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Abstract 

Hyperspectral images can collect a significant amount of data, from which useful information 
can be extracted with proper techniques. This work proposes an approach for hyperspectral 
images segmentation without direct application of common clustering methods on the 
hyperspectral data. Since clustering is computationally very expensive, the proposed approach 
reduces the spectral dimension of the image, through principal component analysis, and its 
spatial dimension, through wavelet transform, in order to apply the clustering algorithm on a 
lower resolution version of the data and then train a classifier to label the high resolution 
image. The method is tested on an image measuring reflectance in the Near Infrared region of 
the electromagnetic spectrum. 
 
 



  



Riassunto 

Mentre le normali strumentazioni di fotografia si limitano in genere a catturare l’intensità 
della riflettanza di una scena o oggetto per un numero limitato di bande spettrali, 
corrispondenti a quelle necessarie per produrre una immagine interpretabile dall’occhio 
umano, le fotocamere iperspettrali possono catturare, per ogni pixel, l’intera risposta spettrale 
in un ampio intervallo quasi continuo, dipendente dal tipo di fotocamera stessa. Di 
conseguenza, una elevata quantità di misurazioni è disponibile per l’estrazione di 
informazioni utili. L’estensione dei dati raccolti in una singola immagine iperspettrale è 
potenzialmente un vantaggio in termini di quantità di informazione ricavabile riguardo la 
scena o l’oggetto, ma è anche una “maledizione” (Bellman, 1961) poiché elaborare dataset di 
grandi dimensioni risulta più costoso computazionalmente e dunque in genere più complesso. 
Anche i normali spettrometri riescono a rilevare ampi range dello spettro elettromagnetico, 
ma senza fornire alcuna informazione spaziale, ovvero misurando la riflettanza dell’intera 
scena e non di un singolo punto di essa, fornendo quindi informazioni medie qualora il target 
non fosse ben delineato. In applicazioni industriali come il controllo qualità o il monitoraggio 
di processo è importante che le informazioni spettrali, correlabili alla composizione chimica e 
alla natura fisica, siano identificate in contemporanea per numerosi punti dello spazio in 
maniera specifica e non in media. Da qui l’applicazione di fotocamere iperspettrali, con la 
necessità di metodi in grado di processare elevate quantità di dati in modo 
computazionalmente efficiente. Il presente lavoro, in particolare, si focalizza sul problema 
della segmentazione di una immagine iperspettrale, individuando la “naturale” classificazione 
di oggetti/materiali componenti l’immagine. Se nessuna informazione è disponibile riguardo 
alla specifica “firma spettrale” (spectral signature) dei materiali studiati, è necessario eseguire 
la classificazione con tecniche di apprendimento non supervisionato (unsupervised learning), 
che spesso richiedono una elevata quantità di calcoli dovendo tener conto delle distanze fra 
tutti i punti e/o gruppi. In particolare, una delle tecniche più rigorose, il clustering gerarchico, 
richiedendo il calcolo di una matrice di distanze fra tutte le possibili coppie di punti, è anche 
una delle più impegnative dal punto di vista del costo computazionale, che diventa proibitivo 
per dataset di grandi dimensioni. Nel seguente studio si propone di ridurre la dimensione 
spaziale e spettrale della immagine iperspettrale, applicando poi tecniche di classificazione 
non supervisionata alla versione a bassa risoluzione del dataset originale, e definendo 
successivamente un classificatore lineare sulla base dei raggruppamenti ottenuti nella fase di 
apprendimento non supervisionato, con lo scopo di applicare il classificatore lineare alla 
immagine ad alta risoluzione per ottenerne la segmentazione. Essendo il costo 
computazionale della classificazione non supervisionata predominante, l’obiettivo è mostrare 



che tale successione di passaggi riduce di fatto lo sforzo e dunque il tempo richiesto per 
ottenere la segmentazione della immagine iperspettrale. L’applicazione della tecnica viene 
illustrata su un caso di esempio, che vede la necessità di distinguere i diversi materiali di una 
serie di oggetti di cui si cattura la riflettanza nel vicino infrarosso (NIR). Per ridurre la 
dimensione spettrale si propone di applicare l’analisi delle componenti principali, che proietta 
le “osservazioni” (ovvero i punti dell’immagine) su una nuova base costruita in modo tale che 
il primo vettore, o “prima componente”, catturi la maggior parte della variabilità dei punti, 
massimizzando l’errore residuo, e ogni vettore successivo, ortogonale ai precedenti, catturi di 
volta in volta la maggior parte della variabilità residua. In questo modo le prime componenti 
sono in grado di trattenere la gran parte dell’informazione, nell’esempio specifico più del 99% 
della variabilità totale. Successivamente, la risoluzione spaziale viene ridotta con applicazione 
della trasformata wavelet, utilizzando wavelet di Haar. Ad ogni passo, l’applicazione della 
trasformata dimezza larghezza e lunghezza dell’immagine tramite una operazione di media fra 
punti vicini e sottocampionamento (downsampling). In questo modo, la risoluzione può essere 
abbassata fino al limite in cui gli oggetti sono ancora ben distinguibili. Successivamente, 
avendo ridotto la dimensione sia spettrale che spaziale dell’immagine, è possibile applicare un 
metodo di classificazione non supervisionata, quale ad esempio il metodo gerarchico, qui 
preferito ad altri perché più rigoroso. Avendo associato ogni punto ad una classe, è dunque 
possibile “addestrare” un classificatore lineare da poter applicare all’immagine ad alta 
risoluzione. I classificatori lineari definiscono degli iperpiani che dividono lo spazio delle 
osservazioni in regioni corrispondenti a classi diverse. Nel caso di esempio, il classificatore 
sviluppato su un dataset ridotto performa ottimamente anche sulla immagine ad alta 
risoluzione, mostrando come le tecniche proposte per ridurre la dimensione del problema 
consentano comunque di mantenere le informazioni significative contenute nel dataset 
originale. Ovviamente ciò rimane vero solo se le tecniche sono applicate correttamente. 
Infatti, il costo computazionale continua a diminuire riducendo la risoluzione, ma la qualità 
del risultato a risoluzioni troppo basse viene compromessa, non preservandosi la quantità di 
informazione minima richiesta per un corretto addestramento del classificatore. Di fatto, uno 
studio a diverse risoluzioni mostra l’ottimo dal punto di vista del bilancio fra qualità del 
risultato e sforzo computazionale. Si noti, infine, come la processabilità di una immagine 
iperspettrale non sia solo limitata dal numero di operazioni elementari richieste, direttamente 
collegata al tempo impiegato, che dipende dalla velocità della CPU. Infatti, l’effettiva 
realizzabilità della classificazione potrebbe essere compromessa, poiché limiti di RAM 
possono rendere impossibile la memorizzazione delle matrici di distanza necessarie per 
dataset di dimensioni molto elevate, nel qual caso metodi alternativi di elaborazione dei dati 
sono necessari, come ad esempio la suddivisione del dataset in parti. In futuro, i limiti della 
procedura proposta possono essere esplorati processando immagini iperspettrali più 
complesse, ad esempio immagini con trame intricate come foto di vegetazione.



La struttura del documento vede nel Capitolo 1 una introduzione generale alla fotografia 
iperspettrale e ai problemi connessi all’uso di questa tecnica, in particolare nell’ambito della 
segmentazione, proponendo una procedura di segmentazione alternativa alla diretta 
applicazione degli algoritmi di clustering; il Capitolo 2 richiama i concetti fondamentali dei 
metodi matematici utilizzati per la procedura; infine, i risultati ottenuti applicando la tecnica 
ad un caso di esempio sono presentati e commentati Capitolo 3. 
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Introduction  

Common colour pictures capture reflectance of objects and scenes for specific 
electromagnetic bands corresponding to the three colours needed to compose a colour image, 
either in printing or on screen. Conversely, hyperspectral images can capture a broad and 
almost continuous spectral response for each pixel representing the different points of a scene, 
also for regions of the electromagnetic spectrum not visible to the human eye. Clearly, several 
industrial applications such as process monitoring or product quality assessment could benefit 
from the use of this technique. The main challenge in deriving useful information is related to 
the size of the dataset itself, that is also the main advantage of this sensing technique. Various 
solutions have been proposed in literature to overcome this obstacle. Chapter 1, besides a 
more detailed presentation of the “curse of dimensionality” (Bellman, 1961), provides a 
synthetic overview of the techniques commonly utilized for this scope. In this study, the 
attention is focused on extracting information concerning the different materials appearing in 
a captured scene, a problem pertaining to the so-called image segmentation. The objective of 
the work is to propose a procedure combining several size reducing and classification 
techniques in order to segment an image that otherwise would require unbearable 
computational effort to be processed for extracting meaningful information. This procedure is 
briefly introduced and schematized at the end of Chapter 1. Chapter 2, then, presents the 
theoretical background necessary to understand and properly apply the methods employed. 
Chapter 3, finally, collects and comments the results obtained for a sample dataset very 
similar to possible industrial applications, capturing spectral response in the near infrared 
region for objects made of different materials.  





 

Chapter 1 

1 Hyperspectral images and 
segmentation 
 
In this Chapter a synthetic overview on hyperspectral imaging is presented, highlighting 
advantages and problems of this technique, with particular focus on the dimensionality issues. 
Afterwards, a procedure to approach the segmentation of hyperspectral images is introduced 
schematically, leaving to the following Chapters the detailed illustration of the technique, that 
is the objective of this study. 

1.1 Hyperspectral imaging 

1.1.1 A problem to be solved 

The human eye is only able to capture signals in a limited range of the electromagnetic field. 
According to the widely accepted Retinex theory (Land et al., 1971), there are three 
independent cone systems consisting of receptors peaking in three different wavelength 
regions of the visible spectrum, going from about1 380 nm to 740 nm. Each system forms one 
image of the world, and subsequently the three images contributes to generate the final colour 
picture of the outside scene.  
The common still image camera, that is the most widely used image capturing tool and 
historically the first one, is also optimised to capture light photons from the visible spectrum, 
and specifically from the wavebands necessary to build an image interpretable by the human 
  

                                                 
1 De facto, the amplitude of the range perceived by the human eye varies from person to person. The most common minimum 
and maximum value for this range are 380 nm and 740 nm, therefore this portion of the electromagnetic spectrum is 
conventionally called “colour spectrum” or “visible spectrum”. 
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Figure 1.1 – Electromagnetic spectrum. Schematic representation by NASA2 (black and white conversion of the 

original colour image) 

 
eye, providing very limited spectral information (Elmasry et al., 2012). In reality, the visible 
light is only a very small portion of the electromagnetic spectrum (Figure 1.1). 
The solar radiance itself, in fact, covers almost the whole electromagnetic spectrum (Iqbal, 
1983), and every material can absorb specific wavelengths more effectively than others, 
depending on its physical and chemical properties. As a consequence, peaks in the reflectance 
spectrum, detected by specific equipment, correspond to low absorption of the incident 
radiance and define the so-called “spectral signature”, unique of each material (Ceamanos et 
al., 2016). Hence, the possibility to exploit these differences in reflectance to characterize 
different materials through spectral response detection.  
Detection in the “frequency domain” of the spectral response and in the “spatial domain3” of 
traditional imaging technology are usually separate techniques using different 
instrumentation. Nevertheless, several industrial applications would benefit from 
simultaneous exploration of both spatial and frequency domain. A representative example is 
given by the meat industry, where assessing the quality of the product usually requires 
destructive, time consuming, expensive evaluation methods, often necessitating sample 
preparation (Damez et al.,2008). Conventional spectroscopy can give very detailed 
information about different materials with a non-invasive inspection of the sample, but, if the 
sample is analysed as a whole, only average spectral information can be obtained, and spectral 
response of specific areas can be measured only removing samples from those areas of the 
product, resulting again in a destructive method. On the other hand, colour imaging can only 
provide limited information about the chemical and physical characteristics of the product, 

                                                 
2 Refer to https://www.nasa.gov/directorates/heo/scan/spectrum/txt_electromagnetic_spec 
trum.html (last access: 07/2019) 
3 Technically, digital colour imaging detects frequency from three wavebands, related to three colours used to build all the 
visible spectrum on modern screens, but the spectral information is so limited, if compared to the amount of spatial 
information provided, that traditional imaging can be considerate a mostly “spatial” detection technique. 
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and may be insufficient in quality assessment, especially in today’s highly competitive 
marked requiring high quality products at an affordable price (Elmasry et al., 2012). Similar 
problems are encountered in the pharmaceutical industry, where even higher quality 
requirements demand a tight real-time process monitoring and control at all stages, and 
traditional destructive techniques preclude the possibility to examine the whole batch, limiting 
the inspection to small samples (Gowen et al., 2008). 
Therefore, a technique able to integrate the detection of both spatial and frequency 
information would be a very promising solution. From this industrial need of non-invasive 
powerful techniques of process monitoring and quality assessment derives the active interest 
of the scientific community in hyperspectral imaging.  

1.1.2 Integration of space and frequency: Hyperspectral Imaging 

A hyperspectral image collects image information, in the form of reflectance of each point on 
several adjacent narrow spectral bands. In other words, for each pixel of the full spatial image 
of the scene/object a hyperspectral camera is able to detect the complete reflectance spectrum. 
The result is a three-dimensional image containing both spatial and reflectance information of 
the scene under examination. 
The great advantage of the hyperspectral imaging on other techniques, that is the capability to 
provide a high amount of data, is also the main drawback of this approach, theatrically called 
the “curse of dimensionality” (Bellman, 1961). In fact, extraction of meaningful information 
from large dataset might be particularly challenging for hyperspectral images, due to the high 
correlation among adjacent spectral bands, that translates into significant redundancy 
(Ceamanos et al., 2016). In practice, for most materials the reflectance varies gradually and 
slowly along the electromagnetic spectrum, often even near  the peaks characteristic of each 
material, being the sampling of hyperspectral camera usually very dense, or, in other words, 
being the width of each detected band very small, in order to obtain an almost continuous 
representation of the spectral response. As a consequence, some processing of the 
hyperspectral image to be examined might be necessary to obtain actual information, since 
“data” and “information” do not necessarily have the same meaning. It goes without saying 
that, in addition to the issues specifically related to the data dimensionality, hyperspectral 
imaging is affected also by usual problematics  of data acquisition, for example noise 
reduction. 
In literature, several pre-processing methods have been proposed, for both generic and 
specific applications.  
Noise might be present even simply because of the temperature reached by the electronic 
components in the camera, that generates disturbances in the detected signal (Ceamanos et al., 
2016), but some applications might have specific disturbances in the data detection related to 
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their peculiarities, for example in remote sensing of Earth’s surface, to study crops and other 
natural materials, specific methods for correcting the disturbance introduced by the presence 
of a thick layer of atmosphere have to be applied (Gao et al., 2009). 
Dimensionality reduction might involve feature selection, if it is possible to identify the bands 
that maximize the separability of different classes in the image (Backer et al., 2005). In other 
cases, especially for highly redundant and correlated data, as is often for hyperspectral 
images, it might be better to consider feature extraction, that transforms or projects the data 
into a new space where a reduced dataset can be defined, sometimes with better properties, 
like the non-correlation of the newly defined features in principal component analysis (PCA). 
Sometimes, combining specific spectral bands, it is possible to define features with a physical 
meaning through calculation of the so-called physical indices. This last practice is common in 
studies of vegetation (Ceamanos et al., 2016). 
Dataset size reduction does not involve necessarily and only the spectral domain. Also the 
special extension of the image can be subject to compression, through techniques like the 
application of a transform, for example the wavelet transform. 
Finally, more complex transformation and representation of the hyperspectral data might be 
useful in specific applications. 

1.2 Image segmentation 

1.2.1 Introduction 

For quality assessment and process monitoring through acquisition of hyperspectral images, it 
is essential to be able to distinguish different objects or materials in the image itself. 
According to Yin (2016) image segmentation is the “process of partitioning an image into 
multiple segments” – in other words it subdivides o “segments” the image into its constituent 
regions. In truth, also edge detection falls within the definition of segmentation, even if it does 
not properly find objects but only border lines. In general, being able to segment an image 
from the point of view of object shape and edges is fundamental in application of process 
monitoring such as automated inspection of electronic circuits (Gonzalex et al., 2010). Also 
detection of materials, that is fundamental for example in chemical applications like 
pharmaceutical process monitoring, is related to the detection of different “regions” in a 
broader sense, since different materials will have a different spectral signature and will form 
different clusters (or “regions”) in the hyperspace of the observation points; apart from noise, 
in fact, pixels capturing regions of the same material have a very similar spectral response. 
Consequently, in the reflectance space where each point collects the intensities of the 
responses detected for one specific pixel relatively to the several spectral bands, it is possible 
to perform clustering operations to detect different materials. Indeed, clustering is one of the 
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most diffused unsupervised segmentation techniques.  In essence, all clustering algorithms try 
to assign different labels to the data points on the basis of a definition of “distance” or 
dissimilarity between different groups and points. It is an unsupervised technique because all 
the groups are created by the algorithm and no information is given except from the distance 
definition and, sometimes, a termination rule, that could be as simple as fixing the total 
number of final groupings to be found. Being able to group the different materials constituting 
objects in an image in a completely autonomous and untrained way, this technique is very 
appealing for segmentation purposes, but, because of the distance computations for each 
point, it comes with the huge disadvantage of high computational cost. In fact, the most 
expensive algorithms commonly used, that are hierarchical algorithms, can be even of the 
order of , being  the number of pixels of the image (Kurita 1991). If the whole 
detected spectral response of a hyperspectral image has to be clustered, the computational cost 
can be unbearable at worst. Hence the necessity to try to reduce the size of the dataset without 
compromising the classification objective. 

