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ABSTRACT [STRUCTURED SUMMARY]

When someone suffers from acute respiratory failure, mechanical ventilation
(MV) is performed until they can breathe on their own again. The doctor checks
every day whether the MV can be stopped. This screening consists of a first phase,
the Readiness Testing (RT), which includes various clinical parameters. If this test
is successful, 30 minutes of spontaneous breathing (SBT) is attempted. If also the
SBT is passed successfully, the VM is stopped. On the contrary, if RT or SBT fails,
the patient will be re-evaluated the next day. So, every day three mutually
exclusive scenarios may happen: SBT will not be attempted, SBT will fail, or SBT
will succeed.

Our artificial intelligence model is designed to infer early in the morning which of
the three scenarios will probably occur during the day, starting from the patient's
clinical data, from the information collected in the previous day’s clinical diary,
and from whole minute-by-minute recording history of the various parameters of
the mechanical ventilator, coming from a retrospective observational multi-
centrical study, conducted in Italy over a course of 27 months.

Those data are processed with a deep learning approach, through a multi-source
neural network topology, powered by multiple recurrent architectures. Hyper-
parameters are optimized to select the purposed model through cross-validation,
setting aside 36 out of 182 patients for testing final model performance over a
variety of metrics, including a custom score designed to highlight clinical impact.

The final Al model had an accuracy of 79% [74, 83%], a custom score of 0.01 [-0.04,
0.05], a MCC of 0.28 [0.17, 0.39], scoring better than the other comparison
models, including XG Boost that was trained on daily and baseline clinical data of
the previous day only, which had an accuracy of 61% [56%, 66%], a MCC of 0.14
[0.06, 0.2] and a custom score of -0.05 [-0.08, -0.01].

Overall, Al model could approximate well what is the current clinical management
throughout day-by-day providing suggestions early in the morning. Moreover,
there are still space to improve the model clinical utility considering additional
tailored training data.




RIASSUNTO

Quando un paziente soffre di insufficienza respiratoria acuta, viene praticata la
ventilazione meccanica (VM) finché questa non riesce a respirare di nuovo in
autonomia. Il medico di Terapia Intensiva verifica ogni giorno se la VM puo essere
interrotta. Questo screening consiste in una prima fase, il Readiness Test (RT), che
€ composta da vari parametri clinici. Se questo test ha esito positivo, si sottopone
il paziente a 30 minuti di respirazione spontanea (SBT). Se anche I'SBT viene
superato con successo, la VM viene interrotta. Al contrario, se I'RT o I'SBT
falliscono, il paziente rimane in VM e verra rivalutato il giorno successivo. Quindi
ogni giorno possono verificarsi tre scenari mutuamente esclusivi: I'SBT non verra
tentato, I’'SBT fallira o I’'SBT avra successo (portando quindi all’estubazione del
paziente).

Il modello di intelligenza artificiale sviluppato, & progettato per dedurre fin dalle
prime ore del mattino quale dei tre scenari si verifichera probabilmente nel corso
della giornata, partendo dai dati clinici del paziente, dalle informazioni raccolte nel
diario clinico dei giorni precedenti e dall'intera storia di registrazione minuto-per-
minuto dei vari parametri del ventilatore meccanico, provenienti da uno studio
osservazionale retrospettivo multicentrico, condotto in Italia nel corso di 27 mesi.

Questi dati vengono elaborati con un approccio di Deep Learning, attraverso una
topologia di rete neurale multi-sorgente, alimentata da architetture ricorrenti
multiple. Gli iper-parametri sono ottimizzati per selezionare il modello desiderato
attraverso la convalida incrociata, riservando 36 pazienti su 182 per testare le
prestazioni finali del modello su una serie di metriche, tra cui uno score
personalizzato progettato per evidenziare I'impatto clinico.

Il modello di intelligenza artificiale finale mostra un'accuratezza del 79% [74, 83%],
uno score personalizzato di 0,01 [-0,04, 0,05], un MCC di 0,28 [0,17, 0,39],
ottenendo un punteggio migliore rispetto agli altri modelli di confronto, tra cui XG
Boost, addestrato solo sui dati clinici giornalieri del giorno precedente, che ha
avuto un'accuratezza del 61% [56%, 66%], un MCC di 0,14 [0,06, 0,2] e uno score
personalizzato di -0,05 [-0,08, -0,01].

Complessivamente, il modello di intelligenza artificiale & in grado di approssimare
bene I'attuale gestione clinica giorno per giorno, fornendo suggerimenti al mattino
presto. Inoltre, c'€ ancora spazio per migliorare l'utilita clinica del modello
considerando ulteriori dati di addestramento personalizzati.




INTRODUCTION

Rationale

[Clinical goal] Invasive Mechanical Ventilation (MV) is a life-saving medical
procedure that supports a patient with Acute Respiratory Failure (ARF)(1), which
can result from a wide variety of underlying diseases (2), as detailed in Table I.
Once it is determined that a patient needs MV to support lung function while the
primary cause of the disease is addressed, Intensive Care Unit (ICU) personnel’s
multiple choices should address. The topic is well covered in guidelines, both for
ventilation mode setting (3), day-by-day management (4), and weaning, which
address the safe withdrawal from MV (5-7). Weaning refers to the process of
progressively reducing support provided by MV. Both prolonging MV and
premature withdrawal could impact patient outcomes for the worst(8). This is why
optimal weaning strategies have been proposed and validated (9-13). Current
practice is a multi-step approach, which is composed of a daily screening liberation
assessment composed of Readiness testing (RT) from clinical and laboratory
criteria, which triggers a 30-minute Spontaneous Breathing Trial (SBT) (5,14,15).
Only when the SBT succeeds the MV can be withdrawn.

Figure 1 - Stages occurring in a mechanically ventilated patient. ARF: acute
respiratory failure; SBT: spontaneous breathing Trial. (16)

1) Treatment | | 3) Assessing | | 5) Extubation | | 6) Re-intubation
of ARF readiness
to wean

2) Suspicion 4) SBT

Y Y i Y Y
I |

Admit Discharge
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Table | - Examples of conditions requiring Mechanical Ventilation. (17)

Alveolar filling processes
Pneumonitis - infectious, aspiration

Noncardiogenic pulmonary edema/ARDS (eg, due to infection, inhalation injury, near drowning, transfusion,
altitude)

Cardiogenic pulmonary edema
Pulmonary hemorrhage
Tumor (eg, choriocarcinoma)
Alveolar proteinosis

Intravascular volume overload of any cause

Pulmonary vascular disease
Pulmonary thromboembolism

Amniotic fluid embolism, tumor emboli

Diseases causing airways obstruction: central
Tumor
Laryngeal angioedema

Tracheal stenosis

Diseases causing airways obstruction: distal
Acute exacerbation of chronic obstructive pulmonary disease

Acute, severe asthma

Hypoventilation: decreased central drive
General anesthesia

Drug overdose

Hypoventilation: peripheral nervous system/respiratory muscle dysfunction
Amyotrophic lateral sderosis
Cervical quadriplegia
Guillain-Barré syndrome
Myasthenia gravis
Tetanus, tick bite, ciguatera poisoning
Toxins (eg, strychnine)

Muscular dystrophy, myotonic dystrophy, myositis

Hypoventilation: chest wall and pleural disease
Kyphoscoliosis
Trauma (eg, flail chest)
Massive pleural effusion

Pneumothorax

Increased ventilatory demand
Severe sepsis
Septic shock

Severe metabolic acidosis

Miscellaneous

Airway protection

ARDS: adult respiratory distress syndrome.
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[Current practice] Over the past 50 years, the criteria for deciding on a patient's
weaning have gradually decreased and clinical judgment has given way to
increasingly standardized protocols (5,9). This is because the mortality of
extubation performed at the right time is 12%, if it is delayed it rises to 27%
(12,18,19).

The individual predictors currently used in Readiness Testing practice have not
proven particularly useful individually and are not standardized across all hospitals
(except for one, the Rapid Shallow Breathing Index, already included in our study,
and which has Sens 97% - Spec 65% when used alone (20)), so a protocolized
weaning assessment involving multiple predictors reduce weaning time and
hospital stay (11,21,22).

Patients who take a Daily Screening Liberation Assessment pass it in 25% of cases,
of these 75% manage to pass the SBT(range from literature (23,24), in the primary
study is 60%), and in 26-42% manage to breathe independently for at least 2
days(range from literature (ibidem), in ours are 25%).

Coming to the counterfactuals, 50% of patients who extubate by mistake (either
by themselves or by accident) manage to be weaned permanently (25,26), while
35% of patients who do not pass RT could well be weaned(27). These are
percentages from individual studies, but they give an idea of the size of the
phenomenon. On the other hand, evidence is strong on the usefulness of SBT with
a standardized protocol (16).

European and American guidelines (the latest European, from 2007) (5,16) point
out that research is required on certain issues, which are investigated in the
current study are:

(1) defining the minimum criteria required for assessment of readiness for
weaning to allow earlier weaning)
(2) the need for a screening test before the SBT

We hypothesize that "minimal criteria" could be clinical variables collected in the
preceding days along with a minute-by-minute recording of MV. This could answer
point 2 about the usefulness of a RT as a screening for an SBT, although definitive
confirmation would need an experimental setup since counterfactuals (e.g. SBT
after a failed RT) in the current setting cannot be observed.

As highlighted in a recent review of Al on MV, concerns have been raised about
the lack of reproducibility and generalisability due to methodological limitations
(28,29). RT and SBT criteria are not chosen, their scoring system has been validated
through Machine Learning or Al tools, and no widespread alternative has been
validated in the clinical setting (28,30). Besides, clinicians adjust ventilation
settings according to patients’ status from time to time during ICU admission, but




most of those data are not systematically recorded and assessed for potential to
change clinical practice (31).

Obijectives

[Target of prediction] the model aims to predict the outcome of RT and SBT for
each MV patient early in the morning, ideally as part of morning rounds where all
patient’s cases are reviewed by the clinical team. The study aims to assess the
potential for clinical implementation of the Al model, thus encompassing both
generalisability and reproducibility through the adoption of the last international
standards on model building, training, validation, and testing to minimize the risk
of bias (32-37).

[How prediction may benefit clinical goal] RT and SBT are time-consuming
processes, which require prolonged attention to be performed (38), while the ICU
is an environment where timely decisions by the clinician can make the difference
between life and death (39). A successful model will predict whether an SBT will
probably never be attempted (because of RT failure), will fail, or will probably
succeed, thus leading to MV weaning. Knowing this early in the morning could help
ICU staff better allocate their resources throughout the day. Thus, enabling the
proper selection of the subpopulation of patients that will benefit from it.

Moreover, the Al model in clinical settings needs to be trusted by physicians.
When Al models are properly trained and scored fairly and transparently,
systematically highlighting limitations and biases, their clinical value can be
assessed by clinicians and subsequently integrated into clinical practice (37,40,41).




METHODS

Setting

[Clinical setting] To train, validate and test our model we used data from a multi-
center randomized controlled trial that happened in Italy between 2013 and 2015
(42,43), where continuous data from MV were collected along with clinical data
and laboratory findings for a cohort of 182 mechanically ventilated patients
admitted to ICUs.

