t. xn+1 = Axn +Bun

where S is a symmetric positive semi-de�nite matrix of size nu × nu, and the
other matrices are de�ned as usual.

Using the de�nition of the input variation, the cost function can be rewritten
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as

φ =
1

2

N−1∑
n=0

(x′nQxn + u′nRun + ∆u′nS∆un) +
1

2
x′NQNxN =

=
1

2

N−1∑
n=0

(x′nQxn + u′nRun + (un − un−1)′S(un − un−1)) +
1

2
x′NQNxN =

=
1

2

N−1∑
n=0

([
x′n u′n−1

] [ Q 0
0 S

] [
xn
un−1

]
+ u′n(R+ S)un+

+ u′n
[

0 −S
] [ xn

un−1

]
+
[
x′n u′n−1

] [ 0
−S

])
+

+
1

2

[
xN uN−1

] [ QN 0
0 0

] [
xN
uN−1

]
=

=
1

2

N−1∑
n=0

(
x̄′nQ̄x̄n + u′nR̄un + u′nS̄x̄n + x̄nS̄

′un
)

+
1

2
x̄′N Q̄N x̄N

where we de�ne the augmented state vector as

x̄n =

[
xn
un−1

]

and the matrices of the cost function as

Q̄ =

[
Q 0
0 S

]
, R̄ = R+ S, S̄ =

[
0 −S

]
.

The constraints take the form

x̄n+1 =

[
xn+1

un

]
=

[
A 0
0 0

] [
xn
un−1

]
+

[
B
I

]
un = Āx̄n + B̄un

and the problem is thus an instance of problem 2.2, with a state vector of size
nx̄ = nx +nu. This means that, for example, the cubic terms in the complexity
of an iteration of algorithm 3 are

4n3
x̄ + 6n2

x̄nu + 3nx̄n
2
u +

1

3
n3
u =

= 4(nx + nu)3 + 6(nx + nu)2nu + 3(nx + nu)n2
u +

1

3
n3
u =

= 4n3
x + 18n2

xnu + 27nxn
2
u +

40

3
n3
u.

Anyway, it is possible to write tailored algorithms to exploit the special
structure of this problem, and obtain better performances. For example, the
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Riccati recursion expression is

Pn−1 = Q̄+ Ā′PnĀ− (S̄ + B̄′PnĀ)′(R̄+ B̄′PnB̄)−1(S̄ + B̄′PnĀ) =

=

[
Q 0
0 S

]
+

[
A′ 0
0 0

] [
Pn,11 Pn,12

Pn,21 Pn.22

] [
A 0
0 0

]
−

−
([

0 −S
]

+
[
B′ I

] [ Pn,11 Pn,12

Pn,21 Pn,22

] [
A 0
0 0

])′
·

·
(

(R+ S) +
[
B′ I

] [ Pn,11 Pn,12

Pn,21 Pn,22

] [
B
I

])
·

·
([

0 −S
]

+
[
B′ I

] [ Pn,11 Pn,12

Pn,21 Pn,22

] [
A 0
0 0

])
=

=

[
Q 0
0 S

]
+

[
A′Pn,11A 0

0 0

]
−
[
A′(Pn,11B + P ′n,21)

−S

]
·

· (R+ S +B′Pn,11B +B′Pn,12 + Pn,21B + Pn,22)
−1 [

(B′Pn,11 + Pn,21)A −S
]

and then algorithm 3 can be modi�ed to implement the above recursion, ob-
taining a complexity per iteration with cubic terms

4n3
x + 6n2

xnu + 9nxn
2
u +

10

3
n3
u,

that is just 6nxn
2
u + 3n3

u larger than problem 2.2.

11.1.3 Diagonal Hessian in the cost function

This is a special case of problem 2.2, and some of the algorithms presented in
the previous chapeters can take advantage of this.

Riccati recursion method In the case of this method, a diagonal Hessian
in not in�uencing the cubic terms in the complexity expression.

Schur complement method This method can take advantage of a diagonal
Hessian (that has to be positive de�nite). In fact the Cholesky factorization,
the inversion of the factor U and the computation of Φ = AU−1 are trivial, and
require at most a quadratic number of �oating-point operations.

The matrix φ is in the form

Φ =

Φ0,22 Φ1,11

Φ1,21 Φ1,22 Φ2,11

Φ2,21 Φ2,22 Φ3,11


where the Φn,11 are diagonal nx × nx matrices, Φn,21 are full nx × nx matrices
and Φn,22 are full nx × nu matrices.

Then the computation of the product Ψ = ΦΦ′ has an asymptotic cost of
N(n3

x+n2
xnu) �oating-point operations. The blocks Ψi,j are all dense, and thus

the Cholesky factorization of the matrix Ψ has an asymptotic cost of N( 7
3n

3
x)

�oating-point operations, as usual. The following operations (systems solution)
have only a quadratic cost.
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The asymptotic cost of the algorithm is then

N

(
10

3
n3
x + n2

xnu

)
.

It is pretty smaller than the cost of the general Schur complement algorithm
but still larger that the most e�cient version of the Riccati recursion method
in the case of nx � nu. Anyway, in case of large value of nu, the algorithm is
extremely convenient, being linear in the number of inputs.

Condensing methods Condensing methods can take advantage of a diago-
nal Hessian matrix: in this case the computation of the product Q̄Γu has an
asymptotic cost of 1

2N
2nunx �oating-point operations instead of N2n2

xnu. The
asymptotic cost of the algorithm becomes

2N2nxnu(nx + nu) +
1

3
(Nnu)3

�oating-point operations.

11.2 Variants of problem 2.1

In this section we present a problem that can be rewritten in the form of problem
2.1.

11.2.1 Control to a non-zero reference

In this part we consider the problem of control the states vector to a non-zero
reference,

min
xn+1,un

φ =
1

2

N−1∑
n=0

(xn − zn)′Q(xn − zn) + u′nRun +
1

2
(xN − zN )′QN (xN − zN )

s.t. xn+1 = Axn +Bun

The cost function can be rewritten as

φ =

N−1∑
n=0

(
1

2
x′nQxn +

1

2
u′nRun + (−z′nQ)xn +

1

2
z′nQzn

)
+

+
1

2
x′NQNxN + (−z′NQN )xN +

1

2
z′NQNzN

that can be seen as the cost function of problem 2.1 with qn = −Qzn and
qN = −QNzN .

No special algorithm can be developed.

11.3 Variants of problem 8.1

11.3.1 Diagonal Hessian matrix in the cost function and
box constraints

In this part we study a special case of problem 8.1, namely the case with diagonal
Hessian in the cost function and box constraints.
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Box constraints are in the form

umin ≤ un ≤ umax

xmin ≤ xn ≤ xmax

and can be rewritten as

Cnun +Dnxn =


I
−I
0
0

un +


0
0
I
−I

xn ≥

umin

−umax

xmin

−xmax

 = dn.

The matrix C ′(T−1Λ)C, that is the update term of the Hessian matrix at
each iteration of the interior-pint method, is diagonal. In fact, for each block i,
we have

D′i(T
−1Λ)iDi =

=
[
0 0 I −I

] 
(T−1Λ)i,1

(T−1Λ)i,2
(T−1Λ)i,3

(T−1Λ)i,4




0
0
I
−I

 =

= (T−1Λ)i,3 + (T−1Λ)i,4

C ′i(T
−1Λ)iCi =

=
[
I −I 0 0

] 
(T−1Λ)i,1

(T−1Λ)i,2
(T−1Λ)i,3

(T−1Λ)i,4



I
−I
0
0

 =

= (T−1Λ)i,1 + (T−1Λ)i,2

D′i(T
−1Λ)iCi =

=
[
0 0 I −I

] 
(T−1Λ)i,1

(T−1Λ)i,2
(T−1Λ)i,3

(T−1Λ)i,4



I
−I
0
0

 = 0

then the matrix C ′(T−1Λ)C is diagonal, since the matrix (T−1Λ) is diagonal.
This means that, at each iteration of the interior-point method, the updated

Hessian matrix H+C ′(T−1Λ)C is diagonal, and then the asymptotic cost of one
iteration of the interior-point method is the cost of the solution of a problem in
the form 2.1 with diagonal Hessian, and has been computed in section 11.1.3.



Chapter 12

Conclusions

In this �nal chapter we want to brie�y report some of the result obtained in this
thesis, and that can be useful to others.

The main goal of this thesis was the comparison of some methods for the
solution of problem 2.1: this have been made both in theory (as number of
�oating-point operations) and in practice (comparing the computation time of
our C implementations).

Some of the results are that:

• In general, direct sparse solvers (chapter 3) are slow. They may be more
attractive if the matrices of problem 2.1 are sparse (even if this has not
been tested in practice).

• The method with the widest �eld of application is Riccati recursion method
(chapter 5): then in general we suggest this method.

• In case of small values of the number of inputs and horizon length, and
large values of the number of states, the condensing method (chapter 6)
can be the best choice. Furthermore, it can take advantage of a diagonal
Hessian in the cost function, and allows some savings if used to solve a
set of problems with the same coe�cient matrices in the system dynamic
equation (for example if it is used as routine in an interior-point method).

• In the special case of large value of the number of inputs and diagonal
Hessian in the cost function, Schur complement method (chapter 4) can be
the best choice (although we had not tested this special case in practice).

• In some special problem formulation (chapter 11), it may be advantageous
to specialize the algorithms presented in this thesis, and take advantage
of the shape of the coe�cient matrices (even if this has not been tested in
practice).
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Appendix A

Machines and programming

languages

In this chapter we brie�y describe the machine used to perform the tests, and
brie�y introduce the languages used to write the code.

A.1 Hardware and software

The software has been written and tested on a entry-level laptop, equipped with
a rather slow processor and a small cache compared to other machines. Here
can be found more details:

• processor: Intel Pentinum Dual-Core T2390 @ 1.86 GHz

• L1 cache: 2x32 KB data + 2x32 KB instructions

• L2 cache: 1 MB

• FSB speed: 533 MHz

The processor is based on the Intel IA32-64 architecture, and support the
instruction sets x87 FPU, MMX, SSE, SSE2, SSE3, SSSE3. Since the algorithms
in this thesis are based on �oating-points operations, we are interested only on
x87 FPU, SSE2 and SSE2 instructions sets; in particular there are 8 64-bit MMX
registers (where x87 FPU and MMX operations are performed) and 16 128-bit
XMM registers (where SSE, SSE2, SSE3, SSSE3 operations are performed).

Non-optimized code makes use only of general purpose and MMX registers,
while highly optimized code uses in a smart way also the extended registers
XMM.