1.2.2 Method proposed 

This work suggests a possible method involving a sequence of size-reducing techniques able 
to preserve the effectiveness of the clustering procedure, reducing the overall computational 
cost. The scheme of the method is shown in Figure 1.2. After eventual pre-processing, at first 
spectral dimension is reduced through principal component analysis (§2.3) preserving most of 
the variability in the dataset. In fact, being hyperspectral images highly redundant, it is 
possible to capture more than 99% of the total data variability defining very few “new” 
variables, combinations of the spectral bands. Spatial extension is reduced through application 
of a wavelet transform (§2.4) up to the coarsest level that still allows materials detection. 
Then, different materials/objects are identified through classic clustering procedure (§2.5). 
After a labelled dataset is obtained, a classifier can be trained (§2.6) in order to classify not 
only the original image but also future possible images capturing the reflectance of the same 
materials under similar experimental conditions. Since the classifier is trained on a reduced 
“spectral” domain, generated by few linear combinations of the original bands, to apply the 
classifier on reflectance data it is necessary to project the data onto the directions defined by 
the PCA. For the specific hyperspectral data used to build the model, this operation obviously 
produces the same results obtained by PCA, considering only the first few components. For 
new data, the projection step must be applied before the classifier, but it is clearly less 
expensive than a complete principal component analysis procedure, since it involves 
projection onto very few directions. The assumption justifying this long procedure is that, 
nonetheless, the final computational cost is lower than the cost of performing a clustering 
operation on the whole dataset (§3.6). 
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Figure 1.2 – Schematic illustration of the method proposed (left) as an alternative to direct clustering application 

(right). 
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Chapter 2 

2 Methods  

This Chapter presents a detailed theoretical treatment of all the techniques necessary to 
implement the procedure proposed for the segmentation of hyperspectral images. 
 

2.1 Image acquisition 

The hyperspectral image is acquired through the Specim FX17 camera4, as specified under the 
heading “Sensor Type” in the SM Report. The FX17 is a high speed Near Infrared5 detector 
with Indium-Gallium-Arsenide (InGaAs) alloy based photodiodes, designed for industrial 
applications, e.g. on-line quality control, inspection and process monitoring. The total spectral 
range detectable with the FX17 is from 900 nm to 1400 nm with maximum number of bands 
of 224. Full range detection speed is 670 fps, but if only specific regions are selected the 
detection speed increases. The maximum spatial sampling is 640 pixels. According to the SM 
Report, the full range available (number of Active Bands) and the maximum spatial sampling 
(number of Samples) were used, in order to store in the final image the maximum amount of 
information detectable with this specific model of hyperspectral camera. The Scanner 
Measurement Report (SM Report) in Appendix 2 – Camera report includes further 
information about the image acquisition device and the captured image itself. 
 
 
 
 
                                                 
4For more information: 
http://www.specim.fi/products/specim-fx17/   (last access: 07/2019)  
http://www.specim.fi/fx17-state-of-the-art-in-industrial-hyperspectral-imaging/  (last 
access: 07/2019) 
5 The Near Infrared Spectrum conventionally goes from 700 nm to 1400 nm (Byrnes, 2009) 
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2.2 Opening a hyperspectral image 

Reading the information of a hyperspectral image may not be as straightforward as expected, 
especially if the image analyst and the operator acquiring the image are not the same person. 
The already mentioned SM Report in Appendix 2 – Camera report, contains all the 
information given to the image analyst. The most important for the analysis appears 
summarized in Table 2.1. The meaning of these denominations may not be completely clear 
from the point of view of the structure of the final picture, and the bit depth is unknown, but 
the problem may be addressed in a very simple way, applicable to the manipulation of 
pictures with partial information availability, as follows.  
As previously stated, Active Bands ( ) is a common denomination for the different 
wavelength ranges ( ) acquired. Frame Recorded ( ) and Samples ( ) are respectively the 
width and the height of the “picture” acquired for each wavelength range, having a bit depth 
( ) of 16 bit. This last information may be obtained by trial and error: MATLAB allows to 
open an unknown file for binary read access with the function fopen and to read its content 
as a single column vector with the function fread. Therefore, the total length of this vector 
should be  with an unknown bit depth, to be specified as a function parameter. 
Common values for the bit depth are 8 bit, 16 bit, 32 bit, 64 bit. The total amount of bits 
available in the binary file imported with fopen is exactly , and its value can 
be obtained trying different bit depths in fread. Reshaping this 16-bit single column vector 
in a 3D matrix, more suitable for image analysis, can again be done by trial and error 
considering the six possible combinations of the three variables ( , , 

, , , ) and displaying the greyscale conversion of the 
picture corresponding to one of the -ranges acquired, verifying that the resulting displayed 
picture has a reasonable resemblance to the picture available in png format (Figure 2.3), 
capturing the objects reflectance in the visible spectrum. 
 It appears that, for this specific picture, the data was stored as follows: for each sample the 
intensity of the emission in one wavelength range is acquired for each frame recorded - 
therefore the reshaped matrix dimensions (rows, columns, depth) are ( , , ). The 
greyscale conversion for one on the wavelengths acquired by the instrument is obtained by 

Visible Light 
[400 nm -700 nm] 

Near Infrared (NIR) 
[700 nm – 1400 nm] 

Ultraviolet (UV) 
[10 nm – 400 nm] 

Figure 2.1 – Electromagnetic spectrum from UV rays to NIR radiation  
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rescaling the “slice” of the 3D matrix corresponding to the 150th wavelength band6 to the 
range [0,1], in order to obtain the maximum contrast between different objects captured in 
the picture for that  range (Figure 2.4). As expected, the objects brightness is different from 
the one in the png picture (visible spectrum) since different materials reflect the selected 
wavelength range with different intensities. 
Information made available online7 by the camera manufacturer confirms that the result 
obtained is reasonable since, if the camera is attached to a standard Specim lab scanner like 
the assembly shown in Figure 2.2, the scanning sensor collects full spectral information of a 
thin line of the object at a time, one pixel at a time. 
This trial and error technique may be used whenever the information available is not 
sufficient. 
 
Samples - S Active bands – AB Frame recorded - FR 
640 224 480 
Table 2.1 – Scanner measurement report 

 

 
Figure 2.2 – Typical experimental assembly: Specim Lab Scanner 40x20 and Specim Hyperspectral Camera FX 

17 (from the SpecimSpectral YouTube Channel)  

                                                 
6 The choice to consider a central band and not, for example, the first one or the last one is clarified in chapter 3, §3.1, and is 
related to lower detection efficiency at the extremes of the detectable range 
7 YouTube Channel SpecimSpectral, official channel of the manufacturer 
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Figure 2.3 – Greyscale picture of the objects to be analysed in png format 

 
 

 
Figure 2.4 – Greyscale conversion of the 150th wavelength range acquired 

2.3 Principal Component Analysis 

2.3.1 General purpose 

Instruments available to the industry are becoming increasingly efficient in collecting large 
amounts of data in a progressively shorter time (Wise et al., 1996). This improvement in 
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technology has important consequences, the main one being that the essential information 
needed for the purpose is hidden in the huge pile of data collected. It might seem obvious that 
collecting more data means having more information available about the object of study, but 
the unfortunate truth is that “data” is different from “knowledge”. Therefore, the main 
problem is that of data dimension reduction and extraction of information, eliminating 
correlation and redundancies. Principal component analysis (PCA) is a statistical technique 
widely applied to handle this problem.  
As seen in the previous paragraph, hyperspectral cameras can capture reflected 
electromagnetic radiation of a specified range of wavelength with great detail. Hyperspectral 
images thereby obtained can contain measurements for a significant number of bands – up to 
224 for the FX17 employed for this study. Considering that the picture  corresponding to 
a specified wavelength band can be unfolded into a single vector, connecting the end of each 
pixel line to the beginning of the subsequent one, a matrix containing the different pixels as 
rows and the different  as columns can be built. Figure 2.5 shows for example the 
unfolding process for N wavelength bands for a square picture of 16 pixels. Through this 
procedure the 3D hyperspectral image is rearranged into a standard 2-way table, where the set 
of variables (arranged in columns, corresponding to a different ) are observed for each pixel 
(called observation, arrange in lines). This dataset can be statistically analyzed applying 
PCA. 
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16     …  

Figure 2.5 – Unfolding hyperspectral image into 2D matrix. 
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2.3.2 PCA Fundamentals8 

Principal components are linear combinations of the variables ordered according to a criterion 
of quantity of information delivered by each one of the PCs, i.e. the first principal component 
retains most of the relevant information, from the second on the components optimize the 
residual information under the constraint of non-correlation (i.e., orthogonality) with respect 
to the other components. 
For simplicity of visualization, let us consider three variables for which several observations 
are registered. The variables could be three bands of the electromagnetic spectrum – if the 
visible light is considered, they could be the RGB components in which usually color pictures 
are decomposed. The observations could be the pixel of the final picture, physically 
corresponding to a square area of the object seen from the camera angle. Plotting all the 
observations for the three variables could give a graph like the one in Figure 2.6, in which the 
observations clearly cluster in a specific area of the RGB space, i.e. the portrayed object color 
has different shades of a specific combination of red, green and blue. In other words, the color 
of the picture does not vary in the whole visible spectrum, but rather along a specific 
direction, i.e. specific linear combination of the variables, called principal component (PC1 in 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

                                                 
8 This paragraph presents some basic concepts of principal component analysis, with a focus on its application in image 
processing. For a deeper and more complete presentation of the topic please refer to Bro et al. (2006), Bro et al. (2003), Wise 
et al. (1996), Jackson (1991), on which this paragraph is based. 

Figure 2.6 – Example of dataset for which variables are not completely independent 

PC1 
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the figure). This means that, with some approximation, the original set of variables (RGB) can 
be replaced by only one variable, the PC1, retaining most of the information in the original 
picture, therefore reducing the dimensionality of the problem. If the dataset has to be further 
processed, its compression could have important effects on the computational cost. For 
example, on the figure, along the PC1, two clusters may be noticed by eye inspection. 
Reducing the dimension of the problem, a potential clustering operation for classification is 
going to be less expensive from the computational point of view. 

2.3.2.1 Mathematical model 

Let  be the data matrix with variables as columns and observations as rows. The objective is 
to find the linear combination of all the variables (called PC1 or 9) that maximizes the 
variance of the orthogonal projection of the observations on the PC1 itself. In symbols, being 
 
  with  (i.e. ) (2.3.2-1) 

 
the objective may be written as: finding  such that 
 
  (2.3.2-2) 

 
Subject to the norm of  be equal to 1 (  is a vector of unit length) in order to have a bounded 
maximization problem (i.e. existence and uniqueness of the solution), otherwise the variance 
of  could be made indefinitely small just multiplying  by smaller and smaller constants. 
Notice also that . 
The vector of the linear combination coefficients  is usually referred to as the “loading 
vector” (or simply “loadings”), while  is the “score vector” (or “s10cores”). Each row  of 
the score vector is the result of the orthogonal projection of the corresponding row of  (i.e. 
the corresponding observation), indicated as  on the vector . In other words,  is 
the score of the projection of the vector  on the new basis vector . 
Solving the maximization problem of equation (2.3.2-2) is equal to find the maximum 
eigenvalue  of the square matrix  and its corresponding eigenvector . The matrix  
is the variance-covariance matrix of  if each column in the matrix  is centered with respect 
to the corresponding column average (i.e. each variable is centered with respect to its 
average). 
                                                 
9 Some authors call “principal component” the pair  rather than just  since the two vectors are closely tied together 
(Bro et al., 2006) 
10 Notice that by definition the covariance matrix is , being  the number of rows of  (i.e. of observations), 
but multiplication by a constant does not change the eigenvectors and multiplies all the eigenvalues by the same constant 

, not varying their descending order and therefore having no consequence on the principal components selection. For 
more details on eigenvectors calculation refer to any linear algebra textbook, like Hefferon (2017) 
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Considering the projections thus obtained, an approximation of the original dataset can be 
reconstructed as . Figure 2.7 (left) shows how the approximation would look like for 
the example considered in the introduction to section §2.3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.7 – (left) Approximation  of the original dataset  along the first principal component; (right) Second 

principal component and example of projection of a point 

 
Nevertheless, it could happen that “compressing” all the information stored in the several 
variables into just one new variable does not represent the dataset satisfactorily. One or more 
other new variables (or latent variables), combination of the old ones, could be added, and 
projecting the data on each one of them a set of corresponding score vectors could be 
obtained. In order to add latent variables that maximizes the amount of additional information 
captured by each one of them, an important requirement is for them to be linearly independent 
from the other latent variables, i.e. they must be orthogonal to each other. In fact, eigenvectors 
of the covariance matrix  are orthogonal by definition, and ordering them according to 
the magnitude of the correspondent eigenvalue gives, for each new latent variable added, the 
vector able to capture the maximum residual variation of the data, that is the variation not 
captured by the latent variables already introduced. Considering more than one latent variable 
and the corresponding projections of the data on them (Figure 2.7, right), a better 
approximation of the matrix  can be built as , being  the 
maximum number of latent variables that can be added (i.e. the rank of ), and the original 
dataset can be written as , where  is the residual and goes to zero with the 
increase of the number of principal components added. Obviously, the approximation 
improves if more PC are added, but on the other hand considering a number of PC equal to 

PC1 PC1 

PC2 
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the number of the original variables is meaningless from the data compression point of view. 
The optimal number of PC strongly depends on the problem and there is no general rule 
always true, but just “rules of thumb” useful to get an idea of the status quo. Some on these 
techniques will be illustrated through their application in the next chapter, along with other 
numerical results, for simplicity of discussion. 
 
Reduced the number of variables to only few relevant latent variables, classification could 
now be applied with significant lower computational burden. Nevertheless, segmentation 
remains one of the most expensive computational tasks to perform on a dataset, since it 
requires computing distances between all pairs of “points” (or clusters of points). In this case, 
each of these points corresponds to the score of a point in the picture on all the PCs retained. 
Therefore, the total number of points for which two by two distances must be calculated, 
grows exponentially with the number of points in the picture, and this is only the first step 
because at each iteration, when new clusters are formed by connecting two near points, the 
distances must be recalculated. Consequently, it is clear that compressing somehow the 
picture can produce significant benefits from the computational point of view. At the same 
time, it is important to remember that some information is inevitably lost with compression, 
therefore, when these techniques are applied, caution should be exercised to limit the 
compression up to a level that does not compromise the success of the classification 
operation. 
Since the object of study is an image, data compression techniques specific for images (and 
signals in general) can be applied, one of them being the wavelet transform, described in the 
next section. 
 

2.4 Wavelet Transform 

2.4.1 General overview 

As noted by Reis et al. (2009), a transform is nothing more than an alternative way of 
representing data. In fact, a signal – in this case the profile of the response intensity along the 
picture – can be decomposed into a combination of expansion functions each one multiplied 
by the corresponding expansion coefficient, being the set of functions a base if the 
coefficients are unique, as it is usually desirable. The suitability of a transform and/or of a set 
of basis functions depends on the scope of the analysis. For example, the Fourier transform 
has a set of basis functions that are periodic functions, well localized in the frequency domain, 
but unable to provide any form of insight in the time domain (or spatial domain in the case of 
a digital image). Therefore, the Fourier transform is appropriate for periodic phenomena, that 
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could be found in signal denoising (Reis et al.,2009) but also in image denoising, e.g. 
reducing periodic interference caused by malfunctioning imaging system, (Gonzalez et al., 
2010), since images could be seen as a signal that is a collection of intensity information for 
different wavelengths. Fourier transform could, in fact, be perfect for filtering in the 
frequency domain, but problems arise when the oscillation is not over all the domain, but it is 
localized on some portions of it, for example only on the background. An example of this 
situation is shown in Figure 2.8, obtained by increasing the brightness of the grayscale 
conversion of the image corresponding to the 150th band. Moreover, if the noise is not 
sufficiently regular and periodic, the Fourier transform could not be appropriate as well, as 
could happen for aerial photographs of lands where different natural materials must be 
identified and the irregular noise (in form of shadowing created by the irregular surfaces of 
natural objects themselves, like rocks or dirt) could be more difficult to be modelled and/or 
filtered properly in the frequency domain considering also the simultaneous presence of 
different objects with supposedly sharp edges. If a good localization in time (or space, in the 
case of a picture) is needed, other transforms are preferable. The simplest solution could be to 
“localize” the Fourier transform through a window function, applying the transform only to a 
portion of the signal at a time, covering all the domain (time or space) simply by shifting the 
window function. This approach is known as windowed Fourier transform or Gabor 
transform, from the name of the first scientist who proposed it. Basically, it divides the 
 

 
Figure 2.8 – Grayscale conversion of the picture corresponding to the 150th wavelength band. Brightness 

increased from 50% (reference value for the default brightness) to 80%. 
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time(space)-frequency plane into equal squares, and therefore the dimension of these square 
portions of the domain, being equal overall the plane, could be too small to capture properly 
low frequency features and too coarse to for the high frequency ones. For this reason, the 
windowed Fourier transform might still not perform well enough in some applications, even 
with the improved localization with respect to the normal Fourier transform.  
The wavelet transform, on the other hand, can provide a good insight on both frequency and 
time (or space) characteristic of a signal (or image), not only using basis functions well 
localized in the time(space)-frequency plane, but also dividing the domain into smaller or 
coarser subdivision depending on the frequency. Being the objective of this study the analysis 
of an image, from now on only the space-frequency plane will be considered, on the 
understanding that all the mathematical description of the wavelet transform will not vary if 
“space” is substituted with “time” in the case of other kinds of signals. 
 

2.4.2 The wavelet transform 11 

The wavelet transform results in an alternative representation of the data in the form of a 
lower resolution version of the original dataset plus details “removed” in lowering the 
resolution. The original data can then be reconstructed through a specific combination of the 
“approximation” and the “details”. This representation is obtained considering basis functions 
that are well localized in space and have the shape of “small waves”, hence the French 
ondelette and its English translation/transliteration wavelet. The wavelet transform may 
operate with real or complex wavelet functions. Complex wavelet transform may be useful to 
detect small details in pictures and oscillatory behavior (Torrence et al., 1998), but at a higher 
computational cost. Since this effort is not needed for the picture under examination, where 
objects of significant size are pictured and there is no oscillation that needs to be described 
with precision, the following paragraphs will present the wavelet transform using real-valued 
expansion functions and real-valued expansion coefficients. 

2.4.2.1 Wavelet transform in one dimension 

The position in the space-frequency domain of a wavelet function depends on a scale 
parameter  and a translation parameter , in such a way that each wavelet function can be 
described as a translation in space and scaling of a mother wavelet, in symbols: 
 
  (2.4.2-1) 

                                                 
11 This paragraph presents some basic concepts about wavelet transform, with a focus on its application in image processing. 
For a deeper and more complete presentation of the topic please refer to Reis et al., (2008), Reis et al., (2009), Reis et al., 
(2010), Gonzalez et al., (2010), on which this paragraph is based. 
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where  is the special coordinate in the space-frequency domain. 
Once the mother wavelet has been defined, the family of function obtained as mentioned is 
able to span the domain, but it is not a “basis” in a strict sense if the coefficients vary 
continuously and therefore cause a redundant representation. Consequently, the parameters 
must be discretized in a way that allows to cover the whole domain without redundancies, and 
this objective could be achieved imposing , being  an integer number. Applying this 
dyadic discretization to equation (2.4.2-1) gives: 
 

  (2.4.2-2) 

 
One of the first wavelet ever introduced, and the simplest one, is the Haar wavelet: 

 

the shape of which is represented in Figure 2.9 (left). 
Increasing , the mother wavelet is stretched and its height is shortened, therefore the level of 
detail that can be captured diminishes (Figure 2.9, right). Varying , therefore, the entire 
frequency domain can be spanned. Notice that going to negative values of  the mother 
wavelet itself can be compressed and its height increased, improving the ability to capture 
details from the signal. Each one of the wavelet obtained by varying  can then be translated 
in space by changing the (integer) value of  to span all the spatial domain. In this way, a set 
of basis function is finally obtained. It is possible to expand any squared-integrable signal as a 
combination of wavelets of the same family, starting from a mother wavelet and equation 
(2.4.2-2). 