The study was conducted among 13 ICUs in Italy, equally distributed between
universities (6 of 13) and community hospitals (7 of 13). For each of the admitted
patients in the study, baseline clinical data were obtained, a daily clinical registry
excerpt, a minute-by-minute summary statistic of all the ventilation variables
recorded during MV (average, total sum, or proportion, according to the variable
being recorded), and a log recording alarms and settings inputted by clinicians. All
predictors can be seen in supplementary material, used predictors in Table II. All
predictors were considered potentially relevant at the beginning, progressively
reducing their number (as detailed in additional materials, “reason for exclusion).

Table Il — Model Predictors

Source  Predictor Description
Baseline | Ventilation type Categorical variable, it defines ventilation
type:
e Pressure Support Ventilation (PSV)
e Neurally Adjusted Ventilatory Assist
(NAVA)
Gender
Age In years
Body Mass Index a measure of body fat based on height and
weight
Ideal Body Weight It is based on height, gender, and age, and
represents appropriate body weight
Reason for A categorical variable, it may be one of
Mechanical e Sepsis
Ventilation e Pneumonia
e COPD exacerbation
e Trauma/polytrauma
e Post-surgical complication
e Heart Failure
e Acute Respiratory Distress Syndrome
e Other (...
Simplified Acute Score that predicts hospital mortality upon
Physiology Score ICU admission




Daily
registry

TRD
track
data

Sequential Organ
Failure Assessment

Arterial pH

Arterial Pa0O2

Arterial PaCO2

Readiness testing
criteria

Study days

Dynamic
characteristics
[ml/cmH20]
End-expiratory Flow
[L/min]

Positive end-
expiratory Pressure
[cmH20]

Score that predicts ICU mortality based on
lab results and clinical data

Represent acid-base equilibrium in arterial
blood, taken after the SBT test (if
performed)

The partial pressure of 02 in arterial blood,
taken after the SBT test (if performed) in
mmHg

The partial pressure of CO2 in arterial
blood, taken after the SBT test (if
performed) in mmHg

Set of clinical criteria, each a boolean
variable

1. <2 aspirations/h

2. audible cough on aspiration

3. nodistress (diaphoresis, accessory
muscles, paradoxical rhinitis)

4, GCS=28

[RASS between -1 and +1]

6. Heart Rate (HR) < 120bpm and
Systolic Blood Pressure (SBP)
between 90 and 180mmHg

7. Dopamine or dobutamine <5 and
NorAdr < 0.1 mcg/kg/min

8. Pao02/Fi02 > 150mmHg

9. PEEP <8 cmH20

10. Respiratory Rate (RR) £ 40/min

11. Tidal volume (Vt) = 5m/kg (Ideal
Body Weight)

12. pH 27.35

Calculated from the date of study
enrollment
Compliance

e

PEEP is the pressure in the lungs (alveolar
pressure) above atmospheric pressure that
exists at the end of expiration.

There are two types of PEEP: intrinsic and
extrinsic.

- Intrinsic PEEP depends on the progressive




Minute-expired
Volume [L/min]
Current expired
volume [ml]

02 concentration (%)

Minute-inspired
Volume [L/min]
Current inspired
volume [ml]
Mean Airway
Pressure [cmH20]
Measured
Respiratory Rate
[/min]
Spontaneous
respiratory Rate
[/min]

Edi peak [1V]

Edi min [uV]

Plateau Pressure
[cmH20]

Peak Pressure
[cmH20]

Backup switches
[/min]

Backup percentage
[%/min]

P0.1 [cmH20]

Mechanical
ventilator respiratory
work [Joule/L]
Patient-ventilator
respiratory work
[Joule/L]

air trapping after incomplete expiration

- extrinsic PEEP is set directly on the
ventilator.

the volume of air that moves out of the
lungs during a minute

the volume of air that moves out of the
lungs during a single breath

Percentage of oxygen in a specific volume of
air

the volume of air that moves into the lungs
during a minute

the volume of air that moves into the lungs
during a single breath

The average pressure in the airways during
the inspiratory phase

number of breaths per minute recorded

number of spontaneous breaths per minute

Diaphragm electromyography peak (NAVA
specific)

Diaphragm electromyography minimum
level (NAVA specific)

Plateau Pressure: is the pressure applied to
small airways and alveoli at the end of
inspiration during positive-pressure
mechanical ventilation

It is the highest pressure level applied to the
respiratory system during inspiration. It
depends on any airways resistance.
Number of backup switches in a minute

The percentage of breath switched to the
backup mode in a minute

The negative pressure generated at 0.1 sec.
from the beginning of the inspiratory phase
Ventilator work of breathing

Patient work of breathing




Spontaneous Defined as the ratio of respiratory

Breathing Index frequency to tidal volume (RR/Vt). People
on a ventilator who cannot tolerate
independent breathing tend to breathe
rapidly (high frequency) and shallowly (low
tidal volume), and will therefore have a high

RSBI
Spontaneous minute  the volume of air that moves out of the
expired volume lungs during a minute due to spontaneous
[L/min] breath

Prediction problem definition

[Nature of the study] Study is a retrospective analysis of data collected for a
previous work, where a prognostic model is built to predict weaning outcomes.

[Prediction goal measurement] The model is built to predict the outcome of RT
and SBT that will be performed (or not) each day once for each patient while
mechanically ventilated, starting from continuous MV data and clinical variables
available at a given morning clinical round. RT success is necessary for performing
SBT, so there is no data about SBTs after an RT failure. RT success is defined as
respecting all 12 parameters of Tab.2 of Flowchart 1, while SBT success is defined
by clinical stability during the 30-minute trial (defined by events in Tab.3 of
Flowchart 1) and at the end of it (as in Tab.4 of Flowchart 1).

[Prediction model] The prediction target variable (weaning outcome) is a
categorical variable that can have each different mutually exclusive values:

1. SBT not attempted (because of an RT failure)

2. SBT failure (attempted after a successful RT)

3. SBT success (attempted after a successful RT), that results in patient
extubation on that day)

For each possible class, a probability is predicted, and the predicted class is the
one with the highest predicted probability. In the dataset, there was a fourth
possible value, which represents a day where a patient was under follow-up after
a successful weaning in the previous days. Since no weaning was attempted on
those days, they were considered outside the scope of the current model.

Flowchart 1 - Flowchart of the primary study. MV patients admitted to the
primary study under criteria of Tab.0. RT criteria are shown in Tab.1, while SBT
criteria are shown in Tab.2 (early stopping) and Tab.3 (success criteria). Weaning
occurs if both RT and SBT succeed, while criteria for late weaning failure are
detailed in Tab.4
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Tab. 0 - Inclusion and exclusion criteria of the study

Inclusion:

- invasive MV patient (MV start >24h) capable of
triggering the ventilator in an assisted mode

- no neuromuscular or neurological pathologies or
nasogastric tube contraindicated

- Pa02/Fi02 >150 with PEEP >5¢cmH20

Exclusion:

- <18 years, short-term poor prognosis, >3 organ
failure, patient refusal, inclusion in other studies
- planned hospitalization for surgery

- <2 aspirations/h with audible cough on aspiration
and no distress (diaphoresis, accessory muscles,
paradoxical rhinitis)

- GCS 2 8 and RASS between -1 and +1

- HR € 120bpm and SBP between 90 and 180mmHg
- Dopa or dobu < 5 and NorAdr < 0.1 mcg/kg/min

- Pao2/Fi02 = 150mmHg

- PEEP <8 cmH20

- RR < 40/min and Vt 2 5m/ kg (Ideal Body Weight)
- pH 27.35

Positive

Tab. 3 - SBT success criteria (MV stop eligibility)

- no distress (e.g. increased accessory muscle activity)
and no dyspnoea with VAS £7

- RASS between -4 and +3

- SBP 2 90 mmHg

- Pa02 > 60mmHg with Fi02 < 50%

- PaCo2 < 50mmHg and delta < 8mmHg

- RR/Vt 2 105 bpm/L

- pH > 7.32 and delta <0.07

- no appearance of new cardiac arrhythmias

Respiratory Rate; SBP

Mechanical

Tidal Volume

Heart Rate; MV

Oxygen/Car bon Dioxide Partial Pressure; PEEP

Richmond Agitatio-Sedation Scale; RR

Visual Analog Scale for pain; Vt

Glasgow Coma Scale; HR

Tab.4- ing fal -
- emergencies (respiratory, cardiac arrest or gasping)
- worsening GCS or RASS (coma or agitation requiring
continuous |V sedation)

- need for medications to maintain SBP 2 90 mmHg
(despite adequate fluid infusion) such as Adror
Vasopressin {any dose), Dopa/Dobu >5 or NorAdr >
0.01 meg/kg/min

- obstruction of the airways (stridor ot tirage) or
tracheo-bronchial secretions that are difficult to
manage

- Respiratory distress with Sp0O2 <90% and RR >35
bpm and clinical signs, despite oxygen administration

Oxyen inspired fraction; GCS
Neurally Adjusted Ventilatory Assist; Pa02/PaCO2
Pressure Support Ventilation; RASS
Spontaneous Breathing Trial; VAS

End

Intensive Care Unit; FiO2

Systemic Blood Presure; SBT

IcU
Ventilation; NAVA
End Expyratory Pressure; PSV



[Practical costs of Prediction errors] The model aims to guide clinicians to
optimize the time spent on RT and SBT by reducing the number of patients to the
most probable to be successfully weaned. Choosing to focus only on a reduced
number of patients will unnecessarily prolong MV for weanable patients left
behind. At the same time, including too many patients will prolong the time
dedicated to each patient in a fast-paced environment like the ICU. Table Il
contains a summary of the consequences of each prediction compared to the
observed current clinical management.

Table Il — Confusion matrix of outcome consequences of predictions. On
each given day, the observed classes (actual clinical management) are
compared to model prediction, which is provided at the start of the day. The
confusion matrix highlight for each possible combination of the clinical
outcome of favoring SBT suggestion over standard-of-care

Observed
(actual clinical management)
0 —SBT not 1 — SBT failed 2—-SBT
attempted succeded
Improved (correct
prediction of a Worsened
0: SBT not Unchanged future SBT failure, (unnecessary
attempted while it would be extension in
observed only after | MV)
. it happened)
% 1: SBT Improved (correct
g failure Unchanged (SBT prediction of a Worsened
5 .‘é" (thus is not suggested future SBT failure, (unnecessary
© g weaning is | both in actual and | while it would be extension in
g =  unlikely) predicted) observed only after MV)
a = it happened)
% E 30% worsened
S 9 (Study protocol
630 provides no data
%" 5. BT about not Unchanged (SBT is
- = attempted SBT wrongly suggested
success Unchanged

outcome, so we
considered 35%
Improved and
65% worsened as
evidence (16,27))

both in actual and
predicted)




[Quality metrics] The model will be trained and validated to minimize cross-
entropy as suggested in Introduction to Statistical Learning (44), as the main
metric to boost model confidence in predicted classes. The model will be
evaluated on balanced accuracy, MCC-score, Precision, and Recall to properly
evaluate model performance (45). One-vs-all generalization for multiclass
problems was implemented. Since not all classification errors have the same effect
on clinical outcomes, predictions were also evaluated averaging a custom metric
of clinical impacts. This metric assigns a score of 1 for “improved” predictions, -1
for “worsened” predictions, and 0 for “unchanged” ones. The final score, i.e. the
average of the test predictions, can range between -1 (worse than RT), and 1
(better than RT).

Formula 1 - Categorical cross-entropy loss function, where ti (ground truth, i.e.
0/1) and si (predicted probability) for each classiin C
c

CE = —X t;log (s:)

l

[Success criteria] To evaluate the model on the RT prediction, it will be tested
against the current standard of care (which is shown in Flowchart 1), since a
successful RT is not a perfect predictor of SBT success. A statistically significant
difference in clinical outcome was assessed through bootstrapped confidence
interval at a 95% level (41), against the hypothesis that the model is as good as the
Readiness Testing, which has by construction a custom score of 0.

