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“Considerate la vostra semenza: fatti non foste a viver come bruti ma per
seguir virtute e canoscenza.”

Divina Commedia



Introduction

This work deals with the design of a real-time system able to solve the prob-
lem of planning collision-free motions for multiple robot vehicles that operate in
the same, partially-observable environment. In robotics this problem has a wide
literature and a lot of solutions were found. One of these systems uses the coordi-
nation of robots in a distributed manner even considering the kinodynamic time
constraints. The system proposed in this work uses an hybrid architecture using
the Social Force Model for dealing with human presence. This kind of systems
permits scalability and a low computational load for the single robot. These
document describe the design of a distributed system able to work with robot
with low computational resources. All the systems proposed in the literature
were developed with the main objective of using particular software frameworks
oriented to use it in a mainframe system. Our proposed implementation goes
in the opposite direction. We used a general purpose robotic operating system
developed by Willow Garage, called ROS. This policy gives the chance to this
framework to be potentially used on every robot using the ROS middleware.

After a brief overview (Chapter 1) where the problem is described, follow-
ing, we introduce a general system architecture for a moving autonomous system
(Chapter 2). In this part we describe the navigation system, the ICS state and
the collision avoidance problem. After that we explain how to add intelligence
to the system with different features. In Chapter 4 a people motion prediction
is described. Moreover, in Chapter 3, we explain how to add the collaboration
between robots. After the main theoretical topics we describe the ROS imple-
mentation (Chapter 5) of the system proposed in Chapter 4.3. We conclude
(Chapter 6) reporting experimental results.
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Chapter 1

Overview

1.1 Brief state of art

The ability to safely navigate in crowded environments is a key element for
most applications involving mobile robots, and collision avoidance is a crucial
component of any navigation systems. Here we focus on coordinating robots’
maneuvers to achieve collision avoidance for a group of mobile platforms with
limited computational capabilities.

The collision avoidance problem in a known static environment with multiple
robots has a wide literature, but we can identify two approaches: the reactive
(myopic) and the predictive one. The former is a class of methods that permits
robots to avoid collisions on a dynamic environment without explicit communi-
cation. Such methods include the Dynamic Window Approach [3] and Velocity
Obstacles [9]. The latter has his most recent extension on the Optimal Recipro-
cal Collision Avoidance (ORCA) [21]. This can be used to simulate thousands
of moving agents without collisions and achieve this objective without com-
munication. Among myopic methods, path deformation techniques compute a
flexible path that is adapted on-line so as to avoid moving obstacles [26]. These
approaches are very efficient in simulations with a high number of agents as
shown with Reciprocal Velocity Obstacles (RVO) [22]. However, that approach
only works well if the only moving obstacles are other robots with the same
behavior, furthermore some deadlocks can arise, e.g. the dancing behavior, and
it can not deal with the Inevitable Collision State (ICS)1 issue [11].

The predictive approaches can be addressed either with coupled or decoupled
approaches. Coupled approaches guarantee completeness but generate an expo-
nential dependence on the number of robots and use a centralized computation
[6]. Decoupled approaches allow robots to compute their own paths and then
resolve conflicts, so that feasible solutions are usually incomplete, but computed
faster and in a decentralized way. For instance, in prioritized planners, where
low priority robots have to adapt their path plans upon the decisions of high

1A state is an ICS if every next state involves a collision.
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6 CHAPTER 1. OVERVIEW

priority robots, this decoupled approach could have a heavy impact on finding
a feasible real-time solution.

The solution to the path-planning problem for robots with second-order
dynamics, i.e. the kind of robots proposed in this work, can be achieved by
using a sampling-based tree planner [16, 2] and, even if all robots decide a
feasible plan, maybe its end state is an ICS [11]. The literature on contingency
planning to avoid ICS in static environments shows that braking maneuvers
are sufficient to provide safety if used within a control-based scheme [25] or in
sampling-based re-planning [4], as well as with learning-based approximations
of ICS sets [14] or approximations for computing space×time obstacles [5].

This work uses a not prioritized, decoupled approach and is inspired by
the safety rules proposed in [2] about how to avoid ICS and collisions between
robots. This system is based on the computation of a set of plans concatenated
with the robot’s contingency plan and the exchange of this information among
robots. This permits the choice of a safe trajectory for every robot. Here, we
propose the same kind of decoupled approach but with some key differences: the
factor graph [15] as communication network, the max-sum algorithm [1] for the
distributed coordination. The system still provide safety and good performance
even without real-time design communication protocols such as in ROS.

1.2 Problem Setup

We are going to propose our formal representation of the problem. Stressing,
the system faces with an partially-known environment. Here a crew of moving
robots has to reach different goals where moving unknown obstacles are present.

Let R be a set of n independent robots, i.e. R = {R1, R2, . . . , Rn} and
let each robot Ri, 1 ≤ i ≤ n have second order dynamics ruled by the time
constraint

ẋi (t) = f (xi (t) , ui) , g (xi (t) , ẋi (t)) ≤ 0, ∀t ∈ R, (1.2.1)

where xi (t) represents a system state, ui a robot control and function f and
g are both smooth. Let E ⊆ R2 be the environment where the robot operates
and FE ⊆ E the free environment, the free space of that environment. Given
a point p ∈ R2, for each robot Ri, fP (Ri, p) is called the footprint on the point
p, i.e. the subset of FE occupied by the robot, while c(Ri) ⊆ R2 is the center
of that footprint. The 2D local subspace of FE where robot Ri can perceive
and move, i.e. every c (Ri) such that fP (Ri, c (Ri)) ⊆ FE, is called the safe
environment and is represented by SEi.

Let robot Ri be the owner of a local goal list GLi filled with 2D space points
(x, y) ∈ SEi, the problem to be solved is the following: every robot Ri have to
reach its global goal Gi passing through a sequence of local goals, where a local
goal can be reached by choosing a linear trajectory and maintaining a speed vi

selected from Vi, a discrete and finite set of velocities. In particular, when a
local goal is reached, Ri has to compute a new GLi and select both a new local
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goal gli ∈ GLi and a velocity vi ∈ Vi such that, until Ri does not reach gli, ∀t
�
fP (Ri,vi · t) ∈ SEi

fP (Ri,vi · t) ∩ fP (Ri,vj · t) �= ∅ ∀i �= j
. (1.2.2)

Definition 1. Given a generic robot Ri, we will call Trajectory tri a tuple
(spi,vi, dti) where

• spi = fp (Ri,vi · t) , t = 0 is the starting point of Ri,

• vi ∈ Vi is the selected velocity for reaching the selected local goal gli,

• dti is the period where to apply vi.

Then, we evince that vi ·dt = gli , so we can even write the tuple tri as (spi, gli)
if needed.
Remark. We are not placing limits about the shape of the robot, just on kino-
dynamic.
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Chapter 2

System architecture

A basic architecture is needed by an autonomous system moving in the world.
Here it is described an implementation of that architecture. As annotation, the
modules meaning below described will not change on the next chapters.

2.1 Main modules

The robot executes a sense-planning-act cycle. For accomplish it, the automata
performs the following steps using the modules on the system represented in
Figure 2.0.1:

1. The Environment Model Builder retrieves sensor and odometry data and
computes a costmap, a discrete grid inflated with costs (e.g. distance from
an obstacle) obtained from the environment sensor data;

2. Given the global goal and the SE, the Local Goals Generator computes a
set of feasible1 goals around the robot position.

1Feasible means that for sure there is a path between robot position and the goal.
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Figure 2.0.1: Block schema of the collision avoidance system.
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10 CHAPTER 2. SYSTEM ARCHITECTURE

3. Given a local goal, the Motion Planner computes the shortest path to
reach it.

4. The Controller receives the path and starts to send the motion commands
to the real robot using a reactive approach(see 2.3.1) until it does not reach
the local goal.

Unlike other similar works on distributed planning, this one does not use a
single approach for computing the path to reach the goal pursued by the robot.
Moreover, even if the RRT algorithm or another probabilistic approach has been
demonstrated powerful[19], in the environment used in this work could not be
effective. Every probabilistic approach checks, before any movement of the
machine, if all the robot’s states reached along the path towards the waypoint
will not collide with the static obstacles. In this case the environment can
change rapidly and it is very common that the agent cannot respect perfectly
the roadmap. The reasons are many: because it has to avoid moving obstacles,
for its physical constraints (e.g. different wheels friction) or the software loop
control that does not respect the deadline (see 6). Then, our policy prefers
that only the local goal is in a position without collisions whereas the computed
path has to be just far enough from the static obstacles. We use this approach
because, along the way, we will use a reactive approach for avoiding unknown
threats. Respecting that policy we use two algorithms:

• Dijkstra’s algorithm for the global navigation, that is used for compute
the path from the current position and the local goal. The local goal is
selected using a greedy approach described below, see 2.2.1.

• Dynamic Window approach[10] for the local/reactive navigation. It
follows the global path ensuring the obstacle avoidance from static or
moving and unknown obstacles.