  

Figure 2.9 – Example of Haar wavelet: (left) mother wavelet; (right) wavelet obtained from the mother wavelet 

imposing   in equation (2.4.2-2) 
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Nevertheless, for a continuous irregular function (for example with random noise) in principle 
an infinite number of wavelet would be needed, to capture all the detail and be able to 
reconstruct the original signal afterwards. Therefore, the choice of introducing the “father 
wavelet” , or “scaling function”, corresponding to the mother wavelet (or to the wavelet 
with minimum value of , if also negative values are considered):  
 

 

 
As an example, Figure 2.10 shows the qualitative shape of the Haar scaling function 
corresponding to the Haar wavelet in Figure 2.9 (left). 
Considering only positive values for , the maximum level of detail that can be captured is 
defined by the father wavelet and the mother wavelet. For a continuous signal, it is necessary 
to choose the precision in the detail. For a digital signal, like an image, since it is inherently 
discretized, the maximum level of detail could be chosen to be the signal itself. In fact, 
usually this is the starting assumption for the wavelet transformation of an image. The father 
wavelet and the family derived from the mother wavelet together constitute a set of basis 
function that can be linearly combined to represent the original dataset, in the form of the so-
called wavelet expansion: 
 

  (2.4.2-3) 

 
where  is the decomposition depth,  is the coefficient for the linear combination of the 
scaling functions  and  is the coefficient for the wavelet functions. Notice that the 
father wavelet is translated to span all the spatial domain varying , and a different coefficient 
corresponds to different translations. Notice also that the father wavelet can be stretched in the 
same way as the mother wavelet, in order to create new scaling functions. 

 

Figure 2.10 – Haar scaling function (or “father wavelet”) 
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After choosing a mother wavelet and a scaling function (e.g. the Haar ones), the coefficients 
in equation (2.4.2-3) can be evaluated. Knowing that the dyadic discretization allows to obtain 
an orthogonal set of wavelets, if the mother wavelet is also defined in such a way that, fixed , 
the wavelets obtained with translation are also orthonormal, which means that 
 
   

Then the coefficients can be evaluated as a simple inner product between the function and the 
wavelets . Similarly, for the scaling coefficients, if the 

 varying  are an orthonormal basis, . The discrete wavelet 
transform presented in equation (2.4.2-3) can be therefore rewritten as, 
 

  (2.4.2-4) 

 
with 

 

 

As mentioned, to different values of  correspond different levels of detail. Fixing the value of 
 (that is the maximum detail) to 1 in equation (2.4.2-3) the dataset is expanded into its 

approximation  and the detail lost during the approximation 
. If another level of detail is subtracted from the approximation, a new 

approximation is obtained  and an additional detail is loss  
and so on. A scheme of this procedure can be found in Figure 2.11. Being the  and the 
 

 
Figure 2.11 – Schematic representation of the wavelet expansion 

 

level 2 of decomposition
( )

level 1 of decomposition
( )

original dataset
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 derived from the mother wavelet and the father wavelet through the procedure in 
equation (2.4.2-2),  for each step of the decomposition it is only required to retain the 
coefficients  and . Since the approximated dataset is halved in dimension at each 
step and the detail coefficients to retain are equal in number to the approximation coefficient 
of each step, the dimension of the collection of data does not vary after the application of the 
wavelet transform, if both detail and approximation coefficients are retained.  

2.4.2.2 Wavelet transform in two dimensions 

Being a hyperspectral image the result of a concatenation of images captured for different 
wavelengths, each of these “slices” is a dataset that must be transformed independently to 
reduce its size to a fixed scale, equal for all the bands. Each image is a two-dimensional 
dataset, therefore to adequately approximate it the transform must be performed in a 
bidimensional way. One possibility is to use the tensor product of two unidimensional basis 
functions, to derive the new bidimensional basis set: 
 

  (2.4.2-5) 

 
Now, the details lost along columns ( =vertical), rows ( =horizontal) and diagonally ( ) are 
captured by three bidimensional wavelets that are “directionally sensitive” and separable, 
giving three “detail images” 

 

 

 

 

 

(2.4.2-6) (a) 

(b) 

(c) 

 
The discrete wavelet transform for the image is therefore 

 

 

 

(2.4.2-7) 

 

Where  are equivalent to  and are related to spatial translation, and  and  can be 
expressed as 
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with  

 

In literature, the approximation matrix  may be indicated also as , while the 
detail matrices  may be indicated as , , , for simplicity of 
notation. 
Figure 2.12 shows the bidimensional Haar scaling function and wavelet functions as an 
example. Notice how they can be obtained from the one dimensional Haar scaling function 
and wavelet from Figure 2.10 and Figure 2.9 (left) through equations (2.4.2-5) and (2.4.2-6) 
(a). 
Historically, several different scaling/wavelet functions have been proposed, each one with 
specific properties. The choice of the appropriate scaling function does not depend strictly on 
the application in a general sense (sound processing, image processing, etc.), but rather it is 
related to the shape of the dataset to fit and approximate and to the scope of the 
transformation (Ngui et al., 2013). The wavelet function should reflect the feature of the 
signal, like sharpness or smoothness, for which is respectively more appropriate a box-like 
 
 

    
 

 
 

 

  
  

Figure 2.12 – Bidimensional Haar scaling function and wavelets. 
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Figure 2.13 – Decomposition resulting after wavelet transform  

function (e.g. Haar) or a smooth function (Torrence et al., 1998). In this way the number of 
significant coefficients should be reduced, i.e. a perfect reconstruction of the signal should be 
obtainable with few decomposition levels (Megahed, et al., 2008). Another important aspect 
is the final objective. In fact, in application where the gradual variation is not of interest, and 
effective edge detection is more important, Haar transform could be a good choice even for 
smooth varying datasets12. This simple transforms also mitigates boundary effects, given its 
compact support. The image under examination in this study has some objects well distinct 
from the background; the edges are partially smoothed by the shadowing resulting from an 
angled light source (see following paragraph §3.1 for more information about the raw data), 
and it is important to not increase this blur to preserve the intensity values (corresponding to 
each material) for most of the points of each object, if possible, to improve classification; 
there is no oscillation needing to be detected, on the contrary oscillations of intensities on 
objects surfaces are just a noise from the point of view of the objective, i.e. distinguishing the 
materials. Therefore, the Haar wavelet, which happens also to be the simplest one, should be 
more than enough for the scope, on the understanding that the quality of results is the only 
criterion truly important in the selection of the wavelet (Ngui et al., 2013). 
A closer look to equation (2.4.2-7) reveals that the dimension parameter is only one, even if 
the dataset is two-dimensional. This is because equation (2.4.2-7) is valid only for a square 
image, since usually, to match the dyadic nature of the decomposition, the transform is 
applied square images of dimension  equal to a power of . ObservingFigure 2.4, it appears 
clear that in the lower part of the image no useful information is stored, being mostly just 
background, therefore before wavelet analysis the image can be cut into a square. 
Remembering that the dimension of the data does not change after wavelet analysis, If all the 
coefficients are stored, the results of the analysis can be summarized in a square image like 
the one in Figure 2.13 ( ) where the upper left corner contains the final approximation,  
 
 

 

 
 
 

  

  

  

  

 

original image 

                                                 
12 Refer to official MATLAB® online documentation for an overview about the main features of each mother wavelet  
(https://it.mathworks.com/help/wavelet/gs/choose-a-wavelet.html, last access: 07/2019) 
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while the other three squares contain details about the three directions of the decomposition 
(horizontal, vertical, diagonal). Applying again the decomposition to the approximation in the 
left corner (i.e. choosing  greater than 1) the image can be decomposed up to the desired 
level of detail, and again information has the same dimension of the transformed image, that 
in this case is the first level of approximation. 
As mentioned before, the original size of the data is preserved if all the detail coefficients are 
retained. Therefore, the advantage in using this decomposition, if the details are not discarded, 
lies in the (usually) high regularity of the linear combination of the details, that could be 
modelled and compressed, allowing to reconstruct the original picture in a sufficiently 
accurate way through the inversion of the transform using modelled details instead of the 
original ones, obtaining a standard for data compression. Other uses could be multiresolution 
analysis (for more information see Reis et al., 2009). 
For the case under examination, the objective is reducing the image size for the purpose of 
performing clustering efficiently, possibly in a way that diminishes also noise. Simple 
downsampling of the image points is not a preferable solution since the retained points could 
not be able to represent adequately the area from where they were taken, for example because 
of noise or because of smooth object borders. Therefore, some filtering is needed, and the 
wavelet transform can be seen as a series of filtering and downsampling operations: high-pass 
filters to obtain the approximations, low-pass filters to obtain the details, followed by dyadic 
downsampling. For this operation, an efficient procedure consisting of the application of 
quadrature mirror filters and dyadic downsampling was proposed by Mallat (1989), with a 
final computational cost comparable to the size of the dataset (order  where  is the total 
number of points). The picture under examination contains objects of large size, therefore a 
very high resolution could be unnecessary for the classification purpose. For classification 
through hierarchical clustering, in fact, pairwise distance between points must be computed, 
and the cost of this operation grows with the number of points itself (being generally at least 
of order , depending on the algorithm used). Therefore a smaller dataset could improve 
significantly the performance of this operation in terms of required time, without necessarily 
affect the quality of the results. Since wavelet transform produces an approximated, lower-
size image filtering also noise contributions, it appears to be an appropriate choice for the 
purpose. 
As a final note, it should be pointed out how the proposed approach is not the only solution to 
reduce the size of the dataset. In fact, the pre-processing could have involved a step of 
selection of a subset of the wavelength bands, but, due to the significant number of bands and 
the continuous nature of the electromagnetic spectrum, selection of one waveband instead of 
another would be questionable. Moreover, to have a size reduction comparable with PCA, the 
number of wavebands selected should not be more than the number of principal components 
retained, that is in general very low. But the capability to discern different materials would be 



Methods   38 

 
 

significantly worsened in the case of wavebands selection if, conversely, the principal 
components selected would sum up the information delivered by several bands. Therefore, for 
this application, feature extraction through principal component analysis was considered to be 
more appropriate. In addition, also reduction of the length and width of the image could have 
been performed differently. In fact, instead of performing wavelet analysis, an alternative 
approach could have been subsampling the image by simply picking a subset of the total 
points (e.g. drawing a mesh on the image and picking the points at each mesh intersection), 
but this simple approach brings up the problem of the representativeness of the selected 
points, that could be, by chance, just random noise. In fact, the mesh could be built in such a 
way that, accidentally, the periodic sampling corresponds exactly to a periodic noise, 
therefore all the points sampled contain noise-corrupted information. The smoothing action of 
wavelet transform prevents these kinds of problems. 
 
 

2.5 Clustering 

2.5.1 Introduction 

Clustering is one of the techniques used for information extraction in the field of “data 
mining”, or “data science”. The objective is trying to obtain knowledge about the structure of 
the data itself. Clustering is a descriptive method, i.e. it is a tool meant to extract information 
specifically about the studied dataset, and not to make predictions. In particular, it aims to 
find the natural groups (or “clusters”) in data, depending on a measure of 
similarity/dissimilarity between data points. Since, in principle, nothing is known a priori 
about the group structure, this method is classified as an “unsupervised” machine learning 
technique, i.e. a class of methods able to extract information from data with little to no 
information available. This can be an advantage in the sense that these methods require 
almost nothing more that the dataset itself, but the other side of the coin is that there is no 
easy way (and sometimes no way at all) to judge the quality of the results, especially if also 
the quality check has to be performed by artificial intelligence. Being “unsupervised”, 
clustering should reveal the natural grouping of the points in the multidimensional space that 
is the dataset in the case of a hyperspectral image, where the proximity between points should 
be related to a similarity between the material constituting the portion of object to which that 
point belongs. At the end of the procedure, it is desirable that a label corresponding to each 
cluster is created and all the points of an object are correctly labelled with the corresponding 
cluster index.  
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2.5.2 Clustering fundamentals and methods13 

In image analysis, clustering can be employed as a segmentation method in which the input is 
an image and the outputs are feature/attributes extracted from the image, with the aim of 
subdividing the image into its “constituent regions or objects” (Gonzalez et al., 2010), each 
region being considered homogeneous with respect to some “image property of interest” (Jain 
et al., 1995). Despite their very specific application in image analysis, clustering techniques 
are non-specific in their core characteristics, and adapting to the specific application the 
definitions of the variable quantities involved in the algorithm, the same algorithm can be 
used for a wide variety of problems, going from flower species unsupervised classification 
based on different lengths and widths of sepals and petals (the famous Fisher’s Iris dataset14) 
to automatic storage and retrieval of documents based on the subject, with each documents 
being labelled with a series of topic information and with the necessity to group together 
books of similar subjects15 (Rasmussen, 1992). 

2.5.2.1 Introductory definitions and stages  

Before describing the steps necessary to perform a clustering task, some definitions are 
necessary. An observation corresponds to a specific point/subject for which several attributes 
(or features, or variables) are measured. Notice that this nomenclature is similar to the one 
used for principal component analysis (section §2.3.2). A distance measure is a metric (or 
quasi-metric) used to assess the similarity/dissimilarity between observations, on the base of 
different values of the attributes. Notice how, if the attributes are quantitative and continuous, 
this metric can be the simple Euclidean distance between observations in the variables space 
(e.g. the distance between the points in Figure 2.6). The definition of a proximity (or distance) 
measure must be appropriate to the data domain, since obviously, for example, for qualitative 
attributes Euclidean distance cannot be applied. 
Typically, a clustering algorithm involves the following steps (Jain et al.,1999): pre-
processing, definition of a distance measure, clustering, data abstraction (if needed) and 
assessment of the output (if needed). Pre-processing may involve the selection of a subset of 
the measured attributes, picking the ones able to capture most of the difference between the 

                                                 
13 This paragraph presents some basic concepts about clustering, with a focus on its application in image processing. For a 
deeper and more complete presentation of the topic please refer to Jain et al., (1999), Gonzalez et al., (2010), on which this 
paragraph is based. 
14 Refer to https://en.wikipedia.org/wiki/Iris_flower_data_set (last access: 07/2019) for more 
information. Notice that this dataset already contains the information about species classification, therefore the gruops 
obtained with clustering algorithms can be compared to the true species classification available in the dataset. In general, 
when applying clustering, no information is known about the true labels, hence the adjective “unsupervised” to describe this 
machine learning technique. 
15 Notice how for this application defining the concept of similarity is quite difficult, being the features qualitative and 
unordered. 



Methods   40 

 
 

groups “intrinsic” in the dataset, and/or a feature extraction, converting the initial set of 
variables into a new (possibly smaller) set of variables more adequate for clustering 
operations. After defining the distance measure, grouping can be performed with several 
techniques. These methods can differ for the structure of the output, that can be a tree 
showing a hierarchy of clusters at different levels (hierarchical clustering), or it can be just a 
single partition of the dataset in a predefined number of groups (partitional clustering – e.g. k-
means). Moreover, for each observation the output can be a single class (hard clustering) or a 
“degree of membership” distribution (fuzzy clustering). Clustering results may need to 
undergo an abstraction operation to obtain a representation that is easier to interpret for the 
human eye. And finally, an (optional) assessment of the output concludes the clustering 
operations, checking if the results are reasonable through statistical techniques. 
 

2.5.2.2 Clustering techniques and similarity measures 

As mentioned above, several clustering techniques exist, with different specific 
characteristics. Hereafter some of the most popular algorithms will be described and 
compared, and general similarity definition for points and clusters will be introduced. 
Hierarchical algorithms. Among the most common, hierarchical clustering follows the most 
conceptually straightforward algorithm from the point of view of human reasoning, since it 
operates merging together the two nearest observations at each step, as a human would group 
items one step at a time on the basis of similarity between it and other items. More rigorously, 
the algorithm for agglomerative hierarchical clustering can be schematized as follows (Jain et 
al., 1999): 
 
Hierarchical clustering algorithm 
Step 1 – Evaluate the distance matrix containing the distances between each pair of points. 
Each observation is considered a single “cluster” at the beginning of the procedure; 

Step 2 – Find the two most similar observations/clusters (the two “nearest” ones, according 
to the metric defined) and group them into one bigger cluster and update the distance 
matrix; 

Step 3 – Repeat Step 2 until there is only one big cluster containing all the data points, then 
stop. 

 
Since at each step of the algorithm two points/clusters are merged into one cluster, a binary 
cluster tree is generated, and keeping track of all the merging operations and the distances 
between the two objects merged at each step, it is possible to perform a “data abstraction” of 
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the clustering operations, i.e.  to extract a compact representation of the results producing a 
dendrogram. Conventionally, the horizontal axis in a dendrogram represents the indices of the 
observations, linked vertically with bridges the height of which is a measure of the distance 
between clusters/observations (i.e. higher bridges indicate further clusters). Notice that the 
cluster tree can be cut at any level to obtain the desired number of clusters, that can be 
decided through specific diagnosis statistics of clusters coherence, or even just by eye 
inspection of the dendrogram itself – for example if the last and the second-to-last clusters 
group objects very far from one another, three groups may be the best choice, as shown in 
Figure 2.14. 
 