The operative system is the Linux distribution Ubuntu, versions 12.04. The
distribution provides, already installed, the compiler gcc (GNU Compiler Col-
lection), that can be used to compile, among the others, C, C++, FORTRAN
and Java code. Two gcc manuals are [Gou] and [Sta].
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In the case of the program myprog.c written in C, the command

$ gcc myprog.c -o myprog.out

compiles and links the code, creating the executable myprog.out. The program
can be executed with the command

$ ./myprog.out

The command

$ gcc -c myprog.c

compiles the code and creates the �le in machine code myprog.o.
Multiple �les .o can be linked together in the same executable with the

command

$ gcc myprog1.o myprog2.o -o myprog.out

The program can be linked against libraries using the options -L and -l: for
example the command

$ gcc myprog.c -o myprog.out -lblas -L. lapack.a

compiles the source code myprog.c in the machine �le myprog.o, and links the
latter with the libraries libblas.a (in the default folder) and lapack.a (in the
current folder), creating the executable myprog.out.

The libraries libblas.a and lapack.a are called static libraries, and are
a collection of �les .o gathered together; their code is explicitly added to the
executable during the linking phase. There exist also dynamic libraries, for
example blas.so: their code is not included in the executable, but the linking
is done at execution time. The environment variable LD_LIBRARY_PATH has to
be set to the address of the folder containing the dynamic library, in case it is
not in the standard folders.

The compiler gcc allows a number of compiling preferences; in particular,
the optimization �ags -O1, -O2, -O3 and -Ofast can be used to set the level of
optimization of the code; the option -Ofast (activating the �ag -ffast-math)
may produce code performing �oating-point operations violating IEEE or ANSI
standards; its use is then not recommended.

An useful tool in the gcc tools collection is the graph pro�ler gprof, used
to determine how much time is spent in which sub-routine. The code has to
be compiled with the �ag -pg. The following execution of the program (in this
case myprog.out) produces the �le gmon.out, that can be analyzed with the
command

$ gprof myprog.out gmon.out

producing both a �at pro�le and a call graph.

A.2 Programming languages

A.2.1 MATLAB

MATLAB (MATrix LABoratory) is a numeric computing environment and a
fourth-generation programming language. It is mainly written in C; for the most
intensive routines it uses optimized BLAS and LAPACK implementations.
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The MATLAB version we used is MATLAB 7.10.0 (R2010a) for Linux, using
the BLAS implementation MKL 10.0.3, by Intel.

In this work, we used MATLAB only on an early prototyping phase, since
the code written in MATLAB language is rather slower than the code written
in C. In section 7.4 there is a comparison of the same algorithm written in C
and MATLAB.

A.2.2 C

C is an imperative, general-purpose programming language, appeared in 1972.
It is one of the most used programming languages of all times. A C manual is
[KR88].

The default matrix representation in C is row-major order (i.e. in memory
a matrix is saved as a vector, storing the elements a row after the other; this
means that elements on the same row are stored contiguously, while elements on
the same column can be stored far away). Anyway, in our code we use column-
major order (i.e. in memory a matrix is saved as a vector, storing the elements a
column after the other; this means that elements on the same column are stored
contiguously, while elements on the same row can be stored far away), since it
is the default order required the BLAS and LAPACK. The storing order of data
in memory is a factor a�ecting the performance of algorithms, since the access
to data stored not contiguously may result in a cache miss, slowing down the
execution.

For the most expensive parts, our C code calls algebra routine from optimized
BLAS version, since hand written C (and FORTRAN) code is not competitive,
even if optimized using the compilers �ags. In particular, we use the Intel
implementation MKL 10.0.3, the same as MATLAB, to have a direct comparison
of the performance of our implementation of the algorithms in C and MATLAB.
Other BLAS versions have been tested, see appendix C for details.

A.2.3 FORTRAN

FORTRAN is an imperative, general-purpose programming language, appeared
in 1957. It is the most used language in scienti�c computing. A FORTRAN 77
manual is [Pag07].

The BLAS and LAPACK implementations are often written in this language,
and thus their default data storing order is column-major, the FORTRAN order.
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Appendix B

Basic Algorithms

In this section we present a number of algorithms performing basic linear algebra
operations, used as building blocks in our code. E�cient implementation of
these algorithms can be found in the BLAS (Basic Linear Algebra Subprograms)
and LAPACK (Linear Algebra PACKage) libraries. We shortly describe the
algorithms and compute their complexity as number of �oating-point operations.
Anyway, the exact number of �oating-points operations depends on the speci�c
implementation.

This section does not cover all the BLAS and LAPACK routines, but only
the subset used in our implementations of the algorithms.

B.1 Matrix-matrix multiplication

The matrix-matrix multiplication routines are part of the level-3 BLAS (or
LAPACK in some case), and they have a cubic complexity in the matrices size.

B.1.1 General matrices

The general matrix-matrix multiplication is implemented by the BLAS routine
dgemm, performing C ← α · op(A) · op(B) + βC, where op(X) = X or op(X) =
X ′, C is a m × n matrix, and op(A) and op(B) are respectively m × k and
k × n matrices. It is often used as benchmark to compare di�erent BLAS
implementations.

The algorithm is based on the de�nition of matrix product,

A ·B =

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
=

=

[
c11 c12

c21 c22

]
= C,
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in case of a matrix 2 × 2. If aij and bij are scalars, we have an unblocked
algorithm; if they are sub-matrices, we have a blocked algorithm; a blocked
algorithm with a proper block size can make a better use of cache and avoid
useless data movement and cache miss.

Complexity: 2mnk + 2mn (rectangular matrices); 2n3 + 2n2 (squared ma-
trices, m = n = k); it might be lowered up to 2mnk −mn and 2n3 − n2 in the
case of |α| = 1 and β = 0.

B.1.2 Triangular matrix

If one of the factor matrices A is triangular, it is possible to save roughly half of
the �oating-points operations, since we can avoid to perform the multiplication
if one of the factors is a zero element in A. The algorithm is implemented by
the BLAS routine dtrmm, performing B ← α · op(A) · B or B ← α · B · op(A),
where op(A) = A or op(A) = A′, B is a m×n matrix and A is a m×m or n×n
matrix.

Complexity: 2mn(n+1)
2 − mn + mn = mn2 + mn (A triangular matrix of

size n × n, B rectangular matrix of size m × n); 2nm(m+1)
2 − mn + mn =

m2n + mn (A triangular matrix of size m × m, B rectangular matrix of size

m× n); 2nn(n+1)
2 − n2 + n2 = n3 + n2 (B squared matrix, m = n); it might be

lowered to mn2, m2n and n3 in the case |α = 1|.

B.1.3 Rank-k update

If the two factor matrices are one the transposed of the other, the product
matrix is symmetric (and positive semi-de�nite). Then it is possible to save
roughly half of the �oating-points operations, computing just the upper or the
lower triangular part of the product.

The algorithm is implemented by the BLAS routine dsyrk, performing C ←
α · A · A′ + βC or C ← α · A′ · A + βC, where C is a n × n matrix and A is
respectively a n× k and k × n matrix.

Complexity: 2k n(n+1)
2 +2n(n+1)

2 = n2k+nk+n2 +n (A rectangular matrix);
n3 +2n2 +n (A squared matrix, k = n); it might be lowered up to n2k+nk−n2

and n3 in the case |α = 1| and β = 0.

B.1.4 Rank-n update with triangular matrices

If in the rank-k update the factor matrix is triangular, it is possible to save
even more computations. In particular, the LAPACK routines dlauum (blocked
version) and dlauu2 (unblocked version) implement the algorithm in the case
that the �rst factor is upper and the second lower triangular; the routines are
computing U ← U · U ′ or L← L′ · L, where U and L are respectively an upper
and lower triangular matrix.

The routine may be used to e�ciently invert a positive de�nite matrix,
together with the Cholesky factorization and the triangular matrix inversion
routines, all part of LAPACK.

The algorithms used to solve this problem are analogous to the ones for
the Cholesky factorization, and in particular there are algorithms based on the
representation of a matrix in 2× 2 and 3× 3 blocks form.
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2× 2 algorithm Given the general upper matrix in 2× 2 block form

U =

[
U11 U12

0 U22

]
the algorithm is based on the fact that

UU ′ =

[
U11 U12

0 U22

] [
U ′11 0
U ′12 U ′22

]
=

[
U11U

′
11 + U12U

′
12 U12U

′
22

∗ U22U
′
22

]
=

=

[
H11 H12

∗ H22

]
= H.

Both iterative and recursive algorithms are possible. Regarding iterative algo-
rithms, at the beginning of the general iteration H22 = U22U

′
22 contains the

already computed part of the product matrix. In case of unblocked algorithm,
U11 is a scalar and U12 a row vector, and the computation of U11U

′
11 is a trivial

scalar multiplication, U12U
′
12 is the scalar product and U12U

′
22 is a triangu-

lar matrix-vector product. In case of a blocked algorithm, the computation of
U11U

′
11 is made using the unblocked algorithm, U12U

′
12 is a rank-k update and

U12U
′
22 is a triangular matrix-matrix product.

Regarding recursive algorithms, the matrix U is split such that the matrix
U12 is roughly squared, and the algotithm is called on the submatrices U11 and
U22; as base case can be used an algorithm for matrices of small size, for example
1× 1 and 2× 2.

3× 3 algorithm Given the general upper matrix in 3× 3 block form

U =

 U11 U12 U13

0 U22 U23

0 0 U33


the algorithm is based on the fact that

UU ′ =

 U11 U12 U13

0 U22 U23

0 0 U33

 U ′11 0 0
U ′12 U ′22 0
U ′13 U ′23 U ′33

 =

=

 U11U
′
11 + U12U

′
12 + U13U

′
13 U12U

′
22 + U13U

′
23 U13U

′
33

∗ U22U
′
22 + U23U

′
23 U23U

′
33

∗ ∗ U33U
′
33


Again both iterative (blocked and unblocked) and recursive algorithms are

possible, in analogy with the Cholesky factorization algorithm (see B.4 for de-
tails).

The algorithms implemented by the LAPACK routines dlauum and dlauu2

are respectively the blocked and unblocked iterative version of the 3 × 3 algo-
rithm.

Complexity
∑n
i=1 i(2(n+1−i)−1) = n(n+1)(2n+1)

6 = 1
3n

3+ 1
2n

2+ 1
6n (exactly

the same as the Cholesky factorization).

B.2 Matrix-vector multiplication

The matrix-vector multiplication routines are part of the level-2 BLAS, and
have a quadratic complexity on the matrix size.
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B.2.1 General matrix

The general case is implemented by the BLAS routine dgemv, performing y ←
α ·A · x+ β · y or y ← α ·A′ · x+ β · y, where A is a m× n matrix.

Complexity: 2mn + 2sizeof(y) (rectangular matrix); 2n2 + 2n (squared
matrix), that can be reduced up to 2mn− sizeof(y) and 2n2− n if |α = 1| and
β = 0.