Data preparation

[Data sources] For all the centers the relevant ethics committee at that center
approved the study protocol. Written informed consent was obtained from all the
patients, their next of kin, or another surrogate decision maker as appropriate for
the primary study (43). The trial was registered at the Australian New Zealand
Clinical Trial Registry (ANZCTR) under the number ACTRN12612000815864. The
trial was overseen by a steering committee and research assistants regularly
monitored all the centers on site to check adherence to the protocol and the
accuracy of the data recorded. An investigator at each center was responsible for
enrolling patients in the study, ensuring adherence to the protocol, and
completing the electronic case report form.

[Inclusion/exclusion criteria] In the primary study, patients were included if able
to trigger the ventilator in partial support mode, did undergo invasive MV for at
least 24h before study enrolment, and expected to need it for 48 hours or more.
Additional criteria were age equal or greater than 18, absence of scheduled
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surgery, no inclusion in other research protocol, no neuromuscular or neurologic
disease, no contraindications of nasogastric tube positioning, and PaO2/Fi02> 150
con PEEP> 5 cmH20. Exclusion criteria were short-term poor prognosis, three or
more organ failures, or refusal to participate, as detailed by Box0 of Flowchart 1,
and resulted in a total of 182 patients, as detailed in Flowchart 2. In the current
study, we were able to retrieve data on 180 patients, on which we conducted our

analysis.

Flowchart 2 - CONSORT-style flowchart shows study admission and
randomization criteria for the primary study. Data acquired during the primary
study (RCT) are used as part of the current analysis (observational)
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[Time span and cohort size] Data were collected between March 2013 and May
2015, from 13 centers across Italy. 180 patients were included in our study, with a
total of 1929 days recorded in the daily registry. The basic demographics of
patients can be found in Table IVa, while a summary of observations on daily
records can be found in Table IVb. For each patient in the study, once per day a
track record and log record were obtained by direct download from Servo-I
Mechanical Ventilator (Maquet, S6lna, Sweden), resulting in 2,073,253 minutes
observed across the cohort and 424,772 LOG events recorded, for which summary
variables can be observed in Table IVc.

[Observational unit] As in Table IlI, each patient had recorded baseline
information. Daily data about each patient were recorded in a clinical diary for
each day of MV and at least two days after successful weaning, along with criteria
relevant to clinical management (Box2-3 of Flowchartl). While the patient was
ventilated, 20 variables were averaged or summed to the minute and recorded, 2
more variables were specific for the MV mode chosen and 12 other variables were
almost or completely missing. Since the MV memory was limited to the equivalent
of 24h of recording, data have been overwritten (thus lost) if the download didn’t
happen for more than 24h. LOG contained detailed information about the
category of the message recorded associated with the specific time and message.

[Information leakage prevention] Information leakage can happen both in
training examples and in features composing the model (41,46), inappropriately
boosting confidence in model predictions. Leakage itself is defined as the
introduction of information about the data mining target that should not be
legitimately available to mine from (46). In our scenario, it may happen if the
model trains with information that shouldn’t be available during training time
(e.g., information on a day D to predict the outcome of that day D, because
prediction should happen early in the morning while the information would be
collected during the day, so, after the prediction would be happened). To prevent
information leakage, a test set composed of a subset of 36 out of 178 patients
which comprise nearly 20% of overall days was set aside for final evaluation since
it should not overlap with the training or validation set and be representative of a
wider population to measure the model’s generality (47). In addition to that, input
data were screened for duplicates before the split, and eliminated by keeping only
the first occurrence since they arose from the memory buffer problem outlined
above. The split was performed at the patient level (e.g patient ABOO1, regardless
of the total number of weaning attempts, which are the events on which the
prediction is made), keeping the same metrics defined for the test set.

Table IV — Summary characteristics of the input datasets, highlighting
predictors used in the model-building phase. IVa (top) shows baseline
characteristics, IVb (middle) shows daily data, IVc (bottom) shows Mechanical
Ventilation track data
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Tab. IVa

Characteristic N =178’
Ventilation mode Reason for MV
nava 89 (50%) Sepsis 26 (15%)
psv 89 (50%) Pneumonia 35 (20%)
Gender Post-surgical complications 20 (11%)
M 116 (65%) Other 18 (10%)
F 62 (35%) Heart Failure 31 (17%)
Age (years) 72 (63,78) COPD exacerbation 22 (12%)
BMI 26 (24, 30) ARDS 15 (8.4%)
Ideal Body Weight 60 (53, 63) Trauma - Polytrauma 11 (6.2%)
SAPS score 44 (35, 55) e AOR
Tab IVb

Characteristic
SOFA score
Unknown
Readiness Testing score
EGA pH
Unknown
EGA Pa02
Unknown
EGA PaCO2
Unknown

Day of study

T Median (IQR)

N = 1,929/
6.0 (4.0, 8.0)
11

10.0 (0.0, 12.0)
7.44 (7.39, 7.47)
11
89 (74, 112)
11
45 (39, 55)
11

6 (range: 0, 77) (IQR: 4, 9)




Tab IVc

Characteristic N = 2073253
dynamic characternstics 33.80 (2320 47.53)
emnd-expiratory flow 097 {0.20, 3:12)
ooitive end-expiratony flow T35 {519, 0.40)
minute expired volums 005 (743 1111)
ourrent expired volume A23 3033490, 533.70)
02 ssmuration % 4160 [38.60 5060
minute inspired volume G20 (750, 11.41)
ourrent inspired wolums 43620 (350090, 545.70)

MEsn alrwsy pressurs 11.00 {884, 13.32)
measured respirstony rats 21.20 1607, 27.29)
spontensous respiratony rate 2052 [14.53. 26.55)

Edi peak 022 (548 16.11)

Edi min 041 (D25, 081)
plateau pressurs 2070 (12T, 25.21)
backup percent 0.0 (0.00, 0uDm
PR3 0.82 [0.53, 1.60)

¥
e
="
[
T
[
=
¥
=

mechanical ventilator respiratony work

patiant vantilator reipirstony work 0,00 (0,00, .00
spontaneous breathing ndex E84.00 (38.00, 112.0d)
spontaneous minute expired wolume 8.72 [6.70, 10.92)

Median {0OR}; n (35

At the same time, the model employs data only available at 7 am, referring to the
previous day of MV, to prevent the use of features that would not be available at
that time.

But leakage is not limited to the explicit use of illegitimate examples in the training
process, but also through design decisions (46), and it wouldn’t be detectable. This
is why each decision about model, split, or feature selection reported in the
present thesis was set before seeing results.




[Data preprocessing and outlier removal] Patient baseline data and daily registry
used in the primary study were available as .xlsx documents, while MV tracked
data in a series of separate CSV files, one for each different download from the
mechanical ventilation, spanning most 24h per patient. All analyses were
performed using R Statistical Software (v4.2.2) (48), using data pre-processing and
cleaning functions from the “tidyverse” meta-package (49,50). To ensure
reproducibility, original data were not modified by hand, and software was
developed as a stand-alone package developed under git version control and
provided (https://github.com/UBESP-DCTV/weaning) through GitHub (51), with
“targets” package to keep track, manage, and automate execution of workflow in
a reproducible way (52), which can be seen in Additional Materials. “Quarto” was
the main reporting tool (53), with “ggplot2” for charts (54) and “gtsummary” for
tables (55).

Custom import functions were designed to check for inconsistencies and time
discrepancies between different data sources referring to the same events and
cross-check metadata. Patient NO0O21 was removed for clinical implausibility
(extubated without being ready), while patient FE017 was removed because of a
mismatch with MV metadata. The 12 criteria composing RT could not be analyzed
as independent clinical predictors since they were not evaluated in a standardized
way (e.g. it was common in some centers to record all criteria rows as negative,
even if only one of them was not met). MV track data had missing parts, due to
the limited size of buffer memory, and duplicate values for the same time with
different recorded variables. This happened because of a known issue with the
ventilator, wrong duplicates were identified and filtered. Moreover, no spectral
analysis (e.g. on Respiratory Rate) could be performed since data were
summarized to the minute.

After obtaining the dataset from each source (baseline, daily, MV track, and MV
log), Exploratory Data Analysis was performed (56-58) in an iterative process to
clean the dataset. A set of functions was designed to transform bidimensional
tables into tensors (i.e., multidimensional arrays) ready to be used in model
building.

Figure 2 - Network visualization of the analysis flow from the raw input (on the
left) to a range of datasets that can be used in the analysis process, linked by
arrows representing dependencies. The 4 sources of input data (baseline data,
daily data, MV track data, and LOG) are imported, cleaned, and pre-processed
in several different dataset to obtain the analysis-ready ones. Circles reports
single objects, squares collections of homogeneous ones (e.g. baselineArrays is
the object composed by all the arrays created separately for each patient).
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Pattern
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[Missing values] Missing values are common in the ICU setting, but they are not
frequently addressed in the literature (28). Values missing more than 2/3 of the
time in the training and validation subset were dropped from the analysis, while
other missing data (NAs) were replaced by a fixed placeholder, a unique value that
could be processed and learned to be “missing” by the neural network. Model
predictors from baseline and daily were complete.

[Dataset’s basic statistics] Each day weaning could potentially be attempted or
not, usually because the patient died or was already extubated. Class distribution
of remaining outcomes is unbalanced, with the majority class (RT failure)
representing 70% of outcomes, as can be seen in Table V and Picture 2.

[Model validation] Data was split into a train (64%), validation (16%), and test set
(20%), with 5-fold cross-validation.

Figure 3 - Distribution of all predictors among train and validation (red) and test
set (blue) to check that the random split produced representative sets with
similar distributions. Continuous variables are shown with a density plot to
check for similar distributions, while categorical have a bar plot to make sure
the split produced at least one training example and a test example for each
class.
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Characteristic
Ventilation mode
nava
psv
Gender

M

Reason for MV
Sepsis
Pneumonia
Post-surgical complications
Other
Heart Failure
COPD exacerbation
ARDS
Trauma - Polytrauma
SBT oucome
Readiness Testing failure
SBT success

SET failure
"n (%)

Training/validation set, N =

69 (49%)

73 (51%)

93 (65%)

49 (35%)

21 (15%)
27 (19%)
14 (9.9%)
17 (12%)
25 (18%)
18 (13%)

10 (7.0%)

1,003 (78%)
149 (12%)

131 (10%)

Z Pearson’s Chi-squared test; Fisher's exact test
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Table V — Outcome distribution of target variable across all data
Characteristic N=1,929
Daily attempt
Already extubated 371 (19%)
Readiness Testing failure 1,216 (63%)
SBT success 182 (9.4%)
SBT failure 160 (8.3%)

A broader issue has been hyper-parameter tuning as part of model selection. In
fact. low variance is at least as important as unbiasedness in model selection
criteria, as the degradation in performance due to overfitting arising from
selection bias can be surprisingly large (59). A model is defined by parameters
(which weights are learned through the training process) and hyper-parameters
(which are set by the user). A different range of hyper-parameters was tried, with
pair of nested loops, with the hyper-parameters adjusted to optimize a model
selection criterion in the outer loop (model selection) and the parameters set to
optimize a training criterion in the inner loop (model fitting/training with better
estimates). In a previous study (60), it was noted that validation set error is
strongly biased since it was directly minimized during model selection, and thus
should not be used for performance estimation. To mitigate this problem, and to
improve the generality of the resulting model, a 5-fold Cross-validation was
performed(61).