2.2 Global Navigation: Dijkstra’s algorithm

As described in 2.1, the Environment Model Builder create a costmap, which is a
grid where each cell has a cost c ∈ EnvV alues (⊂ Z). The values in EnvV alues

can be interpreted as danger levels. When a cell has a danger level c ≥ thresh,
where tresh ∈ EnvV alues is a danger threshold, the cell is representing an
obstacle. The computation of the path for robot R is given by the Dijkstra’s
algorithm [7] with some adaptations listed below:

• Let be the initial node, the cell of the cost-map where the robot center
c(R) is placed;

• All the cells are considered as nodes connected by edges with the near
cells. When a cell has a cost higher than the danger threshold, it will be
not connected with its neighbors;

• The edges have a unitary cost.
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
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

Figure 2.2.1: Transformation of costmap into a graph

The weakness of the algorithm is that it makes no attempt to direct "explo-
ration" towards the destination as one might expect. Rather, the only consid-
eration in determining the next "current" node is its distance from the starting
point. In some sense, this algorithm "expands outward" from the starting point,
iteratively considering every node that is closer in terms of shortest path dis-
tance until it reaches the destination. So the algorithm has a relative slowness
in some topologies.

2.2.1 The greedy approach

The greedy approach directly computes the set of reachable goals around the
robot. We will consider a goal directly reachable if it is in the line of sight of
the robot. With the purpose of build the set, the robot tests around itself every
n (n ∈ Z+, n ≤ 360) degrees if there are at least 360

n local goals. The local goal
must be placed at safety distance (e.g. 1.5 meters in our tests) even if the robot
will move for a minor distance for the reasons explained below, see 2.2.3. There
is no upper limit to the new goal distance, the bound is only related with the
sensing capabilities of the robot. Given the set of the all feasible local goals, the
approach selects the one which minimizes the distance from the global goal. If
no goals are available, the robot starts the recovery plan as explained in 2.2.3.

2.2.2 Avoid the patrolling behavior

The simple greedy approach could arise a problem. For instance, consider the
scenario where the robot reaches the end of a close corridor and the global goal
is just after the corridor wall, so that the final goal is not directly reachable.
Using the logic of the previous greedy solution all the reachable goals will be
behind the robot. So it will reach one of these goals and for sure it will increase
the distance form the global goal. Then, the following greedy step oblige the
robot to return again next to the wall, because it is the waypoint that minimize
the distance from the global goal: the robot enters in a “looping behavior” where



12 CHAPTER 2. SYSTEM ARCHITECTURE

 

 
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 

Figure 2.2.2: The looping behavior.

it looks like patrolling, as shown in Figure 2.2.2.

With the purpose of bypassing this critical problem, a navigation algorithm
has been developed (see Algorithm2.1). Specifically, we use a set structure
called geostructure, where we keep all the computed goals. This is a discrete
set with a given precision degree. Then, when a goal is going to be added
in the geostructure, but in the set there is a goal which is far less than the
precision degree (i.e 0.5m) from the new goal, the last one will not be added to
the set. Geostructure is equipped with a method that return the goals directly
reachable from the current robot position (neighborhood). Next, when we call
compute_goals_from function, we select the safe goals around the robot position
that are not near to the useless goals in geostructure. Finally, if at least a goal
is found, we select the local goal that minimizes the distance to the global goal,
otherwise recovery actions are taken. So, this algorithm add information about
the global environment. Doing that, the robot knowledge increases.
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Algoritmo 2.1 High level navigation procedure

geo s t ru c tu r e gs ;
gs . p r e c i s i o n = 0 . 5 ;
p o s i t i o n g loba l_goa l ;
while ( g loba l_goa l i s not reached ){

curr_pos = get_current_position ( ) ;
gs .add( curr_pos ) ;
gs . find ( curr_pos ) . type = GOOD;
l o ca l_goa l s = compute_goals_from( curr_pos ) ;
i f ( l o ca l_goa l s . s ize ( ) > 0){

new_local_goal = select_best ( l o ca l_goa l s ) ;
gs .add( new_local_goal ) ;

} else {
gs . find ( curr_pos ) . type = USELESS ;
recovery_goal = gs . find_good_neighbour ( curr_pos ) ;
i f (not s e t recovery_goal )

contingency_plan ( ) ;
else

move_to( recovery_goal ) ;
}

}

2.2.3 ICS and Recovery Action

An ICS is a state from which the robot can only transfer to a collision state. For
instance, a collision state could be a position too near to a wall or a state with
high velocity. Let SD be the safe distance (e.g. 0.5 meters) equals to the space
needed by the robot to safely carry out one of its ICS escape maneuverers. The
ICS is avoided using a simple policy: each robot has to cover at least a distance
of SD, such that if the path has a length L ≥ SD the robot will move for that
length L minus the safe distance SD, i.e. L− SD.

Our escape action is divided into two steps: first the robot tries to rotate
slowly with the purpose of updating the costmap with some moving obstacles,
then, if after two rotations obstacles still block its path the robot stops and
looks for another path.

2.3 Local Navigation

2.3.1 Dynamic Window Approach (DWA)

The key advantage of local techniques over global ones lies in their low com-
putational complexity, which is particularly important when the world model
is updated frequently and based on sensor information. Other methods, like
potential fields methods, often fail to find trajectories between closely spaced
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1. Search space: The search space of the possible velocities is reduced in
three steps:

(a) Circular trajectories: The dyamic window approach considers
only circular trajectories (curvatures) uniquely determined by pairs
(v, ω) of translational and rotational velocities. This results in a
two-dimensional velocity search space.

(b) Admissible velocities: The restriction to admissible velocities en-
sures that only safe trajectories are considered. A pair (v, ω) is con-
sidered admissible, if the robot is able to stop before it reaches the
closest obstacle on the corresponding curvature.

(c) Dynamic window: The dynamic window restricts the admissible
velocities to those that can be reached within a short time interval
given the limited accelerations of the robot.

2. Optimization: The objective function

G (v, ω)− σ (α · angle (v, ω) + β · dist (v, ω) + γ · vel (v, ω)) (2.3.1)

is maximized. With respect to the current position and orientation of the
robot this function trades off the following aspects:

(a) Target heading: angle is a measure of progress towards the goal
location. It is maximal if the robot moves directly towards the target.

(b) Clearance: dist is the distance to the closest obstacle on the tra-
jectory. The smaller the distance of the robot and supports fast
movements.

(c) Velocity: vel is the forward velocity of the robot and supports fast
movements.

The function σ smoothes the weighted sum of the three components and results
in more side-clearance from obstacles.

Figure 2.3.1: Different parts of the dynamic window approach
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obstacles. The approach here described is preferred to the more recents in litera-
ture because it’s efficient even with low-cost robots, simple. Moreover the newer
approaches were developed mainly for the simulation of thousand of agents.
Therefore, those systems only work with unknown dynamic objects that use the
same behavior of the agent, like RVO and its evolutions [23, 22, 21, 24, 20]. This
approach differs from others in

• It is derived directly from the motion dynamics of the mobile robot;

• It takes the inertia of the robot into account which is particularly impor-
tant if a robot with torque limits travels at high speed;

• the method has proven to avoid collisions reliably with speeds of up to
95 cm/sec on several robots in several indoor and cluttered environments.

It uses a simple but elegant way to incorporates the dynamics of the robot: it
reduces the velocity (rotational and translational) search space to the dynamic
window which consists of the velocities reachable within a short time interval.
Within the dynamic window, the approach only considers admissible velocities
yielding a trajectory on which the robot is able to stop safely. The candidate ve-
locity is selected using an objective function that includes a measure of progress
towards a goal location, the forward velocity of the robot, and the distance to
the next obstacle on the trajectory, see Figure 2.3.1. This permit a reactive
approach to the collision avoidance with unknown obstacles.

In a nutshell, the approach considers periodically (every 0.25 sec) only the
velocities reachable from the robot according with its dynamics, this set of
rotational trajectories2 is called Vs. Let be Va ⊆ Vs the set of (v, ω) couples that
permits a safety robot break given v̇b the breaking translational acceleration and
ω̇b, the breaking rotational acceleration (see Figure 2.3.2) . This set is computed
with the following formula:

Va =
�
(v, ω) |v ≤

�
2 · dist (v, ω) · v̇b ∧ ω ≤

�
2 · dist (v, ω) · ω̇b

�
(2.3.2)

where dist (v, ω) is the distance to nearest obstacle given the rotational trajec-
tory.

Now the set Va is reduced again to the set Vd, that includes the velocities
reachable in a short time t using feasible accelerations va and ωa and is computed
as below:

Vd = {(v, ω) |v ∈ [va − v̇ · t, va + v̇ · t] ∧ ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t]} (2.3.3)

these velocities form the dynamic window Vr (= Vs ∩ Va ∩ Vd) (see Figure 2.3.3)
which is centered around the current velocities of the robot in the velocity space.

2set of trajectories that make a translation and a rotation as well.
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Figure 2.3.2: Velocity Space

Figure 2.3.3: Dynamic Window
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Algoritmo 2.2 Algorithm used in the Random Model.