B.2.2 Triangular matrix

In case of triangular matrix, we can save roughly half of the computations,
and the algorithm can be carried out in place, overwriting the x vector; it is
implemented by the BLAS routine dtrmv, performing x← Ax or x← A′x.

For a generic lower triangular matrix of size 3 × 3 (the case of the upper
triangular matrix being analogous),

Ax =

 a11 0 0
a21 a22 0
a31 a32 a33

 x1

x2

x3

 =

 a11x1

a21x1 + a22x2

a31x1 + a32x2 + a33x3

 =

 b1
b2
b3

 = b,

we can update the vector elements from the bottom to the top. In fact, since x3

is present only in the computation of the last element, we can overwrite it with
x3 ← a31x1 +a32x2 +a33x3, and then we can update x2 as x2 ← a21x1 +a22x2,
and �nally x1 ← a11x1.

Complexity: for the computation of the i-th row, we need i multiplications
and i − 1 sums, and thus

∑n
i=1 i + (i − 1) = n(n + 1) − n = n2 �ops (exactly

the same as the triangular solver with vector right hand side).

B.3 Triangular solver

B.3.1 Vector RHS

Implemented by the BLAS routine dtrsv, performing the system solution x←
A−1x or x← (A′)−1x, where A is an upper or lower triangular matrix and x is
a vector.

It is based on the fact that, for a generic lower triangular matrix of size 3×3
(the case of the upper triangular matrix being analogous),

Ax =

 a11 0 0
a21 a22 0
a31 a32 a33

 x1

x2

x3

 =

 a11x1

a21x1 + a22x2

a31x1 + a32x2 + a33x3

 =

 b1
b2
b3

 = b,

and thus the �rst element x1 can be obtained directly as x1 = b1/a11, the second
x2 substituting the value of x1 and solving x2 = (b2 − a21x1)/a22, the third x3

substituting the value of x1 and x2 and solving x3 = (b3 − a31x1 − a32x2)/a33,
and so on for larger matrices.

Complexity: for the computation of the i-th row, we need (i−1) multiplica-
tions and subtractions, and 1 division, and thus

∑n
i=1 2(i−1)+1 = n(n−1)+n =

n2 �ops (exactly the same as the triangular matrix-vector multiplication).
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B.3.2 Matrix RHS

Implemented by the BLAS routine dtrsm, performing the system solution B ←
α · op(A)−1 · B or B ← α · B · op(A)−1, where op(A) = A or op(A) = A′, A is
n× n and B is respectively m× n or n×m.

Complexity: n2m+ nm (B rectangular); n3 + n2 (B squared) �ops. It can
be reduced up to n2m and n3 if |α = 1|.

B.4 Cholesky factorization

Implemented by the LAPACK routines dpotrf (blocked version) and dpotf2

(unblocked version), performing H ← L or H ← U , where H is a symmetric
positive de�nite matrix and L and U are the respectively the lower and upper
triangular factors such that L · L′ = H and U ′ · U = H.

We can write two di�erent algorithms, considering a matrix of 2× 2 blocks
or 3×3 blocks; in the following we only consider algorithms for the computation
of the upper triangular factor, the algorithms for the lower triangular one being
analogous.

2×2 algorithm The �rst algorithm is based on the fact that, given the general
upper triangular matrix represented as the 2× 2 block matrix

U =

[
U11 U12

0 U22

]
,

then the matrix H can be written as the product

U ′U =

[
U ′11 0
U ′12 U ′22

] [
U11 U12

0 U22

]
=

[
U ′11U11 U ′11U12

∗ U ′12U12 + U ′22U22

]
=

=

[
H11 H12

∗ H22

]
= H.

The algorithm consist in the Cholesky factorization of H11 obtaining U11, the
solution of the triangular system of equations U ′11U12 = H12 for U12, the sub-
traction of the symmetric product U ′12U12 to H22, and �nally the Cholesky
factorization of the updated matrix H22 − U ′12U12.

The algorithm can be carried on in place: if, at the beginning of a generic
iteration, H contains the lower triangular part of the positive de�nite matrix,
and U11 contains the already computed part of the lower factor, we are in the
situation [

U11 H12

∗ H22

]
,

U12 can be found solving the triangular system U ′11U12 = H12,[
U11 (U ′11)−1H12

∗ H22

]
=

[
U11 U12

∗ H22

]
,

and �nally U22 Cholesky factorizing H22 − U ′12U12,[
U11 U12

∗ H22 − U ′12U12

]
⇒
[
U11 U12

∗ U22

]
.
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It is possible to write iterative versions of this algorithm: in this case we
compute the Cholesky factorization of squared matrices of increasing size, where
the increase is 1 for the unblocked version andNB for the blocked version. In any
case, at the beginning of the general iteration U11 is the Cholesky factor already
computed in the previous iterations. In the unblocked version, H12 is a column
vector and H22 is a scalar, and U22 is computed as U22 =

√
H22 − U ′12U12. In

the blocked version, H12 is a rectangular matrix with NB columns and H22 is a
squared matrix of size NB ; U22 is computed calling the unblocked routine.

It is also possible to write a recursive algorithm: in this case the H matrix
is divided into blocks such that H12 is roughly squared. The algorithm is then
recursively called on the block H11 to obtain U11, then U12 is computed as
usual, as U12 = (U ′11)−1H12, and then the algorithm is recursively called on the
updated block H22 − U ′12U12, to obtain U22. As base case can be used a trivial
algorithm on matrices of size 1 × 1 or 2 × 2 or larger, or a call to an iterative
algorithm.

Complexity (unblocked version): at the i-th iteration, for the factorization
of the matrix of size i given the factor of size i − 1, we need i − 1 �ops to
solve U ′11U12 = H12, 2(i− 1) to compute H22 − U ′12U12 (one multiplication and
a subtraction for each element of U12), and �nally one division to invert the
scalar H22−U ′12U12 and obtain U22. Thus we have

∑n
i=1(i−1)2 +2(i−1)+1 =∑n

i=1 i
2 = n(n+1)(2n+1)

6 = 1
3n

3 + 1
2n

2 + 1
6n �ops.

3 × 3 algorithm Another version of the algorithm (the one implemented by
LAPACK) can be obtained considering the general upper triangular matrix
represented as the 3× 3 block matrix

U =

 U11 U12 U13

0 U22 U23

0 0 U33

 ,
the matrix H can be then written as the product

H =

 H11 H12 H13

∗ H22 H23

∗ ∗ H33

 = U ′U =

 U ′11 0 0
U ′12 U ′22 0
U ′13 U ′23 U ′33

 U11 U12 U13

0 U22 U23

0 0 U33

 =

=

 U ′11U11 U ′11U12 U ′11U13

∗ U ′12U12 + U ′22U22 U ′12U13 + U ′22U23

∗ ∗ U ′13U13 + U ′23U23 + U ′33U33

 .
In an iterative version of the algorithm, the upper factor U is computed one
block row at a time: at the beginning of the general iteration, we are in the
situation  U11 U12 U13

∗ H22 H23

∗ ∗ H33

 ,
where the �rst block row as already be computed in the previous iterations.
The element U22 is found by factorizing the updated matrix H22 − U ′12U12, U11 U12 U13

∗ H22 − U ′12U12 H23

∗ ∗ H33

⇒
 U11 U12 U13

∗ U22 H23

∗ ∗ H33

 ,
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and U23 is found by subtracting the product U
′
12U13 to H23, and then by solving

the triangular linear system U23 = (U ′22)−1(H23 − U ′12U13), U11 U12 U13

∗ U22 (U ′22)−1(H23 − U ′12U13)
∗ ∗ H33

 =

 U11 U12 U13

∗ U22 U23

∗ ∗ H33

 .
Again we can consider blocked and unblocked versions of the algorithm.

It is also possible to write a recursive version of the algorithm: the routine
calls itself 3 times on matrices of size approximately n/3. The �rst step is the
computation of U11 calling the routine itself on the sub-matrix H11. H11 H12 H13

∗ H22 H23

∗ ∗ H33

⇒
 U11 H12 H13

∗ H22 H23

∗ ∗ H33

 .
Then the systems U ′11U12 = H12 and U ′11U13 = H13 are solved, U11 (U ′11)−1H12 (U ′11)−1H13

∗ H22 H23

∗ ∗ H33

 =

 U11 U12 U13

∗ H22 H23

∗ ∗ H33

 .
The element U22 is found calling the routine itself on the updated matrix H22−
U ′12U12,  U11 U12 U13

∗ H22 − U ′12U12 H23

∗ ∗ H33

⇒
 U11 U12 U13

∗ U22 H23

∗ ∗ H33

 ,
and U23 is the found subtracting the product U ′12U13 to H23, and then solving
the triangular linear system U23 = (U ′22)−1(H23 − U ′12U13), U11 U12 U13

∗ U22 (U ′22)−1(H23 − U ′12U13)
∗ ∗ H33

 =

 U11 U12 U13

∗ U22 U23

∗ ∗ H33

 .
Finally U33 is found calling the routine itself on the updated matrix H33 −
U ′13U13 − U ′23U23, U11 U12 U13

∗ U22 U23

∗ ∗ H33 − U ′13U13 − U ′23U23

⇒
 U11 U12 U13

∗ U22 U23

∗ ∗ U33

 .
Complexity (unblocked version): for the computation of the i-th row, U12 is

(i−1)×1, U13 is (i−1)(n− i), U22 is 1×1 and U23 is 1× (n− i). We thus have
i − 1 multiplications and subtractions for the computation of H22 − U ′12U12, 1
square root, (i− 1)(n− i) multiplications and subtractions for the computation
of H23U

′
12U13 and �nally n − i divisions for the subsequent computation of

(U ′22)−1(H23U
′
12U13): thus

∑n
i=1 2(i − 1) + 1 + 2(i − 1)(n − 1) + (n − i) =∑n

i=1−2i2 + (2n+ 3)i−n− 1 = 1
3n

3 + 1
2n

2 + 1
6n �ops, the same as the previous

version.
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B.5 Triangular matrix inversion

It is implemented by the LAPACK routines dtrtri (blocked version) and dtrti2
(unblocked version), performing U ← U−1 or L← L−1, where U and L are re-
spectively an upper and lower triangular matrix.

It is based on the fact that, in the example of a generic upper triangular
matrix U represented into blocked form

U =

[
A B
0 C

]
,

if A and C are invertible, then[
A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
.

The algorithm consists in the inversion of A, inversion of C, and �nally compu-
tation of the product −A−1BC−1. The algorithm can be carried on in place,
using the standard BLAS routines. In fact, if at the beginning of the generic
iteration A−1 contains the already computed part of the inverse matrix, we can
use the routine dtrmm to compute the product −A−1B overwriting B, then com-
pute the inverse of the matrix C, and �nally use dtrmm to compute the product
(−A−1B)C−1.