Ideally, since all our training and test data come from the same kind of equipment,
its ability to obtain the same performance on data collected with other MV could
not be tested. Moreover, no community benchmark was available for our data to
test our model on an external dataset, so this part of the analysis could not be
performed, relying only on an internal split to evaluate our model. Nevertheless,
given the experimental protocol adopted and the multicentral nature of the study
(including both community and university hospitals), we consider the study
population drawn from the population of interest.

Prediction model building

[Redundant variables removal] In additional material, the list of all variables can
be found, detailed with a reason for their exclusion. The most frequent reasons
were clinical or missing values >67%. To assess for perfect separation, after
randomly selecting the test set from the patient pool, each predictor was tested
for statistical significance both for perfect separation screening and to assess the
test set completeness of the wide range of clinical scenarios (e.g. at least one




patient with each class of admission reason should be present both in testing and
in training-validation subsets). No variable was removed after this step.

[Predictors and response association] Independent variables are shown in Table
Il, with a complete description of their fundamental characteristics in Table IV.

[Assess if sufficient data for good fit] To assess whether sufficient data were
available for a good fit, goodness of fit was defined as the model’s ability to
outperform a set of extremely simple models as a baseline (three that predicted
always the same classes, two more than predicted random classes), outperform
an extreme gradient boosted tree model (trained and optimized thanks to the
“familiar” package (62,63)) with only baseline and daily data as an intermediate
point and to progressively improve its performance to reach perfect classification,
eventually improving as it’s shown in the composite metric derived from Table III.
The flexibility of our RNN model was progressively increased recursively during
model development.

[Modeling technique] Standard Machine Learning approaches to time-series
analysis usually split data in various windows, trying to analyze them at once (44).
To properly model a RNN was used. A complete sketch of the model architecture
can be found in Figure 4, which shows data flow through network layers. ADAM
was adopted as an optimizer (64,65).

Since the model is evaluated at each iteration against the validation set during the
training process, it can quickly overfit. To prevent that, early stopping was
implemented, combined with a learning rate scheduler and an optimizator that
stops when validation metrics reach a plateau for a sufficient time. Keras API for R
using TensorFlow as a deep learning backend to Python modules was used to
design, compile, fit, and evaluate all the neural network models (66—68), run on
an Intel(R) Xeon(R) E-2286M 16 Core CPU @ 2.40GHz equipped with 128 GB RAM
- Ubuntu 22.04 LTS.

Figure 4 - Model architecture is represented by a series of neural network layers
(boxes), linked together by arrows that represent information flow from input
(labeled as “InputLayer”) to output (labeled as “out”). Each box contains a brief
description of the layer itself. The first column contains a unique name identifier
(upper cell), a description of the layer (either in a single cell as in
“BidirectionalGRU” or in two cells as “Dense | softmax”), and a type of input
data (lower cell). The rest of the cell describes the input that is expected and the
output that is produced, with the indication of the tensor’s expected dimensions
between brackets. Dimensions reported as “None” identify variable-length
dimensions like number of patients processed (the first or the single ones) and
the number of days processed (the second ones). 1440 is the number of minutes
in a day.



https://ubep.sharepoint.com/sites/lembs/Documenti%20condivisi/Weaning%20Study/TesiPedot22/img/Fig3_model_architecture.jpg

input 3 | jnput: | [(None, 1440, None, 21)]
InputLayer
Aoat32 output: | [(None, 1440, None, 21)]

bidirectional 1(trd 11.1) input: | (None, 1440, None, 21)
Bidirectional{ConvLSTM1D)
float32 output: | (None, 1440, None, 64)
bidirectional{trd 11.3) input: | (None, 1440, None, 64) input 2 | oyt | [(Mone, None, 5)]
Bidirectional{ ConvLSTM1D) Inputlayer
foat32 output: (None, None, 64) float32 output: | [(None, None, 5)]
tLconcat input: | [(None, None, 5), (None, None, 64)]
TFOpLambda
float32 output: {None, None, G9)

}

batch_normalization_3 input: | (None, None, 69)
BatchNormalization
float32 output: | (None, None, 69)
hidirectional 3(merged 13.1) input: | (None, None, 69)
Bidirectional(GRU)
foat3z output: | (None, None, 64)
bidirectional 2(merged 13.3) | j1,s. | (None, None, 64) input 1 input: | [(None, 7))
Bidirectional(GRU} InputLayer
float32 output: (None, 64) float32 output: | [(None, 7}]
theoncat 1 | jnpye: | [(None, 64), (None, 7)]
TFOpLambda
float3z output: (None, 71)
batch_normalization 4 input: | (Nane, 71)
BatchNormalization
foat3z output: | (None, 71)
dense !5 | jnput: | {None, 71)
Deansa I relu
float32 output: | (None, 16)
dropout 1 | junue: | (None, 16)
Dropout
Toat32 output: | (None, 16)
batch normalization 6 input: | (None, 16)
BatchNormalization
foat3z output: | (None, 16)
dense 16 | jnput: | (None, 16)
Dense I relu
float32 output: | (None, 16)
dropout input: | (None, 16)
Dropout
float32 | cutput: | (None, 16)
batch_normalization 5 input: | (None, 16)
BatehNormalization
foat32 output: | (None, 16)
ot input: | (None, 16)
Dense | softmax
float32 output: | (None, 3)
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Model Selection

[Robust Model Evaluation] Evaluation of the test set is the final step of model
building, which comes after proper validation, model refinement, and a fair
comparison among all candidate models. It is necessary to have valid results from
which reliable conclusions can be drawn (47). Evaluation is a multi-step process,
which we document, share, and report to improve the reproducibility of our
workflow and build confidence in our results (36). It is composed of an appropriate
validation set and model comparison and selection, appropriate test set use,
appropriate set of metrics selection, and statistical test for model comparison. The
term “robust” is used to imply insensitivity to irrelevant experimental factors, such
as sampling and partitioning of the data in training, validation, and test sets (59).
Thus, the model on the test set is run only once on data that weren’t seen before,
to prevent selecting a model that performs well on the test set for some specific
reason, but not necessarily in real-world scenarios.

[Performance metrics] Since data are unbalanced, accuracy could be misleading.
As a comparison, a model always predicting the majority class would result in a
75% accuracy (since it’s the frequency of the most common class). Also, the
standard of care is suboptimal: we don’t have the counterfactual example where
an SBT is tried after a negative RT, but a positive RT heightens the probability of a
successful SBT to slightly more than 50% in our dataset. Moreover, successful SBT
results in successful weaning in only 80% of cases (43).

Not only accuracy would be misleading in an unbalanced scenario, but it would
also be incomplete, as we have seen. Thus, performance was reported with a
multiplicity of metrics since each of them gives different information about the
model. In the field, balanced accuracy and precision are commonly used metrics,
which can be implemented with a generalization for multi-class classification tasks
(45,69,70). Since Fl-score may vyield misleading results for classifiers biased
towards predicting the majority class and it is susceptible to swapping of class
labels (71) and it is unclear in the definition for multi-class problems (69),
Matthews Correlation Coefficient (72—74).

Moreover, a custom function was built to translate predictions into a clinical
impact metric. Starting from the confusion table with suggested vs observed
patient management, we summarized clinical impact (either on the patient or on
resources spent by the ICU staff). Whenever the algorithm suggested not to wean
the patient (class 0 or 1), while the observed event was a successful weaning (class
2), the score was penalized (-1). On the contrary, if it didn’t impact clinical
management (class 0 both predicted and observed, class 2 both predicted and
observed, class 2 predicted but class 1 was observed, or class 1 predicted and class
0 observed), it was scored as 0. If it improved clinical management (anticipating a
failure to wean with a class 0 or 1 prediction, while class 1 was observed on that




day), it was positively rewarded (+1). Unfortunately, given the limitations of an
observational study, since SBT was not attempted after a failed RT, predicted
classes 2 on observed class 0 were evaluated considering literature knowledge
proportions on unattempt SBT, i.e. 35% success and 65% of failure, leading to an
overall mean negative 30% of impact caused but this kind of systematic error (i.e.,
-0.3 score). The total score is the mean of the individual scores, thus ranging
between -1 (model is harmful respect to RT) to +1 (model improves clinical
management respect RT). Readiness testing, by construction (and computation,
i.e., if use as model prediction early in the morning it will fill scored 0 cells only),
has a custom score of 0, providing a meaningful comparison of the SBT success
rate against the actual clinical management.

[Fairness] To identify relevant subpopulations where the model could have a
differential impact (Fairness), baseline information about Sex and Age was
collected and reported. Ethnicity and social status were not recorded at the time
of the study and couldn’t be inferred from available data, so that differential split
was not performed (35,46).

[Model selection strategies] RNNs are the best option for complex time-series
analysis, and a comparable explainable alternative is yet to be developed. Given
the only partial explainability, given the limited number of patients, individual
plots of the test set have been developed. A discussion of more general range of
techniques on Al model explainability can be found in the discussion.

To select the final model, the one that represents the actual RNN model which
takes as input baseline and daily clinical information as well as the MV data
recorded up to the moment when the prediction is generated for that patient,
many candidates have been developed and assessed. After completing the 5-fold
CV, the hyper-parameter tuning and visually inspecting the losses, and balanced
accuracy curves to identify a point where metrics were satisfactory enough
without starting to worsen, the final model was selected.




RESULTS

Preliminary models performance

Out of the 5 different candidates models developed, the last candidate was

selected. Performance on validation seemed to reach a plateau around epoch 15
(as shown in Figure 6), so it was selected. The final model was used as training data

for all the previous datasets (training and validation) while being evaluated on the

test set.

Table VII - Comparison of hyper-parameters and results of tried model
architectures, showing the 5 candidates. Epochs represent the number of epoch
leading to the lower cross-validate validation average loss, recurrent and dense
units are the number of neurons in each type of layer, batch size are the number
of sample the network explore in a single step (one epoch reached when all
sample where elaborated by the network, batch by batch); drop-out rate are
the proportion of random neurons ignored at each step for the corresponding
layer. Time are reported for a single CV run. Losses are reported as average of
the CV runs. Accuracies are balanced.

Dropout
rate
Candidate Recurrent Dense Batch Recurrent Convolutional input
model Epochs units  units  size depth  RNN Kernel layer
1 28 32 16 32 2 1 0.1
2 1 128 64 64 2 2 0.1
3 R 64 32 64 3 1 0
- 8 64 32 16 1 1 0
5 27 32 16 16 2 1 0
Dropout Dropout
rate rate Validation Train
Candidate recurrent  output Validation Train  accuracy accuracy
model layer layer  Time (unit) loss  loss (%5) (%)
1 0 0.5 3.446 hours 0.66 0.65 0.74 0.77
2 0 0.5 12.618 hours 0.90 147 0.67 0.36
2 0 0.5 9.054 hours 0.88 0.83 0.69 0.74
4 0.2 0 2020 hours 0.95 0.66 0.61 0.76
5 0.4 04 2772 hours 073 0.72 0.76 0.78
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The same normalization metrics used in the training of the selected model were
used also to pre-process test data, a set consisting of 36 patients for a total of 273
days of weaning, which were not seen by the model until the testing phase. Figure
3 shows how predictors don’t have significant differences from the training and
validation data so that the test set is representative of the assumed clinical
scenario. It is composed of 213 (77%) days when SBT was not attempted, 29 (11%)
days when it failed, and 33 (12%) SBT successes that led to weaning (% on the total
is reported in parentheses).