Begin

while ( true )

i f g loba l_goa l not reached then

l o ca l_goa l s_se t = computeLocalGoals ( )
else

e x i t
ne ighbours = getNeighbours ( )
var waypoint new_goal
i f ( ne ighbours > 0) then

new_goal = select_random_goal ( l oca l_goa l s_set )
else

// the waypoint that mimimize the d i s t ance towards
the g l oba l g l o a l

new_goal = select_best_waypoint ( )
move_to( new_goal )

end while

End

2.4 Collision avoidance among robots

The approach proposed in 2.2.1-2.2.3 works well with one robot but the aim of
this work is to provide safety motion planning for more robots playing on the
same environment with heterogeneous goals. When using the previous policy
it could happen that some robots collide because their trajectories intersect. It
has been shown before that we cannot use a reactive and greedy approach alone.
It can lies to a dangerous suboptimal solution where the robot is involved in a
patrolling behavior.

2.4.1 Random Model

A naive solution is that when we are near to another robot and given the local
goals set, the robots select the new waypoint randomly and hope that “every-
thing it’s gonna be right”, see Section2.2. This approach could work if the robots
are in a wide environment and the number of robots is really low.

The model does not make valid considerations about robot future states.
Then, the solution is not considering the possibility to reach an ICS region (e.g.
see Figure 2.4.1).
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Figure 2.4.1: The robot 1 can’t perform the recovery even if its current position
is safe.



Chapter 3

The Distributed Approach

We can use another multi-robot collision avoidance method where the robots
share their own trajectories with the neighbors and after that, each one decides
which its own trajectory is the best safe solution. Formalizing, given a robot
Rj and its robot neighbors NBj

1, let be:

• INBj , a vector where the indexes of the robots in NBj are stored .
INBj [0 . . . |NBj | − 1](i.e. looking at 3.0.4, NB4 = [4, 1, 3]);

• INBj [0], for convention, is the index of the robot Rj ;

• given Ri, TRi is the set of trajectories for reaching each local goal in GLi

;

Each robot Rj has to find the tuple of trajectories

(trINBj [0] ∈ TRINBj [0] . . . trINBj [|NBj |−1] ∈ TRINBj [|NBj |−1]) (3.0.1)

1Remember that Rj ∈ NBj because each robot is neighbor of itself
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Figure 3.0.1: The Distributed Multi Robot System (DMRS).
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Listing 3.1: Payoff function
// f o r convenience tr0 i s the t r a j e c t o r y o f the robot Rj

c a l l i n g the func t i on
begin fj (G, tr0, . . . , trn−1)

d i s t ance = 0
sa f e ty_d i s tance = 2 .5
goa l_dis tance = get_eucl idean_goal_distance (tr0 ,G)
∀ (tr0, trv) with u = 1 . . . n− 1

d i s t anc e += min_euclidean_distance (tr0, tru )
mean_distance = d i s t ance / (n− 1)
i f mean_distance < sa f e_d i s tance then

return log ( mean_distance/ sa f e ty_d i s tance )
else

return log ( sa f e ty_d i s tance / goa l_dis tance )
end

that maximizes a R− valued function, like the following one:

fj

�
Gi, trINBj [0] . . . trINBj [|NBj |−1]

�
(3.0.2)

the function payoff will consider the mean minimum distance between tra-
jectories and the distance from the end of the trajectory trINBj [0] to Gj , the
global goal of Rj .

The higher is the minimum distance and the shorter is the distance with Gj ,
the higher is the value returned by fj see Listing 3.1.

The min_euclidean_distance (tru, trv) function calculates the minimum dis-
tance among the two robots if they choose those trajectories. This function uses
the velocity of the trajectory, adding the time dimension to the problem. Us-
ing this policy it could happen that two trajectories are good even if they are
geometrically in collision, they are even good because by considering the time
variable the robot don’t collide.

The best tuple solution computed by the robot Rj probably is not the best
one for its neighborhood. For this reason our approach will use a distributed
method using the factorgraph and the max-sum algorithm to decide given some
common rules or policies, which trajectory is the best safe solution for the
neighborhood.

3.0.2 The Trajectory Window

When the number of robots increases ( e.g. more than 5 robots) it is not rare
that each robot Ri can count only on a reduced SEi. In this case we cannot
just consider the problem from the geometric side but maybe we should consider
the time as variable. When the situation start to be chaotic it could be useful
not to plan long paths but to use short-time paths and communicate with the
neighbors whose fast path is more safe. Stressing, we want use the heuristic
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“less free space, use more frequent collaborations”.

This heuristic appears on the system as time parameter called Trajectory
Window Twindow, that is the maximum time that a trajectory can be used by
the robot. Then, we need to modify the Definition 1.

Definition 2. Given a generic robot Ri, we will call Trajectory tri a tuple
(spi,vi, dti) where

• spi = fp (Ri,vi · t) , t = 0 is the starting point of Ri,

• vi ∈ Vi is the selected velocity for reaching the selected local goal gli,

• dti is the period where to apply vi.

• dt ≤ Twindow

3.0.3 The Factor Graph

We use the factor graph [15] framework to solve the coordination in the dis-
tributed motion planning problem.

Indeed, let x = {x1, x2, . . . , xn} be a collection of variables, where each
variable xi takes values in a finite alphabet Ai and let g (x1, x2, . . . , xn) be a
R− valued function of these variables, i.e. a function whose domain is

S = A1 ×A2 × · · · ×An (3.0.3)

and codomain R. The domain S is called configuration space for this collection
of variables, while each element of S is a particular configuration of the variables,
i.e. an assignment of a value to each variable. The codomain R may generally
be any semiring, so that we can also assume R is the set of real numbers. We
recall that a commutative semiring is a set K, with two binary operations called
” + ” and ” · ”, which satisfy these axioms:

1. The operation ”+” is associative and commutative and there is an additive
identity element ”0” such that k + 0 = k, ∀k ∈ K;

2. The operation ” · ” is associative and commutative and there is a multi-
plicative identity element ”1” such that k · 1 = k, ∀k ∈ K;

3. For all triples (a, b, c), a, b, c ∈ K (a · b)+ (a · c) = a · (b+ c), that is to say
the distributive law holds.

As stated before, the set of real or complex numbers, with ordinary addition and
multiplication, forms a commutative semiring. However there are many other
commutative semirings, some of which are summarized in 3.1. For example,
consider the Max-sum semiring (entry 5), where:

1. Kis the set of real numbers, plus the symbol ∞;
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Number K ” (+, 0) ” ” (·, 1) ” Short name
1 [0,∞) (+, 0) (·, 1) Sum-product
2 (0,∞] (min,∞) (·, 1) Min-product
3 [0,∞) (max, 0) (·, 1) Max-product
4 (−∞,∞] (min,∞) (+, 0) Min-sum
5 [−∞,∞) (max,−∞) (+, 0) Max-sum
6 {0, 1} (OR, 0) (AND, 1) Boolean

Table 3.1: Some commutative semirings.

2. The operation ” + ” is defined as the operation of taking the maximum
with −∞ as identity element (i.e. max (k,−∞) = k, ∀k ∈ K);

3. The operation ” · ” is defined as the ordinary addition with 0 as identity
element and k +∞ = ∞, ∀k ∈ K;

4. The distributive law max (a+ b, a+ c) = a+max (b, c) is always true.

Moreover, suppose that function g (x) can be decomposed into a summation of
different functions, that is

g (x1, x2, . . . , xn) =
r�

i=1

(xi) ,xi ⊆ x (3.0.4)

a factor graph is defined as a bipartite graph2 that shows the structure of this
summation. In particular a factor graph FG = F,x is made up of variable
nodes, one for each xi, i.e. x = {x1, x2, . . . , xn} and function nodes, one for
each Fi (·), that is F = {F1, F2, . . . , Fn}, where a variable node xi is connected
to the function node Fj if and only if that variable is one of the arguments of
that function, i.e. xi ∈ xj .

Consider for example the function g (x1, x2, x3) = F1 (x1) + F2 (x2) , where
x1 = {x1, x2, x3} and x2 = {x1, x2}. This structure is shown by the graph of
3.0.2 with function nodes F = {F1, F2} and variable nodes x = {x1, x2, x3} and
edge connections represented by set

E = {(F1, x1) , (F1, x2) , (F1, x3) , (F2, x1) , (F2, x2)} . (3.0.5)

In the proposed approach, given the set of robots Rn, we suppose each
robot Ri ∈ Rn locally possesses and can control only a function Fi (xi) and a
variable xi and has knowledge of, and can directly communicate only with its
neighboring3 robots. Our supposition is that xi = {x1, x2, . . . , xn} , ∀i, i.e. the

2In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can
be divided into two disjoint sets U and V such that every edge connects a vertex in U to one
in V , that is U and V are independent sets.

3Two robots are neighbors if there is a relationship connecting variables and functions that
robots control.
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Figure 3.0.2: Factor graph example



  



 

Figure 3.0.3: Robot-controlled factor graph.

factor graph is a complete bipartite graph4, which also means that all robots
belong to the same neighboring. A complete factorgraph exchanges a number
of messages that is exponential with the number of nodes. For instance in
3.0.3, there are two robots, R1 and R2 which respectively possess their pair
function-variable (F1, x1) and (F2, x2) but are neighbors and can communicate
each other, because both x1 and x2 equal {x1, x2}.