The algorithm type depends on how the blocks are chosen: in an iterative
algorithm, A−1 is the already computed part of the invert matrix at the begin-
ning of the generic iteration. Then the algorithm computes the inverse of C:
in the unblocked version, C is a scalar and thus its inversion is trivial; in the
blocked version, the inversion of C is computed calling an unblocked routine.

A recursive algorithm can be written using the routine itself to compute the
inverse of the sub-matrices A and C: their size is chosen to be roughly the same.
As base case can be used a trivial algorithm on matrices of size 1× 1 or 2× 2,
or an iterative algorithm.

Complexity (unblocked version): for the computation of the i-th column,
(i − 1)2 �ops for the triangular matrix-vector multiplication A−1B, 1 for the
inversion of the scalar C, 1 to change the sign into −C−1 and i− 1 to scale the
vector A−1B by the scalar −C−1. In total

∑n
i=1(i−1)2 +(i−1)+2 = 1

3n
3 + 5

3n.



Appendix C

BLAS and LAPACK

BLAS (Basic Linear Algebra Subprograms) is a standard interface for basic
linear algebra programs. LAPACK (Linear Algebra PACKage) is a collection
of routines performing more advanced linear algebra, and it makes use of BLAS
routines as sub-routines. The performances of the algorithm considered in this
thesis strongly depend on the e�ciency of the implementation of these routines.
In this chapter we test a number of di�erent implementations.

C.1 BLAS

BLAS is a standard interface containing a number of routines for the solution
of basic linear algebra problems, and is used as building block of more advanced
libraries, as LAPACK.

It is divided into 3 levels: level 1 contains routines implementing vector-
vector operations (requiring O(n) space and O(n) time), level 2 contains matrix-
vector operations (requiring O(n2) space and O(n2) time), and level 3 contains
matrix-matrix operations (requiring O(n2) space and O(n3) time).

In the �rst two levels there is thus little space for optimization, since the
computational time is dominated by the time needed to move data between
the di�erent memory levels. On the other hand, regarding the level 3 BLAS,
it is possible to obtain important performance improvements exploiting data
reuse: good implementations allow the processors to operate close to their peak
performance.

C.1.1 Testing dgemm

The matrix-matrix multiplication algorithm, implemented by BLAS routine
dgemm, is one of the most important algorithms, and often used as benchmark
code to test di�erent BLAS implementations. It performs the computation

C ← α · op(A) · op(B) + β · C,
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where A, B and C are matrices of proper size, op(A) = A or op(A) = A′, and
α and β are scalars.

In this section we present a number of BLAS versions, and test many di�erent
implementation of dgemm.

Benchmark code

The performed test consist in the multiplication

C ← op(A) · op(B),

for di�erent size of the matrices A, B and C, all squared and of the same size.
This means that we consider only the case α = 1 and β = 0. This does not
in�uence the results much, since the choice of a di�erent values for α and β
a�ects the computation time only with a quadratic term, negligible compared
to the dominant cubic term.

This test shows that, to obtain top performances, it is necessary to take
into account the speci�cs of the machine where the program runs (number of
registers, caches size, bus speed). The high-level structure of the algorithm
in�uences how the computation time scales with the size of the matrices, and
the relative code can be written in an high-level language, as C.

Furthermore, the performances strongly depends also in the e�cient imple-
mentation of the innermost loops. Top performances can be obtained only by
the use of assembly code tailored on the speci�c architecture: in fact even the
most e�cient algorithm written in C code and optimized using the optimization
�ags of the gcc compiler much slower than the best BLAS implementations.

C code

In this part we test the performance of a simple algorithm for the matrix-matrix
multiplication, that is a C translation of the reference NETLIB code of the dgemm
routine found at www.netlib.org/blas.

We show that the performance of the code can improve using the compiler
optimization �ags, but that can not compete against assembly code. We also
discuss some method to improve the performance of the code, for example the
use of loop-unrolling and of a blocked version of the algorithm.

The compiler is the default LINUX compiler, gcc, and the resulting code is
single thread.

Not optimized code The not-optimized C code is a C translation of the
o�cial FORTRAN implementation given in www.netlib.org/blas.

nx CPU time wall clock time
10 0.01208 0.012
20 0.09088 0.092
30 0.29826 0.298
40 0.6986 0.70
50 1.3518 1.36

Table C.1: C code not optimized (single thread), time in milliseconds.
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nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.001 (0.00099)
8 0.0064 (0.0065)
16 0.049 (0.0490)
32 0.362 (0.367)
64 2.87 (2.905)
128 22.6 (22.64)
256 179.7 (179.9)
512 1459.0 (1462.0)
1024 11640.0 (11668.5)

Table C.2: dgemm, not optimized C code (single thread), CPU (wall clock)
time in ms.

Optimization �ags Using the optimization �ags the code performance in-
creases much. In particular, analyzing the assembly code generated using the
compiler �ag -S with and without the use of optimization �ags, we notice
that the best part of the performance increase comes from a better use of the
CPU registers. In fact, the code produced without optimization �ags moves
the needed data from memory to the register, and then to memory again for
each single operation, instead of keep it in the registers for consecutive op-
erations. Other important improvements can come from the simpli�cation of
algebraic expressions, and the creation of variables saving the value of common
sub-expressions, avoiding their computation multiple times.

nx CPU time wall clock time
10 0.0016 0.002
20 0.0124 0.012
30 0.03886 0.040
40 0.09048 0.090
50 0.1741 0.176

Table C.3: C code optimized using the -O3 option (single thread), time in
milliseconds.

Hand optimized code In this part we test some code produced hand opti-
mizing the code in C, and without the use of optimization �ags. Among the
performed optimizations, there is the use of the reserved word register in the
de�nition of variables, used to indicate to the complier the most used variables:
these will be saved in the registers instead of on the stack (if there are enough
registers available).

Another optimization is the use of partial unrolling of the innermost loop,
for example for this code we use unrolling of module 5.

Code optimized by hand and using optimization �ags In this part we
test the code optimized by hand, and further optimized using the compiler op-
timization �ag -O3. The performance is slightly better than the code optimized
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nx CPU time wall clock time
10 0.0032 0.004
20 0.02008 0.020
30 0.05836 0.058
40 0.13018 0.130
50 0.24394 0.240

Table C.4: C code hand optimized (single thread), time in milliseconds.

using only the optimization �ags: this shows the utility of loop-unrolling in this
case.

nx CPU time wall clock time
10 0.00156 0.002
20 0.0113 0.010
30 0.03392 0.034
40 0.07758 0.078
50 0.14724 0.148

Table C.5: C code hand optimized, further optimized using the -O3 option
(single thread), time in milliseconds.

FORTRAN

The FORTRAN code is the o�cial implementation found in www.netlib.org/blas.
For the compilation, we used the compiler gfortran to compile it: the resulting
code is single thread.

Not optimazed code In this part there is a test of the code without any
optimization �ag. The performance is almost the same as in the case of the not
optimized C code.

nx CPU time wall clock time
10 0.0117 0.012
20 0.08864 0.088
30 0.29274 0.294
40 0.6878 0.696
50 1.3403 1.348

Table C.6: Fortran code not optimized (single thread), time in milliseconds.

Optimization �ags Using the optimization �ag -O3 in the compilation of
the library, it is obtained an important performance improvement. The com-
putation time is roughly the same as the C code optimized using the same
optimization �ag: in fact gcc and gfortran are both part of the same GNU
compiler collection.
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nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.0002 (0.00024) 0.0002 (0.00027) 0.0002 (0.00026) 0.0002 (0.00024)
8 0.0011 (0.00105) 0.0011 (0.00105) 0.0013 (0.00128) 0.0011 (0.00108)
16 0.006 (0.0065) 0.007 (0.0068) 0.008 (0.0078) 0.007 (0.0074)
32 0.048 (0.048) 0.056 (0.0568) 0.058 (0.0578) 0.057 (0.0564)
64 0.37 (0.372) 0.4 (0.394) 0.45 (0.45) 0.43 (0.435)
128 3.1 (3.18) 3.7 (3.69) 7.4 (7.47) 3.3 (3.37)
256 27.4 (27.4) 32.2 (32.2) 89.5 (89.7) 36.9 (36.9)
512 354.0 (354.0) 325.0 (325.3) 2968.0 (2963.8) 356.0 (356.8)
1024 2750.0 (2756.0) 2630.0 (2633.0) 24930.0 (24975.0) 2790.0 (2790.4)

Table C.7: dgemm, NETLIB implementation, FORTRAN code optimized using
the -O3 option (single thread), CPU (wall clock) time in ms.

Ubuntu's default BLAS

Ubuntu has its own version of the BLAS library already installed: it is the static
library libblas.a, and can be used linking with the �ag -lblas. It is multi
thread version, but despite of this, for small system the performance is worst
than the one of the NETLIB version (that is single thread). This version shows
an important performance drop increasing the matrix size between 36 and 37:
this is probably due to an internal change of algorithm.

nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.0007 (0.00069)
8 0.0013 (0.00131)
16 0.007 (0.0066)
32 0.040 (0.0402)
64 0.43 (0.269)
128 2.8 (1.69)
256 21.0 (12.1)
512 163.0 (92.9)
1024 1290.0 (701.4)

Table C.8: dgemm, Ubuntu standard BLAS implementation libblas.a library
(multi thread), CPU (wall clock) time in ms.

ATLAS

ATLAS is an optimized library, implementing all the BLAS and part of the
LAPACK routines. It is written in C, but can make use of assembly code for
the innermost loops, if available. The optimization strategy is based on long
series of test, used to empirically �nd the best values for the routines parameters,
as block size in blocked algorithms.

Non optimized library A pre-build non-optimized version can be installed
typing the command sudo apt-get install libatlas-base-dev on the shell.
The library is the static library libf77blas.a: to use it, in linking phase the
�ag -lf77blas has to be used.
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nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.0005 (0.00049)
8 0.0011 (0.00111)
16 0.007 (0.0063)
32 0.040 (0.0401)
64 0.31 (0.309)
128 2.43 (2.43)
256 20.2 (20.2)
512 161.0 (160.6)
1024 1251.0 (1253.9)

Table C.9: dgemm, not optimized ATLAS libf77blas.a library (single
thread), CPU (wall clock) time in ms.

Optimization Better performances should be obtained compiling the ATLAS
library from source code. ATLAS installation guide is [Wha]. The process
includes a long series of tests, used to tune the parameters to the speci�cations
of the current machine. The CPU throttling must be switch o� during the tests.