Figure 5 - Training and Validation learning curves of the selected architecture
training (Candidate model 5), showing a plateau in loss and accuracy around

Set =+ wain == valigation

Value

Final model performance

Table VI shows the model comparison. Models predicting a single class, randomly,
and XGB served as benchmarks. The metrics chosen are Balanced Accuracy,
Matthews Correlation Coefficient (in its R3 multiclass implementation), the
proposed custom CLAP score, Precision, and Recall. Comparison have been
estimated through 1000 bootstrap intervals to allow comparison among the
models.

Table VI - Comparison of each model against the observed results in the test
set, showing balanced accuracy, MCC, CLAP custom score, precision, and recall.
For metrics defined for binary classifiers, a weighted average on the class
proportion of one-vs-all is implemented.
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Al Model, N = AllO, N = All1,N = All2, N = Coin toss, N = Stratified random, N = XG Boost, N =

Characteristic 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Balanced
accuracy
Median 0.79 0.78 0.12 0.11 035 0.63 0.61
(5%, 95%) (0.74,0.83) (0.74, 0.82) (0.09, 0.15) 0.08, 0.14) 0.31, 0.40) (0.58, 0.68) (0.56, 0.66)
MCC
Median 0.28 NA NA NA 0.02 0.00 0.14
(5%, 95%) (0.17,0.39) (NA, NA) (NA, NA) NA, NA) -0.05, 0.10) (-0.09, 0.08) (0.06, 0.22)

CLAP-scare

Median 0.01 -0.01 -0.23 -0.01 -0.07 -0.04 -0.05

(5%, 95%) (-0.04, 0.05) (-0.05,004) (-0.25,-0.22)  (-0.06, 0.03) -0.11, -0.03) (-0.09,0.01) (-0.08, -0.01)
Precision

Median 0.74 0.78 0.12 0.11 0.63 0.63 0.74

(5%, 95%) (0.68,0.79) (0.74, 0.82) (0.09, 0.15) (0.08, 0.14) (0.55, 0.70) (0.57,0.69) (0,69, 0.79)
Recall

Median 0.79 0.78 0.12 0.1 035 0.63 0.61

(5%, 95%) (0.74,0.83) (0.74, 0.82) (0.09, 0.15) (0.08, 0.14) (0.31, 0.40) (0.58, 0.68) (0.56, 0.66)

Considering the bootstrapped 90% confidence intervals, Al model was significantly
more accurate than the XG model, which has as predictors only the clinical
information of the previous day. It also scores significantly better than the random
ones in balanced accuracy, MCC, and recall .

Similarity in most of the metrics with the model that suggested every day not to
attempt SBT (“All 0” in Table VI), as well as a CLAP-score around zero, means that
the model would have suggested similar course of action as the observed clinical
management (which assumes that on most of the days, RT will fail until the
respiratory failure cause is addressed).

To better understand predictions, the confusion matrix for the Al model is
provided in Table VIII, which predicted early in the morning a similar behaviour to
the clinical one that later happened during the day.

Table VIII - Confusion matrix of predicted vs observed classes by the final model
on the Test set.

Observed
(actual clinical management)

0 —SBT not 1 —SBT was 2—SBT
attempted attempted but | succeded
failed
€ ‘© | 0: SBT not attempted
0o L 204 24 21
L S gbecause of RT failure) 0
'-E o
g_ E ]: SBT failure* 3 3 3
? é) C*thus weaning is unlikely
3 % 22: SBT success (leading to c 5 8
22 weaning)




Even if each error is scored according to the custom metric we proposed, wrong
predictions may mean different things, according to the individual patient history,
which is plot alongside the Al model prediction that happened early in the morning
in Figure 6.

Patients BSO06 and BS014 both have a “SBT suggested” prediction on a day where
RT was negative, and both were successfully weaned the following day. Given the
limitations of the observational study, there is no way to know if SBT would have
succeded on the day RT failed, thus leading to our model to anticipate it.

Similarly, CMO006 suffers from weaning failure, requiring reintubation in 48h after
their successful SBT, while the model always advised to continue MV. It was
evaluated as an error in the performance evaluation, but implementing Al model’s
suggested course of action may have prevented the patient from weaning failure.

Figure 6 - Al Model evaluation is displayed by showing a different subplot for
each patient in the test set. Clinical history is displayed with a series of grey dots
connected by a line, showing what happened (Y axis, with the 3 possible
outcomes of Table Ill) during each day (on the X axis) from study admission to
weaning. Predictions of the model are displayed as a colored dot for each day.
Whenever a colored dot (predicted) is displayed in the same location as a grey
dot (observed), it means the model predicted early in the morning what was
observed on that day of the study. Color represents our Al model suggestion:
either it is to continue mechanical ventilation (in red, valid both for “SBT not
attempted” and “SBT fail”) or to suggest a Spontaneous Breathing Trial (blue)
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DISCUSSION

None of the predictors alone is consistently able to identify whether a patient
could be weaned or not, despite most of them carrying information, even in a non-
linear way, such as in Figure 5. This is known from previous studies and it has been
confirmed in our preliminary analysis.

Figure 7 - Readiness Test (RT) is a score that is used to identify the patients that
would likely succeed in a Spontaneous Breathing Trial (SBT). It is comprised of
12 different parameters which are measured once per day, so the sum of them
ranges between 0 and 12, where 12 represents the Readiness for SBT. The score
among all patients shows a complex non-linear behavior, which is represented
by a smooth line fitted to the individual data points (not shown), which
represents a generalized additive model. The marginal distribution of days in
the study shows that most of the data are collected in the first 10 days of
Mechanical Ventilation, while the marginal distribution of RT shows that most
of the values are either around minimum or maximum.

N

o

Readiness Testing sum of parameters

0 20 40 60 20
Consecutive days of Mechanical Ventilation

Moreover, both RT and SBT are not perfect tests, and further research, as stated
in the introduction section, is needed to investigate a combination of predictors
(clinical or ventilatory variables) to optimize the weaning process. Data-intensive
settings like this one have the potential to be investigated with Machine Learning
or Artificial Intelligence approaches.
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To provide a meaningful comparison a series of models have been built, each of
them evaluated with multiple metrics. From those comparisons, we can affirm
that there is sufficient information in MV track data to improve on the current
state-of-the-art. A model that always predicted the same class or random
provided reasonable estimates for classification metrics, that acted as the lower
threshold. On the contrary, the Extreme Gradient Boosted Trees model was
trained as the industry standard for tabular data (only baseline and daily clinical
data), so it represented a scenario mostly similar to the clinician who had no access
to all the data about MV in the previous days. This model, as expected, did not
significantly improve clinical management, since the latter has improved
throughout the years to use the best available information.

To improve further, an architecture that could make full use of available time
series was necessary. Recurrent Neural Networks are the state-of-the-art option
to do that, and they haven’t been applied to weaning, yet. Their ability to
outperform other models can be seen by the difference in the metrics displayed.

A particular mention is to the custom score. It has been developed to highlight
improvements in the current clinical management. As a design choice, it was
extremely conservative. Given the restrictions of the observational study, we
didn’t have access to SBT results after RT failure or weaning outcome after a failed
SBT, even if the literature suggests that a non-negligible fraction of patients can
be weaned in either case. We chose to evaluate as -30% those cases, with respect
of the difference in average proportions between improved and worsened cases.
At the same time, we evaluated errors in each prediction that prolonged the MV
while the observed result was weaning, without regard to a late failure of the
weaning attempt. Lastly, we counted as errors all the cases where SBT was
suggested on the day before it succeeded, even if it is plausible that part of those
happen on a ready-to-wean patient. In conclusion, the score was built to highlight
“testable improvement”, disregarding due to the impossibility to test it in an
observational experiment the real “potential improvement”.

Limitations of the model

Data from the ICU setting are usually noisy and/or missing, and our setting is no
different. Some predictors had to be excluded due to too many missing values, but
a consistent fraction of them remains. The limited size of the memory of the
mechanical ventilator, which started to overwrite after 24h had passed since the
last download, prevented a truly complete series of continuous MV track data. But
even if we had access to all available data recorded from the ventilator, there are
still well-known challenges to developing predictive models using vital sign data,
which include the presence of recording errors, omissions, and outliers in




measurements during the ICU stay. The papers of Arcentales and Precup
implement spectral analysis of heart and respiratory variables. Since we did not
have such high-frequency data, we could not include those predictors in our work.
Table 2 of the article details the extracted features from the data available in the
DB. Also, Power Index analyses (Chaparro & Giraldo, 2014) and expiratory peak
characterization are not possible on data that are not high-frequency (Correa et
al., 2010) In a similar way, Trapero's analyses on the same database are also not
replicable, given that it is not possible to visualize in sufficient detail the variability
of heart rate and respiratory rate behavior, which generates a synchronization
rhythm in the high-frequency interval and a secondary rhythm in the low-
frequency range, as can be seen in the works of Arcentales and Orini (Arcentales
et al., 2015; Orini et al., 2008).

On the contrary, other authors have preferred different approaches to the task,
all stemming from similar datasets. Castifieira predicts the number of days spent
in the ICU starting from monitoring the data collected in the first 24 hours. The
weaning identification problem is thus transformed into a classification (duration
of ICU hospitalization >4 days) instead of the success or failure of weaning. Hsu's
work (Hsu et al., 2013) is structured as an RCT. It starts by highlighting how the
precision of successful weaning of a doctor is around 40% and then proposes a
Clinical Decision Support System to increase this predictive capacity. In general,
the judgments of doctors are tending to be unreliable. Therefore, decreasing
dependence on their knowledge, experience, and skills is promising for increasing
the rate of predictability if objective data and effective variables can be identified
to determine the success of weaning from mechanical ventilation. The CDSS
development is tested in a real clinical setting comparing it with the medical
decision that involves only the evaluation of the clinician. The developed CDSS is
effective in identifying the earliest time for weaning from the ventilator for a
patient to resume and sustain breathing spontaneously. Yu's paper (Yu et al.,
2019, 2020) proposes an Inverse Reinforcement Learning approach to understand
how to learn the latent reward function of the clinician and reproduce decision-
making capacity through an algorithm. Using real treatment trajectories, they infer
the latent reward functions of physicians during their decisions on mechanical
ventilation and sedative dosing in intensive care units. Finally, Hagan (Hagan et
al., 2020) discuss a way to validate mechanical protective ventilation of the lungs
via an early clinical alert system.

[Generalizability of the model] Model generalizability refers to the possibility to
apply it to different clinical settings from the ones in which it was developed.
Since it was trained and tested on the same set of equipment, external validation
is advised before wider use. Not all mechanical ventilators acquire the same
variables, with the same patterns of missing data and with the same artifacts or
errors during reading. This applies also to the clinical workflow: it was common




that some centers didn’t report each of the 12 predictors composing the RT.
Since all of them were needed to proceed with the SBT, it was a sound clinical
decision, but it prevented our model from learning the differential impact of the
predictors on the SBT outcome.

Clinical implications of model adoption

As stated before, the Al model has never been meant to replace clinical judgment,
but to enhance it with customized suggestions. Further studies need to be
conducted, preferably in an experimental setting, to properly evaluate Al
improvement over current care.