 
Figure 2.14 – Example of dendrogram 

 
Among the statistics available, the cophenetic correlation coefficient is one of the most 
popular. As mentioned, the height of the bridge linking two clusters represents the distance 
between these two clusters, also known as cophenetic distance between the objects contained 
in those two clusters. The cophenetic coefficient compares this “cophenetic” distance to the 
“true” original distance between the two objects in the dataset, i.e. the distance evaluated at 
Step 1 of the hierarchical clustering algorithm, and quantifies their correlation, since if the 
clustering operation gives valid results, not occurred by chance, the cophenetic distance and 
the actual distance should be strongly correlated. The cophenetic coefficient can be evaluated 
as: 
 

 
 

Where  is the distance between the two observations  and ,  the overall 
average distance,  the cophenetic distance between  and ,  its overall average. 
For a meaningful output the cophenetic coefficient should be close to 1, that is the cophenetic 
distance and the true distance should be highly correlated. In practice, the cophenetic 
coefficient can be used either to assess the quality of the results or to decide where to “cut” 
the dendrogram, obtaining a certain number of meaningful clusters. 
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Partitional algorithms. Another popular class of algorithms is the partitional algorithms, 
among which the k-means is the most common. From the point of view of the results, the 
most pronounced difference between a hierarchical algorithm and a partitional one is that the 
latter do not produce a cluster tree that can be cut, afterwards, at the desired level to obtain the 
more appropriate grouping. For partitional algorithms, the number of clusters has to be 
decided before starting the clustering task, with obvious consequences in the absence of even 
an estimate of the possible number of natural groupings in the data. A huge advantage of 
these methods is the quickness and the lower memory requirement, since it does not operate 
on the distances but on the data itself. Most commonly, the algorithm follows a scheme in the 
form of (Jain et al., 1999): 
 
Partitional clustering algorithm 
Step 1 – Decide the initial partition of the data, fixing the centre of each group; 

Step 2 – Assign each observation to the closest cluster centre and compute new centroids; 

Step 3 – Repeat step 2 until stable groping is reached, i.e. no points (or only very few of 
them) change group during new iterations 

 
Notice that usually, the first step is randomized, and then results obtained with different initial 
random partitions are compared, to be sure that the algorithm did not converge to a local 
minimum of the function quantifying the overall distances from cluster centres (that could be 
for example a squared error function). Since for each point only the distance from the  
cluster centres has to be calculated at each step, for a finite number of steps (usually low), the 
overall number of elementary operations required by a partitional clustering is less than that 
necessary for hierarchical clustering, where all pairwise distances have to be calculated, and 
some of them need to be updated at each step. This can be an advantage especially when 
clustering large datasets. The computational complexity (or time complexity) is commonly 
estimated by counting the number of elementary steps. In the case of a k-means partitional 
algorithm, the most common one, for each of the  observations,  distances from each 
cluster centre have to be calculated for each of the  total steps of the method, therefore the 
computational complexity is . Usually, the number of iterations is fixed, as well as the 
number of clusters, therefore the dependency on the number of points is linear (Jain et al., 
1999). Hierarchical clustering, conversely, requires the computation of the pairwise distance 
matrix, counting  comparisons (actually , because the distance matrix is 
symmetric), for  times, since there are  total merging operation after which the pairwise 
distances have to be updated. Therefore, if the algorithm is implemented straightforwardly, 
the time complexity is , but efficient algorithm implementations using a heap to store 
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the distances (Kurita 1991) can reduce the time required to , that is still  
times longer than the time required by the k-means algorithm.  
Nevertheless, hierarchical clustering is more rigorous and has the advantage of high 
versatility, due to the possibility to choose the number of clusters after the grouping tree is 
built. Moreover, k-means algorithm is highly sensitive to the positioning of the initial cluster 
centres but has the advantage that new data points can be added to the groups even after the 
main clustering operation was completed16, simply computing the distance from the final 
centroids, and also corrections to the final groping can be evaluated afterwards, while for 
hierarchical clustering an erroneous classification is impossible to correct a posteriori, being 
deeply embedded in the tree. Nonetheless, the existence of a tree structure allows the 
definition of a cluster belonging criterion (linkage) different and independent from the 
distance between points, that is defined by the distance metric. In conclusion, the best 
algorithm depends on the specific problem, but if the size of the dataset is small enough, 
hierarchical method might be preferable for its rigorousness and flexibility, producing results 
of better quality. 
 
Proximity measure. Independently on the method chosen, before performing the clustering it 
is necessary to define the meaning of “similar/dissimilar”, i.e. the distance metric. Different 
definitions of similarity between objects are available. For example, MATLAB offers several 
options17 among which even the possibility to set a custom defined metric. The most common 
metric is the Euclidean distance, defined as 

  (2.5.2-1) 

Where  and  represent two observations and  represents the Euclidean norm, that is 
the length of the vector “inside” the norm operator (in this case the distance vector). The 
Euclidean distance is a special case of the Minkowski distance: 
 

 
 

Other options of metrics give different weights to the different variables measured for each 
observation (i.e. each  varying ), and these different weights can be the observations 
variances/covariances, the standard deviation, or other user defined weights. More elaborate 
metrics exist for more complex cases. 

                                                 
16 See section “Assign New Data to Existing Clusters and Generate C/C++ Code” on official MATLAB® documentation for 
more information ( https://it.mathworks.com/help/stats/kmeans.html, last access: 07/2019) 
17 See official MATLAB® documentation on https://it.mathworks.com/help/stats/pdist.html (last 
access: 07/2019) for more information 
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The Euclidean distance has the advantage of being very intuitive, and it works well if the 
clusters have a more compact structure (Mao et al.,1996), i.e. they are hyperellipsoids in the 
hyperspace representing the observation points. In addition, if the data is not normalized, 
variables of larger scale tend to dominate (since they have higher influence on determining 
the final value of the norm, as can be deduced from equation (2.5.2-1) ), and as a consequence 
some normalization in the pre-processing might be helpful. If this normalization was not 
performed, it can be addressed through the definition of a metric involving scaling functions, 
like standard deviation or even custom-built weight vector. On the other hand, using 
covariance to weight different variables measurements for an observation point can solve 
problems like linear correlation between variables, if present and not already targeted in the 
pre-processing (e.g. through PCA). In conclusion, each metric has strengths and weaknesses, 
and the choice of the best proximity measure definition depends largely on the properties of 
the dataset to be clustered, as happens for the choice clustering method. 
Hierarchical clustering implementation in MATLAB allows also to choose also the definition 
of “distance” between two clusters, or linkage. There is no possibility of defining a custom 
function, but several possibilities are available. The conventional distance between two 
clusters can be taken to be the smallest distance between the points in the two clusters (single 
linkage) 
  

with  

 

the largest (complete linkage)  
  

with  

 

or the average (average linkage) 
   

It can also be defined by special functions like the Ward’s linkage that considers the increase 
in some error metric resulting from the merging of two clusters; in MATLAB the formula 
used is: 
 

 
 

Where  and  are two clusters,  and  is the number of points respectively in  and 
, and  and  are the centroids of  and , computed as . As 

already mentioned,  represents the Euclidean norm.  
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Again, the best choice depends on the problem under examination, and even if some logical 
reasoning can exclude a priori some metrics or linkages restricting the number of options, 
trying the remaining options and checking the quality of the results for the specific dataset 
might be the best strategy. 
In conclusion, machine learning and data mining are very active research fields, and in 
literature several methods, with variations and improvements, are available, therefore for 
difficult problems it may be useful to search for more complex algorithms in the most recent 
scientific publications. 
For the case under examination, the original dataset, that is the hyperspectral image, is huge, 
and consequently application of hierarchical clustering techniques is prohibitively expensive 
from the computational point of view. For this reason, reduction of the dimension of the 
dataset is vital, and the previous mentioned techniques of principal component analysis and 
wavelet transform can be invaluable instruments for this purpose. The “Results” chapter 
shows how these pre-processing steps can significantly improve classification time without 
compromising the quality of the results. 
After clustering the processed dataset, a classifier will be used to label the high-resolution 
image, which can be built starting from the grouping obtained for the low-resolution dataset 
through unsupervised learning. This procedure will be described in the next section. 
 

2.6 Classifier 

2.6.1 Introduction 

Classification, like clustering, is about labelling points in a dataset, or in other words dividing 
the observations into groups characterized by a sufficient grade of similarity between points 
inside a group and a sufficient dissimilarity between groups. The difference is in the fact that 
what is commonly known as clustering is a form of unsupervised classification of the data 
points, as mentioned, while usually the term “classification” by itself is referred to supervised 
classification, since it requires a pre-labelled dataset to train the classifier for the subsequent 
classification of new points. Therefore, in this case, the “input” to the method is a set of points 
and corresponding labels, and the “output”18 is a model that somehow relates the observations 
to the corresponding labels, possibly with a small probability of misclassification. In 
clustering, no information is available to “label” the data, therefore clustering is defined as an 

                                                 
18 it is very important to not confuse the “input”/”output” of the method with what is commonly referred to as input and 
output variables. In fact, the “input” to the method is a set of input and output variables (the observations and the labels, 
respectively), on which a model is trained in order to be able, given new input variables, to predict the output variables. The 
trained model is the “output” of the method, in the sense that it is what the method produces. 
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unsupervised technique, since there is no possibility to know the error committed in the 
labelling. On the other hand, for classification it is possible to know the quantity and location 
of the misclassified points with certainty at least for the training dataset, being able to infer in 
which areas there is higher likelihood of misclassification. In conclusion, “labels” associated 
to groups during clustering are “data driven”, i.e. obtained solely from the data (Jain et al., 
1999), while in classification already labelled training data are used to learn how to 
discriminate the groups building a (hopefully) simple model that can be used in turn to label 
new data. 
 

2.6.2 Classification fundamentals and methods19 

In classification, input variables, also known as predictors, can be qualitative or quantitative 
variables; the response is always a categorical variable. In literature, the input is usually 
indicated as  independently on the nature of the observations, while the output there is a 
different notation if the true classification or the predicted one is considered. For the training 
dataset, that is the labelled data used to “teach” the classifier the “difference” between groups, 
the output is denoted by  (that stands for “groups”), whereas the predicted output, that is 
produced by a trained classifier, is marked with a circumflex accent ( ). Notice that even a 
qualitative output can be represented by a number for convenience.  
Output classes are defined by what is called a decision boundary, that is the hypersurface in 

 separating points assigned to different groups by the classifier, where  is the number of 
features measured for each point. These boundaries can have specific properties and shapes, 
corresponding to different classification methods. Problems like a suboptimal shape of the 
decision boundary or an overlapping between the point “clouds” in the  space can lead to 
an incorrect prediction of the true label of the training dataset itself, but these problems cannot 
be avoided completely, so some degree of misclassification is usually present. In general, a 
classification theory trying to find the function  able to predict the output  given the 
value of the input  needs to consider also a loss function that penalizes the possible error.For 
a categorical output, that can assume values from a finite set of classes , the loss 
function can be a matrix  of dimension  where each element  is the price paid 
for labelling an object of class  with the erroneous label , with . Notice that 
of course the diagonal of this matrix is zero. The non-diagonal elements can be all equal, and 
in particular commonly they are set to be equal to one (0-1 loss function), but also a higher or 
lower penalization cost can be chosen dependently on the application. Defined a loss function, 
the expected prediction error can be evaluated as 

                                                 
19 This section is largely based on (Hastie et al.,2001) and on the online documentation about “Classification” available on 
the MATLAB® website. Refer to these sources for more information 
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 (2.6.2-1) 
 

The expectation is taken with respect to the joint distribution , and since  is 
conditionally dependent on , i.e. , equation (2.6.2-1) can be written 
as 
 (2.6.2-2) 

The best value of  is the one that minimizes the expected prediction error. Equation 
(2.6.2-2) shows that the minimum can be calculated pointwise since the overall minimum is 
going to be obtained if the fixed-point minimum is ensured for each point, obtaining: 
 (2.6.2-3) 

2.6.2.1 Linear classifiers 

The simplest shape that a decision boundary can have is linear, and in fact linear classifiers 
form a very important and widely applied class of procedures where the hypersurfaces 
separating different groups are hyperplanes. The construction of these boundaries can be 
based on the value of a discriminant function , classifying each object  to the class 
corresponding to the largest value of this function. This approach is known as discriminant 
analysis. Also models using posterior probabilities  are in this class, since also a 
probability function (or some monotonic transformation of it) can be viewed as a discriminant 
function. If the discriminant, or a monotonic transformation of it, is linear in , the decision 
boundary is also linear. The same holds true for the posterior probability. In fact, the decision 
boundary between two classes  and  can be also thought as the surface for which for each 
point the probability of being class  or class  is the same. 
With the addition of some assumption, a linear discriminant model can be represented through 
the already mentioned equation (2.6.2-3): 
 (2.6.2-3) 

The conditional probability , equivalently written also as , is 
also called posterior probability and it represent the probability that, if the point is , the real 
class of the point is , so it is called posterior because it refers to the probability that an event 
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occurs after picking a specific point  from the dataset , the event being that the class is 
actually . Applying the Bayes theorem: 
 (2.6.2-4) 

Where  is the prior probability of the class , that means the probability of the class  in 
general in the domain, and not for a specific point . Being unknown, it can be taken to be 
equal for all classes, or uniform, assuming the expression of  where  is the total 
number of classes. If it is believed that not all classes have the same likelihood in the domain 
and that the dataset is a fair representation of the overall likelihood, empirical representation 
of the prior probability can be more appropriate, defining it as the ratio between the number 
of points of class  and the total number of points, or in symbols . 
The conditional probability  is actually the probability density function of points  in 
class , or class-conditional density, and in the linear discriminant model it is assumed to be a 
multivariate Gaussian where all the classes have the same covariance matrix : 
 (2.6.2-5) 

Where  is the average for the class , evaluated as  and  and  
represent respectively determinant and inverse of the class covariance matrix , equal for all 
the classes, calculated as 
  

Therefore, for the linear discriminant method the predicted value can be calculated as 
 (2.6.2-6) 

This method is defined to be linear because, thanks to the assumption of a multivariate 
Gaussian density with constant covariance matrix, it is possible to write that, for the decision 
boundary between classes  and  
   

And substituting equation (2.6.2-5) 
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Remembering that the covariance matrix is equal for all groups ( ) and simplifying  
  

That can be written also as  
  

Therefore, the discriminant function can be defined as 
  

That is a function linear in , as requested to define the method as linear. 
In practice, implementation in MATLAB of linear discriminant analysis uses the form of 
equation (2.6.2-6) to build and apply the model. 
Since the model is based on some assumptions about the dataset and the shape of the 
boundaries between groups, problems may arise if these assumptions are far from the real 
properties of the dataset. For example, the distribution of the training dataset could be very far 
from a multivariate gaussian. Figure 2.15 shows a distribution that could resemble a gaussian 
with approximations and in fact is obtained plotting together a multivariate gaussian with 
some random clouds of points added. If all the points in the figure have the same label, they 
are going to be used all together to evaluate the average and the covariance matrix needed for 
the model, and since the point distribution is not really gaussian this in principle should 
worsen the results. Problems should also arise if the natural boundaries between groups are 
not linear. Being the application of linear discriminant analysis so widely spread, it could be 
thought that real data have very often a (sufficiently) gaussian distribution with equal 
covariance and boundaries tend to be linear, but in reality, as proposed by Hastie et al. (2001), 
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the reason behind the wide success of this simple method is that data can better support 
simple decision boundaries (linear or quadratic), and the estimates under the gaussian model 
are in fact quite stable. Furthermore, too complex models can end up adapting too closely to 
the training data reducing their capability of generalization to a new dataset. 
 

 
Figure 2.15 – Example of a multivariate gaussian distribution (+) with some disturbance points (*) that alter the 

sample average and the covariance matrix. 

 

2.6.3 Input dataset 

Before concluding the section about classification, it is important to notice some peculiarities 
of the problem under examination, in particular as concerning the input dataset. 

2.6.3.1 Input dataset: labels 

In its original conception, a classifier is meant to be trained on a dataset with measured 
classes. In this specific case, the classes are not available in the original dataset, and are 
“extracted” from the data structure through clustering operation, defining the concept of 
similarity between points. This means that the results from the unsupervised grouping 
operation can be inaccurate especially on the transition borders from a group to another. 
Nevertheless, to obtain a good classifier it is important to provide a training dataset as 
“polished” as possible, because erroneous labelling in the cluster results will undermine the 
success of the classifier training, degrading the quality of the results attainable in its future 
application. 
As misclassification affects mostly borders between groups or small areas, image 
enhancement methods are commonly applied to mitigate these artefacts, including 
morphological operations tools.  
In mathematics, morphology is related to concepts as shape, convexity, connectivity, etc. In 
image processing, morphological operators deal with description and processing of regions 
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shapes, boundaries, convex hull, and similar properties (Gonzalez et al., 2010). Dilation and 
erosion are two of the fundamental morphological operations available for image processing, 
from which more complex image modification operators can be derived. 
Dilation and erosion.20 Both dilation and erosion are based on a structuring element, that is 
simply a shape of given size that is made to interact with the image and modify it as a 
consequence of this interaction. In MATLAB, the structuring element is represented by a 
usually small binary matrix with zeros for the background and ones corresponding to the 
actual object shape. Several options are available, such as diamond, disk, line, rectangle, but 
also introduction of custom structuring elements is possible. The shape and the size of the 
structuring elements, as well as the position of the so called “origin” that is the reference point 
of the element, will influence the dependence on the direction and the extent of the interaction 
between the structuring element and the image regions. 
For a binary image, dilation is aimed to “thicken” objects in the image, assuming that the 
objects are the “white” part of the image, i.e. they correspond to ones in the image matrix. In 
greyscale, dilation actually “dilates” clear objects in the picture at the expense of neighboring 
“dark” objects. During binary image dilation the structuring element is translated to all the 
points of the image, and the dilated image is the set of all the origin locations for which the 
translated and reflected-by-the-origin element overlaps at least one point of the object (that is 
a “1” in the image matrix). For a greyscale dilation, if a binary (or “flat”) element is 
considered, the same operation of translation and rotation are performed, and after a local 
maximum is computed among the points overlapped by the ones of the structuring element. 
Erosion is the opposite operation, evaluating a local minimum for a greyscale image, whereas 
for a binary image erosion can be seen as the set of origin points for which the structuring 
element is completely contained by the object. 
Sequential applications of dilation and erosion operations in a specific order can result in 
“new” morphological operations, like opening and closing. The opening of an image is 
obtained by applying erosion and then dilation, with the general result of suppressing the 
bright details that are smaller than the structuring element, vice versa closing applies erosion 
after dilation, suppressing dark details, or “closing” bright objects. 
An appropriate and smart combination of these morphological operations can improve the 
quality of the labels matrix obtained after the clustering operation removing misclassified 
points at the borders. 