3.0.4 The Max-Sum

The Max-Sum algorithm belongs to the family of iterative message passing algo-
rithms called Generalized Distributive Law (GDL) [1], which can be combined
with factor graphs to efficiently compute functions like fj (·). Given a set of
robots, i.e. R1, R2, . . . , Rn, and a factor graph FG = (x,F) (see an example in
Figure 3.0.4) where each robot Rj owns a function fj and a subset xj ⊆ x of

4In the mathematical field of graph theory, a complete bipartite graph is a special kind of
bipartite graph where every vertex of the first set is connected to every vertex of the second
set.
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
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














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Figure 3.0.4: Example of a simple factor graph, each robot Ri(i = 1 . . . 4), R2

has the function nodes Fi and the variables nodes Gi , the global goal and TRi,
the list of trajectories.

variables, the max-sum algorithm computes

x∗ = argmax
x

n�

j=1

fj (xj) (3.0.6)

by repeatedly passing variable-to-function q-messages and function-to-variable
r-messages.

Let xj be a set of trajectories (one for each robot) (i.e f4 (x4) , x4 =
{tr4, tr1, tr3}), fj (xj) calculate a payoff that considers the minimum distance
between all possible local goals, logarithmically weighted with the distance to
the global goal Gi (see Listing 3.1). In case xj would lead to a collision, fj (xj)
is set to an arbitrarily big negative quantity representing −∞. Hence x∗ rep-
resents the sequence of robots trajectories that maximize the system utility
n�

j=1
fj (xj), i.e. the local goals whose relative trajectories allow each robot to

avoid collisions and to get closer to its global goal at the same time.
After this table filling, the optimized x∗ of Equation (1.4) is achieved by

repeatedly passing messages within the factor graph (Figure 1.13 shows the
messages exchanged between robots R1 and R2 in the factor graph Figure 1.11):

1. From variable nodes to function nodes, called q-messages;

2. From function nodes to variable nodes, called r-messages.
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Figure 3.0.5: Comparison between 3 motion planning methods

Formally, a r-message is

rr→i (xi) = max
xj\xi



Fj (xj) +
�

k∈Nj\xi

qk→j (xk)



 (3.0.7)

where Nj is the set of variable indexes, indicating which variable nodes in the
factor graph are connected to function node Fj and xj\xi ≡ {xk : k ∈ Nj\i}.

On the other hand a q-message

qi→j (xi) = αij +
�

k∈Mi\j

rk→i (xi) (3.0.8)

where Mi is the set of function indexes, indicating which function nodes in the
factor graph are connected to variable node xi and αij is the message normal-
ization factor such that

�
xi
qi→j (xi) = 05.

When the factor graph is cycle free, the algorithm is guaranteed to con-
verge to the global optimal solution x∗, thereby optimally solving the proposed
optimization problem. Moreover, this convergence can be achieved by first cal-
culating

z (xi) =
�

j∈Mi

rj→i (xi) (3.0.9)

5In cyclic factor graphs such normalization prevents messages to increase endlessly, on
condition that there are not negative infinity utilities, which are usually taken into account
to represent hard constraints on the solution.
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we have trivially called z-message6, and then computing

argmax
xi

zi (xi) . (3.0.10)

3.0.5 The sense-plan-act cycle

The robot compute the main cycle described as follows:

START

1. SENSE

2. PLAN

(a) Compute possible local goals and relative trajectories

(b) Understand if there are neighbors which can collide with myself if
not go to ACT entry .

(c) Ask to all neighbors if the want to perform Max-Sum. If not, go to
entry (b).

(d) Create the local variables and the local function

(e) Create the factorgraph with the neighborhood.

(f) Perform Max-Sum and choose the best trajectory.

3. ACT

(a) Bring the robot to the trajectory velocity.

(b) Keep moving until the local or global goal is reached.

END

In the (2.b) entry we consider neighbors just the robots which are far from
the current robot, less than a dmax distance, where dmax is the distance to
travel by the robot if it should go to the maximum velocity for all the time of
the prediction window :

dmax = vmax · Twindow. (3.0.11)

Actually we don’t communicate directly with all the neighbors in that distance
but only with those that are directly visible by the robot as showed in Figure
3.0.6.

Using this policy we reduce the factorgraph complexity and the number
of messages exchanged in the max-sum. When we build the factor graph we

6The z-message is considered a message because it is made up of the sum of other messages,
but at the same time it is judge trivial because it is calculated locally and is not exchanged
between robots.
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Figure 3.0.6: Line of sight neighbor selection.

exchange the variable values with the neighbors in order to build the local
function. Let’s see and example of max-sum iteration7:

R1 : G1 = (1.0; 5.0) , sp1 = (7.0; 1.0)
V1 = {0.2} → v1 = 0.2,

TR1 = {{v1, sp1, (5.0; 3.0)} , {v1, sp1, (7.0; 3.0)} , {v1, sp1, (9.0; 3.0)}} .
R2 : G2 = (7.0; 5.0) , sp2 = (3.0; 1.0)

V2 = {0.2} → v2 = 0.2,
TR2 = {{sp2, v2, (0.0; 4.0)} , {sp2, v2, (3.0; 3.0)} , {sp2, v2, (5.0; 3.0)}} .

(3.0.12)
The Table Functions will be:
Since at the first iteration8 q-messages q0i→j(xi)are set to 0, consequently

r-messages become r0j→i(xi) = max
xj/xi

fj(xj), in our example we get:

• q0i→j(TRi) = 0, i ∈ {1, 2} , j ∈ {1, 2}

• r01→1(TR1) = max
TR2

fj(G1, TR1, TR2) = {−0.5816,−1.1935,−0.9281}

• r01→2(TR2) = max
TR1

fj(G1, TR1, TR2) = {−0.5816,−0.9281,−0.5816}

• r02→1(TR1) = max
TR2

fj(G1, TR1, TR2) = {−0.5816,−0.1234,−0.1234}

7For sake of semplicity we consider a velocity set with only one entry.
8The messages indicated with the superscript 0.
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G1 TR1 TR2 f1(G1, TR1, TR2)
{v1, sp1, (5.0; 3.0)} {v2, sp2, (0.0; 4.0)} −0.5816
{v1, sp1, (5.0; 3.0)} {v2, sp2, (3.0; 3.0)} −0.5816
{v1, sp1, (5.0; 3.0)} {v2, sp2, (5.0; 3.0)} −36.9600
{v1, sp1, (7.0; 3.0)} {v2, sp2, (0.0; 4.0)} −0.9281
{v1, sp1, (7.0; 3.0)} {v2, sp2, (3.0; 3.0)} −0.9281
{v1, sp1, (7.0; 3.0)} {v2, sp2, (5.0; 3.0)} −0.9281
{v1, sp1, (9.0; 3.0)} {v2, sp2, (0.0; 4.0)} −1.1935
{v1, sp1, (9.0; 3.0)} {v2, sp2, (3.0; 3.0)} −1.1935
{v1, sp1, (9.0; 3.0)} {v2, sp2, (5.0; 3.0)} −1.1935

Table 3.2: Function for R1.

G2 TR2 TR1 f2 (G2, TR2, TR1)
{v2, sp2, (0.0; 4.0)} {v1, sp1, (5.0; 3.0)} −1.0397
{v2, sp2, (0.0; 4.0)} {v1, sp1, (7.0; 3.0)} −0.5816
{v2, sp2, (0.0; 4.0)} {v1, sp1, (9.0; 3.0)} −36.9600
{v2, sp2, (3.0; 3.0)} {v1, sp1, (5.0; 3.0)} −1.0397
{v2, sp2, (3.0; 3.0)} {v1, sp1, (7.0; 3.0)} −0.5816
{v2, sp2, (3.0; 3.0)} {v1, sp1, (9.0; 3.0)} −0.1234
{v2, sp2, (5.0; 3.0)} {v1, sp1, (5.0; 3.0)} −1.0397
{v2, sp2, (5.0; 3.0)} {v1, sp1, (7.0; 3.0)} −0.5816
{v2, sp2, (5.0; 3.0)} {v1, sp1, (9.0; 3.0)} −0.1234

Table 3.3: Function for R2.
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f1 f2

TR1 0.2761 0.9011
TR2 0.5816 0.6971

Table 3.4: Example of message normalization factors

• r02→2(TR2) = max
TR1

fj(G1, TR1, TR2) = {−1.0397,−0.1234,−0.5816}

Next we apply Equation 3.0.10 , and we obtain:

• TR1 = argmax
TR1

[{−0.5816,−1.1935,−0.9281}+ {−0.5816,−0.1234,−0.1234}]

• TR2 = argmax
TR2

[{−0.5816,−0.9281,−0.5816}+ {−1.0397,−0.1234,−0.5816}]