Yet, there are some barriers to clinical adoption. The first one is calibration, since
“SBT suggested” doesn’t need to be the most plausible prediction, for it to be part
of a decision support system. The second one is the explainability of the model,
which has been widely discussed. The third one, probably the most important, is
the structure of the model itself. At present, the model is trained to best separate
the three classes, but a wrong (or correct) prediction doesn’t have the same
clinical consequences for all of them. Moreover, data are incomplete since the
counterfactual can’t be observed and consequently act as an input to the model.
To obtain a better model, new data collected in a way that prevents those
limitations, are required.

Interpretability and Explainability of the model

[Interpretability with global methods] Along with prediction performance, a
barrier to widespread clinical adoption is the interpretability of models. Especially
neural networks could be seen as black boxes. Interpretability can be defined as
the degree to which a human can understand the cause of a decision. The higher
the interpretability of a machine learning model, the easier it is for someone to
comprehend why certain decisions or predictions have been made. It helps the
developer debug and improve the model, build trust, justify model predictions,
and gain insights. The increased need for machine learning interpretability is a
natural consequence of the increased use of machine learning (83).

Moreover, the European Union General Data Protection Regulation requires a
right to an explanation, stating as “[the data subject should have] the right ... to
obtain an explanation of the decision reached” (84).

Interpretability is built of many layers: the first one is algorithm transparency,
which is intrinsic to the chosen approach. Another one helps to understand how
different parts of the model affect predictions, while the last one could explain
why a model makes a particular prediction for a specific instance. While
interpretability and explainability can both be used, there is a difference with the
term explanation, which will be used for individual predictions (85)




From all the published methods, the global model-agnostic method of choice for
this task was Feature Importance through Permutation(86,87), since it has a nice
interpretation that provides a highly compressed global insight into the model’s
behavior. For interpretation purposes, feature importance does not add up, since
the interaction between features is represented in the relative importance of both
of them (88,89).

[Explanation of a single prediction] SHAP (SHapley Additive exPlanations) (90) is
a method to explain individual predictions. SHAP is based on the game’s
theoretically optimal Shapley values, which suffer from extreme computational
burden to be calculated and are prone to be misinterpreted. The Shapley value of
a feature value is not the difference of the predicted value after removing the
feature from the model training. Instead, they are the difference between the
actual prediction and the mean prediction. The goal of SHAP is to explain the
prediction of an instance x by computing the contribution of each feature to the
prediction (91,92).

Clinical implications of broader Al tools adoption

The artificial Intelligence model’s adoption of clinical practice has already shown
great potential to improve human health and life quality. Even if it can’t be
completely understood, an analytical approach should favor Al model adoption in
some specific clinical settings. Al is not necessarily useful in all contexts and not
for all problems, but further research is required to identify specific clinical areas
where an improvement can be brought.

Whenever there is a decision to be made, the potential for Al adoption can be
assessed. In our paper, we proposed an advisory role (in the form of a non-
compulsory decision support system), but the Al model’s adoption could be
imagined with a wide variety of degrees of autonomy. Trust is not given, but it is
built progressively by final users (usually, clinicians) in a multi-step process,
starting from the data on which the model is built, passing onto algorithms and
performance, and ending on implementation research considerations, including
the liability profile of a doctor using it in the day-by-day practice.

Dwelling deeper on the first (DATA), good Al models are built from a good dataset.
Unfortunately, since datasets are usually built by humans, they incorporate the
same biases and judgment errors, from which the Al model learns how to best
approximate them. This exposes the risk of gold-plating expert Al prediction,
overinflating its expected performance, especially on poorly represented groups
like minorities or rare conditions. Moreover, since what that data to collect, how
to preprocess them (e.g. which categories to use), and the setting in which are
collected, are all decided by humans, they are prone both to incorporate




additional biases or to represent, as in a photograph, only one side of reality. All
of this without ever considering that the “wider” (more predictors screened), the
easier is to overfit and learn patterns that are only by chance present in the data,
and the issue of missing data, which in some settings (e.g. ICU) are common and
may potentially be informative, since they represent a result of the daily ward
activity.

Moreover, some considerations on the algorithm itself and how the model is
trained and built should be made. Not all techniques are created equal, and
different problems require different approaches. Nevertheless, they all train to
optimize a single measure (either single itself or composed of various weighted
elements) on a population level, while humans can take into account different
competing metrics and optimize them on a single clinical case. Also, the metric to
optimize is defined by humans, thus it represents implicitly or explicitly judgments
and ethical considerations on which is the optimal reality to reach through
progressive increments in the model’s performance. A model that is used in a
clinical setting requires a robust scientific design to be trusted, as it enables to
exposure and audit of the entire process from its ideation to its adoption.

In addition to that, since at the moment CLAP-score is only used in the evaluation
phase, the training and validation processes do not try to optimize it. Instead of a
loss function that aims to perfectly separate the prediction classes (as the cross-
entropy, used in the current study to train the RNN), a custom one may be
developed to truly capture the clinical impact of the predicted versus observed
clinical management. Discussions on how to implement this type of measure will
have to be taken in thorough concert with specialists in the field.

A special note should be made on errors since they also embody ethical and
technical considerations in their scoring. But they have a further level of analysis,
which is they substantially differ from the one committed by humans, even if we
refer to them with the same word. From the point where the model is trained, an
error is not made by distraction/chance/tiredness, but it is already embodied in
the model’s parameter, and it arises from a specific combination of input in a
straightforward fashion (even if it can’t be known in advance, and thus prevented).
Guilt, as it is defined in humans, is a concept that can be translated only by
distributing it to all the actors involved in model design (who decided which data
to collect and how, who decided which metric and how to optimize, who chose
the algorithm and wrote the experimental protocol, who audited it before its
adoption, who decided to use it on that specific case,... ). Furthermore, it is
composed of a reducible (e.g. by improving the model’s parameters or data) and
an irreducible portion, but both of them are implicitly accepted when the model
is deployed. The choice of whether that is acceptable or not is, once again, made
by humans. The reducible one (at least, theoretically) is the bias, but unbiasedness

has a context-specific meaning.




Stemming from the fact that biases in humans or models are potentially similar to
each other (since the latter is optimized to mimic the behavior of the former), a
critical aspect required to adopt a model is its explainability, both on the global
level and on the single prediction. Interpretability (which in this context we use as
a synonym) is a human right, especially for decisions that can impact one’s own
life directly, as it is common in the medical field. This is no different from asking
an expert opinion (e.g. on a fellow senior consultant) and then asking to explain it,
being subjected to a similar problem: is it a post hoc explanation or does it
represent the true process of thought? Or also, do their biases and limits to his/her
knowledge translate well to my patient or my reference population?

In conclusion, building a case for Al adoption is a challenging task, with different
intertwined layers of complexity both on the technical and ethical side, but given
its potential use to advance people’s health access and access, clinicians should
take part in all the steps of its design, evaluation, and adoption process.




CONCLUSIONS

The model we developed shows ability to anticipate well and early in the morning
what would be the clinical management that observed later in the day, without
significant differences from actual clinical choices. Further studies overcoming
analyzed challenges and limitations, as the experimental design and the
availability of quality data, may improve its performances. Conservative choices
on scoring may have hidden potential benefit of it. Overall, as the best of our
knowledge, this is the first RNNs-based networks trained on the whole patient
history of minute-by-minute MV data to provide day-by-day predictions of
weaning outcome; the technology proved superior to the analysis of clinical data
only, even using state-of-art non-deep machine learning models. Retaining a lower
enough complexity to be used in the clinical practice (simultaneous predictions for
32 admitted patients in the ICU took around 15s on a standard laptop), the
purposed approach provides both space for further investigation and
improvement to support clinical decisions, in a data-intensive settings like ICUs.
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To answer the questions outlined in the thesis’s objectives, it was necessary to define

an analysis plan as detailed as possible starting from the existing literature.

To do this, we started with the only existing systematic review on the topic of
mechanical ventilation (the other systematic review on the subject (Kwong et al., 2019)
is partial and collects far less data on studies and their quality). The work in question is
interesting for two main reasons: it analyzes 1342 articles available on the various
databases to identify the 95 articles available on the subject in February 2021 and
analyzes the Risk of Bias according to the items of the TRIPOD Statement (Collins et al.,

2015) allowing to quickly evaluate the quality of the design and analysis.

If, however, on the one hand, the systematic review lays solid foundations for the use
of artificial intelligence algorithms during mechanical ventilation of patients, on the
other hand, the extreme heterogeneity of the primary outcomes evaluated and the
methodologies used did not allow to directly compare the studies with each other
except for the overall risk of bias. In addition, none of the selected articles deals with

data from ventilations with NAVA.

For these reasons, a deeper analysis was performed on the supplementary materials,
firstly by skimming the articles analyzed in the systematic review to identify those that
dealt only with predicting the success of the weaning attempts, then by collecting

detailed information from each of them regarding the methods.

SELECTION OF RELEVANT ARTICLES

Of the 95 articles included in the systematic review, 28 were deemed directly relevant
to our work. The summary table of evidence of the systematic review had as its column
"Main Prediction Outcome", which allowed only articles containing some reference to
"Weaning failure or success" or similar descriptions to be selected. To verify that none
of the relevant works had been excluded, the titles were also screened. In cases where
neither the title nor other information gathered by the authors of the systematic review
was sufficient to determine its degree of relevance to the current study, the abstract

was analyzed. Some of the doubtful or partially relevant works were however included
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in the subsequent analysis, to include them in the comparative analysis of materials and

methods.

INFORMATION COLLECTED FOR EACH ITEM

The selected articles were read, getting together materials and methods from the

section

e The type of "raw" data collected, grouping it into three categories: data from a
database of patients undergoing weaning (where each patient represents a
record), continuously recorded data collected by ventilators/other equipment,
or only clinical data from patients

e The frequency of data collection at the source, also grouping here into various
categories

o High-frequency data (>=1 Hz)

o Medium frequency data (between 1 Hz and a record every 30 minutes)

o Low-frequency data (with the time between two consecutive records
>30m)

o no data was recorded "continuously", for those articles that collected a
single measurement for a given ventilation parameter or directly a
summary statistic

e data frequency at the end of the cleaning and pre-processing phase, to capture
the type of data entering the model, with the same frequency categories seen in

the previous point.

The categories were created with the high-frequency data in mind that they had the
potential to allow frequency domain transformations, for example by allowing heart
rate (HR) variability over time to be calculated as a predictive model parameter, as well
as a simple average on the minute, hence the limit at 1Hz. The 30-minute threshold
instead was chosen because it allows highlighting patterns that have longer-term

variability.
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Some peculiarities emerged from the analysis: the two most used databases were
WEANDB (data collected continuously at high frequency but only during a Spontaneous
Breathing Trial) and MIMIC (a complete clinical database with also clinical notes in free
text and examinations, whose data collected for ventilation parameters are medium

frequency) (.

In addition to this preliminary information, a short note of free text has also been

recorded to capture specific peculiarities of the article with potential relevance.

The table obtained is as follows:

Table | — Literature Review, displaying the original bibliographic reference, the type of
data that are collected, either from (W)eaning attempts, from (V) ventilation or
(C)linical variables, and the Frequency (High, Medium, Low or No frequency if there
was no real-time recording of variables). WeanDB and MIMIC refer to the most

common benchmark databases available for studies.