We have not build the optimized library yet, it is part of future work. Any-
way, since we do not currently have an e�cient assembly version of the innermost
routines, the library is likely to be less e�cient than the one presented in the
following.

GotoBLAS2

GotoBLAS2 is an highly optimized implementation of BLAS written by Kazushige
Goto, researcher at the Texas Advanced Computing Center of The University of
Texas between 2003 and 2005. The developed software can be used free of charge
for academic, research, experimental or personal use. The software can be down-
loaded from the link www.tacc.utexas.edu/tacc-projects/gotoblas2/. An
article about e�cient implementation of dgemm is [GVDG].

Once extracted, if the target architecture is supported, the libraries can be
build just opening a shell and typing the command make from the GotoBLAS2

directory. The installation process takes care of detect the machine features and
tests the resulting libraries. In our case, the build library seems to have some
problem operating on complex numbers.

In Goto's implementation, the A and B matrices are usually carefully packed
into the smaller sub-matrices Ã and B̃, respectively placed in L2 and L1 cache.
The code performing this packing and unpacking is written in C. The inner
kernels operating on these packed matrices are hand written by Goto in highly
optimized assembly code: he wrote these kernels for a number of di�erent ar-
chitectures between 2003 and 2005. His approach is somehow the opposite
compared to ATLAS's one: in fact, the optimization is based on theoretical
considerations instead of on a series of empirical tests.

GotoBLAS makes extensive use of the SSE and SSE2 instruction sets, and
thus to achieve the best performances it needs the data to be 16 bit aligned.
In fact the �oating points operations are performed on 128 bit long registers,
that can hold a vector of two double-precision or a vector of 4 single-precision
�oating points. The same operation can be performed in parallel on all the
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elements of the vector at the same time. Using the most e�cient instruction for
data movement, the data are read from and written to memory as a contiguous
block of 128 bits, whose starting address is multiple of 16 (i.e. 16 bit aligned).

The library is called libgoto2.a. For large matrices GotoBLAS is the most
e�cient version we tested, even more e�cient than MKL (version 10.0.3).

nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.0012 (0.00059) 0.0011 (0.00056) 0.0012 (0.00061) 0.0012 (0.00061)
8 0.0069 (0.0035) 0.0067 (0.0033) 0.007 (0.0035) 0.0069 (0.00348)
16 0.011 (0.0058) 0.011 (0.00575) 0.011 (0.00611) 0.011 (0.00606)
32 0.027 (0.0137) 0.027 (0.0136) 0.027 (0.0145) 0.029 (0.0151)
64 0.130 (0.0667) 0.130 (0.0661) 0.150 (0.0763) 0.150 (0.0772)
128 1.1 (0.52) 0.9 (0.468) 1.1 (0.525) 1.0 (0.525)
256 9.4 (4.81) 8.6 (4.41) 10.9 (5.51) 10.8 (5.45)
512 77.0 (39.5) 64.0 (32.2) 84.0 (41.9) 80.0 (40.5)
1024 529.0 (286.0) 490.0 (248.0) 570.0 (287.1) 550.0 (276.3)

Table C.10: dgemm, GotoBLAS2 ligoto2.a library (multi thread), in ms.

MKL 10.0.3

The Matrix Kernel Library (MKL) is a proprietary implementation of BLAS
by Intel. It is, together with Goto's BLAS, the most e�cient implementation
available for the architecture of out test machine.

The MKL library makes extensive use of SSE and SSE2 instruction sets, and
thus to obtain the best performances needs the data to be 16 bit aligned.

nx ta=n, tb=n ta=t, tb=n ta=t, tb=t ta=n, tb=t

4 0.0005 (0.00053) 0 0005 (0.00054) 0.0006 (0.00062) 0.0006 (0.00059)
8 0.0011 (0.00115) 0.0011 (0.00115) 0.0012 (0.00115) 0.0012 (0.00116)
16 0.003 (0.00319) 0.003 (0.00322) 0.003 (0.00326) 0.003 (0.00324)
32 0.026 (0.0136) 0.027 (0.0136) 0.027 (0.0138) 0.027 (0.0139)
64 0.140 (0.077) 0.140 (0.0736) 0.150 (0.0752) 0.150 (0.0785)
128 1.1 (0.64) 1.2 (0.737) 1.1 (0.536) 1.3 (0.773)
256 12.8 (6.6) 12.1 (6.21) 12.2 (6.3) 12.5 (6.5)
512 107.0 (55.7) 102.0 (52.4) 105.0 (54.4) 108.0 (55.7)
1024 808.0 (410.7) 780.0 (400.4) 810.0 (421.8) 830.0 (427.4)

Table C.11: dgemm, MKL implemetation (multi thread), CPU (wall clock)
time in ms.

Comparison

The best solution for matrices small enough to totally �t in cache together is
the NETLIB implementation, since its code is straightforward. For large matri-
ces the best solution is the Goto's implementation. If just one implementation
has to be chosen, the best choice is probably MKL by Intel, since its perfor-
mance is quite close to the best one for each matrix size: thus we test only this
implementation in the next sections.
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Regarding the transpose state of the factor matrices, the combination A
transposed and B normal is the best one, making better use of contiguous data.
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Figure C.1: Comparison of the di�erent implementations of dgemm: C code not
optimized (C n.o.), C code optimized with the �ag -O3 (C -O3), C
code hand optimized (C h.o.), C code hand optimized and further
optimized with the �ag -O3 (C h.o. -O3), NETLIB (FORTRAN)
code not optimized (NETLIB n.o.), NETLIB (FORTRAN) code
optimized with the �ag -O3 (NETLIB -O3), Ubuntu's BLAS
(UBUNTU), non optimizes ATLAS (ATLAS), GotoBLAS2 (Go-
toBLAS2), MKL 10.0.3 (MKL 10.0.3). The time is wall clock
time, in milliseconds.
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C.1.2 Testing dsyrk

The BLAS routine dsyrk performs the rank-k update of a symmetric matrix:

C ← α ·A ·A′ + βC or C ← α ·A′ ·A+ βC

where C is a symmetric n×n matrix and A is a n×k or k×n matrix, and α and
β are scalars. In other words, it computes the upper or lower triangular part of
the product of a matrix of size n × k by its transpose, and adds the result to
the upper or lower triangular part of the n× n symmetric matrix.

As benchmark code, we choose to test the computations

C ← A ·A′ and C ← A′ ·A

for α = 1 and β = 0, since other parameters values counts at most for a quadratic
term in the computation time. As k size, we chose k = n.

nx uplo=u, ta=n uplo=u, ta=t uplo=l, ta=n uplo=l, ta=t

4 0.0003 (0.0003) 0.0003 (0.0003) 0.0003 (0.0003) 0.0003 (0.00032)
8 0.0006 (0.00062) 0.0006 (0.00061) 0.0007 (0.00062) 0.0006 (0.00063)
16 0.003 (0.00252) 0.002 (0.00231) 0.003 (0.00282) 0.003 (0.00233)
32 0.025 (0.0129) 0.021 (0.0112) 0.025 (0.0132) 0.021 (0.0113)
64 0.12 (0.0622) 0.1 (0.0533) 0.12 (0.0643) 0.1 (0.0542)
128 0.7 (0.396) 0.8 (0.477) 0.9 (0.493) 0.7 (0.35)
256 5.9 (2.97) 4.9 (2.49) 6.2 (3.19) 5.3 (2.72)
512 52.0 (26.7) 42.0 (21.1) 55.0 (27.6) 44.0 (22.4)
1024 420.0 (209.8) 340.0 (168.8) 430.0 (212.2) 390.0 (193.4)

Table C.12: dsyrk, MKL implemetation (multi thread), CPU (wall clock)
time in ms.
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C.1.3 Testing dtrmm

The BLAS routine dtrmm performs the product of a triangular matrix and a
general matrix,

B ← α · op(A) ·B or B ← α ·B · op(A)

where op(A) is A or A′, B is a m× n matrix and A is a m×m or n× n upper
or lower, unit diagonal or not, triangular matrix, and α is a scalar.

As benchmark code, we choose to test the operations

B ← A ·B and B ← A′ ·B and B ← B ·A and B ← B ·A′

for both cases of B upper and lower, not unit diagonal triangular matrix.

nx uplo=u, ta=n uplo=u, ta=t uplo=l, ta=n uplo=l, ta=t

4 0.00014 (0.00014) 0.0006 (0.00065) 0.00014 (0.00014) 0.00012 (0.000126)
8 0.0018 (0.00185) 0.0010 (0.00103) 0.0018 (0.00185) 0.0019 (0.00194)
16 0.005 (0.00496) 0.004 (0.00398) 0.004 (0.0047) 0.006 (0.00559)
32 0.030 (0.0150) 0.028 (0.014) 0.029 (0.0144) 0.033 (0.0169)
64 0.14 (0.068) 0.14 (0.071) 0.13 (0.0659) 0.16 (0.0805)
128 0.8 (0.427) 0.8 (0.403) 0.8 (0.414) 0.8 (0.430)
256 6.2 (3.09) 5.5 (2.78) 6.1 (3.08) 5.4 (2.75)
512 49.0 (24.2) 46.0 (22.7) 51.0 (25.7) 40.0 (20.2)
1024 380.0 (192.4) 340.0 (171.4) 390.0 (193.9) 340.0 (169.7)

Table C.13: dtrmm, side='l', MKL implemetation (multi thread), CPU (wall
clock) time in ms.

nx uplo=u, ta=n uplo=u, ta=t uplo=l, ta=n uplo=l, ta=t

4 0 0014 (0.00141) 0 0015 (0.0015) 0.0014 (0.00143) 0.0014 (0.00143)
8 0.0023 (0.00233) 0.0021 (0.00211) 0.0021 (0.00211) 0.0024 (0.00238)
16 0.005 (0.00546) 0.005 (0.00459) 0.005 (0.00542) 0.006 (0.00638)
32 0.039 (0.0197) 0.048 (0.0241) 0.039 (0.0199) 0.051 (0.0261)
64 0.15 (0.0776) 0.16 (0.0809) 0.15 (0.0775) 0.17 (0.0864)
128 0.8 (0.428) 0.8 (0.399) 0.8 (0.42) 0.8 (0.403)
256 5.3 (2.69) 5.1 (2.59) 5.3 (2.67) 5.3 (2.65)
512 45.0 (22.7) 47.0 (23.5) 49.0 (24.5) 48.0 (24.4)
1024 480.0 (240.2) 480.0 (244.8) 470.0 (238.6) 480.0 (243.3)

Table C.14: dtrmm, side='r', MKL implemetation (multi thread), CPU (wall
clock) time in ms.