2.6.3.2 Input dataset: data points 

Another problem specific of this application is related to the data points to be used as input to 
the training procedure. In fact, during the clustering, contrast enhancing operations are 

                                                 
20 For more details, refer to Gonzalez et al. (2010), on which this paragraph is based 
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performed on the wavelet transform results (“wt-data”) to enhance inter-group distance and 
improve the clustering results. Nonetheless, since the objective is to classify the 3-“bands” 
image obtained after principal component analysis, that is just a high resolution version of the 
wt-image, the training dataset must consider the wavelet transform results before the contrast 
enhancement, associating to it the labels obtained from clustering the enhanced image. As a 
matter of fact, the image intensity transformation considers the properties of the image itself, 
since the rescaling considers the extremes values of the specific image transformed, and the 
contrast is enhanced saturating the top and bottom 1% of all pixel values of the image itself. In 
other words, one point with intensity  in the hyperspace  of intensity 
measurements for 3 wavebands could be matched to different points  and 

depending on the distribution of intensity values of the initial image. If the 
classifier was trained on an enhanced image where the point  of intensities  was 
transformed into the point  after enhancement, this could cause a problem for future 
applications because, if for the new image to classify the histogram has a different distribution 
of intensities, the enhancement is going to map the point of intensities   to a point  
very distant from  and the classifier is not going to be able to perform the labelling 
correctly. Also if the only image to be classified is the high resolution version of the training 
dataset, it is important to remember that the wavelet transform has the effect of smoothing the 
peaks and valleys in the data, therefore the same problem exposed for future applications 
affects also the use for this specific image, even if less clearly.   
 

2.7 Refining the model 

In science, it usually happens that the procedure or model proposed to address and solve a 
problem has some “degrees of freedom” or, in a broader sense, some choices among various 
options available must be made in order to be able to apply the technique. Therefore, after a 
working algorithm is implemented, it is good practice to explore the different solutions that 
can be obtained if different choices for the model parameters are considered. In other words, 
some form of sensitivity study and model refinement can be performed. For the procedure 
proposed, the two main parameters are related to the size reduction achieved in both the 
spectral and the spatial domains. In fact, the number of retained components in principal 
component analysis and the resolution of the wavelet transformed image both influence the 
quality of the final result. A full sensitivity analysis usually would require simultaneous 
variation of both parameters to be studied, i.e. if the spatial parameter and the spectral 
parameter can assume respectively  and   different values, the total number of combinations 
to be considered is in principle . In truth, the two parameters could be sufficiently 
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unrelated that general behaviour could be extracted starting from the base case and varying 
just one parameter or the other.  
In the hyperspace where points correspond to observations and the variables are the spectral 
bands, if data are naturally grouped in certain regions, removing some points from all the 
groups, like basically happens when spatial resolution of the image is lowered21, is not going 
to change the grouping themselves and so it is not going to affect the ability of the spectral 
variables to separate the clusters. Figure 2.16 (a) and (b) illustrate this situation. The 
worsening action on the final clustering caused by the lowering of the resolution is 
independent from the spectral bands, and depends on the fact that after a certain level of 
coarseness there are not sufficient points for each group anymore and the approximation 
added at each step starts to accumulate errors. In other terms, adding more and more principal 
components cannot improve clustering results if the spatial resolution has been lowered up to 
a point where the approximation smoothed every difference between groups and very few 
points compose each group.  
Vice versa, as long as the spatial detail is sufficient for a clustering operation, varying the 
number of components has consequences that are independent on the number of points. The 
groups, in fact, remain virtually the same but the separation between groups projections onto 
the principal components (the new virtual “wavebands”) can be worsened significantly if the 
vectors of the new basis are not enough in number. In other words, a higher spatial resolution 
would not improve clustering results if the number of principal components selected is 
inadequate. This problem is illustrated in Figure 2.16 (c) and (d), where it appears clearly that 
considering only one principal component would not allow the separation between groups (1) 
and (2). 
The suggested approach would be to start with a parsimonious description of the spatial and 
spectral domains, and progressively improve the resolution of analysis if and only if, the 
results get significantly better. Otherwise, the process stops, and the current model is good 
enough for segmenting all pixels of the image. The additional computational burden will not 
lead to improves results and may even render the whole segmentation operation unfeasible. 
 
 

                                                 
21 In truth, also some approximation in the form of averaging among adjacent points is also done at each step 
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(a) (b) 
  

(c) (d) 
Figure 2.16 – Example of reduction of the spatial dimension – (a) and (b) – and of the spectral dimension – (c) 

and (d). Objects naturally belonging to different groups are represented with markers of different shapes. 
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Chapter 3 

3 Results and Discussion 

This chapter covers the main results obtained in the analysis. Preliminary results have been 
presented in the previous chapter for simplicity of illustration, being some minor conclusions 
the natural consequence of the theoretical and practical discussions addressed in the previous 
chapter itself. On the other hand, some brief description of strictly practical methods for 
selecting and understanding the results are included in this “Results” chapter for continuity in 
the exposition of the topic, being the understanding of the results unavoidably related to the 
description of the method itself. 
Results are divided in sections related to the different steps of the analysis – data inspection, 
principal component analysis, wavelet transform, clustering, linear model, … 
 

3.1 Data inspection 

Before transforming the data, it is good practice to inspect them with some detail, even if the 
significant size of the dataset already suggested to use the principal component analysis to 
reduce its dimension.  
A typical way of representing spectral data is through line plots, showing the spectral 
response of a specific point in the picture. As an example, in Figure 3.1 spectral response of 
two observations (pixels) are plotted. These two points are chosen such that they correspond 
to two different objects from the picture. After numbering the objects in a greyscale photo of 
the configuration, these objects can be identified as object (1) and object (5) in Figure 3.2. For 
both objects, the intensity of the reflected electromagnetic waves captured by the camera is 
very low for the first and the last wavelength bands of the range considered. Extracting, from 
the hyperspectral image, “slices” corresponding to the first and the last wavelength bands it is 
clear that for these variables the quality of the data collected is very low and the picture is 
very blurred and low in contrast (Figure 3.3). Notice that the pictures appear to be light 
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because, even if the intensity measured for each pixel is very low compared to other bands, 
when representing the picture with imshow the data is automatically rescaled considering the 
total variability of the single picture corresponding to a single lambda-range. On the contrary, 
a band taken from the centre of the range, for example the 150th band, has high sharpness and 
contrast in comparison with the other two examples. This could be related to the spectral 
 

 
Figure 3.1 – Spectral response of different points in the picture. Continuous line for the point of coordinates 

(row,col)=(100,300), dashed line for the point (300,300) 

 
 

 

 

 

Figure 3.2 – Identification numbers for the objects in the picture  
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sensitivity of the instrument. In fact, it could be that the wavelength range considered 
comprises, at the extremes, bands for which the efficiency of detection of the camera is lower. 
Since the full range corresponds exactly to 224 bands, that is the number of bands considered 
for the experiment, assuming that the full range is from 900 nm to 1700 nm and that the 
absolute quantum efficiency has a shape as the one represented in the datasheet of the camera  
(Appendix 1 – Hyperspectral camera datasheet), low efficiency at extremes is exactly what 
causes lower quality/lower contrast images for the first and the last bands in the range. 
Plotting the intensity response of a row and a column intercepting an object in the picture may 
lead to more interesting discoveries. Figure 3.4 for example shows the profiles of the 90th row 
and the 155th column, both intersecting object (1)22. It appears that along the row the response 
is less noisy than along the column, having oscillatory profile in the last case, especially for 
the intervals corresponding to the background. Moreover, the transition from background to 
the object is sharper along the row, especially on the right side where there is even a peak in 
the signal. Repeating the analysis for rows and columns intercepting different objects, a 
qualitative assessment of the profile leads to similar results, that can therefore be considered 
general for the picture. For the rows, the peak on the right side is likely determined by the 
position of the illumination source, since observing Figure 3.2 from the direction of the 
shadowing in object one it can be inferred that the “light” source is positioned on the right 
side. Remembering also that the acquisition of the data is carried out measuring the response 
in all the spectrum for one row at a time23, it could be reasonable to think that the profile 
along the row is automatically smoothed by the recording system itself, while the new row is 
seen as a new “sample” and therefore most of the noise could happen along the column if 
there is not any form of automatic correction/interpolation of the data. The joint contribution 
of these two experimental conditions could be the cause of what observed in Figure 10. In 
reality, likewise the explanation for the waves along columns, especially on background, 
could be related to the use of a wavy base for the objects, for example a piece of cardboard. 
Experimental conditions are not known in their completeness, therefore no definitive answer 
exists. Considering also how, for the noisy pictures at the beginning and the end of the 
spectrum, there is a significant band noise along columns, both the hypothetical wavy base 
and the horizontality of the acquisition method could cause a noisier and more wavy profile 
for the column plot.  
The typical laboratory configuration represented in Figure 3.2, in the previous chapter, could 
confirm the directionality of the light source. Also the wavy base could be related to the use 
of this assembly, since the Specim Scanner base has a wavy appearance in photos. It could be 
that no additional monochromatic base was positioned on the Scanner base, below the objects 
to be scanned, or that the one used was too thin and slightly transparent, maybe just for the 
                                                 
22 Refer to Figure 3.2 for object number 
23 Refer to the previous chapter, paragraph §2.2on Opening a Hyperspectral Image for more details 
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infrared camera and not for the human eye (e.g. a thin sheet of dark paper). This is again only 
speculation, but it appears to be a very reasonable explanation. 
 

 

Figure 3.3 – Greyscale conversion of the response for bands number 1 (left), 150 (middle), 224 (right). 
 

 

 
Figure 3.4 – Intensity of the response of row 90 (up) and column 155 (down) for the 150th band 
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Figure 3.5 – Base of the Specim Lab Scanner 40x20 (from the SpecimSpectral YouTube Channel) 

 

3.2  Principal component analysis 

3.2.1 Pre-processing 

In industrial applications, applying PCA on raw data may not give good results or may even 
be meaningless. This can happen for several reasons, the most common one being that the 
data matrix contains measurements for different properties of the system expressed in 
different units, such as temperatures, flowrates, pressures, so that the typical order of 
magnitude may vary significantly between one property and the other. For this dataset, all the 
variables are equivalent, since they are all measurement of reflectance, even if for different 
wavelength bands24, and therefore they have the same unit of measure (UOM). If the UOMs 
are different and the scale of the data in these UOMs are such that there is strong difference in 
the numerical values of the measurement only related to the UOM, usually autoscaling is 
performed to avoid numerical errors and modelling problems. In this case, therefore, 
autoscaling is not necessary. On the contrary, dividing observations for each lambda by their 
standard deviation could amplify noise signals with respect to actual useful information if the 
spectral response of one point is observed. Considering the point P in the image, and the 
intensity of the response measured for that point P at each band, it is clear that with 

                                                 
24 In reality, the sensor may be more reactive to electromagnetic waves of some bands than of others, but the absolute 
quantum efficiency curve for the camera FX17 is enough flat in the operating region, otherwise some correction on the data 
would be needed (if not automatically performed by the acquisition computer program supplied with the hyperspectral 
camera) 
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autoscaling the dividing factor is going to be different for each lambda-range, and in 
particular it is going to be greater for bands with higher variability of the data, that contain the 
actual information, and lower for bands that contain less information (i.e. less variability) and 
more noise (or better a higher ratio between noise and actual information). Therefore, the 
spectral plot for the point P (like the one in Figure 7) may be actually flattened by division by 
different standard deviations (one for each lambda band), loosing significant information and 
amplifying the noise. For this reason, for the specific data under examination, not rescaling 
seems to be the best choice. 
An important reason for centring, even without rescaling, may be numerical (Bro et al., 
2003). It can be proved that when principal component analysis is performed with non-
explicit methods, the ratio between the two largest eigenvalues determines the convergence 
rate. With some methods also strongly correlated components may cause problems. Some of 
these computational problems may be avoided if the data are centred across the first mode, i.e. 
along variables, subtracting for each variable the mean of the values observed for that 
variable. Centring can also avoid problems related to the presence of offsets. Evaluating the 
absolute minimum of the hyperspectral matrix, an offset of 128 can be found for the 
intensities measured, and this is not a small value considering that for some points intensities 
can go from 200 to 600 (e.g. the continuous line in Figure 3.1). finally, sometimes centred 
dataset allows better fitting, i.e. lower residuals. Nevertheless, these hypothetical advantages 
cannot be checked before the analysis. 
 

3.2.2 Number of components 

Quoting a famous article by Raymond Cattell (Cattell, 1966) "Unfortunately [...] a test [to 
choose the number of components] does not exist - even a long or complex one - which is both 
mathematically precise and logically satisfying". 
In practice, there are some methods that could help assessing approximately the actual 
dimension of the problem. 

3.2.2.1 Practical methods for selection of the number of principal components 

Qualitative approach. At first, a wise choice could be to not fix a priori the number of 
components but just exploring the results obtained considering the first few components and 
then adding the following ones increasing the cumulative variability explained (Bro et al., 
2014). Nevertheless, this approach is too qualitative to be used for more than giving a first 
glance to the data, therefore it will not be further considered. 
Scree test. A useful technique widely accepted is the Scree test (Cattell, 1966). It is based on 
eigenvalue inspection. In point of fact, it can be proved mathematically (Bro et al., 2014) that 
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the eigenvalue corresponding to a specific component is equal to the variation for that 
component. For the Scree test, eigenvalues in descending order are plotted against the number 
of components, and usually the eigenvalues decrease fast for the first components, which are 
assumed to retain most of the actual information and minor noise contribution. In contrast 
with the fast decreasing for the first components, it is assumed that the lower magnitude 
eigenvalues, corresponding to the eigenvectors capturing most of the noise, decrease slowly 
and almost linearly. These assumptions are the result of "a hundred or more factor analyses 
carried out over thirty years", as claimed by Cattell himself in his publication introducing the 
Scree test (Cattell, 1966).  
Eigenvalue-greater-than-one rule. Another common test considers only the eigenvalues 
above one. It can be applied only if the data are autoscaled. Being the dataset under 
investigation mean centred but not divided by the standard deviation in the pre-processing 
step, this technique cannot be applied. 
Variation explained. The most intuitive quantitative rule for the selection of PCs involves 
the evaluation of the amount of variation explained. As already mentioned, each eigenvalue 
quantifies the variation of the scores on the corresponding principal component, therefore it is 
clearly related to the fraction of the original total variability of the data explained by that 
component. This fraction may be computed as , where is the eigenvalue related to 
PCi and the sum is for all the eigenvalues of the covariance matrix.  
Residuals inspection.  As derived in the previous chapter (paragraph §3.3.2.1), after defining 
a principal component an approximation of the original data, i.e. the result of its projection on 
the principal component, can be calculated, and by definition subtracting the approximated 
matrix from the original data matrix produces the error matrix. A prohibitive amount of data, 
as it is the case for a hyperspectral image, makes it impossible to inspect data by means of a 
plot or a table. Statistics summarizing these results are necessary. The error in general might 
be positive or negative, so a good statistic variable could be for example the overall mean of 
the absolute value of the error. The specific typology of the dataset under examination has a 
significant advantage on other kinds of huge datasets: error can be represented in form of 
picture. 

3.2.2.2 Application of the methods  

Scree plot. Empirical inspection of the Scree plot, representing eigenvalues in descending 
order versus principal component indexes, can give an idea of the number of components to 
retain. With datasets from real problems, it could happen that the first eigenvalue is extremely 
large if compared to the others, and that is the case for the hyperspectral image under analysis. 
In these cases, it is necessary to zoom to even be able to discern the different eigenvalues 
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(Figure 3.7). From this analysis, it appears that considering the first three or four principal 
components might be enough for capturing most of the information.  
Variation explained. As abovementioned, the fraction of variation explained through each 
principal component is equal to the corresponding eigenvector divided by a constant, being 
the sum of all the eigenvectors obviously a constant. Consequently, the qualitative shape of 
the explained variation plot (Figure 3.8) is identical to the scree plot, the only difference being 
the scale of the ordinate, that is normalized for the variation plot. For the Scree test the 
objective was a qualitative inspection to find when the eigenvalues start to level off, and per 
se the numerical value of the eigenvectors gives little information. The fraction of the total 
variation explained (Figure 3.9), on the other hand, is a quantity that might be worth analysing 
with more detail. Table 3.1 shows that even considering only one component 98% of the total 
 

 

 
 

Figure 3.6 – Eigenvalues corresponding to each principal component (first 15 components)  

Figure 3.7 – Eigenvalues corresponding to each principal component (zoom on components 2-15)  
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Component 
Fraction of 
variation 
explained 

Cumulative 
fraction 

1 0.98016 0.98016 
2 0.01405 0.99422 
3 0.00503 0.99925 
4 0.00048 0.99974 
5 0.00011 0.99985 
6 0.00003 0.99989 
7 0.00002 0.99991 

Table 3.1 – Fraction of total variation explained and cumulative fraction for the first 7 components 

 
variation is explained, and the percentage goes even above 99.9% for three components, the 
second and the third components adding very little information. This said, it is very important 
to not fall into the common mistake of considering 98% a high percentage of variation 
explained in absolute terms, since it strongly depends on the typology of data and more 
specifically on the quality of the measurements, i.e. the amount of noise. In truth it is not 
possible to know this a priori without very detailed information on the experimental 
condition, but the FX17 datasheet reports a nominal (maximum) signal to noise ratio of 
1000:1, so it is reasonable to assume that the detection accuracy is high. For highly precise 
data, even components apparently capturing a small fraction of information could in fact be 
useful for classification purposes, since that slight difference in the projection on the second 
or third components could be crucial for the segregation problem and contains actual 
 

Figure 3.8 – Fraction of variation explained by each principal component (first 15 components) 



65  Chapter 3 

 

 
 
information more than the simple noise that low eigenvalues components would capture for 
less sophisticated instrumentation. 
 
Residuals inspection. Figure 3.10 shows that the mean value of the absolute error decreases 
with the addition of each principal component for the first components, but beyond the fourth 
component it levels off, making the further addition of variables meaningless. This confirms 
previous conclusions considering other typologies of test. Being the dataset under analysis a 
picture, errors can also be represented graphically in form of picture, with brighter areas 
meaning higher value of the residual. For easier understanding and interpretation of the 

Figure 3.9 – Cumulative explained variation by the number of principal components retained (from 1 to 15 

retained) 

Figure 3.10 – Mean of the absolute error as function of the number of principal components 



Results and Discussion   66 

 
 

results, the analysis of graphical representation of residuals is coupled with the visualization 
of the results themselves, topic of the following section §3.2.3. 
Eventually, after all the previous tests, the best choice for the number of components appears 
to be three. 
 