Author Raw data Raw data Pre-analysis Notes
type frequency frequency
(4) WC HF HF Spectral analyses
(5) WEANDB HF MF Cross-validated feature
selection
(6)
(7) w NF NF
(8) VC MF MF Early warning system +

missing values handling

(9) WEANDB HF MF Inspiratory cycle power
analysis

(10) WEANDB HF LF

(11) WEANDB HF HF Spectral analysis

(12) VC MF LF Normalization

(13) WEANDB  HF HF Symbolic

feature generation
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(14) WEANDB HF MF Sliding window and
clustering approach

(15) w NF NF Neural Network (not
Deep Learning)

(16) Vv MF MF SVM Feature selection
and automatic predictor
forecast

(17) WC NF NF Neural Network

(18) WC NF NF

(19) cw LF LF SVM Feature Selection
is a RCT with a Clinical
Decision Support
System

(20) WC NF NF Argues about selection
bias

(21) C NF NF Resampling to correct
the class imbalance

(22) C NF NF

(23) ? ? ? Clustering (data mining
approach)

(24) V(W)C HF HF Breath power estimate
+ RR and HR correlation
analyses

(25) WEANDB HF HF Symbolic feature
generation and Sliding
Window Variance
Analysis for
dimensionality

reduction
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(26) VC ? NF Variable Inflation Factor
to address collinearity
and Bayesian decision
analysis

(27) VC HF HF/LF Temporal pattern

classification

(28)

(29) MIMIC3  MF MF SVM for missing values

(30) MIMIC3  MF MF Actor critic
reinforcement learning

(31) MIMIC2  NF NF On newborn

Starting from the preceding articles, a series of ideas have been collected on how to

analyze the data collected for the current work, detailed in the following subsections.

Definition of the outcome

Most articles agree in defining a weaning attempt as a "success" if it allows the patient
not to be re-intubated for the following 48 (or 72) hours, see as an example the work of

Fabregat.

To discriminate true extubation from an artifact, Fabregat (Fabregat et al., 2021) and
the logs contained in the medical record. Other studies, on the other hand, do not
address the problem of determining when extubation occurred, often because they are

based solely on Spontaneous Breathing Trial data.

Patient selection

A particular focus goes on the management of the patient who died during the study.
Different studies had varying approaches in this regard. Some studies, such as all those
based on WEANDB do not deal directly with the issue, while others such as Castifieira

and Fabregat (Castifieira et al., 2020; Fabregat et al., 2021) exclude them. However,
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information about the patient's future death is never available at the time of prediction
in a hypothetical real-world setting, so it cannot be used as a weaning predictor, as it is
a post-intervention variable. The risk that follows is to create an optimized predictive

model on a slice of patients not detectable a priori.

Hsieh (M.-H. Hsieh et al., 2018) on the contrary, considers failed attempts at extubation,
including them in the analysis in cases where death occurs less than 72h after

extubation, a preferable approach.

In studies with an approach like that of the NAVA vs PSV dataset, in which a Spontaneous
Breathing Trial is carried out to determine subsequent extubation: the use of the model
is placed in a phase after the evaluation of the clinician, without suggesting extubation
from the data recorded continuously but limiting itself to giving a "second opinion" on
the doctor's decision. In most of the studies, see as an example the work of Fabregat or
Hsieh (Fabregat et al., (Fabregat et al., 2021; M. H. Hsieh et al., 2019; M.-H. Hsieh et al.,
2018) the clinician begins with the analysis of a series of variables that allow
determining the adequacy for the suspension of mechanical ventilation, called
Readiness Testing. If the patient meets the criteria, the staff proceeds to perform the
spontaneous breathing (SBT) trial, then evaluates a set of 60 different predictors
(Fabregat) or 34 (Hsieh); and if SBT is successful, ventilatory support is removed. This
corresponds to the experimental protocol applied in the study on whose data the thesis is

based.

This limits the patient population to those assessed as weanable by the clinician,
therefore training data contains only patients considered ready for extubation. The main
consequence is that it is not possible to directly investigate what would have happenedin
cases where the model suggested a different course of action than that of the
clinician, see for example the work of Hsieh or Kuo (M.-H. Hsieh et al., 2018; Kuo et al.,
2015) in which the clinical database contains only those patients for whom the physician
was confident enough to trust the model used, excluding possible extubations suggested
by the model but not recommended. Paradoxically, as Yu suggests ( (Yu et al., 2019) the

more competent the clinician is (the more consistent his decisions are and the variability
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in treating similar cases is reduced) the more difficult it is for the algorithm to learn the

consequences of behaviors that are not explored.

Feature Extraction | — summaries and transformations

The inputs for the predictive model don’t use raw clinical data, but they find appropriate
transformations and representations to summarize the most important characteristics.
All articles contain a section dedicated to extracting features from the collected data

series.

e (Castifeira (Castifieira et al., 2020) extracts summary stats of time series such as
correlation structure, distribution, entropy, and stationarity. In the article, the
projection of the time series of vital signs in the "feature space" allows for
capturing the underlying statistical and temporal behavior of the vital signs.

e Other relevant characteristics can be obtained from ventilator data, as in
Chaparro's paper, where moving average models (ARMA) and autoregressive
models with exogenous input (ARX) are extracted with autoregressive models
(AR) and are then used to transform continuous data into input for models.

e These parameters can be combined to compose clinical scores (Fabregat et al.,
2021) already present in the literature and guidelines. Please refer to the table
below for a detailed list of these parameters, either recorded directly by the fan
or calculated later.

e For continuous variables (all and except BMI and gender), see as an example
Fabregat (Fabregat et al., 2021), where they were normalized to have zero mean
and variance equal to 1. In the proposed analysis, data with a normal z-score with
p = 0.985 were considered outliers and removed. The same normalization
approach applied to all variables is also found in the work of Hsieh (M.-H. Hsieh
et al., 2018) and others, except for the removal of outliers, which are retained
instead.

e To the various approaches that consider only the analysis of Spontaneous
Breathing Trials is added the work of Tsai (Tsai et al., 2019) that analyzes the 48

before extubation, more similar to the dataset analyzed for this thesis work
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Feature extraction Il—Moving window

To find the optimal size of the time window, several approaches are proposed in the

papers analyzed:

e In Castineira’s paper (Castifieira et al., 2020), patients for whom there is a signal
interruption greater than 20 minutes were excluded, while inferior intervals of
an absence of signal in the data have been filled with a Gaussian process, as
defined by Rasmussen (Rasmussen & Williams, 2006) and O'Hagan (O’Hagan,
1978)

e In Fabregat's paper (Fabregat et al.,, 2021) the variables are subjected to a 2-
hour moving average with 20-minute "bins" and common origin at the patient's
entry into the ICU. From this, the derived variables (e.g. clinical scores) are then
calculated. This is also done to reduce the number of missing data points due to
errors during the vital signs or ventilation recording process.

e InYu (Yuetal, 2019) as well as in other articles, it is emphasized that data in
intensive care can be irregular, prone to errors and that some physiological
parameters are detected several times an hour, while others are measured only
once in several hours. As a solution, classical interpolation methods are
insufficient and it is therefore suggested to use Support Vector Machines (SVM)
to predict missing ones, obtaining complete data for each patient, with a
temporal resolution of 10 minutes, from the time of admission to that of
discharge.

e In Arizmendi ( (Arizmendi et al., 2009) it is proposed to determine the optimal
width of the rolling window in the range from 3 to 100 consecutive time points
using two U-Mann-Whitney tests between groups S (successful weaning) and F
(failure) and between groups S and R (late failure). From the total p-values of the
comparison between these groups, minimum local and global values were
obtained for a given window width. A similar approach is in Giraldo (Giraldo et
al., 2006) where is the p-value used on a series of progressively longer movable
windows that identifies the optimal length of respiratory cycles for analysis, then

selecting the lowest value
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Once the optimal width of the window has been determined and the completeness

ensured, the classification of predictors according to Fabregat (Fabregat et al., 2021) is

proposed for the types of variables recorded, completed also with an additional list of

possible predictors from the various studies analyzed:

Table Il - Candidate predictors. A list of candidate predictors has been extracted from
the relevant studies, citing the original study whenever possible. Classification

provides a distinction between categories of possible predictors.

Typology

Description

List of variables (with the source if to be calculated)

1

Time series
directly obtained
from the patient

data stream

e Inspiratory time (TI)

e Expiratory time (TE)

e Breathing cycle duration (TTot)

e Tidal Volume (VT) in mL/kg of ideal body weight
or liters

e Ventilation Mode

e Airway occlusion voltage at 0.1 seconds (P0.1)

e Peak/Maximum inspiratory pressure (MIP)

e Peak flow setting

e Maximum expiratory pressure (MEP)

e Plateau pressure

e Pressure support level

e PEEP

e Negative Inspiratory Force (NIF)

e Static resistance (/compliance) from the
inspiratory pause

e Dynamic compliance

e FiO2

e Respiratory rate (RR)

e Heart rate (HR)

e (02 Saturation (Sp02)
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Days of mechanical ventilation

Days of ICU stay (/hospital stay)

Variables
derived

type 1l

from

Respiratory rate-oxygenation index (Fabregat
et al., 2021)
Work of breathing index (Mikhno & Ennett,
2012)
Rapid Shallow Breathing Index (Fabregat et al.,
2021) both in itself and how much has changed
between the beginning and end of SBT
Inspiratory fraction (Chaparro et al.,, 2012;
Chaparro & Giraldo, 2014)
Half-inspired flow (Chaparro et al.,, 2012;
Chaparro & Giraldo, 2014)
02 saturation to inspired fraction ratio [check if
it is Pa02 / Fi02 (M.-H. Hsieh et al., 2018) ]
Alveolar-arterial oxygen pressure difference
(Hsu et al., 2013)
From RR, HR, Ttot, and VT (Correa et al., 2010)

o Mean Value

o Median Absolute Deviation

o Variation Coefficient

o Temporal Interquartile range

o Standard Deviation frequency

o Aymmetry coefficient

o Kurtosis coefficient

o 95% cumulated energy frequency

o First- and third-quartile frequencies

o Spectral interquartile range

o Lempel-Ziv complexity
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From any continuously recorded variable
(Verduijn et al., 2007)

o Mean value

o Median value

o Soft minimum (0.05 percentile)

o Soft maximum (0.95 percentile)

o Soft empirical range (difference
between the soft minimum and
maximum),

o Change (difference between first and
last value)

o Variance around the mean

o Slope coefficient of a linear model fitted

to the data

Information on
(discrete) events

obtained from

ICU personnel

Number of previous MV events
Number of weaning attempts
Weaning Method

o T-piece

O Pressure support <8 cmH20

o Spontaneous Breathing Trial
Total Cumulative Dose (sedatives and
analgesics)
Total Given Dose (sedatives and analgesics)
Glasgow Coma Scale
RASS - Richmond Agitation-Sedation Scale
APACHE Il Score [ MOF/Immuno-/AKI + Age +
Temperature + MAP + pH + HR + RR + Na+/K+ +
S-Cr + Hct% + WBC + GCS + FiO2 ]
TISS scale - simplified therapeutic intervention

scoring system
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e Systolic/Mean/Diastolic Arterial Pressure
e Cardiac Output

e Blood chemistry tests

o Arterial pH
o PaCO2
o Pa02

o Hemoglobin

o White Blood Cells
o Hematocrit (%)

o Blood Urea Nitrogen
o Creatinine

o Sodium

o Potassium

o Calcium

o Phosphate

o Albumin

o Glucose

o Base excess

Demographic
variables
obtained at entry
(assumed not to
change during

hospitalization)

e Age at admission to ICU (both continuous and

e Body Mass Index

e Gender

categorized at >=65 years)

e Main diagnosis (etiology of Respiratory Failure)
o Chronic Heart Failure (Congestive or
MI)
o Neurological Disease (Central or
Neuromuscular)
o Pulmonary Disease (Pneumonia or

COPD)
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o Abdominal Disease (Renal or
gastrointestinal)
o Post-operative
o Other (incl. Cancer)
e Reason for intubation
o Hypoventilation
o Airway obstruction
o Pneumonia
o Cardiogenic pulmonary edema
o Septic shock
o COPD
o Post-operative
e Number of comorbidities
e Comorbidities
o Cardiovascular accident
o Chronic heart failure
o Chronic lung disease
o Chronic hemodialysis (renal disease)
o Chronic liver disease
o Diabetes
o Old stroke or neurological disorder
o Active cancer

o Immunocompromised

e SEMICYUC Code [Spanish ICU only, not
applicable]
e APGAR1 and APGAR5 [only for studies

containing infants, not applicable]
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However, considering the features generated by data windowing as predictors of the
model is a problem both from a practical point of view and also from a theoretical point
of view (Verduijn et al., 2007) In practice, it is difficult to obtain "tabulable" data from
the time series due to the difficulties in the different sampling times and time extensions
of the recorded data. From a theoretical point of view, on the other hand, the reasons
are three: the risk of overfitting that derives from an increase in the number of features;
the risk that the analysis models are based on the assumption that two contiguous
values are not correlated with each other (an assumption which is not valid in the case
of time series) and the risk that, ignoring these correlations, you lose part of the
information that was contained in these (imagine for example two slightly out of phase

time series, same data but the correlation information is lost).