C.1 BLAS 143

C.1.4 Testing dtrsm

The BLAS routine dtrsm performs the solution of a triangular system of linear
equations, where the right hand side is a matrix,

B ← α · op(A)−1 ·B or B ← α ·B · op(A)−1

where op(A) is A or A′, B is a matrix of size n×m, and A is a m×m or n×n,
upper or lower, diagonal unit or not, triangular matrix.

As benchmark code, we choose to perform the operations

B ← A−1·B and B ← (A′)−1·B and B ← B·A−1 and B ← B·(A′)−1

for both cases of B upper and lower, not unit diagonal triangular matrix.

nx uplo=u, ta=n uplo=u, ta=t uplo=l, ta=n uplo=l, ta=t

4 0 0009 (0.00091) 0 0009 (0.0009) 0.0009 (0.00091) 0.0009 (0.0009)
8 0.0018 (0.00184) 0.0019 (0.00192) 0.0019 (0.00189) 0.0019 (0.0019)
16 0.006 (0.00643) 0.007 (0.00647) 0.007 (0.00645) 0.007 (0.00656)
32 0.037 (0.0187) 0.038 (0.0191) 0.038 (0.0191) 0.038 (0.0191)
64 0.16 (0.0816) 0.17 (0.0851) 0.16 (0.082) 0.16 (0.0829)
128 0.8 (0.486) 0.9 (0.447) 0.8 (0.431) 0.9 (0.536)
256 5.4 (2.86) 5.6 (2.89) 6.6 (3.35) 5.8 (2.93)
512 41.0 (21.8) 45.0 (23.2) 67.0 (33.2) 44.0 (22.5)
1024 280.0 (144.7) 380.0 (198.6) 550.0 (276.6) 380.0 (192.7)

Table C.15: dtrsm, side='l', MKL implemetation (multi thread), CPU (wall
clock) time in ms.

nx uplo=u, ta=n uplo=u, ta=t uplo=l, ta=n uplo=l, ta=t

4 0 0013 (0.00131) 0 0013 (0.00133) 0.0013 (0.00135) 0.0013 (0.00132)
8 0.002 (0.00196) 0.0021 (0.00213) 0.0022 (0.00216) 0.0021 (0.00201)
16 0.004 (0.00439) 0.005 (0.00524) 0.006 (0.00592) 0.006 (0.00531)
32 0.033 (0.0167) 0.024 (0.024) 0.024 (0.0241) 0.024 (0.024)
64 0.21 (0.206) 0.36 (0.182) 0.25 (0.125) 0.37 (0.187)
128 1.1 (0.544) 1.2 (0.617) 1.1 (0.548) 1.2 (0.627)
256 5.8 (2.9) 5.9 (2.99) 5.8 (2.91) 6.0 (2.99)
512 45.0 (22.6) 49.0 (24.4) 45.0 (22.6) 48.0 (24.5)
1024 410.0 (205.5) 430.0 (214.6) 410.0 (206.1) 430.0 (214.)

Table C.16: dtrsm, side='r', MKL implemetation (multi thread), CPU (wall
clock) time in ms.
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C.2 LAPACK

LAPACK is a library containing a number of routines for linear algebra prob-
lems, such as matrix factorizations, solution of linear systems and linear least
squares, eigenvalue problems and singular value decomposition. The code is
currently written in Fortran 90.

LAPACK depends upon BLAS to perform the basic linear algebra opera-
tions, such as matrix-matrix and matrix-vector multiplication: LAPACK per-
formance thus strongly depends on the BLAS library it links against. LAPACK's
routines are iterative algorithms, and usually there are two versions for each al-
gorithm, an unblocked one (using the level 2 BLAS) and a blocked one (using
the level 3 BLAS and the unblocked version as subroutine).

We teste a number of versions of the LAPACK library, using pre-built li-
braries or compiling from the source code, linking against di�erent BLAS li-
braries.

By downloading ATLAS, we also download a pre-build sub-set of the LA-
PACK library linking against libf77blas.a. Another possibility is the instal-
lation of Ubuntu's default LAPACK, linking against libblas.a.

It is also possible to compile from source code, and choose the BLAS li-
brary to link against. The source code can be downloaded from the web-
site www.netlib.org/lapack, in the compressed �le lapack-3.4.0.tgz (the
current latest version in 3.4.0). After extraction, we have to enter into the
just created folder lapack-3.4.0, and rename the �le make.inc.example into
make.inc (it is an example �le to install LAPACK on Linux). Then we have
to edit the �le make.inc, writing in the row BLASLIB the path of the BLAS
library we want LAPACK to link against.1 After this, the library can be build
by opening a shell, entering in the folder lapack-3.4.0 and typing the com-
mand make all (this is building the library and testing the BLAS and LAPACK
implementations).

This produces a library called liblapack.a: it is possible to move the library
where we want to place it. In order to use it, in linking phase we need to link
our programs against the LAPACK library, the BLAS library and the gfortran
library (with the command -lgfortran), written in this order.

We decided to test 4 LAPACK implementations: the pre-build Ubuntu's
LAPACK, the pre-build ATLAS LAPACK, the compiled library linking against
the standard FORTRAN BLAS and the compiled library linking against the
MKL BLAS; for some routines we are also writing a recursive version.

C.2.1 Testing dpotrf

In this section we test di�erent implementation of Cholesky factorization. We
test the algorithm based on the 2× 2 and 3× 3 blocks matrix, in both iterative
blocked and recursive versions (the LAPACK routine dpotrf is the iterative
version of the algorithm based on the 3 × 3 blocks matrix) and the LAPACK
routine dpotf2 (an unblocked version of the algorithm based on the 3×3 blocks
matrix).

Regarding the recursive algorithms, as base cases are use routines directly
factorizing matrices of size 1× 1, 2× 2, 3× 3 and 4× 4, or the dpotf2 routine.

1It is possible to customize many other options, like the compiler (the default is gfortran)
and the optimization level (the default is O2).
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Regarding the blocked iterative routines, we tested di�erent block size, and in
the following we present the best one.

All the routines are tested linking toward the standard BLAS implementa-
tion found at www.netlib.org/blas, and toward the optimized library MKL
by Intel. A description of the algorithms is given in appendix B.

In the following, we consider the general symmetric positive de�nite matrix

H =

[
H11 H ′21

H21 H22

]
.

There are two version of the algorithm: one returning the lower triangular
matrix L such that

H = LL′ =

[
L11 0
L21 L22

] [
L′11 L′21

0 L′22

]
and one returning the upper triangular matrix U such that

H = U ′U =

[
U ′11 0
U ′12 U ′22

] [
U11 U12

0 U22

]
.

Upper Factor

In this section we compare a number of algorithm for the computation of the
upper factor.

In the following tables, it2 and it3 stand respectively for iterative blocked
algorithm based on the 2× 2 and 3× 3 blocks matrix form, and ric2 and ric3

for the recursive algorithm based on the 2× 2 and 3× 3 blocks matrix form.

n dpotf2 it2 (NB = 64) it3 (NB = 64) ric2 ric3

4 0.00091 0.00091 0.00091 0.00029 0.00029
8 0.0025 0.0025 0.0025 0.0019 0.0032
16 0.0072 0.0072 0.0072 0.0062 0.013
32 0.023 0.023 0.023 0.018 0.024
64 0.1 0.1 0.1 0.13 0.22
128 0.68 0.67 0.69 0.47 0.65
256 5.37 2.9 2.77 2.24 2.67
512 44.9 18.8 14.5 14.6 15.5
1024 567.0 167.0 102.0 120.0 127.0

Table C.17: Cholesky factorization computing the upper factor, MKL BLAS,
CPU times in ms.

We notice that, for very small matrices, the NETLIB BLAS has an advantage
over the MKL BLAS, since the matrices are small enougth to �t in cache, and
the NETLIB implementation is straighforward. We also notice that recursive
algorithms has an advantage over iterative ones, since matrices up to size 4× 4
are solved directly.

For medium size matrices, the recursive methods show an advantage when
linking toward the optimized MKL BLAS, while block iterative methods perform
better if we just have a non-optimized BLAS like NETLIB. This is probably due
to the fact that an optimized BLAS is already internally using a block version



146 BLAS and LAPACK

n dpotf2 it2 (NB = 128) it3 (NB = 64) ric2 ric3

4 0.00064 0.00064 0.00064 0.00029 0.00029
8 0.0016 0.0016 0.0016 0.0015 0.0019
16 0.0055 0.0055 0.0055 0.0069 0.0085
32 0.02 0.02 0.02 0.029 0.032
64 0.1 0.1 0.1 0.14 0.15
128 0.7 0.7 0.74 0.8 0.84
256 5.33 5.82 5.45 5.54 5.74
512 42.8 45.3 41.8 41.9 42.0
1024 564.0 496.0 319.0 521.0 519.0

Table C.18: Cholesky factorization computing the upper factor, NETLIB
BLAS, CPU times in ms.

(with optimal block size) for its algorithm, and thus there is an advantage in
using matrices as large as possible. On the contrary, the NETLIB implementa-
tion uses unblocked algorithm, and thus the choice the right block size in the
blocked iterative version of the Cholesky factorization is an advantage, since
the sub-matrices can �t better in the cache, and the performance is then quite
sensitive in the block size.

Overall, the best solution is ric2 and NETLIB BLAS for small matrices,
ric2 and MKL BLAS for medium matrices, it3 and MKL BLAS for large
matrices. If we just have the NETLIB BLAS, then the best solution for medium
and large matrices is it3, implemented by the LAPACK routine dpotrf.

Lower Factor

In this section we compare a number of algorithm for the computation of the
lower factor.

n dpotf2 it2 (NB = 128) it3 (NB = 128) ric2 ric3

4 0.00089 0.00089 0.00089 0.00028 0.00028
8 0.0025 0.0025 0.0025 0.0023 0.0042
16 0.0066 0.0066 0.0066 0.0078 0.016
32 0.022 0.022 0.022 0.024 0.028
64 0.09 0.09 0.09 0.18 0.24
128 0.63 0.63 0.63 0.75 0.89
256 4.75 4.38 4.64 3.4 3.97
512 41.0 21.6 20.3 19.7 19.0
1024 510.0 155.0 173.0 150.0 192.0

Table C.19: Cholesky factorization computing the lower factor, MKL BLAS,
CPU times in ms.

This time the results are quite di�erent in the case of optimized and not-
optimized BLAS implementation. In particular, using the MKL one, the iter-
ative unblocked dpotf2 routine is the fastest for medium matrices, while the
recursive algorithm ric2 is the fastest for small and large matrices.