3.2.3 Visualization of results 

3.2.3.1 Scores 

As previously mentioned, scores correspond to the projection of each observation on the new 
basis vectors, i.e. the loading vectors (or "principal components"). Along the first principal 
components, a significant part of the total variability is captured (98%), as shown in the 
previous paragraph (§3.2.2.2). Therefore, a first separation of the data, corresponding to 
different objects in the picture, should be recognised in scores plots, that may plot the score 
vector related to one component against the “observations” (i.e. different pixels) or may 
represent variation of scores relatively to one another in a scatter plot. It will be clear that 
some plots can be more useful than others, and that for the specific case of a hyperspectral 
image there could be some other ways to “plot” the dataset, i.e. in the form of an image. 
 
The representation of the scores for one principal component for each observation produces a 
plot of really difficult interpretation, being the abscissa's length, equal to the total number of 
observations (640·480=307200), the major obstacle to the ability in the discernment of the 
different points (Figure 3.11)25. Zooming into small sections (Figure 3.12) and remembering 
that each 640 points a new column of the picture starts26, interpretation of the data is made 
easier. It can be deduced that the descending and ascending series of points that make Figure 
3.11 appear very chaotic are the transition from an object to another or to the background. 
Classic identification of data clusters by eye inspection is in this case very difficult with this 
kind of plot. In fact, being the dataset the result of the unfolding of a picture, the best way to 
visualize scores results against all the observation is rearranging the scores into the shape of 
the original picture (640·480) and rescaling the scores between 0 and 1, plotting a the 
resulting matrix as a greyscale picture. Figure 3.13 shows the greyscale conversion of a 
random wavelength picture and of the scores images for the first three components. It can be 
noticed the different contrast of the scores pictures compared to the random picture extracted 
 

                                                 
25 The plot is obviously unreadable and is here reported only for the sake of completeness. 
26 The data is unfolded along columns, i.e. in a way such that at the end of each column is “attached” the beginning of the 
next one. 
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from the hyperspectral image (corresponding to one spectral band). Different objects are 
better highlighted in different pictures, giving a glimpse on the classification results 
obtainable. 
The number of principal components chosen gives additional advantage for graphical 
representation and human eye inspection. In fact, the three pictures corresponding to the first 
three components can be concatenated and plotted as if the three matrices where the red, 
green and blue channels of a colour picture (RGB colour space). For this purpose, the 
concatenated matrix was normalized in the [0 1] interval to avoid automatic saturation of 
lowest and highest pixel values performed if imshow is applied without this pre-processing 
operation. The resulting picture is shown in Figure 3.14 (left). The aim of PCA was building 

Figure 3.11 – Score vector for the first principal component against pixel indexes 

Figure 3.12 – Score vector for the first principal component against pixel indexes (first 8000 points) 
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few latent variables able to capture all the information needed for classification, and the 
different colours of different objects in this picture, capturing differences in materials, already 
confirm the effectiveness of the method. Contrast enhancement through a contrast stretching 
transformation (Figure 3.14 – right) improves the capability of the human eye to appreciate 
these results. Knowing basic notions about colour maps, information about the 
 
 

  

  
Figure 3.13 – Greyscale conversion of data corresponding to (1) a random wavelength, (2) score vector for the 

first principal component, (3) score vector for the second principal component, (4) score vector for the third 

principal component (images are ordered from left to right and from top to bottom) 
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principal component(s) on which object(s)’s points have higher scores can be inferred by the 
dominant colour of the object itself (Table 3.2). Referring to the numbering in the greyscale 
photo of the configuration (Figure 3.2), object (1), for example, can be said to have high value 
for the scores on PC1 and low value for scores on PC2 and PC3. In other words, object 1 is 
“along” the direction of PC1. Similar considerations can be made for the other objects. Scatter 
plots representing scores for one principal component against scores for the other one are also 
possible. An example is the one in Figure 3.15, considering the first two components. 
Observations close to each other on the scatter plot are points that are “close” to each other 
also in the actual data, i.e. their spectral response is similar, being most of the variation 
already represented with the first two components. Dashed ellipses enclose regions where 
clusters of data appear clearly. Comparing data represented in Figure 3.15 with Figure 3.2 
some data clusters can be matched with the corresponding object. For example, object (2) has 
high scores on PC1 (bright on PC1 image) but low scores on PC2 (dark on PC2 image), 
therefore the cluster in the lower left corner of Figure 3.15 can be marked as “object (2)” with 
no doubt.  
 

 

 

 

 
Figure 3.14 – (left) Combination of the first three components into a RGB picture; (right) Contrast enhancement 

for the RGB conversion 
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Colour of the 
object 

PC 

Red       � 1 
Green   � 2 
Blue      � 3 
Yellow  � 1+2 
Purple  � 1+3 
Cyan     � 2+3 

Table 3.2 – Correspondence between colours and principal components on which the scores are higher 
 
Notice that the objects contour, i.e. the transition between objects or between object and 
background, is not sharp, but the points connecting the clusters indicate that the transitions are 
somehow smoothed. The other clusters are quite close to each other, therefore it is harder to 
mark them just by eye inspection of Figure 3.2 and Figure 3.15. 

3.2.3.2 Loadings 

Each element of loading vector is the weight that the corresponding variable has in defining 
the new latent variable (i.e. the principal component corresponding to that loading vector). 
Visual representation of the loading vector against the spectral bands enables to qualitatively 
check which variables influence more each principal component (Figure 3.16). The most 
noticeable feature of the loadings of the first three components is that none of them gives 
importance to the first wavelengths measured and the last ones. The problem might be that, 
being at the end of the spectrum measurable with the camera, the quality of the data is lower 
and the images for these bands are very noisy and do not contain useful information. This can 
be confirmed by examining the greyscale conversion of the first and the last picture of the 
“stock” in the hyperspectral image, corresponding to the first and the last wavelength bands 
(Figure 3.3).  
Further inspection reveals that the first principal component appears to get significant amount 
of information from each one of the non-extreme variables, though for the higher wavelengths 
the contribution is less than for the first half of the spectrum. More complex is the profile for 
the second and the third component. For example, wavelengths in the middle, from the 70th 
band to the 100th band, have high (positive) influence on PC1 and PC3 but low (negative) 
weight in PC2, and this is the only region where the profiles have this behaviour relatively to 
one another. Therefore, “objects” – or better “materials” – having high positive scores on PC1 
and PC3 and low negative scores on PC2 are best described by the wavelengths having more 
influence on PC1 and PC3 and are also having peaks on bands that have negative weight on 
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Figure 3.16 - Loading vector for the first three principal components for each spectral band 

 
 

 
Figure 3.17 – Scatter plot for the loading vectors of the first two components 

 
PC2. Analogous reasoning can be done for relative behaviours in different band regions. 
Associating high scores on some components (or on the opposite of those components) with 
the corresponding band contribution, different materials could be linked to peaks of 
reflectance in specific bands or spectral regions.27 
Loadings can also be analysed through a scatter plot (Figure 3.17). For spectral data, since 
two variables correspond to two contiguous wavelength bands, the loading plot has the shape 
                                                 
27 Notice that if spectral response of different materials were known from previous studies, classification would actually 
proceed from comparison of the response of each material with the response of specific objects in the picture, i.e. in a 
somehow “reverse” way 

PC1 

PC2 

PC3 
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of a continuous curve, as can be noticed checking the labels included for some points in the 
plot. Therefore, as predictable, bands near each other in the spectrum are going to co-vary, in 
general, and so are also close to each other in the scatter plot for loadings. This is particularly 
true for the case under examination, since even just the first two components explain most of 
the variation of the “sample”. In general, two variables close in the scatter plot of the loadings 
are considered to co-vary only with respect to the percentage of total variability explained by 
the principal components (i.e. loadings) themselves. It is also confirmed what already 
observed in Figure 3.16, that is the scarce contribution of first and last wavelength bands to 
the first principal components. 

3.2.3.3 Residuals 

As mentioned in the previous section §3.2.2, a smart way to represent residuals for an image 
is rearranging them in a matrix of the same dimension of the image itself. Qualitatively, the 
error matrices for all the PC projections appear similar to the one in Figure 3.18 (left). 
Predictably, the most significant error is committed along the boundaries of the objects. As 
for the scores, also residuals can be concatenated and showed as a colour picture where each 
PC corresponds to one of the three channels in the RGB colour space. Again, colour 
representation can significantly improve human eye interpretation of the results. For example, 
 

Figure 3.18 – (left) Residual matrix for the first principal component; (right) representation of the three residual 

error matrices as a colour image 
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it is clear that for object (2)28 the points have low(er) residuals for projection on the first two 
components and higher residual for the third, therefore it appears blue in Figure 3.18 (right). 
Similar conclusion can be drawn for other objects. 

3.3 Wavelet transform 

For the principal component analysis, algorithm implementation does not present particular 
difficulties, even when opting for step by step calculations instead of the build in MATLAB® 
function pca. Wavelet analysis is more complex to realize, therefore an entire MATLAB® 
toolbox is available for purchase29. Nonetheless, if someone wishes to implement custom 
functions able to perform the wavelet transform without the need of the toolbox, Gonzalez et 
al. (2010) provide useful function drafts in the dedicated chapter. In addition to these options, 
another valid possibility is the free toolkit implemented by the Department of Statistics at 
Stanford University, known as WAVELAB 85030. The results in this section are obtained 
using this last toolkit.  

3.3.1 Pre-processing  

In order to be able to use the WAVELAB 850 toolkit, the score matrix correspondent to each 
principal component needs to be cut into a square matrix. As mentioned in section §2.4.2.2, 
this requirement is quite standard in bidimensional wavelet analysis, making possible an 
overall representation of the results as the one in Figure 3.19, and it does not pose any 
problem for the specific image under examination since the lower part of the picture is mostly 
occupied by the background, and there is already enough visible background in the upper part 
of the image to be able to further process the square cut of the image without affecting the 
applicability of the results to the whole picture in a second stage. In case of a rectangular 
image for which no portions can be ignored because important details are distributed overall 
the image itself, it is common practice to just cut the rectangle to obtain several squares 
covering the whole picture or attach to the long side of the rectangle a copy (or a mirror-copy) 
of the image itself and cut the final result in a square. 

3.3.2 Visualization of results 

As anticipated in section §2.4.2.2, applying a bidimensional wavelet transform results in a 
matrix of approximation plus three matrices of details (horizontal, vertical, diagonal) at each 
step. Figure 3.19 shows the coarser resolution approximation image after three decomposition 

                                                 
28 See Figure 3.2 for object indexes 
29 See www.mathworks.com/products/wavelet.html (last access: 07/2019) 
30 See https://statweb.stanford.edu/~wavelab/ (last access: 07/2019) 
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stages and the different detail matrices corresponding to each step. To be able to represent the 
data in a greyscale image, each detail matrix and the approximation matrix have been 
independently rescaled to the range [0,1]; for easier human eye inspection, contrast-stretching 
and saturation of the bottom and top 1% of the pixels was also performed for each matrix 
independently. 
In the traditional configuration of the decomposition results, the images in the upper-right 
corner (i.e. the ones above the diagonal) correspond to the horizontal details. The horizontal 
 
 

  
(a) 
 

(b) 

  
(c) (d) 
Figure 3.19 – Decomposition resulting from the application of a two-dimensional wavelet transform to the  

score matrix of the first component (a), the second (b), the third (c) and a joint representation of the three score 

matrices in rgb color space (data rescaled and contrast stretched).  
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detail matrix  stores the information that is “loss” after the application of a horizontal 
transform. Lower and upper peaks in the horizontal detail images corresponds to the vertical 
edges “crossed” (and, in a way, “detected”) during the translation of the basis functions along 
rows, to obtain the approximation (and as a consequence also the detail loss). Similar 
reasoning applies to the vertical detail matrices, situated below the diagonal.  
Observing vertical detail images, the horizontal waves discussed in section §3.1 appear 
clearly. Since, during the vertical transformation of the matrix, the Haar scaling function 
approximates two near points with one averaged value (see Figure 2.12), if the intensity 
profile along columns is wavy the detail loss for each pair of points will be more significant 
than in the case of a more smooth intensity profile. Similarly, in correspondence of peaks the 
approximation will be significant and will lead to high detail coefficients (i.e. peaks also in 
the detail matrix), that corresponds to higher amount of detail loss in the approximation. 
Figure 3.20 exemplifies the problem for a one-dimensional wavelet transform. Figure 3.20 (a) 
and (b) represent a scaling function (father wavelet) and a wavelet function (mother wavelet) 
that can be used to expand the function in (c). Figure 3.20 (d) represents the approximation 
(obtained multiplying the scaling function for the approximation coefficients) and compares it 
to the original function; the first two points, having very different intensities, are 
approximated with significant “error”, i.e. higher detail loss (e) if compared to the subsequent 
couple of points. The detail in (e) is obtained multiplying the mother wavelet for the detail 
coefficients, that are stored in the “detail vector” (or, in two dimensions, “detail matrices”). 
Similar situations, in two dimensions, lead to peaks and valleys in the detail matrix. Besides 
this effect on the detail matrix, this approximation by averaging values of two contiguous 
points, obtained using Haar basis functions, results also in an overall smoothing/denoising of 
the signal, clearly visible in Figure 3.21, especially by comparison with Figure 3.4. In fact, the 
approximation (Figure 3.22 – right) obtained after the application of the wavelet transform is 

 times smaller than the original square image “entering” the processing, in this case, the 
maximum level of decomposition  is equal to , and so the approximation is 8 times smaller 
than the input matrix. Therefore, the 90th row from Figure 3.4 corresponds to the 11th row in 
the approximated image (90/8 11), and similarly the 155th column becomes the 20th column 
in Figure 3.21. Notice the intensity axis going from 0 to 1 since the transformed image in 
Figure 3.22 (right) has been rescaled to be able to represent it using imshow; moreover, the 
image contrast was enhanced to allow the human eye to better appreciate differences in 
intensities on the three retained components, similarly to the visual enhancement operations 
performed on the PCA scores for the first three components, shown in Figure 3.14. Figure 
3.20 (f), finally, illustrates the reconstruction obtainable with inverse transform if the detail is 
stored, adding the detail vector to the approximation vector. Notice how the approximation 
matrix stores the function approximation, while the detail matrices store only the coefficients 
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(a) (b) 

 

 

 

 
(c) (d) 

 

 

 

 
(e) (f) 

Figure 3.20 – Example of wavelet expansion using the scaling function in (a) and the wavelet function in (b). In 

order: (c) original function, (d) approximation, (e) detail, (f) reconstruction from approximation and detail 

 
by which the mother wavelet is to be multiplied to obtain the reconstructed image in (f).  
Finally, notice that the abovementioned waviness, registered for intensity profile along 
columns, appears to affect not only the background but also the objects, as can be deduced 
observing the detail matrix, where horizontal bands (corresponding to peaks in the detail loss) 
cover the whole picture, including the objects. This can be more easily detected after 
saturating the decomposition results corresponding to one principal component (e.g. the first 
one), obtaining Figure 3.23. Therefore, even if for the background the “waviness” may appear 
more pronounced due to the physical structure of the background itself (Figure 3.5), also the  
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Figure 3.21 – Intensity profiles of row 11 (up) and column 20 (down) for the 1st pc scores after wavelet 

transform application, followed by rescaling and contrast-stretching 

 
detection technique, capturing a row at a time, may have influenced the quality of the 
intensity profile along the columns (Figure 3.4), as pointed out in section §3.1.  
As concerning the diagonal details, for this specific picture they are not of particular interest, 
resulting mostly in white noise because of the absence of diagonal edges.  
The low-resolution version of the original image (Figure 3.22 – left) appears to be a good 
approximation of the original image, even if the edges are not smooth as in higher resolution 
(Figure 3.14). Notice that wavelet analysis was performed on the original data matrix, and not 
the rescaled, higher contrast version in Figure 3.14 (right), so that the low resolution 
hyperspectral image is actually a smaller dimension approximation of the original score 
vectors (rearranged in the shape of the original picture), and therefore certain types of analysis 
performed on the approximation can be extended to the high resolution scores image. In fact, 
after clustering an implementation of a linear classifier, if the classifier is built using the non-
rescaled picture as input data, then it can be used to classify the high-resolution score matrix 
(or equivalently the corresponding image obtained after reshaping) without further 
processing.  
Figure 3.22 (left) can be obtained after three decomposition stages. It is possible to reduce 
even more the dimension of the dataset, the inferior limit of the number of decomposition 
stages ( ) being  for a square image whose size  is equal to a power of 2, or 
otherwise the lowest number for which  is an integer. In this case, , therefore 
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the maximum  is 5. Figure 3.22 (right) shows the approximation obtainable after five 
decompositions. Clearly, the resolution is so low that it is almost impossible to give a 
meaning to the pixels in the image and to recognize the presence of objects and their nature, 
especially for the smaller objects that merged almost completely with the background.   
 

  
Figure 3.22 – Approximated image obtained after wavelet transform application, followed by rescaling and 

contrast-stretching. Respectively: three decomposition stages (left) and five decomposition stages (right). The 

images have been zoomed. 

 
 

 
Figure 3.23 – Decomposition resulting from the application of a two-dimensional wavelet transform to the  

score matrix of the first component. Results are saturated after 1 and below 0. 
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An image where at least two objects faded away and bigger objects can have a number of 
points not blended with the background as low as four, e.g. the green square on the bottom, is 
of little to no use for classification purpose, since, for example, the category to which the two 
smallest objects belong is not represented, and even for bigger objects, like the green square, 
just very few points (four) represent what actually is the most popular intensity value for the 
same object in the high resolution image, and this could degrade the performance of a 
classifier trained on a dataset with such a small number of representative points. Since the 
objective is the subsequent clustering and classification, it is of paramount importance 
maintaining a sufficient number of points which are representative of the bulk of each object. 
Consequently, the acceptability of a level of detail is actually determined by the effectiveness 
of the classifier built that can be verified only a posteriori, even if eye inspection can guide 
the initial choice, e.g. leading to the exclusion of Figure 3.22 (right). 

3.4 Clustering  

As mentioned before, the final objective of this work is to build a tool able to identify and 
label different materials, as the ones of which are made the objects in the hyperspectral image 
under examination. If a clustering task was to be performed on the original 224-bands 
hyperspectral image, the time required would have been prohibitive (see section §3.5), for the 
high computational cost – in the case of hierarchical clustering, the dependence on the 
number of points is more than quadratic. Conversely, grouping points of a 60x60x3 image is 
relatively fast, even though not necessarily easy. In fact, the pre-processing makes feasible the 
use of the hierarchical method, due to the low dimension of the “new” dataset entering the 
clustering process. 