The algorithm will choose tr2 for variable TR1 and the trajectory tr1 for TR2.
However the algorithm does not end at the first iteration and immediately

computes the second iteration q-messages, which are normalized by setting each
αij according to Algorithm 3.1. For instance we get α21 = 0.5816 and conse-
quently q12→1(TR2) following these steps:

1. Component-wise sum all vectors (lines 2-5);

2. Sum the resulted components (lines 6-8) (0.21 + 0.25 = 0.46);

3. Change sign to the obtained value (line 9) (−0.46);

4. Divide the previous result by the vector cardinality (− 0.46 = −0.23) (line
10);

Then if we add α21 to each r2→2(TR2) component we get {−0.4581, 0.4581, �}.
Therefore if the same procedure (Table 3.4 summarize the computed message
normalization factors) is applied to other messages we also obtain:

• q11→1 (TR1) = {−0.3054, 0.1527, 0.1527}

• q11→2 (TR2) = {0.3195,−0.2924,−0.0271}

• q12→2 (TR2) = {0.1155,−0.2310, 0.1155}

At this point the algorithm has the required messages to computed the
relative r-messages, whose evaluation is left to the reader. The most important
fact is that the z-messages obtained using the r1j→i(TRi) messages make the
system evaluate TR1 = tr2 and TR2 = tr1 again, which means the algorithm
has converged to a solution, ending its execution.
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Algoritmo 3.1 Message normalization factor evaluation

1 computeAlpha( RMessages )
2 messageQ messQ
3 foreach message in RMessages
4 messQ .+ message
5 foreach value in messQ
6 alpha += value
7 alpha ∗= −1
8 alpha /= messQ . s i z e ( )
9 return alpha

3.1 Bounded Max-sum algorithm

The Max-Sum algorithm is extremely attractive for the decentralized coordina-
tion of computationally and communication constrained devices for the following
reasons:

1. The messages are small and scale with the domain of the variables;

2. The number of messages exchanged typically varies linearly with the num-
ber of agents within the system;

3. The computational complexity of the algorithm scales exponential with
just the number of variables on which each function depends.

However, the lack of guaranteed convergence and guaranteed solution quality,
limits the use of the standard Max-sum algorithm in many application domains,
and such exponential computation behavior is undesirable in systems composed
of devices with constrained computational resources. The Bounded Max-sum,
a variation of the Max-sum algorithm, whose approach removing cycles from
the factor graph, by ignoring some of the dependencies between functions and
variables, ensures the convergence of the algorithm to a bounded approximate
solution. Since our proposed approach could work with complete factor graphs,
the bounded version should be the candidate approach. Nevertheless, due to
the characteristics of the proposed environment and optimization problem, we
choose to adopt and implement a system which uses the simple version of the
algorithm. Our system has real time constraints so we are not interested to the
best optimal solution, but to a optimized solution. We prefer to spend time to
compute max-sum iterations instead of using the time to reduce the factorgraph
and start the computation after that even if the instance does not converge.



Chapter 4

The Social Force Model and

the DSFM architecture

In the previous chapters we discussed about how to avoid collisions among con-
nected robots with the same behavior. What about the human aware policy?
Our final objective is an environment where humans and robots can move to-
gether. Below we present the Social Force Model and how to use it in our robot
controller.

4.1 The Social Force Model

The social force model by Helbing [12, 13] is a computational model in which
the interactions between pedestrians are described by using the concept of a
social force. It is based on the idea that changes in behavior can be explained
in terms of social fields or forces. Applied to pedestrians, the social force model
accounts for the influence of the environment and other people and describes
how the intended direction of motion changes as a function of these influences.
The model does not cover cases of multiple options, when people have to actively
decide. Game theoretic approaches can be applied in such situations.

Formally, the models assumes that a pedestrian pi with mass mi likes to move
with a certain intended velocity �vi in an intended direction �ei and therefore
tends to adapt his or her velocity vi within a so called relaxation time τi. This
change of velocity is modeled by the personal motivation

Fpers
i = mi

�vi�ei − vi

τi
. (4.1.1)

The relaxation time is the time interval needed to reach the intended velocity
and the intended direction. In the presence of other people or objects in the
environment, a pedestrian might not be able to keep the intended direction
and velocity. In the social force model, repulsive effects from these influences
are described by an interaction force Fsoc

i . This force prevents humans from

31
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walking along their intended direction and is modeled as a sum of forces either
introduced by other individuals pj or by static obstacles denoted by subscript o

Fsoc
i

�
fsoci,j +

�
fsoci,o

o∈O

j∈P\{i}

(4.1.2)

with P = {pi}
NP
i=1 being the set of all people and O the static objects of the

environment. These forces decrease proportional to the distance of their sources
and are modeled as

fsoci,k = ake

�
ri,k−di,k

bk

�

ni,k (4.1.3)
where k ∈ P ∪ O is either a person or an object of the environment, ak

specifies the magnitude and bk the range of the force. In order to calculate the
Euclidean distance between pi and entity k, pedestrians and objects are assumed
to be of circular shape with radii ri and rk,respectively. Then, distance di,k is
given by the Euclidian distance between the centers, and ri,k is the sum of
their radii. The term ni,k is the normalized vector pointing from k to pi which
describes the direction of the force. Given the limited field of view of humans,
influences might not be isotropic. This is formally expressed by scaling the
forces with an anisotropic factor

fsoci,k = ake

�
ri,k−di,k

bk

�

ni,k

�
λ+ (1− λ)

1 + cos (ϕi,k)

2

�
(4.1.4)

where λ define the strength of the anisotropic factor and

cos (ϕi,k) = −ni,k · �ei. (4.1.5)

Human motion is not only influenced by personal motivation and reactive
behavior towards obstacles or other people but is physically constrained by the
environment [15]. Hard constraints restrict the motion and thereby define the
walkable area of the environment. Therefore, the social force model introduces
a physical force

Fphys
i =

�
fphysi,j

j∈P\{i}

+
�

fphysi,o
o∈O

(4.1.6)

fphysi,k = ckg (ri,k − di,k)ni,k, (4.1.7)
where ck represents the magnitude of the exerted force. To make the physical
forces a real contact force where the circular shapes of pi and k overlap, the
function g is defined as g(x) = x if x ≥ 0 and 0 otherwise. Finally, human
motion is explained by the superposition of all exerted forces. Accordingly, the
force Fi changing the motion of individual pi is

Fi = Fpers
i + Fsoc

i + Fphys
i (4.1.8)

Using Fi, the basic equation of motion for a pedestrian is then of the general
form

d

dt
vi =

Fi

mi
(4.1.9)
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pi

pj

f soc
i,j

Fi

Fpers
i

o pk

f phys
k,o f soc

i,o

Figure 4.1.1: Forces in the social force model shown as red arrows. Pedestrian pk

is affected by the physical force of the static part of the environment. Pedestrian
pi is both affected by the wall and an other person pj . The superposition of
forces exerted to pi is shown as the blue arrow Fi

Figure 4.1.2: Typical functions for the exerted forces. The x-axis shows the dis-
tance from person pi to an object o or a person pk and the y-axis the magnitude
of the forces in Newton. The radius of pi is ri = 0.2m and the sum of the radii
of pi and pk is ri,k = 0.4m.

and describes the movements of pi over time. An illustration of all forces is
shown in Fig. 4.1.1. The physical force fphysk,o that the wall exerts onto person
pk is shown. This avoids motion predictions through walls. A superposition of
different forces onto pedestrian pi is also shown. The person wants to keep his
or her intended velocity through the motivation Fpers

i but also is influenced by
fsoci,j from person pj and by fsoci,o from the wall. This result in the superimposed
force Fi used to adapt the velocity of pi .

4.2 Social Force Model as reactive approach

The DWA approach explained in Section 2.3.1 can easily plan the robot motions.
It has a low computational load as well. The weakness of that method is the
inability to distinguish between the type of obstacles. It computes the next
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velocity just considering the current robot and environment state: no intelligent
data are used by the system.

In this work we apply the social forces directly to the robot enhancing the
Dynamic Approach. The SFM has been introduced in computer vision algo-
rithms for people tracking in order to predict the trajectories of the tracked
people. The system here proposed uses the people tracker presented in [8]. In
our model the local goal is represented by the personal force Fpers, where the
intended velocity

�v (t) =

�
min

�
v,

�g(t)−x(t)�
Tmax−dt

�
dt < Tmax

v otherwise

, (4.2.1)

and the intended direction is

�e (t) = g (t)− x (t)

�g (t)− x (t) �
. (4.2.2)

In 4.2.1 and 4.2.2, g (t) is the current local goal and x (t) the current robot
position. We introduce the dt parameter which is the duration between the goal
choice and when the velocity is computed. That interval has an upper bound
Tmax that represent the maximum time patience of the robot. When this time
is reached the personal force will reach the maximum of the magnitude.

The new waypoint x (t+ 1) used by the DWA approach will be

x (t+ 1) = xt + vtTcycle +
1

2

F

m
T

2
cycle (4.2.3)

where Tcycle is the robot sense-plan-act cycle time. The waypoint processed by
the SFM will be probably more safe.