Regarding the not-optimized NETLIB one, the best solution is the recursive
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n dpotf2 it2 (NB = 64) it3 (NB = 64) ric2 ric3

4 0.00061 0.00061 0.00061 0.00028 0.00028
8 0.0016 0.0016 0.0016 0.0011 0.0015
16 0.005 0.005 0.005 0.0047 0.0062
32 0.018 0.018 0.018 0.019 0.02
64 0.09 0.09 0.09 0.1 0.11
128 0.63 0.67 0.68 0.66 0.68
256 4.59 4.66 4.77 4.76 4.82
512 38.1 39.7 37.6 36.6 36.8
1024 501.0 1390.0 542.0 713.0 659.0

Table C.20: Cholesky factorization computing the lower factor, NETLIB
BLAS, CPU times in ms.

ric2 for small matrices and the unblocked iterative version implemented in the
LAPACK routine dpotf2 for medium and large matrices. It is notable the fact
that none of the iterative blocked or the recursive can outperform the iterative
unblocked for large matrices.
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Appendix D

Time tables

D.1 Direct sparse solvers

PARDISO MA57

nx nu N CPU time wall clock time CPU time wall clock time

50 5 10 0.068400 0.035516 0.029000 0.014991
50 5 20 0.196000 0.100256 0.060000 0.031467
50 5 30 0.190800 0.097424 0.093000 0.048538
50 5 40 0.266000 0.136725 0.121000 0.064692
50 5 50 0.390500 0.200064 0.153000 0.081592
50 5 60 0.421000 0.215411 0.191000 0.102485
50 5 70 0.475000 0.243368 0.209000 0.114247
50 5 80 0.568000 0.291098 0.241000 0.129714
50 5 90 0.663000 0.340451 0.256000 0.146826
50 5 100 0.705000 0.360866 0.291000 0.163874

Table D.1: PARDISO and MA57 solvers, mass-spring problem 7.2, nx = 50,
nu = 5.
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PARDISO MA57

nx nu N CPU time wall clock time CPU time wall clock time

4 1 10 0.000358 0.000183 0.000170 0.000192
8 1 10 0.000700 0.000373 0.000460 0.000461
16 1 10 0.006750 0.003466 0.001550 0.001572
32 1 10 0.021100 0.010771 0.013500 0.013742
64 1 10 0.128600 0.065823 0.046000 0.027568
128 1 10 0.586000 0.299835 0.202500 0.108911
256 1 10 3.916000 2.016855 0.979000 0.599491
512 1 10 33.930000 17.404348 7.730000 4.362493
4 2 10 0.000400 0.000204 0.000200 0.000206
8 2 10 0.000720 0.000372 0.000500 0.000494
16 2 10 0.001800 0.000972 0.001500 0.001500
32 2 10 0.131400 0.067259 0.010300 0.005326
64 2 10 0.207800 0.106349 0.042200 0.022207
128 2 10 0.581000 0.297627 0.205000 0.108307
256 2 10 5.178000 2.652331 1.017000 0.580696
512 2 10 27.420000 14.078512 7.690000 4.338559
8 4 10 0.000800 0.000421 0.000580 0.000655
16 4 10 0.018300 0.009364 0.001700 0.001675
32 4 10 0.026800 0.013769 0.011100 0.005835
64 4 10 0.147600 0.075676 0.044200 0.023166
128 4 10 0.607000 0.311040 0.205000 0.110650
256 4 10 4.350000 2.229680 1.020000 0.580832
512 4 10 38.320000 19.640594 7.640000 4.342200
16 8 10 0.008200 0.004212 0.002000 0.001973
32 8 10 0.021700 0.011161 0.012500 0.006544
64 8 10 0.129800 0.066668 0.047400 0.024536
128 8 10 0.690000 0.354867 0.212000 0.111890
256 8 10 5.343000 2.750471 1.021000 0.591158
512 8 10 31.790000 16.393541 7.700000 4.395613

Table D.2: PARDISO and MA57 solvers, mass-spring problem 7.2, N = 10.
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D.2 Schur complement method

Schur complement method

nx nu N CPU time wall clock time

50 5 10 0.011100 0.005724
50 5 20 0.023400 0.012084
50 5 30 0.036200 0.018556
50 5 40 0.048800 0.025174
50 5 50 0.060800 0.031487
50 5 60 0.073000 0.038248
50 5 70 0.086000 0.045024
50 5 80 0.101000 0.053198
50 5 90 0.112000 0.057464
50 5 100 0.124000 0.064299

Table D.3: Schur complement method, mass-spring problem 7.2, nx = 50,
nu = 5.
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N = 10 N = 100

nx nu N CPU time wall clock time CPU time wall clock time

4 1 10 0.000134 0.000136 0.001300 0.001320
8 1 10 0.000230 0.000225 0.002200 0.002308
16 1 10 0.000540 0.000539 0.006400 0.006285
32 1 10 0.003750 0.001966 0.046500 0.023270
64 1 10 0.017500 0.009240 crashed crashed
128 1 10 0.079100 0.040777 crashed crashed
256 1 10 0.461400 0.238059 crashed crashed
512 1 10 crashed crashed crashed crashed
4 2 10 0.000144 0.000146 0.001400 0.001402
8 2 10 0.000260 0.000255 0.002500 0.002549
16 2 10 0.000580 0.000574 0.006800 0.006725
32 2 10 0.003950 0.002024 0.047500 0.025309
64 2 10 0.017800 0.009206 0.194000 0.099484
128 2 10 0.078400 0.040389 crashed crashed
256 2 10 0.458400 0.236535 crashed crashed
512 2 10 crashed crashed crashed crashed
8 4 10 0.000270 0.000270 0.002800 0.002765
16 4 10 0.000600 0.000608 0.007200 0.007196
32 4 10 0.004050 0.002100 0.051000 0.026064
64 4 10 0.018400 0.009454 0.196000 0.103613
128 4 10 0.079500 0.040824 crashed crashed
256 4 10 0.457400 0.234945 crashed crashed
512 4 10 crashed crashed crashed crashed
16 8 10 0.000720 0.000725 0.008600 0.008672
32 8 10 0.004650 0.002392 0.057000 0.029795
64 8 10 0.018900 0.009742 0.207000 0.106149
128 8 10 0.081800 0.042090 crashed crashed
256 8 10 0.466800 0.239919 crashed crashed
512 8 10 crashed crashed crashed crashed

Table D.4: Schur complement method, mass-spring problem, N = 10 andN =
100.
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D.3 Riccati recursion

P s.p.d. upper P s.p.d. lower

nx nu N CPU time wall clock time CPU time wall clock time

50 5 10 0.002800 0.001513 0.002800 0.001448
50 5 20 0.005200 0.002663 0.005400 0.002697
50 5 30 0.007800 0.004038 0.007900 0.004029
50 5 40 0.010200 0.005279 0.010600 0.005404
50 5 50 0.012800 0.006602 0.013000 0.006627
50 5 60 0.015600 0.007995 0.015800 0.008050
50 5 70 0.017800 0.009292 0.018800 0.009444
50 5 80 0.020600 0.010539 0.020800 0.010561
50 5 90 0.023200 0.012006 0.023800 0.011946
50 5 100 0.025600 0.013174 0.026400 0.013749

Table D.5: Riccati recursion, mass-spring problem, nx = 50, nu = 5.

P s.p.d. upper P s.p.d. lower

nx nu N CPU time wall clock time CPU time wall clock time

50 5 10 0.003900 0.002039 0.003900 0.002110
50 5 20 0.007600 0.003864 0.007800 0.004021
50 5 30 0.011200 0.005618 0.011600 0.005837
50 5 40 0.014900 0.007597 0.015600 0.007903
50 5 50 0.018600 0.009392 0.019200 0.009671
50 5 60 0.022600 0.011389 0.023200 0.011827
50 5 70 0.026200 0.013270 0.027000 0.013689
50 5 80 0.029600 0.015116 0.030600 0.015514
50 5 90 0.033600 0.016908 0.034600 0.017517
50 5 100 0.037400 0.018864 0.038800 0.019491

Table D.6: Riccati recursion, mass-spring problem, nx = 50, nu = 5.



154 Time tables

general algorithm P s.p.s.d.

nx nu N CPU time wall clock time CPU time wall clock time

4 1 10 0.000052 0.000052 0.000064 0.000065
8 1 10 0.000070 0.000075 0.000100 0.000095
16 1 10 0.000140 0.000138 0.000160 0.000164
32 1 10 0.000950 0.000495 0.001000 0.000553
64 1 10 0.003600 0.001855 0.003500 0.001782
128 1 10 0.023300 0.011888 0.021800 0.011037
256 1 10 0.268200 0.135285 0.220000 0.110954
512 1 10 2.245000 1.127479 2.248000 1.130302
4 2 10 0.000060 0.000060 0.000074 0.000074
8 2 10 0.000090 0.000090 0.000110 0.000107
16 2 10 0.000140 0.000156 0.000180 0.000180
32 2 10 0.000950 0.000501 0.001050 0.000554
64 2 10 0.003700 0.001863 0.003700 0.001894
128 2 10 0.023000 0.011702 0.023300 0.011803
256 2 10 0.272000 0.137731 0.230200 0.116378
512 2 10 2.268000 1.139122 2.266000 1.139136
8 4 10 0.000110 0.000114 0.000130 0.000132
16 4 10 0.000180 0.000189 0.000220 0.000214
32 4 10 0.001100 0.000566 0.001200 0.000631
64 4 10 0.003900 0.002000 0.004000 0.002048
128 4 10 0.025300 0.012864 0.023600 0.011940
256 4 10 0.273200 0.137822 0.227000 0.114639
512 4 10 2.313000 1.161446 2.308000 1.160436
16 8 10 0.000260 0.000264 0.000300 0.000301
32 8 10 0.001300 0.000679 0.001400 0.000726
64 8 10 0.004300 0.002208 0.004500 0.002362
128 8 10 0.025700 0.012994 0.027500 0.013959
256 8 10 0.289800 0.146181 0.240400 0.121188
512 8 10 2.310000 1.160322 2.307000 1.160716