3.4.1 Pre-processing  

Before performing the calculations, it might be enlightening to take a look at the scatter plot 
of the wavelet-transformed score vectors (wt score vectors), shown in Figure 3.24. It is clear 
that along some directions the data are more “well-spaced” than along others, i.e. clusters are 
further along some direction. Nonetheless, the more the observations belonging to different 
groups are “far” from one another (i.e. dissimilar, according to the metric used), the easier 
clustering will be. To enhance the distance between data points of different clusters, 
expanding the input range in a wider output range, saturating very low and very high values 
might improve clustering results, also considering that some of these extreme values are 
actually just noisy bridges between the clusters (i.e. smooth transition between objects, as 
seen in section §3.2.3.1).  
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This contrast-stretching operation, already mentioned at the end of the previous paragraph 
§3.3.2, saturating the bottom and top 1% of all pixel values of each wt score vector allows to 
significantly increase the distance between clusters, making them even more recognizable, on 
the scatter plot, by the human eye. Appendix 3 – Rescaling and contrast-stretchingexplains 
with a practical example how rescaling and contrast stretching does not modify the clusters 
naturally present in the data, but improves the distinguishability of some of them.  

3.4.2 Visualization of results 

The “data abstraction” step (ref. section §2.5.2.1), necessary for human interpretation of the 
results, is a very easy task if the dataset is an image: each cluster is associated to a number 
from 0 to 1 and the results are plotted in the shape of an image with a high contrast colormap 
(Figure 3.29). 
The improvement obtained through the pre-processing is confirmed by the several results 
collected in Figure 3.28, where a side-by-side presentation of the groupings obtained shows 
how in general the image on which distance-enhancement pre-processing was applied is better 
classified for almost all the metrics considered.  
Among the distance metrics available in MATLAB®, given the configuration shown in Figure 
3.25 where most of the clusters seems to be reasonably compact, the simple Euclidean 
distance could be more than enough for the purpose. Metrics like the Chebychev distance 
(that considers the maximum coordinate distance), the Cosine distance (referring to the cosine 
of the included angle between points), or the Hamming distance (considering the percentage 
of coordinates that differ) seems inappropriate for the application, as well as some other 
metrics, like the Mahalanobis distance (considering the covariance matrix) and the 
Correlation distance (considering correlation between points), seem unnecessarily 
complicated. Therefore, the Euclidean distance metric seems the most appropriate. Setting the 
metric to ‘euclidean’, the algorithm can be run several times considering the options 
available for the linkage metric. All the options available in MATLAB® are compatible with 
Euclidean distance. Some options can be excluded by simple reasoning, like the Simple 
linkage, considering the inter-cluster distance to be equal to the shortest distance between two 
points of the two clusters, or the Complete linkage, that considers the furthest distance, being 
to simplistic to define properly inter-cluster dissimilarity. Median, centroid or weighted 
linkages seem to be more appropriate, nevertheless the results are not the best. Another 
promising option is the Ward’s linkage, that considers as an inter-cluster “distance” the 
increase in the within-cluster variance after merging, and links the two clusters that minimize 
this objective function. In practice, this option seem to give the best results in term of object 
borders more polished and domain for each object compact enough (in the sense that the 
object does not contain points classified as a material different from the object’s material 
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itself). The only problem that seems to be present is a misclassification of the shadowing 
surrounding some objects more than others, as happens for the original image as well. This 
issue can be easily visualized through a scatter plot (Figure 3.27, left) where points 
corresponding to a specific group from Figure 3.27 (right) have the same colour as the 
clustering result image. It is clear that the “yellow” group is heavily dispersed, since just part 
of those yellow points in the scatter plot actually correspond to the small rectangular object 
coloured in yellow in Figure 3.27 (right), the others being the misclassified blurred borders of 
some other objects in the picture. The problem arises also because hierarchical clustering is a 
hard clustering method (ref. §2.5.2.1), meaning that it must necessarily put a point in one of 
the groups, and if the blurred borders are not similar enough to the bulk material, a solution 
could be to increase the number of clusters (cutting the hierarchical tree lower), hoping that 
the shadowing will be classified as the 7th material. Figure 3.26 shows the dendrogram 
(Euclidean, Ward) cut after 6 clusters, and the two crosses indicate the links that would be 
sequentially broken if the dendrogram cut-off was 7 or 8 clusters. It is clear how the specific 
sequence of these cut is determined by a very small difference in the height of the two 
bridges. In both cases, they link two clusters that are quite near to one another, so it is not 
obvious that the very first “new” cut will lead to a separation of the cluster corresponding to 
the rectangular yellow object in Figure 3.27 from the yellow border of other objects. Figure 
3.30 shows how this trick to try to classify the shadows as an additional “extra” material does 
not work properly for this problem, even increasing the number of clusters to 8. Therefore, 
before proceeding to the next step, that is building a classifier, some morphological operation 
on the border will be needed, to try to build a classifier able to give attribute labels even better 
than the clustering ones. 
It is important to notice also how the “blue” material in Figure 3.27 corresponds to a cluster 
practically impossible to find by only human eye inspection of the scatter plot in Figure 3.24 
and Figure 3.25. Similarly, it is impossible to associate one specific yellow area from the 
scatter plot Figure 3.27 (left) to the rectangular yellow object in Figure 3.27 (right). 
Remembering how the k-means clustering method starts from initial arbitrary centroids, there 
is a substantial likelihood of missing the yellow object or the blue object if these initial seeds 
are chosen randomly by the algorithm, and before finding all the objects a significant number 
of runs with random seeds could be necessary, de facto eliminating or significantly 
diminishing the supposed computational advantage of using a partition method. On the other 
hand, it is possible to give as input to the method initial centroids carefully chosen in the areas 
corresponding to each object, that could be identified checking the three “coordinates” of few 
points for each object identified by human inspection on the image. Nevertheless, this trick 
would make meaningless the concept of “unsupervised learning”, since the human 
intervention would be crucial for the success of the clustering task. Conversely, the  
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Figure 3.26 – Dendrogram for the clustering obtained with Euclidean metric and Ward’s linkage, cut-off after 6 

clusters. With an x are marked the links that would break with a cut-off of 7 or 8 clusters. The colours are 

random and do not correspond to the colormap from Figure 3.29. 

 

 

 

Figure 3.27 – (left) Scatter plot for the wavelet-transformed score vectors, rescaled and stretched. Colours 

corresponding to clusters on the (right) image. 

 
hierarchical method is able to obtain these results without external intervention, confirming its 
robustness. 
For comparison purpose, the Mahalanobis distance metric was also tested. Some of the 
linkage options are compatible only with the Euclidean metric, and of the remaining given the 
nature of the distance metric related to the covariance, the Complete or the Single linkages do 
not work properly, and the best results are obtained with the Weighted linkage, considering a 
weighted average distance between the covariance of the points as the inter-cluster distance.  
 

7 groups 8 groups 
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Figure 3.28 – Clustering results with different “distance” and “inter-cluster distance” metrics 
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Figure 3.29 – Colormaps for the clusters in Figure 3.28. Each colour corresponds to a different group. 

 
 
 

  
Hierarchical, Euclidean 

Ward, 7 Clusters 
Hierarchical, Euclidean 

Ward, 8 Clusters 
Figure 3.30 – Clustering results increasing the number of clusters required. 

 
The results for the latter option, shown in Figure 3.28, seem to be way less than optimum, 
especially for the non-rescaled dataset, since an entire object “disappears” from the picture. 
Increasing the number of “natural” clusters requested, the object “reappears” only for the case 
of 10 total clusters starting from the rescaled dataset, and 15 total clusters starting from a non-
rescaled dataset, and in the latter is considered part of the same group of the background 
waves (ref. background inspection in section §3.1), even if they clearly are not made of the 
same material. Considering the Mahalanobis weighted case with 15 clusters, the improvement 
in the classification of the stretched image with respect to the non-stretched dataset is even 
more evident that for the Euclidean metric cases, being the Mahalanobis metric not the best. 
It is of considerable importance to notice how the cophenetic coefficient is very low, even on 
the stretched image, for the Single linkage, as expected due to the poor results, but 
surprisingly high for the Complete linkage on the non-stretched image, even higher that the 
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accepted better clustering (i.e. Euclidean Ward on stretched image), despite of the evident low 
quality of the results that can be discovered by simple eye inspection. Therefore, if a high 
cophenetic coefficient can contribute to confirm the meaningfulness of the results, it cannot 
be used as the sole indicator of a good clustering. 
 

3.5 Classifier  

After obtaining classes labels with the clustering operations, it is possible, finally, to build a 
classifier not only able to label the high resolution image, but also useful for future 
applications. 

3.5.1 Pre-processing 

As pointed out in the previous section, the labels matrix resulting from clustering operations 
can contain some misclassified points. In this case, misclassified points are represented by 
yellow points on the borders of objects that are actually made of materials different from the 
“yellow” one. Nevertheless, some morphological processing may improve the quality of this 
labelling. In fact, as shown in Figure 3.31 (a) the actual output from the clustering operation is 
a matrix with labels from “1” to “6”, that can be rescaled to a greyscale image simply dividing 
by 6. Therefore, after the division, the label matrix is de facto a greyscale image, and 
greyscale morphological operations can be applied. The color representation is obtained only 
via colormap editing, and so it is just a different way of representing the same intensity 
matrix. For this purpose, it is important to know the greyscale value of the label of each 
group, that is reported in Figure 3.31 next to the colormap. For the red and the orange objects 
eliminating the yellow border through dilation operation is not difficult, being their greyscale 
value higher that the “yellow” material one (Figure 3.31 – a). For the blue object a problem is 
posed, because it is so small that it will be “buried” by the yellow contour, being “blue” 
equivalent to the lowest greyscale intensity, as shown in Figure 3.31 (b). A good trick is to 
interchange the two labels, labelling as group 4 the blue object and group 1 all the yellow 
points, including the unwanted ones at the borders, as shown in Figure 3.31 (c). Through this 
operation, it is possible to apply dilation to cover the “dark” (i.e. low intensity) borders and 
expand the “light” (i.e. high intensity) areas corresponding to objects, and then apply erosion 
to get back the original size of the elements. The sequential application of these two 
operations is also known as closing, and in fact, among the consequences, it also tends to 
close small holes like it happens for the open bridge in the orange object and the holes in the 
red one (Figure 3.31 – d). The rectangular object originally labelled as material 4 is bigger 
than the rectangle originally labelled as material 1, therefore after the change of classes even 
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1 0.167 

2 0.333 

3 0.500 

4 0.667 

5 0.833 
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(a) (b)  

  

 

(c) (d)    

Figure 3.31 – (a) Greyscale clustering result; (b) Dilation on greyscale clustering result; (c) Labels interchange 

between groups 1 and 4; (d) Closing operation on the image with interchanged labels 

 
if there was anyway an object of “dark” material, it was big enough to not disappear because 
of the dilation operation, and the subsequent erosion brought it back to its original size. 
Notice that, after these operations, it is possible to give back the original “colors” to the 
groups, i.e. the original labels for the materials. However, this step is not strictly necessary 
since those labels are an arbitrary sequence of numbers created during the clustering 
operations, and keeping the same labels over all the analysis is only a consistency matter, but 
in reality for this specific problem interchanging the labels would not have significant 
consequences overall because the labels are not yet associated with real materials names. 

3.5.2 Results  

The first step to build a classification model is training the classifier. For this scope, 
MATLAB® provides a function specific for discriminant analysis, that is fitcdiscr. As 
mentioned in paragraph §2.6.3.2, the training dataset consists of: (1) the data points of 
wavelet-transformed low-resolution image (not enhanced), and (2) the labels obtained from 
the contrast-enhanced wt-image and subsequent morphological transformation of the 
clustering results. In fact, for better classification results, as mentioned, it is advisable to have 
a training dataset with labels as correct as possible. The results of the training are assessed 
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applying the classifier on the training dataset itself, as a test to check the quality of the 
produced labels with respect to “real” classes. To predict labels with a trained classifier, the 
MATLAB® function predict can be applied. Observing the results obtained training the 
classifier on a non-pre-processed dataset (from now on “NPP classifier”), where several 
points on the object borders were incorrectly labelled, they appear to be significantly worse 
than results obtainable using processed labelling (from now on “PP classifier”), as shown in 
Figure 3.32, where the “yellow” misclassified border around objects is significantly reduced 
and mostly substituted with classification as “green” background material. Also comparing 
the scatter plot representing the groups after clustering (Figure 3.27) to the PP classifier 
scatter plot in Figure 3.34, the extension of the “green” area appears clearly. Nevertheless, 
some misclassification with respect to the PP dataset still occurs, as shown by the crosses 
marking the wrongly classified points in Figure 3.34. In order to have a clear view of the 
number of points that have erroneous labelling, with respect to the PP dataset labels, it is 
possible to build a confusion matrix (Figure 3.33), i.e. a matrix in which each element  is  
 

   

1 
2 
3 
4 
5 
6 

Figure 3.32 – Results for classifier trained on pre-processed data (left) and on non-pre-processed (right) 

compared. The colormap indicated the labels corresponding to each color 

 

  
Figure 3.33 – Confusion matrix in the case of a pre-processed (left) or non-pre-processed (right) dataset 
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the number of samples whose true class is  while the predicted class is . Therefore, rowsand 
column indexes represent class indexes, and the diagonal elements, for which the true and the 
predicted class are equal, represents the correctly classified points. Comparing the confusion 
matrix for NPP and PP classifier, it may seem that the NPP classifier is somehow better 
because it commits less mistakes compared to the training dataset labels, but it is important to 
remember that the NPP dataset already contains mistakes with respect to what is the natural 
and true classification of the materials because of incorrect border labelling, therefore the 
classifier thus obtained is adherent to wrong labels and so it is inherently wrong anyway. In 
fact, when the PP classifier is applied to the wt-data, more points are assigned to a group 
different from the one in the PP labels matrix, and this happens because, as can be deduced 
observing Figure 3.31 (left), some of the holes in the objects have disappeared in the labels 
matrix during the morphological operations, but in the real data there is a significant 
difference in intensity between points that represent an object and points corresponding to 
holes, and as a consequence those “holes” are labelled by the classifier with group indexes 
different from the object ones, and fortunately they are labelled mostly as background, as in 
reality those holes show exactly the background. In conclusion, the best classifier is definitely 
the one trained on the dataset pre-processed with morphological operations. 
Applying the PP-classifier to the PCA scores image, the results are quite satisfying (Figure 
3.35). The shadowed borders, instead of being classified erroneously as “yellow” material, are 
mostly labelled as background or as the corresponding object. All the materials are correctly 
labelled, and the classifier can be used for future applications. In fact, in general, a 
misclassification to the background is better than a misclassification to another material 
 

.  
Figure 3.34 – Scatter plot showing the groupings obtained through the classifier. The misclassified datapoints 

are marked with a cross (+) 
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Figure 3.35 – Classification of the PCA scores image using the PP-classifier (left) and superimposition of the 

results on a greyscale version of the original image (right) 

    

3.6 Problem dimension, time complexity and execution time 

This paragraph is meant to make a point about how, sometimes, apparently intensive and long 
pre-processing before a specific task can, overall, be more advantageous than performing the 
same task on unprocessed data. 
 

3.6.1 Introduction to the problem 

In this specific work, the main objective was to label different materials in a hyperspectral 
image that collects intensity responses for all the materials of interest in the near-infrared 
spectrum range. If a classifier able to distinguish the different materials is also build, the side 
quest of classifying future images containing the same materials is also solved. The main 
challenge is undoubtably the dimension of the dataset. Concerns from the classification point 
of view arise also due to the fact that the materials constitute objects of different sizes and 
shapes that are photographed all together with a non-vertical light source, creating significant 
shadowing. Nevertheless, shadowing and contemporaneous presence of several materials can 
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actually be a real scenario of future applications of the classifier itself, therefore a set of 
perfect pictures of different materials would be less adequate to build a classification model to 
be used in images of real objects. 
Labelling different materials in an “unsupervised” way, i.e. leaving to computer calculations 
the grouping task given a method and a distance measure, can be a very expensive task from 
the computational point of view, as illustrated in section §2.5.2.2. The computational cost or 
time complexity is an estimation of the number of elementary operations performed by an 
algorithm, in terms of order of magnitude31. Some (very few) algorithms may require the 
same amount of operations independently on the size of the dataset on which they are 
performed, but some others may depend hugely on the number of elements in the dataset, and 
this is the case for clustering algorithms, that need to execute similarity calculations involving 
each object in the dataset. If the clustering task was to be performed on the original image 
using a hierarchical method the computational cost would be prohibitive, as shown in Table 
3.3. Therefore, the use of other simplified methods would be necessary, with all the 
disadvantages related. In fact, as already mentioned in §2.5.2.2, partitional algorithms are 
faster than hierarchical ones, as shown also in Table 3.3, where it is assumed that 100 
iterations are more than enough to be able to cluster the data into 6 groups through k-means 
method. In fact, as an order of magnitude, the total number of iterations  is usually less than 
the number of points  (Subbalakshmi et al., 2014), and in general it is assumed to be 
relatively low to ensure the computational advantage over the hierarchical method. But lower 
execution time comes at a cost: the algorithm has to be run more than once because the final 
results depend on the position of the initial “seeds” (the random initial centroids), 
reproducibility is affected by the fact that each run gives different results, the only parameter 
is the distance between points (hierarchical clustering allows to choose also the parameter 
“distance between clusters”) and fewer options are compatible with the algorithm, etc. In 
general, hierarchical algorithm is more rigorous, and it is preferable when applicable, even if 
it is more expensive, since usually the quality of the results is better. To be able to use a 
hierarchical method, it is necessary to check if somehow it is possible to reduce the dimension 
of the dataset keeping just “significant” points, i.e. points retaining meaningful information to 
build a classifier, that could be used for this case and for future applications. Within this 
frame, dimension reduction through principal component analysis and subsequent application 
of the wavelet transform, could give a cut to the size of the problem. If the cost of these pre-
processing operations is significantly lower than the cost of applying the clustering algorithm 
to the original image, the “game” is actually “worth the candle”. Table 3.3 shows how 

                                                 
31 For an introduction to computational complexity and some basic examples refer to the online material made available by 
the University of Wisconsin http://pages.cs.wisc.edu/~vernon/cs367/notes/3.COMPLEXITY.html 
(last access: 07/2019) 
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computational cost reduction is significant with the decreasing of the dataset size, being the 
dependence higher than parabolic.  
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Execution Time    
Partitional (K-
Means) 
Algorithm  
 

Computational 
Cost  
(With K=6, L=100) 

   

Execution Time 
Table 3.3 – Calculations and estimations of problem dimension, computational cost and execution time (based 

on equation (3.6.1-2) with a clock frequency of 2.5 GHz) 

  
Execution time. Besides the computational cost, Table 3.3 includes an estimation of a 
parameter indicated as “execution time”. In computer science, the execution time required by 
a program is computed as follows 
 

  (3.6.1-1) 

where the clock frequency is a measure of the rate at which the CPU executes the instructions 
of a computer program. The number of clock cycles required by a program is the number of 
elementary steps needed to perform a task. These elementary steps must not be confused with 
the “elementary operations” considered in the calculation of the computational cost. For 
example, a single multiplication is an “elementary operation” but may require from the CPU 
several clock cycles to be executed. Nevertheless, by construction, the minimum possible is 
that each task (or elementary operation) requires exactly one clock cycle. Under this 
simplifying assumption, an estimate of the time required to execute an algorithm can be 
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obtained, keeping in mind that each elementary operation can require a different number of 
clock cycles and that the result obtained can be simply multiplied by the average value of the 
number of cycles to obtain a more accurate estimation of the time required. From equation 
(3.6.1-1) multiplying both sides for the number of tasks per clock cycle: 

 
 

 

Substituting , and simplifying on the right side 

   

We obtain 

  (3.6.1-2) 

Considering that the number of tasks is by definition the computational cost, knowing the 
clock frequency of the CPU on which the calculations will be executed, an estimation of the 
execution time required can be easily calculated. The clock frequency of the machine used for 
this work is 2.50 GHz32, and results in Table 3.3 assume to run the CPU at maximum speed 
performing only the calculations required by the algorithm. In reality, the cycles required by a 
single task can be several, and the CPU is running several programs at the same time (e.g. the 
MATLAB® user interface itself), therefore the time required can be one order of magnitude 
higher if not more. The actual time required by the machine in the specific situation of several 
programs running can be measured through the tic toc function33 in MATLAB®, and 
depends on the current number of programs the user is executing in the background (e.g. 
music player running!). 