Preliminary Literature Review



Feature selection

e Arcentales identifies the most relevant features through Sequential Floating
Feature Selection (Pudil et al., 1994) which maximizes the proportion of patients
belonging to a given class with optimal accuracy.

e 10-Fold Cross Validation is proposed in various studies. Note the case of
Arizmendi (Arizmendi et al., 2009) in which it was then once the features were
identified, another 10-fold CV was carried out to estimate the value of the "Final
Average Test Classification result" using only the previously selected variables.
The result is to conflate the results of the model, which is therefore not
comparable with the others.

e C(Castineira (Castineira et al., 2020) proposes several "baseline" approaches, in
particular removing features with low variance, using Principal Component
Analysis, and removing highly correlated features to reduce the amount of
redundant information. However, the approach used in the paper consists of
clustering to identify a reduced number of characteristics, applying the affinity
propagation method. The biggest advantage over PCA is that the resulting
features can be interpreted.

e Correa (Correa et al., 2010) proposes a step-forward selection method in which
variables are progressively eliminated if they are not statistically significant (with
p-value <0.05). This is also not a method capable of producing reliable subsets of
features, making the model incomparable with others.

e Mikhno (Mikhno & Ennett, 2012) takes a similar approach, where the Pearson
correlation coefficient for each feature concerning each other feature is
calculated and all features with R2>0.7 and p-value>0 are deleted in bulk. 05. In
addition to this, features recorded in <15 patients in the weaning failure group
are also excluded to maintain a reasonable cohort for statistical analysis.

e Hsu (Hsuetal., 2012, 2013) implements backward feature selection.

e Tsai (Tsaietal., 2019) proposes to use the variance inflation factor (VIF) to solve
the problem of collinearity, recursively eliminating one by one the most highly

correlated variables, which otherwise would potentially have resulted in the
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inclusion of non-relevant variables. This is not complemented by an assessment
of the clinical usefulness of the collinear variables to decide which of the two to
eliminate.

e Tsai (Tsai et al., 2019) suggests three possible different methods for feature
selection: Multivariate adaptive regression splines (MARS), stepwise logistic
regression (SLR), and random forest (RF) to rank relative importance among
variables. It is not suggested a priori one over the other, but all three are
implemented in parallel. Note how the relative frequency of one variable
concerning the others is then used after a validation process on 100 randomly
generated but stratified subsets (to reflect the proportions observed in the
population of that department) to have a 1:1 balance between failed and
successful weaning.

e Verdujin (Verduijn et al., 2007) discretizes all summary variables into five
categories using quintile values of patient distribution; values missing in the
calculated summaries were charged with the median value of that summary.
Second, it selects the subset of features based on the cross-validated 10-fold
information gain versus the outcome of the mechanical ventilation disruption on

the univariate probability tree model.

Finally, Tsai (Tsai et al., 2019) recommends that variable variables obtained from the

feature selection process ( both retained and eliminated) undergo clinical validation.

Classification algorithm

Various techniques have been proposed, helping to broadly cover the entire spectrum

presented in textbooks on the subject (James et al., 2021a) :

e Arcentales (Arcentales et al., 2015) proposes a "fuzzy K-NN" in which the degree
of proximity is calculated with the Euclidean distance for the various classes to
which they belong. However, with several predictors, Euclidean distance can’t
be considered an appropriate measure.

e Mikhno (Mikhno & Ennett, 2012) proposes a simple logistic regression, trying as

candidate models all combinations of 3 characteristics, with and without
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interaction terms, then bootstrapped 100 times to obtain robust estimates of
the area under the ROC curve.

Castifieira (Castifieira et al., 2020) after an initial selection proposes a Gradient
Boosting Tree due to its greater resistance to overfitting, which depends on the
fact that observations that are difficult to classify have a progressively greater
weight. It adds also a shrinking factor to favor smaller trees, which are also less
prone to overfitting (see the relationship between Bias and Variance in the
textbook (James et al., 2021b) )

Other papers try several algorithms, as in Chaparro's works (Chaparro et al.,
2012; Chaparro & Giraldo, 2014) in which LDA, SVM, and CART are tested. Tsai
(Tsai et al., 2019) proposes various alternatives, including Support Vector
Machines, boosted logistic regression, and neural network backpropagation,
then evaluating performance for each through a confusion matrix. The main
issue of this approach is that, when they are evaluated on the same test data, it
is not possible to determine the best, and the choice of the algorithm becomes
another "parameter to be optimized", which should be optimized on the
validation data and not on test one.

Hsieh (M.-H. Hsieh et al., 2018) presents a paper based on Neural Network, then
improved in the subsequent work of 2019 (M. H. Hsieh et al., 2019), in which a
multilayer perceptron was used, (M. H. Hsieh et al., 2019) with a 10-fold CV to
select hyperparameters, optimizers, and the most performing loss function. The
model consists of an input layer (37 variables), a hidden layer of 19 dimensions,
and an output layer of 2 dimensions. The network was optimized using Adam
with predefined parameters as described by Kingma (Kingma & Ba, 2014) The
SeLU (Scaled Exponential Linear Unit) activation function was used for each layer,
and a Softmax for the output layer. A 20% dropout (to mitigate overfitting) was
applied to the input layer and a 50% dropout rate to the output layer, according
to suggestions in Srivastava (Srivastava et al., 2014). The categorical cross-
entropy error function was used as the loss function for binary classifiers. The

balanced accuracy was then calculated.
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Many of these values have made it possible to obtain an area under the curve (AUC) as
a performance evaluation tool. To check if this is significantly different between a simple
use of the calculated variables (e.g. TISS score) and the models used, (M.-H. Hsieh et al.,
2018) suggest using DelLong's AUC tests (Delong et al., 1988) Moreover, to obtain
credible estimates of confidence intervals, Mueller (Jonas S Almeida, 2013) proposes
to create 100 datasets through random sampling before proceeding with cross-
validation, then choosing the median performance of each algorithm and calculating its

variability.

Validation (internal)

Of the various validation techniques, heterogeneous among the reference articles, there

are considerations to be made:

e Leave-One-Out Cross-Validation as in (Arcentales et al., 2015; Gottschalk et al.,
2000) has not been considered a viable solution. Although particularly useful
since it does not tend to overestimate the Error Rate (almost all available data
are used for model training), it has an important disadvantage, as described in (
(James et al., 2021c). When performing LOOCV, models are trained on an almost
identical set of observations. Because the average of highly correlated quantities
has greater variance than the average of as many quantities that are not as highly
correlated, the estimation of the test error resulting from LOOCV tends to have
greater variance than the estimate of the test error resulting from other
methods, such as a k-fold CV

e Castineira ( (Castifieira et al., 2020) validation) — 10% (test) repeated 300 times
to obtain accuracy distributions and mitigate problems of specific subsets of the
original data. On the choice of cut-offs for the various splits, however, no further
details are provided.

e To mitigate the problem of imbalance between successful and failed attempts of
weaning (class imbalance), Fabregat (Fabregat et al., 2021) proposes a validation
approach "weighted" by weaning results so that the creates balanced test sets

first by randomly removing part of the points of the ruling class and then
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correcting with a weighted selection any remaining differences. A similar
approach is that of Tsai (Tsai et al., 2019) which provides for the selection for
each record of the minority class to select a random one of the majority class,
thus composing the training set. This data selection process is then repeated 100
times to validate these generated random subsets.

e In which for each neural network examined, 25 independent runs of an 8-fold
Cross Validation were performed, to obtain different data partitions (6 parts for
training, 1 for validation, and 1 to test the model). This is followed by a further
phase of feature selection (always the k-fold CV, this time with a sequential
backward feature selection) repeated several times, and finally a last round of
CV with only the features generated to obtain the average classification
performance. However, this practice of using test data multiple times is not

recommended in subsequent articles (Lee & Chien, 2022)

Calibration of the model on the population on which it could be used

It is one of the central points both for the current literature on the subject (Walsh et al.,
2017) and concerning the (Walsh et al., 2017) bias (Collins et al., 2015) and in so that it
was "calibrated" on the underlying epidemiological situation (in the first case) or at least
that they were considered in the study of population determinants such as age or

ethnicity (in the second).

Most articles are recorded as "does not mention ethnicity, generalizability or
representativeness of the model" or "does not provide information on population
variables" or "does not discuss the potential effects of adding variables such as ethnicity
in the model" (Gallifant et al., 2022) Some positive exceptions are the work of Hsu (Hsu

et al., 2013) matched cohorts" or Hagan.

The comparison, as Tsai recalls (Tsai et al., 2019) must be made between the tools used
in clinical practice (eg APACHE score) and the predictive model, to compare the two real
situations and be able to determine the advantage given by the use of a predictive

model.
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CHOICE OF THRESHOLD DECISION VALUE

As suggested in Fabregat's work incorrect prediction of a "failed" extubation would
result in an unnecessary prolongation of the time on mechanical ventilation, while
predicting a "successful" extubation destined to fail can potentially create complications
for the patient. The risks of incorrect intervention are summarized by Garde and Boles
(Boles et al., 2007; Garde et al., 2013) pointing out that the need for reintubation
involves an 8-fold higher probability ratio of nosocomial pneumonia and a mortality risk

6 to 12 times higher.

Tsai's work (Tsai et al., 2019) fits into this discussion, proposing a method for evaluating
the decision as a whole. In fact, in addition to the accuracy results of the predictive
model, a real Bayesian Decision Analysis is carried out (better described in the work of
Clemen (Clemen, 2010) ) ). Starting from the Expected Monetary Value (EMV) and the
Expected Value of Experimentation (EVE), it calculates the expected value of profit/loss

of all possible actions.

Finally, a sensitivity analysis is then carried out to assess the value of the information
provided by the forecasting model and identify the best weaning failure rate that
maximizes the value of information to validate the forecasting model. This phase is
fundamental to providing a link from predictive to prescriptive analysis, as also pointed

out in the work of Lee and Chien.
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