Table D.7: Riccati recursions, mass-spring problem, N = 10. On the left the
general algorithm, on the right the algorithm fully exploiting the
symmetry of the P matrix.
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P s.p.d. upper P s.p.d. lower

nx nu N CPU time wall clock time CPU time wall clock time

4 1 10 0.000084 0.000085 0.000066 0.000066
8 1 10 0.000130 0.000124 0.000120 0.000116
16 1 10 0.000240 0.000246 0.000220 0.000232
32 1 10 0.001500 0.000769 0.001450 0.000786
64 1 10 0.005100 0.002576 0.005000 0.002536
128 1 10 0.023600 0.011994 0.024900 0.012637
256 1 10 0.177800 0.089638 0.179800 0.090851
512 1 10 1.584000 0.797587 1.380000 0.695365
4 2 10 0.000088 0.000089 0.000074 0.000074
8 2 10 0.000140 0.000142 0.000130 0.000137
16 2 10 0.000280 0.000279 0.000260 0.000258
32 2 10 0.001600 0.000810 0.001500 0.000771
64 2 10 0.005000 0.002617 0.005000 0.002593
128 2 10 0.024200 0.012265 0.024700 0.012476
256 2 10 0.165800 0.083604 0.181600 0.091560
512 2 10 1.550000 0.780625 1.372000 0.696298
8 4 10 0.000170 0.000173 0.000150 0.000155
16 4 10 0.000320 0.000310 0.000300 0.000298
32 4 10 0.001650 0.000850 0.001600 0.000819
64 4 10 0.005100 0.002641 0.005300 0.002688
128 4 10 0.025000 0.012639 0.025200 0.012730
256 4 10 0.170800 0.086180 0.178000 0.089771
512 4 10 1.551000 0.781073 1.385000 0.697820
16 8 10 0.000380 0.000381 0.000360 0.000363
32 8 10 0.001850 0.000958 0.001800 0.000922
64 8 10 0.005800 0.002928 0.005600 0.002922
128 8 10 0.025300 0.012791 0.026700 0.013477
256 8 10 0.177400 0.089575 0.185200 0.093365
512 8 10 1.567000 0.789231 1.412000 0.711657

Table D.8: Riccati recursions, mass-spring problem, N = 10. Algorithms as-
suming P to be symmetric positive de�nite: on the left the version
computing the upper factor of the Cholesky factorization, on the
right the one computing the lower factor.
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D.4 Condensing methods

nx nu N CPU time wall clock time

50 5 10 0.002200 0.001222
50 5 20 0.007600 0.003944
50 5 30 0.017300 0.008919
50 5 40 0.029900 0.015441
50 5 50 0.046000 0.023729
50 5 60 0.065500 0.033853
50 5 70 0.088000 0.045289
50 5 80 0.115100 0.059343
50 5 90 0.145500 0.075036
50 5 100 0.180100 0.093559

Table D.9: Condensing methods, mass-spring problem, nx = 50, nu = 5.
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N = 10 N = 100

nx nu CPU time wall clock time CPU time wall clock time

4 1 0.000066 0.000066 0.003200 0.001722
8 1 0.000077 0.000077 0.004600 0.002358
16 1 0.000102 0.000102 0.009300 0.004741
32 1 0.000425 0.000215 0.019300 0.009745
64 1 0.000980 0.000505 0.049000 0.025186
128 1 0.003420 0.001732 0.144000 0.073656
256 1 0.018500 0.009309 0.760000 0.391285
512 1 0.172200 0.087287 4.310000 2.177815
4 2 0.000089 0.000089 0.007300 0.003760
8 2 0.000103 0.000104 0.010500 0.005348
16 2 0.000145 0.000144 0.018200 0.009194
32 2 0.000609 0.000306 0.035800 0.018106
64 2 0.001310 0.000670 0.091000 0.045707
128 2 0.004610 0.002335 0.272000 0.137352
256 2 0.030300 0.015256 1.280000 0.655852
512 2 0.216800 0.109843 6.600000 3.355560
8 4 0.000342 0.000173 0.026500 0.013388
16 4 0.000518 0.000260 0.041600 0.020983
32 4 0.000915 0.000464 0.073700 0.037381
64 4 0.002110 0.001080 0.177000 0.090450
128 4 0.006680 0.003370 0.541000 0.273740
256 4 0.043400 0.022339 2.690000 1.358476
512 4 0.276500 0.139311 11.570000 5.869583
16 8 0.001201 0.000605 0.145100 0.073313
32 8 0.001687 0.000848 0.209100 0.105733
64 8 0.004090 0.002064 0.417000 0.210739
128 8 0.012560 0.006331 1.282000 0.648978
256 8 0.066400 0.033912 6.400000 3.229201
512 8 0.379600 0.191434 24.970000 12.680102

Table D.10: Condensing methods, mass-spring problem, N = 10 and N =
100.
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N = 10 N = 100

nx nu CPU time wall clock time CPU time wall clock time

4 1 0.000058 0.000059 0.002600 0.001312
8 1 0.000067 0.000066 0.003700 0.001914
16 1 0.000083 0.000083 0.007200 0.003742
32 1 0.000326 0.000166 0.014800 0.007596
64 1 0.000680 0.000352 0.034000 0.017429
128 1 0.002180 0.001118 0.098000 0.050246
256 1 0.013700 0.007059 0.460000 0.246363
512 1 0.111700 0.057584 2.770000 1.421578
4 2 0.000077 0.000077 0.006400 0.003296
8 2 0.000089 0.000089 0.009400 0.005154
16 2 0.000119 0.000120 0.014700 0.007571
32 2 0.000474 0.000242 0.027500 0.014155
64 2 0.000980 0.000511 0.070000 0.042709
128 2 0.003250 0.001658 0.202000 0.103970
256 2 0.020900 0.010743 0.840000 0.431169
512 2 0.136500 0.070237 4.390000 2.257383
8 4 0.000305 0.000156 0.023500 0.012006
16 4 0.000434 0.000222 0.033600 0.017193
32 4 0.000738 0.000383 0.059200 0.030572
64 4 0.001590 0.000823 0.129000 0.065949
128 4 0.005260 0.002709 0.376000 0.193193
256 4 0.030900 0.015875 1.810000 0.935091
512 4 0.174500 0.090218 7.350000 3.799661
16 8 0.001072 0.000548 0.122000 0.062759
32 8 0.001506 0.000770 0.172300 0.088271
64 8 0.003130 0.001614 0.322000 0.165869
128 8 0.009400 0.004832 0.824000 0.426235
256 8 0.045300 0.023296 3.740000 1.916088
512 8 0.241800 0.124526 15.600000 8.065975

Table D.11: Condensing method as sub-routine in interior-point method,
mass-spring problem, N = 10 and N = 100.
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D.5 Comparison between C and MATLAB code

nx nu C CPU C w.c. ML CPU ML w.c. ML/C CPU ML/C w.c.
10 1 0.000100 0.000113 0.001300 0.001213 13.000 10.735
20 1 0.000200 0.000225 0.002600 0.001477 13.000 6.564
40 1 0.001400 0.000783 0.004300 0.002176 3.071 2.779
60 1 0.003400 0.001793 0.006800 0.003437 2.000 1.917
80 1 0.006800 0.003493 0.011900 0.007808 1.750 2.235
100 1 0.011000 0.005584 0.019500 0.009815 1.773 1.758
140 1 0.033100 0.016730 0.046900 0.023638 1.417 1.413
200 1 0.110200 0.055630 0.142100 0.071696 1.289 1.289
10 2 0.000100 0.000129 0.001100 0.001056 11.000 8.186
20 2 0.000200 0.000290 0.001500 0.001291 7.500 4.452
40 2 0.001500 0.000806 0.004000 0.002038 2.667 2.529
60 2 0.003400 0.001744 0.006900 0.003445 2.029 1.975
80 2 0.006800 0.003484 0.011400 0.005775 1.676 1.658
100 2 0.011600 0.005876 0.019000 0.009618 1.638 1.637
140 2 0.032600 0.016646 0.048200 0.024406 1.479 1.466
200 2 0.110900 0.056114 0.143600 0.072566 1.295 1.293
10 5 0.000200 0.000206 0.001500 0.001520 7.500 7.379
20 5 0.000300 0.000428 0.002000 0.001788 6.667 4.178
40 5 0.002000 0.001080 0.005500 0.002783 2.750 2.577
60 5 0.004000 0.002033 0.008400 0.004252 2.100 2.091
80 5 0.007900 0.004041 0.013600 0.006867 1.722 1.699
100 5 0.013600 0.006924 0.021900 0.011048 1.610 1.596
140 5 0.037300 0.019215 0.051200 0.025948 1.373 1.350
200 5 0.117500 0.059659 0.149700 0.075572 1.274 1.267

Table D.12: Mass-spring problem 7.2, N = 10. 'w.c.' stands for wall clock
(time).
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nx nu C CPU C w.c. ML CPU ML w.c. ML/C CPU ML/C w.c.
10 1 0.001000 0.000863 0.021000 0.014293 21.000 16.562
20 1 0.002000 0.002147 0.031000 0.016101 15.500 7.499
40 1 0.015000 0.007882 0.046000 0.024146 3.067 3.063
60 1 0.035000 0.018307 0.070000 0.035293 2.000 1.928
80 1 0.067000 0.034888 0.114000 0.058447 1.701 1.675
100 1 0.112000 0.057212 0.196000 0.116709 1.750 2.040
140 1 0.321000 0.162945 0.458000 0.232451 1.427 1.427
200 1 1.123000 0.566469 1.376000 0.695039 1.225 1.227
10 2 0.001000 0.001292 0.010000 0.009969 10.000 7.716
20 2 0.003000 0.002661 0.027000 0.014737 9.000 5.538
40 2 0.015000 0.008049 0.040000 0.020681 2.667 2.569
60 2 0.036000 0.018279 0.070000 0.035729 1.944 1.955
80 2 0.066000 0.033761 0.114000 0.058436 1.727 1.731
100 2 0.111000 0.056542 0.184000 0.094759 1.658 1.676
140 2 0.330000 0.168015 0.462000 0.238610 1.400 1.420
200 2 1.142000 0.577790 1.381000 0.697683 1.209 1.208
10 5 0.002000 0.002032 0.017000 0.015135 8.500 7.448
20 5 0.004000 0.003929 0.035000 0.019857 8.750 5.054
40 5 0.021000 0.010964 0.059000 0.031030 2.810 2.830
60 5 0.040000 0.021524 0.087000 0.045186 2.175 2.099
80 5 0.079000 0.040335 0.135000 0.069729 1.709 1.729
100 5 0.137000 0.069816 0.224000 0.112631 1.635 1.613
140 5 0.390000 0.197508 0.508000 0.256430 1.303 1.298
200 5 1.170000 0.592969 1.446000 0.729695 1.236 1.231

Table D.13: Mass-spring problem 7.2, N = 100. 'w.c.' stands for wall clock
(time).
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D.6 Interior-point methods

basic IP Mehrotra's IP

nx nu N CPU time wall clock time CPU time wall clock time

4 1 10 0.000080 0.000080 0.000104 0.000106
8 1 10 0.000120 0.000114 0.000150 0.000144
16 1 10 0.000200 0.000210 0.000240 0.000239
32 1 10 0.001250 0.000713 0.001400 0.000749
64 1 10 0.004700 0.002499 0.005100 0.002733
128 1 10 0.030300 0.015598 0.034500 0.017712
256 1 10 0.298800 0.153783 0.314000 0.161909
512 1 10 2.432000 1.258858 2.479000 1.292235

Table D.14: Comparison of the cost per iteration of the algorithms 8 and 10.
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