This model has another key feature: the estimation of future people motions.
Information about the people around the robot, will be added to the obstacles
region of the DWA as explained below.

4.2.1 Motion prediction using social forces

The SFM can be combined with a Kalman filter based tracker to result in a
more precise prediction model of human motion.

Let xt = (xt, yt, ẋt, ẏt)
T = (xt,yt)

T be the state of the pedestrian pi at
time t and Σt its 4× 4 covariance matrix estimate. The term xt represents the
position and vt the velocity of the pedestrian in Cartesian space. We will skip
the subscript i for sake of simplicity. The constant velocity motion model is
defined as

p (xt|xt−1) = N
�
xt;Axt−1, AΣt−1A

T +Q
�
, (4.2.4)

with A being the state of the transition matrix. The entries of Q represent the
acceleration capabilities of a human. Using a discrete time approximation of Eq.
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Figure 4.3.1: The Distributed Multi Robot System with the Social Force Model
(DSFM). In the blue square the hybrid collision avoidance structure.

4.1.9 within a fixed interval of time �t = Tcycle to obtain xt = ξ (xt−1,P,O),
where

ξ (xt−1,P,O) =

�
xt−1 + vt−1�t+ 1

2
F
m�t2

vt−1 +
F
m�t

�
(4.2.5)

describes how the motion of a pedestrian evolves over time. The change in
motion is calculated according to the pedestrian’s intended velocity, reactive
behavior from interaction forces and physical constraints from the environment,
according to Eq. 4.1.8. Assuming that the motion is affected by Gaussian noise
with zero mean and covariance matrix Q we have

p (xt|xt−1,P,O) = N
�
xt; ξ (xt−1,P,O) , JξΣt−1J

T
ξ +Q

�
, (4.2.6)

where Jξ = ∂ξ(·)
∂x is the Jacobian of ξ (·) evaluated at xt−1.

Without external stimuli and deviation from the intended direction and pre-
ferred velocity, F is zero, no social forces are applied to the pedestrian and the
social force model falls back onto the constant velocity motion model.

4.3 DSFM: the hybrid architecture

As stressed, the final collision avoidance system has to be able to compute a
kinodynamic motion plan in an environment populated with humans and robots.

Obviously, the nature of the actors is totally different. Robots cannot ex-
change complex information with people. The human aware policy requires a
reactive approach able to predict human behavior. On the other hand, we can-
not just use a reactive method as explained in the Subsection 2.2.3. The robot
could not be able to avoid an ICS state. Our proposed hybrid architecture is
represented in Figure 4.3.1. The collision module uses different approaches when
the robot perceives people, robot, or both. The robot controller mechanism has
been changed( with respect to the one in Figure 2.0.1) as follow:
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Figure 4.3.2: The prioritized collision avoidance module.

1. The Environment Model Builder retrieves sensor and odometry data and
computes a costmap, a discrete grid inflated with costs (e.g. distance from
an obstacle) obtained from the environment sensor data;

2. Given the global goal and the SE, the Local Goals Generator computes a
set of feasible1 goals around the robot position.

3. The local goals set is sent to the Collision Avoidance Module (CAM) which
route this set to the various sub modules.

4. At the same time the people tracker recognize the presence or not of hu-
mans. If there is any, a trigger blocks the robots coordination because
unknown obstacles are coming. In this case, the Social Force Model Plan-
ner will compute the next waypoint for the robot.

5. The Motion Planner computes the shortest path to reach it using the
Dynamic Window Approach.

6. The Controller receives the path and starts to send the motion commands
to the real robot using a reactive approach(see 2.3.1) until it does not reach
the local goal

The double collision avoidance architecture takes the name of DSFM (Dis-
tributed + SFM).

The advantage of an heterogeneous collision avoidance module is that we can
add other sub-modules which can be triggered when an event is reached. Each
CA policy has a condition block that decide if to activate the CAM. The design
is represented in Fig. 4.3.2 and use an interrupt-like system. When multiple
CAMs are called, the one with the highest priority disarms its own trigger. This
action will exclude the plans proposed by lower priority CAMs.

1Feasible means that for sure there is a path between robot position and the goal.



Chapter 5

System implementation in

ROS

The middleware ROS (Robot Operating System) makes available libraries and
tools to help software developers to create robot applications, e.g. hardware ab-
straction, device drivers, visualizers, message-passing and package management.
ROS is organized in software packages with binary nodes, which are processes
that perform computation. ROS is designed to be modular at a fine-grained
scale; a robot control package will usually comprise many nodes. For example,
one node controls a laser range-finder, one node controls the wheel motors, one
node performs localization, one node performs path planning, one node provides
a graphical view of the system, and so on. A ROS node is written with the use
of the ROS c++ or python client libraries.

Nodes communicate with each other by passing messages, ,even if they are
in different packages. A message is simply a data structure, comprising typed
fields. Standard primitive types (integer, floating point, boolean, etc.) are
supported, as are arrays of primitive types. Messages can include arbitrarily
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Figure 5.0.1: System setup on our ROS implementation.
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Figure 5.0.2: Communication modes in ROS

nested structures and arrays (much like C structs). These messages can be
exchanged thanks to asynchronous modes (see Figure 5.0.2 ):

• Topics: Messages are routed via a transport system with publish / sub-
scribe semantics. A node sends out a message by publishing it to a given
topic. The topic is a name that is used to identify the content of the
message. A node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent publishers
and subscribers for a single topic, and a single node may publish and/or
subscribe to multiple topics. In general, publishers and subscribers are not
aware of each others’ existence. The idea is to decouple the production
of information from its consumption. Logically, one can think of a topic
as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the
right type.

• Services: The publish / subscribe model is a very flexible communication
paradigm, but its many-to-many, one-way transport is not appropriate
for request / reply interactions, which are often required in a distributed
system. Request / reply is done via services, which are defined by a pair of
message structures: one for the request and one for the reply. A providing
node offers a service under a name and a client uses the service by sending
the request message and awaiting the reply. ROS client libraries generally
present this interaction to the programmer as if it were a remote procedure
call.

Nodes use topics and services by a peer-to-peer connection, but all the nodes
have to communicate with the Master service to enable all the connection. It
provides name registration and lookup, without the Master, nodes would not
be able to find each other, exchange messages, or invoke services.

5.1 ROS System Schema

The ROS network architecture highly favors a distributed arrangement. In the
our developed package the executable node, called pioneer3AT node, has three
main tasks:
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• communicate with other “max-sum” robots;

• compute the new node goal;

• strictly collaborate with move_base, the other ROS node used in this
system.

Given the footprint of the robot, environmental data from on-board sensors
(e.g. laser, stereoscopic camera) and the odometry, the move_base node has
the objective of computing the velocities and the steering angles of the robot
in order to reach a goal communicated by the pioneer3AT node. Move_base is
tuned for avoid the static obstacles by using the Dynamic Window Algorithm
(see 2.3.1). This node also publishes a costmap of the local environment built
from the sensor data. This is used to compute the path toward the local goal by
using the Dijkstra’s algorithm. Moreover, we do our test using virtual worlds
builded for the gazebo simulator 1. The gazebo APIs permit the modeling and
the developing of a virtual pioneer3AT, which can read the velocity command
computed by the move_base node.

The strength of this modular approach is the reusability of the code and its
portability. In fact, the pioneer3AT node source code can be easily adapted and
executed on a group of real robots even different from the pioneer3AT.

5.2 Gazebo overview

Gazebo is a multi-robot simulator able to simulate a population of robots, sen-
sors and objects, it does so in a three-dimensional world. It generates both
realistic sensor feedback and physically plausible interactions between objects
(it includes an accurate simulation of rigid-body physics).

Gazebo implementation is monolithic that glues together a physics engine
(ODE), a rendering engine (OGRE), and a GUI (wxWidgets). User access to
sensors and controllers are provided via a shared memory interface. Two threads
run in Gazebo. The first manages the GUI and rendering engine, and the second
thread manages the physics engine.

The worlds rendered in gazebo are described by a XML document where you
can use external 3D objects (e.g. meshes). The ROS version of gazebo provides
some key-features:

• ROS service for loading robot models defined using the URDF language;

• Services whose permit to move directly joints and links resident in the
gazebo simulating.

When we load into gazebo a URDF model using ROS there are 2 ways to interact
with it: the gazebo node and the gazebo dynamic plugin.

1This tool is directly available in ROS.
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Figure 5.2.1: A three robots Max-sum trial on the Gazebo simulator.
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Figure 5.2.2: Standalone node schema

Figure 5.2.3: Standalone node schema

5.2.1 Standalone simulator node outside GAZEBO

This approach consists on writing a generic ROS node which will be able to
communicate with GAZEBO using the gazebo/model_state topic/services. The
node developed will receive the twist velocity message, simulate odometry (pub-
lishing it via ROS topic) and finally generate and send the proper ModelState
message to GAZEBO in order to make the robot move.