3.6.2 Overall computational cost 

To check the feasibility of the approach proposed, involving heavy preprocessing before 
clustering operations, it is important to consider the computational cost of each algorithm 
involved. For the principal component analysis, the two main tasks involved (Povey et al., 
                                                 
32 AMD A12-9700P RADEON R7, 10 COMPUTE CORES 4D+6G 2.50 GHz 
33 For more information refer to https://it.mathworks.com/help/matlab/matlab_prog/measure-
performance-of-your-program.html (last access: 07/2019) 
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2010) are the computation of the covariance matrix, that requires  elementary 
calculations (where  is the number of variables and , as usual, the number of points) and the 
eigen-vector decomposition, that is . The computational cost of a wavelet transform 
may be estimated as  (Bhaskaran et al.,1995), where  is the dimension of 
the square matrix than undergoes the transformation. Finally, as seen, hierarchical clustering 
requires  operations. As illustrated in Table 3.4, the overall cost is dominated by 
the number of steps required by the PCA, but also clustering gives a significant contribution. 
Up to this point, with or without pre-processing, the result is a labelled data set that can be 
used to train a linear classifier, but the overall cost differs of six order of magnitudes, as 
displayed in Table 3.4 under the voice “subtotal cost”. 
If the only objective was to classify the current image, hierarchical clustering already gives 
the wanted information if applied directly on the original hyperspectral data. Conversely, if 
hierarchical clustering is applied on the low-resolution image, an additional cost of building a 
classifier has to be considered. According to Cai et al. (2008), if linear discriminant analysis 
is performed on a dataset counting a number of samples (or “points”) greater than the number 
of features (or “variables”), the number of operations needed to build the classifier is 

, where  is the number of features and  the number of samples. Once the 
classifier is trained, the cost of application is negligible since the hyperplanes dividing the 
groups have already been defined. As shown in Table 3.4, the final cost having a linear 
classifier does not change perceivably for the procedure with pre-processing, since building a 
classifier is relatively inexpensive for a small dataset, while if the number of points and of 
features increase significantly, the cost will skyrocket. Notice how building a classifier using 
the original data as a training set is as expensive as performing PCA on the original image. 
Nevertheless, if a classifier is needed for future applications, the final cost of clustering 
applied on the original image surpasses anyway the cost of LDA, and makes heavily 
inconvenient following this path. In conclusion, the appeal of a classifier built on a pre-
processed low-resolution dataset is undeniable. The last entry in Table 3.4 gives an estimation 
of the execution time according to the formulation proposed in equation (3.6.1-2) and 
considering a clock frequency of 2.5 GHz, that is the one of the CPU used for this work. In 
reality, as mentioned in the previous section, not the full clock frequency is available for the 
calculations, since other necessary tasks involving the execution of the operative system and 
of MATLAB® itself are also utilizing a portion of the CPU calculation power. Moreover, the 
actual cost of an elementary operation can be significantly higher than just one clock cycle. 
These and other related issues make the results of equation (3.6.1-2) just an estimation of the 
approximate order of magnitude of the actual execution time. In fact, the few seconds 
estimated for the execution of the whole sequence of procedures to build the “low-resolution” 
classifier translates into few minutes of real execution time on the commercial laptop used for 
this work. The actual time required to execute the procedure on the original dataset can only 
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be left to imagination because of RAM limitations addressed in the next section (§3.6), where 
computations carried out at several resolutions are compared. 
 

Method Computational 
cost formula 

Result with pre-
processing steps 

Results without pre-
processing 

PCA   n.a. 
Wavelet transform   n.a. 

Hierarchical clustering    
Subtotal cost 

(without linear classifier)    

LDA    
Total cost 

(with linear classifier)    

Estimated execution time  6,36 seconds 4.64 104 seconds 
(more than 12 hours) 

Table 3.4 – Overall computational cost with and without pre-processing (n.a. = non-applicable). The execution 

time is estimated as in equation (3.6.1-2) with a clock frequency of 2.5 GHz 

 

3.7 Refining the model 

As mentioned in the previous Chapter, after a working base case is defined, it is time to 
explore the consequence of varying the spatial and spectral resolution. 
 

3.7.1 Spectral resolution 

As seen in Figure 3.9 and on Table 3.1, the value of the cumulative explained variation 
becomes, more or less, steady after the first three principal components are considered for the 
new basis. This means that retaining less than three components could cause difficulty in 
distinguishing clusters, but retaining more than three could be a useless additional 
computational burden from the point of view of clustering and classification. Figure 3.36 
collects results for both scenarios. If the dataset is projected only on one or two principal 
components, the separation between clusters is insufficient, and a situation similar to the one 
presented in Figure 2.16 (c) arises. Observing clustering results in the case of one PC retained, 
even forcing the algorithm to find six clusters, it is clear that the natural grouping of the 
scores on PC1 is such that objects (2) and (4) are considered made of the same “orange” 
material and objects (3) and (5) are labelled as “cyan” material. Similarly, if two principal 
components are considered, it is hard to distinguish the materials of objects (1) and (4). 
As presented in the previous paragraphs, retaining three components allows finally for a good 
separation among the six materials. Furthermore, more components do not improve the 
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classification results, as shown in Figure 3.36. Both cases of four and five principal  
 

1 Principal Component Retained 2 Principal Components Retained 
Clustering Clustering 

  

4 Principal Components Retained 
Clustering  Classifier on low 

resolution image Classifier on high resolution image 

  

  

5 Principal Components Retained 
Clustering  Classifier on low 

resolution image Classifier on high resolution image 

  

  

Figure 3.36 – Unsupervised and supervised classification results in the case of one, two, four or five principal 

components retained (wavelet transform applied up to the third level of decomposition) 

 
components classify the points with an accuracy comparable to the results obtained with three 
components, since the shadowed areas of object (1) are still classified as background, so 
adding these components will just increase the computational effort adding little to no 



99  Chapter 3 

information, as already discussed considering Table 3.1. Polishing clustering results, 
misclassification of small groups of points at the border of object (1) can be corrected, as seen 
for the case of three PC in paragraph §3.5.1. 
 

3.7.2 Spatial resolution 

When the wavelet transform is applied for training the classifier, spatial resolution varies in 
such a way that, at each step, both length and width of the image are halved. Therefore, for a 
square image of side equal to 480 pixels there are very few levels of decomposition available 
before the image content is completely degraded, as demonstrated in Figure 3.37. 
Remembering that level 0 is the original image, after three level of decomposition the 
resolution (60 60) is still high enough that the smallest objects can be distinguished and 
properly labelled. When the size is halved, the smallest object is represented by less than ten 
points, therefore its proper classification is almost impossible, considering also how similar its 
spectrum is to the response of other materials. As a matter of fact, as shown in Figure 3.36, if 
not enough components are considered, that object’s material is erroneously classified as 
coincident with the material of another object. After five levels of decomposition, small 
objects cannot be distinguished anymore, and forcing the creation of six clusters has the only 
consequence of obtaining misclassified borders for the bigger objects. 
On the contrary, considering a higher resolution image obviously could allow to distinguish 
the objects considered even more easily, from the point of view of unsupervised learning, and 
could give to the classifier a bigger dataset on which to train. Nevertheless, if the performance 
of the trained classifier is not improved there is no reason to request the increased 
computational effort obviously related to the processing of a bigger image (remember that the 
computationally most expensive operation is the preliminary clustering; therefore, the spatial 
resolution should be tuned carefully, as it rules the overall computational burden of the 
proposed segmentation procedure). Figure 3.37 illustrates all the step up to the final labelling 
of the high-resolution image for the case of decomposition up to the second level before 
clustering. It shows how the results are perfectly equivalent to the ones produced using the 
third level of decomposition, since anyway some small regions at the borders get 
misclassified and again some shadowed areas are labelled as background, therefore higher 
cost in this case comes with no tangible advantage. 
For the first level of decomposition the original image is only halved in size. Therefore, the 
clustered dataset has a spatial resolution of 240 240 and considering that each of these 
240 240 points has three coordinates (if three principal components are retained), evaluating 
the distance for all the pairs of points would be extremely expensive. For how it is built, 
MATLAB® stores this matrix into the RAM memory up to when the distances calculations 
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are completed. Nominally, the RAM of the personal computer used for this study is 12 GB, of 
which 0.6 GB are necessary for running the Operative System (Windows® 10 – 64 bit). If the 
pairwise distance matrix calculation is started, MATLAB® automatically stops the execution 
of the program informing the user that the requested RAM (12.4 GB) exceeds the RAM 
 

4th Level of Decomposition 5th Level of Decomposition 
WT result Clustering  WT result Clustering  

    
2nd Level of Decomposition 

WT result Clustering  Morphological processing on 
labels 

   
Classifier test on low resolution Classifier test on high resolution 

  
Figure 3.37 – Unsupervised and supervised classification results in the case of two, four and five level of 

decomposition (three principal components retained) 
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available for calculations34. Very big dataset cannot be processed in the usual way. 
MATLAB® online documentation provides some tools35 implemented specifically for dealing 
with big data. In this situation, since the second or third level of decomposition already 
produce satisfactory results, there is no need to further explore these complex scenarios 
involving big data processing. Moreover, applying these techniques is against the objective of 
this work of finding a simple and computationally affordable way to label a big dataset with a 
classifier trained on a smaller dataset. 
 
Finally, notice that, as shown in Table 3.5, if the number of principal components retained is 
sufficiently low, the main computational burden of the whole procedure remains the PCA 
itself, as was for the base case, since the final total cost remains around . In practice, 
also the real execution time is very similar for all the cases, and stays of the order of few 
minutes, while the one predicted through equation (3.6.1-2) is of few seconds because of the 
approximation considering one clock cycle sufficient to perform an elementary operation (see 
paragraph §3.6). The cost of the PCA obviously does not depend on the number of 
components considered because when the method is applied the full 224-components 
decomposition is evaluated. 
If instead the number of components retained is fixed to three, varying the decomposition 
depth has a significant effect on clustering because the number of points for which pairwise 
distance has to be calculated is divided by  for the decomposition level , while varying the 
number of PC retained only increases the number of elements of the image matrix by  
additional points for each PC. As a consequence, the variation of the computational cost with 
the spatial resolution is significant (Table 3.6). Remembering again that equation (3.6.1-2) 
introduces the assumption of one clock cycle for each elementary operation, comparing 
measured and theoretical execution time for the sole clustering operation shows how this 
assumption can barely give an approximated order of magnitude for the execution time, while 
the time actually required will always be greater. Anyway, for lower resolution images the 
computational cost of clustering remains lower than a second. Starting from the second level 
of decomposition, the time spent for the execution increases steeply, not only because 

                                                 
34 Notice that the RAM actually available for calculation is not the 11 GB of memory remaining after the OP is started. For 
more details, it is possible to ask the execution of the MATLAB script memory in the Command Window. For this specific 
case: 
>> memory 
Maximum possible array:        9175 MB (9.620e+09 bytes) * 
Memory available for all arrays:        9175 MB (9.620e+09 bytes) * 
Memory used by MATLAB:       10932 MB (1.146e+10 bytes) 
Physical Memory (RAM):       11664 MB (1.223e+10 bytes) 
 
*  Limited by System Memory (physical + swap file) available. 
 
35 See https://it.mathworks.com/help/matlab/large-files-and-big-data.html  (last access: 
07/2019) 
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elementary operations could require way more than one clock cycle, but likely also because 
the RAM was almost filled by the distance matrix and the calculations were significantly 
slowed down by the fact that also other programs had to access the remaining RAM. For the 
first level of decomposition, requiring an amount of RAM superior to the physical memory 
installed on the personal computer used, of course no information is available about the actual 
execution time of the algorithm. This shows how a fast CPU is not enough if the RAM is 
completely filled. 
In conclusion, from both the point of views of quality of the results and affordability of the 
computational cost, the base case with three principal components retained and resolution 
lowered up to the third level of decomposition seems to be the optimum. 
 

Method 
 

Computational Cost – 3rd level of decomposition for the WT 
1 PC retained 2 PC retained 3 PC retained 4 PC retained 5 PC retained 

PCA  
Wavelet T.      
Clustering      

LDA      
Total cost      
Execution 

time 
seconds 

Table 3.5 – Computational cost for several values of the spectral resolution, i.e. for different number of PC 

retained 

 

Method 
Computational Cost – 3 Principal Components retained 

Dec. level: 1 Dec. level: 2 Dec. level: 3 Dec. level: 4 Dec. level: 5 
PCA  

Wavelet T.  
Clustering 

LDA 
Total cost 
Execution 

time 
 seconds  seconds  seconds  seconds  seconds 

Ex. time for 
clustering 

 seconds  seconds  seconds  seconds 
 

seconds 
Measured 

ex. time for 
clustering 

n.a.  minutes  seconds  seconds  seconds 

Table 3.6 – Computational cost for several values of the spatial resolution, i.e. for different levels of 

decomposition for the wavelet transform 



 



Conclusions 

In this work, a technique for segmentation of hyperspectral images was proposed. Since, for 
its very nature, hyperspectral data tends to be huge in size, operations with a more-than-linear 
dependence on the size of the dataset can end up requiring an unbearable computational 
effort. Unsupervised classification of an image for its segmentation is one of the most 
expensive basic operations in image processing, hence the necessity of techniques to avoid the 
direct application of clustering on a huge dataset. The approach proposed consists in the 
application of unsupervised classification to a low-resolution version of the original image, 
training then a classifier to label the high-resolution image. Application of the method to a 
typical segmentation problem is carried out to illustrate quantitatively the performances of the 
method proposed. Size reduction in terms of spectral dimension is achieved through 
application of principal component analysis, that projects the observations (i.e. the points of 
the image) onto a new set of basis vectors defined in such a way that variability of the 
projected data is maximized. For the case under examination, retaining only the projections 
(or scores) capturing the maximum amount of variability, it is possible to preserve more than 
99% of the total variability of the data. Spatial resolution of the image is lowered applying the 
Haar wavelet transform, that at each step halves the size of the image, performing operations 
of downsapling and averaging between adjacent points. The resolution is lowered up to a 
level of coarseness retaining sufficient detail for objects discrimination. After, hierarchical 
clustering operation is finally performed on a relatively small dataset, calculating Euclidean 
distance between points and using Ward’s formula for the inter-group distances. The best 
distance definition depends on the nature of the dataset, but in general Euclidean distance is 
appropriate for image clustering. The labelled data thus obtained is then used to train a linear 
classifier, defining hyperplanes separating the clusters from one another. The final step of the 
method is then to apply the classifier to the high-resolution image, that in this way is labelled 
without directly using costly clustering algorithms. If the resolution of the reduced dataset is 
not too coarse, the final results on the high-resolution image are more than satisfying, and the 
computational effort decreases of several orders of magnitude (four o.o.m. for the specific 
case under examination). After a base case is solved, calculations for different values of the 
image resolutions are carried out, to try to achieve the better compromise between quality of 
the results and computational effort. Since a low-resolution image is obviously fast to be 
processed but inaccurate in the results, a trade-off can be identified varying the number of 
principal components retained and the level of coarseness of the low-resolution image 
obtained after the wavelet transform. Finally, it is important to notice that, if 



MATLAB® and its built-in toolboxes are employed to perform the clustering operation, the 
computational cost for the CPU is not the only limitation to the processing of large datasets, 
since real issues arises if large data matrices have to be computed and stored in the RAM, that 
can even get completely filled.  
The quality of the results obtained for the sample dataset makes this procedure quite 
promising not only for situations when a faster response is needed, but also when computing 
power is limited. In the future, the limits of this procedure can be explored by testing it on 
more complex datasets, for example objects with complicated textures, like vegetation. 
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Appendix 3 – Rescaling and contrast-stretching 
Visualization of a picture generated by concatenating scores matrices for several principal 
components further transformed through rescaling and contrast stretching 
 
Scatter plot of the scores on PC1 and PC2 
 

 
Subtracting the absolute minimum and dividing by the difference between absolute maximum 
and absolute minimum, the point distribution is qualitatively identical, because the points are 
all divided by the same constant, and it appears translated with respect to the PC axes 
 

 
 
 
Expansion of the narrow input range into a wider output range (contrast-stretching) 
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The different clusters appear to be easier to distinguish after the stretching procedure, as 
represented in Figure 3.15 in Chapter 3. 