5.2.2 GAZEBO dynamic plugin

This is a different approach to the robot simulator that gives better results when
using this method than the standalone simulator node. The better performance
derives from the fact that more data exchanges (e.g. joint position) are done
inside gazebo. So the data are moved within the same program space, these are
more rapid than the external communications.

This method consists on writing a GAZEBO plugin, a controller that can
be linked into the URDF robot file to offer the simulator the control capability.
The plugin will use the GAZEBO and ROS code to perform the simulation
actions.

5.3 The Pioneer 3AT model

Here it’s briefly described the Pioneer 3AT model developed in [17], after it’s
given a high vision of the gazebo implementation of the robot model.
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Figure 5.3.1: Left and right treads on the plane for differential drive (a), tracked
vehicle (b), four-wheel skid-steer vehicle (c), and six-wheel skid- steer vehicle
(d).

5.3.1 Pioneer 3AT physical model

The Pioneer 3AT is a four-wheeled skid-steering, this kind of traction is based
on controlling the relative velocities of the left and right side drives, similarly to
differential drive wheeled vehicles. In fact, each side’s tread consists of several
contact patches that correspond to mechanically linked wheels, as those within
the dashed lines in Figure 5.3.1 c-d. However, since all wheels are aligned
with the longitudinal axis of the vehicle, turning requires wheel slippage. This
locomotion system functions like that of a tracked vehicle.

Skid-steering kinematics is not straightforward, since it is not possible to
predict the exact motion of the vehicle only from its control inputs. Thus,
pure rolling and no-slip assumptions considered in kinematic models for non-
holonomic wheeled vehicles do not apply in this modeling. The local frame of
the vehicle is assumed to have its origin on the center of the area defined by
the left and right contact surfaces on the plane, and its Y axis is aligned with
the forward motion direction. Skid-steer vehicles are governed by two control
inputs: the linear velocity of its left and right treads with respect to the robot
frame (Vl, Vr). Then, direct kinematics on the plane can be stated as follows




vx

vy

ωz



 = fd

�
Vl

Vr

�
(5.3.1)

where v = (vx, vy), is the vehicle’s translational velocity with respect to its
local frame, and ωz is its angular velocity.

When turning, the Instantaneous Center of Rotation (ICR) of the vehicle on
the motion plane is expressed in local coordinates as ICRv = (xICRv , yICRv ) ,
as shown in Fig. 5.3.2. Besides, the ICRs for the left and right treads can be de-
fined in the local frame as ICRl = (xICRl , yICRl) and ICRr = (xICRr , yICRr ),
respectively. These result from the composition of the motion of the vehicle
and that of linear tread velocity (i.e., Vl or Vr). It is known [18] that ICRl and
ICRr lie on a line parallel to the local X axis that also contains ICRv. Note
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Figure 5.3.2: Vehicle and thread ICRs on the plane.

that treads have the same angular velocity ωz as the whole vehicle.
Thus, the geometrical relation between ICR positions and the vehicle’s trans-

lational and rotational velocities is expressed by:

xICRv =
−vy

ωz
(5.3.2)

xICRl =
αl · Vl − vy

ωz
(5.3.3)

xICRl =
αr · Vr − vy

ωz
(5.3.4)

yICRv = yICRl = yICRr =
vx

ωz
(5.3.5)

where the nominal tread speeds have been affected by correction factors
(αl, αr) to account for a number of fuzzy mechanical issues such as tire inflation
conditions or the transmission belt tension.

From eq. 5.3.2-5.3.5 the kinematic relation can be obtained as



vx

vy

ωz



 = A ·

�
Vl

Vr

�
(5.3.6)

where the elements of matrix A only depend on tread ICR coordinates and
correction factors:

A =
1

xICRr − xICRl

·




−yICRv · αl yICRv · αr

xICRr · αl −xICRl · αr

−αl αr



 (5.3.7)
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Control inputs can be obtained from 5.3.6 and 5.3.7 as:

Vl =
vy + xICRl · ωz

αl
(5.3.8)

Vr =
vy + xICRr · ωz

αr
(5.3.9)

where vx references cannot be directly addressed due to the non-holonomic
restriction of the locomotion system.

5.3.2 Pioneer 3AT implementation in gazebo and its ROS

interfacing

When the robot is simulated there’s no engine inside, so the center of gravity is
in the same position of the geometric center of the robot. This is the case of an
ideal symmetrical kinematic model (i.e., ICRs lie symmetrically on the local X
axis and yICRv = 0), matrix A takes the following form

A =
α

2xICR
·




0 0

xICR xICR

−1 −1



 (5.3.10)

where α = αl = αr and xICR = −xICRl = xICRr .
The implementation of pioneer 3AT gazebo model consists, besides the

graphical and physical design, on developing three plugins that permit to the
simulated pioneer to communicate directly with ROS without passing by the
common gazebo node as explained in 5.2.2. The plugins are :

• gazebo_ros_pioneer3AT_p3d : it publishes the robot current position on
the map, the robot odometry is calculated as the transform from the robot
frame (positioned and fixed in center of the robot body) to a common
frame positioned on the origin of the gazebo simulated map;

• gazebo_ros_pioneer3AT_laser : using the robot odometry, the plugin
publishes the laser data of the environment around it in a topic;

• gazebo_ros_pioneer3AT_diffdrive: this plugin subscribes to a topic where
are posted the commands (vx, vy, ωz) and, using the mathematical model
illustrated above (5.3.1) , it computes the linear velocities Vl, Vr and trans-
form it in the angular velocity for the joints connected to the wheels.

The publishing of the robot frame is done by the robot_state_publisher
node, which takes in input the URDF model and gives out the position of all
the frames of the robot joints. The positions published are updated with a
frequency of 10 Hz but in our work it is not necessary to know the position of
each joint(i.e. we don’t care about the position of the wheel). Thus, a custom
robot_state_publisher has been designed that publishes only the positions useful
for the odometry and the localization, reducing the system load.
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Figure 5.3.3: The Pioneer 3AT ROS node architecture.

5.4 Max-Sum communication implementation

The Max-Sum module is divided in two levels represented mainly by two classes:
MaxSum and DMailMan (see Figure 5.4.1). The first one has to accomplish to
the high-level operations: compute, build the {q, r, z}−messages and evaluate
the optimal solution. The robots performing the Max-Sum need to exchange
with others:

• q-messages: these messages are sent from the variable nodes to the func-
tion nodes;

• r-messages: these messages are sent from the function nodes to variable
once;

• z-messages: messages exchanged among robots to understand if everyone
is arrived to same solution;

• the values of the variable nodes used in the part of factorgraph that in-
terests the robot.

this exchanges are managed by the DMailMan class. The class will publish for
each local variable2 a topic where the their values of those are published. Thus,
each robot can benefit of the variables managed by the other robots without
an explicit requests. It has just to subscribe to the topic of the variable and
when the values has changed, a callback is launched that will store the new
values locally. Using this policy we can avoid the problem of asking data when
probably the net is stressed by the message exchanging. The messages are
exchanged using a ROS service (one for each robot) called Mailbox. It stores
in buffers the messages before they are sent and after they have been received,
improving the network performances.

2The variables created, managed and updated by the robots are called locals.
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Figure 5.4.1: The Max-Sum communication software architecture



Chapter 6

Experiments and results

6.1 Stress tests: find the minimal requirements

This first series of tests on our collision avoidance approach has been focused
on the system payload of the planning cycle times. The workbench was a work-
station1 where we simulated the robots as different ROS nodes. We used two
different scenarios created for the Gazebo environment. In the first one (see
Figure 6.1.1a), robots have to reach their global goals respectively placed on
their opposite corner. In the second scenario (see Figure 6.1.1b) the placement
of walls, blocks and goals has been changed for creating a labyrinth. All the
simulations involved on the tests have a key topic: all the nodes share the ma-
chine memory and its processors, hence increasing the number of robots results
in a reduction of resources that they can own. In the last column of Table 6.1
we estimate how much RAM and number of CPUs are available for each node:
we can consider these resources like a virtual on board robot computer with
low resources. Moreover, we consider also the worst communication case, where

1This machine is equipped with an Xeon 3.10 GHz quad-core processor and 3.8 GiB DDR3
RAM memory.















(a) Crossroads.

















(b) Labyrinth.

Figure 6.1.1: Scenarios with robots R1 , R2 , R3 , R4 and global goals
G1 , G2 , G3 , G4.
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Table 6.1: Total algorithm execution times (s) in the crossroads scenario with
different number of robots and different |GLi|, ∗: outlier data due to RAM
memory swapping.

Robots Number of local goals Resources per robot

Units 4 6 8 12 RAM, CPU #

2 0.15 0.28 0.37 0.43 1.5 GiB, 2
3 0.48 1.32 107.49* 65.89 1.0 GiB, 1
4 2.02 29.52 - - 0.7 GiB, 1

factor graphs are complete2 so every robot has to exchange messages with all
other robots. This case could happen for example, in the first scenario, when all
the robots are closed on the center of the environment and they need to share
their own paths with all other players. Tests have shown the important role
played by the number of candidate goals computed in each planning cycle: the
statistics show that if this number decreases under the 6 units, collisions happen
on almost the 100% of the tests. As shown on Table 6.1, we can deduce that a
real-time onboard robot computer needs 1 CPU with 1 GiB RAM at least.

6.2 Models performances

In this section we will report an analysis varying some parameters of the pro-
posed models: Random Model, Social Force Model, Distributed Model. All the
tests will be performed in two main environments:

1. A corridor where the same number of robots start from opposite sides and
have the goal in the other corridor end (see Figure 6.2.1b).

2. An intersection where each robot has to reach the street in front of it (see
Figure 6.2.1a).

Performances have been evaluated using two criterions: the time before the
first collision, and the number of collisions in a finite period. The considered
term is 2 minutes long, it corresponds to the time needed by a robot to reach
the selected global goal when it is going at the minimum speed, 0, 2 m/s in the
pioneer3AT case.

In the first experiment we compare the Random model with the Distributed
one. Each robot has a possible set of trajectories with {6, 12, 24} elements, each
trajectory computed correspond to a 1 meter long path that the robot performs
with a fixed velocity of 0.2 m/s in the next second given a velocity. We use
a short path and a low velocity with the purpose of minimizing the motion

2In a complete factor graph every node function has all the node variables as neighbors, in
other words the functions have all the variables as arguments.
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Figure 6.2.1: Scenarios considering for testing model performances.

planning errors which are time-growing (e.g odometry). The results are shown
in Tables 6.2 and 6.3.

Predictably, the best performance is obtained using the Distributed Model,
stating and the random approach become not useful even when the number of
robots is higher than two. Moreover, the random decisions could move the robot
far from the global goal. As shown in the Table, no robot reaches the global
goal before the two minutes.

With the Distributed model robots do not collide in any case but, we notice
that they reach the goal in time when the goal set has a low cardinality. This
fact is caused by the initial positions of the robots: all of them are placed
closer to each other. In these conditions the probability of building a complete
factor-graph between the robots is high and as explained in Section 3.0.3 it
increases exponentially the number of messages exchanged. In Table 6.4the
communication times for some complete factor graphs with low cardinality are
illustrated.

We evince that the best cardinality for the trajectory set is 6 and with a
complete factorgraph of 3 nodes at most.

In the second experiment we want to test how long a robot can perform a
path without communicating again with other neighbors if needed. Then, we
want to evaluate how far in the future we can plan the trajectory of the robot
without encountering collisions. Even in this case we use a fixed velocity of
0.2 m/s and we test various time windows(see Section 3.0.2): 5, 7.5, 10, 15
seconds.
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Trajectories Goal reached
before 2

mins

Robots Model Collisions
before 2

mins

Time of the
first collision

12 No 2 RAND 0-1 1’ 20”-
1’ 50”

12 No 4 RAND 1-3 1’-1’ 15”
12 No 6 RAND 3-5 2” - 15”
12 No 8 RAND 4-8 2”-11”
24 No 2 RAND 0-1 No coll.
24 No 4 RAND 0-1 No coll.
24 No 6 RAND 3-6 18”-30”
24 No 8 RAND 4-7 2”-11”

Table 6.2: Experiment 1 results with the Random Model.

Trajectories Goal reached
before 2

mins

Robots Model Collisions
before 2

mins

Time of the
first collision

6 Yes 2 DMRS No Coll. No Coll.
6 Yes 4 DMRS No Coll. No Coll.
6 No 6 DMRS No Coll. No Coll.
6 No 8 DMRS No Coll. No Coll.
12 Yes 2 DMRS No Coll. No Coll.
12 No 4 DMRS No Coll. No Coll.
12 No 6 DMRS No Coll. No Coll.
12 No 8 DMRS No Coll. No Coll.

Table 6.3: Experiment 1 results with the DMRS Model.

Variable nodes Function nodes Communication Times (secs)
2 2 0.3
3 3 1.7
4 4 30

Table 6.4: Complete factorgraph Times.
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Figure 6.2.2: Three robots corridor test. The green lines are the robot trajec-
tories and the blu dots are the candidate goals. This screens coming from the
ROS Rviz visualization tool.
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Robots Trajectory time
window (secs)

Time to goal Collisions
before 2 mins

First collision
time (secs)

2 5 1.20 No Coll. No Coll.
4 5 >2 No Coll. No Coll.
6 5 >2 No Coll. No Coll.
2 7.5 1.30 No Coll. No Coll.
4 7.5 >2 No Coll. No Coll.
6 7.5 >2 No Coll. No Coll.
2 10 1.20 No Coll. No Coll.
4 10 >2 No Coll. No Coll.
6 10 >2 0-1 27
2 15 1.15 0-2 27
4 15 >2 3-4 17
6 15 >2 3-5 15

Table 6.5: Experiment 2. Results with various time windows.

People Other Obstacles
a (Force Magnitude) 700 N 23 N

b (Force Range) 2 m 0.01 m

c (Exerted Force Magnitude) 250 N/m 600 N/m

Table 6.6: Social Force Model parameters.

The Table 6.5 shows that we cannot plan the robot trajectory over the 10
seconds. Given the fixed velocity, it corresponds to a 2 meters path. This is
coherent with the choice to communicate only with robots under a 3 meters
distance.

We even test the SFM, changing what is the maximum time that permits a
reactive approach in a environment. In other words we increase the sense-plan-
act time varying the number of robots. We use the parameters in Table 6.6 for
the social forces and a human mass of 70Kg.

The SFM is an approach similar to the potential fields method and it does
not work well in cluttered environments. Then we decide to test it in a scenario
composed by some little rooms, where the task was to exit from these rooms by
passing through narrow doors. The door size was different for each door. The
objective was to evaluate how the SFM is good in little environments.

In the last experiment we test how long we can set the cycle time on the SFM
without collisions. In this case the velocity is not constant because it will lost
the meaning of the Social Forces use. The results in Graphic 6.2.3 shows that
we cannot permit a cycle time that exceed the 2 seconds. Moreover it is clear
that we cannot use only this reactive approach for the navigation because the
times to reach the goal rises rapidly. The explanation is that the SFM approach
does not give enough priority to reach the local priority and it does not take in
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account the global goal. Too much reactivity sometimes brings the robot too
far from the local goal before reaching it.

Narrow Pass size (meters) Exit time Average velocity (m/s)
1 - <0.1

1.4 34 0.2
1.8 35 0.2
2.0 26 0.3

Table 6.7: Time to pass through various narrow doors.

Figure 6.2.3: SFM cycle times and collisions.

Cycle Time (Secs)
1 2 3 4 5

Robots

2 Yes Yes Yes Yes Yes
4 No No Yes Yes No
6 No No No No No
8 No No No No No

Table 6.8: Goals reached in two minutes changing the cycle time .
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Conclusions

In this work, we present a hybrid approach for safe robot motion planning
where the environment is populated with humans and other robots. We have
proposed a distributed collision avoidance system that has been enforced with a
two-level navigation approach. The results reported in Table 6.1 report that this
architecture is able to keep the system computational load low. The network
bandwidth used by the Max-Sum messages is less than 5KB/s for each robot.

The architecture has been expanded with more collision avoidance modules.
The proposed hybrid system is based on an heterogeneous collision avoidance
system organized in two levels:

• Distributed kinodynamic motion planner using the concept of ICS state,

• Dynamic Window Approach enhanced with the Social Force Model with
the aim of predicting people motions.

The test in Section 6.2 shows that the system can work without collisions with
affordable times. When the robot plans using the Social Force Model, the
sense-plan-act cycle can reach the 2 seconds. Despite, the SFM can’t be used
for navigate in cluttered environments as explained in the doors experiment.
For this reason this reactive method is used only when people are perceived by
the robot. The model based on social forces has been chosen because it can
be used not only as reactive approach. The Social Force Model key feature is
the estimation of next human positions. These informations can be used for
increasing the Dynamic Window performances.

Thanks to the trajectory window, we added the time dimension to the dis-
tributed approach. This increases the set of possible solutions to the multi-robot
planning problem. When the autonomous system is using the distributed ap-
proach the maximum trajectory window is 10 seconds. If we use a half of the
time window we minimize the time needed to reach the goal. Despite, when we
are using the Max-Sum we cannot use a complete factorgraph with more than
3 function and variable nodes. If the complete graph is bigger, the system lose
the real-time capability.

The navigation algorithm proposed in 2.1 permits to reach a goal even if the
robot do not know the entire map. This approach frees the robot by the task of
building a representation of all the environment before starting the navigation.
Obviously, this approach works if there is for sure a path that connects the
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robot position to the final goal (e.g. the path from a section of a warehouse to
another).

Concluding, as a future experiment we suggest to try the proposed system
on real robots. The Max-Sum permits better performances if implemented in a
parallel manner. Then, another way to extend this work is to try to use multiple
network interfaces for increasing the Max-Sum network parallelization. The
used Max-Sum utility function sometimes drives the robots in bad trajectories.
When it happens the robot chooses a trajectory that drives itself far from goal
even if it is not near to an obstacle. A candidate future work could be the
develop of a utility function that uses a heuristic approach.
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