
Universit

`

a degli Studi di Padova

Department of Information Engineering

Master Degree in Automation Engineering

Master Thesis

Study of Control Strategies

for Robot Ball Catching

Candidate:
Nicolo’ Rizzoli

Supervisor:
Ch.mo Prof. Ruggero Carli

Supervisors at Universidade de Aveiro:
Prof. Filipe Miguel Teixeira Pereira da Silva
Prof. Paulo Miguel de Jesus Dias

A. A. 2017–2018





iii

Abstract

Human-Robot Interaction is an important and challenging part of robotics as it re-
quires high accuracy and sophisticated technology, along with safety. It can be used
for testing and evaluating advanced robotic technologies. The evaluation of vision and
robotic systems is done with the ball catching using a robotic arm, task that requires
high velocity and precision in a small time. Playing ball catching between a human
and a robot is an example of such a form of safe interaction, not involving physical
contact.
The main goal of this thesis is focused towards the study of a possible scenario for
ball catching task by a robotic manipulator using off-the-shelf technologies. In the
pursuit of that objective, two main problems are addressed: to study different strate-
gies to control the robotic arm to catch the ball (predictive and prospective control);
to implement a simulator in ROS that acts as a real robot, that include a vision sys-
tem for ball detection and tracking using a Microsoftr Kinect sensor. The study of
control strategies is supported by MATLABr, while the simulator development uses
Robot Operating System (ROS) with open-source platform, distributed architecture
and C++ language programming. Several simulation tests are conducted to validate
the proposed solutions and to evaluate the system’s performance in various situations,
using data obtained from both Microsoftr Kinect, both mathematically.
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Chapter 1

Introduction

The interception of a moving object along its trajectory is an inherently challenging
task given the spatiotemporal constraints for a successful accomplishment, requiring
a tight interplay among visual, planning, control and mechanical systems in order to
“get the hand to the right place at the right time” [41]. For example, catching a flying
ball involves bringing the hand to the interception point at the right time, adjusting
the hand posture to receive the incoming ball and closing the hand to ensure a stable
grasp. A failure in catching the ball may result from a small error in any of these
actions.
The generation of efficient and skilled interceptive actions, either in humans or robots,
involves the search for solutions to several problems, including delays, noise, uncer-
tainty and redundancy. Delays are present in all stages of the control system since
the robot system only has access to out-of-date information about the world. Noise
in both sensors and actuators limits the ability to perceive accurately and act pre-
cisely. Furthermore, sensory noise contributes to variability in estimating the ball’s
trajectory and, consequently, contaminates the planning process leading to variabil-
ity of movement endpoints. The notion of “uncertainty” occurs in several meanings
whenever referring to an incomplete knowledge of a quantity, to the experimental
inaccuracy with which it is measured or to some ambiguity in its definition. The
uncertainty either about the state of the world or of the task plays is an important
factor in making the control problem difficult.
In addition to the aspects already mentioned, there are multiple possible solutions to
accomplish the task. For example, the trajectory of a flying ball can be intercepted by
the catcher’s hand at an infinite number of spatial positions within a given temporal
window. Moreover, each spatial location can be reached by means of many hand mo-
tions and joint trajectories. When intercepting a moving object along its trajectory,
redundancy in the spatial locations and in the timing of interception may be reduced
or exploited, depending on the specific control strategy and the particular task con-
straints. In the same line of thought, the control of the end-effector motion may be
the result of a trade off between spatial accuracy (decreasing with the end-effector
speed) and temporal accuracy (increasing with end-effector speed), as well as a trade
off between variability due to sensory noise and variability due to motor noise. This
dissertation was proposed by the Institute of Electronics and Informatics Engineering
of Aveiro (University of Aveiro) in the scope of current activities aiming to design and
evaluate robotic systems for human-robot interaction and for advanced studies on
robot learning. The main focus of these projects is the use of off-the-shelf components
integrated in a development environment supported by the Robot Operating System
(ROS).
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1.1 Motivation

The motivation behind this work is based on the observation that the new generation
of robot systems will be increasingly present in our daily lives and engaged in new
challenges tasks involving the interaction with humans. Moreover, a considerable part
of the robotics market begins to be dominated by low-cost collaborative manipulators
and off-the-shelf hardware components, what dictates a compromise in their accuracy
and repeatability. This work aims to provide advances towards a robotic system able
to perform a safe and entertaining task that directly engages a robot with a human
partner: catching a flying ball. In line with this, the design of appropriate solutions to
the different problems encountered should take into account the specific capabilities
and limitations of the used hardware. The intention is to use a system consisting
of a Robai Cyton manipulator arm and a Kinect depth sensor. Another motivating
factor has been the existence, from the viewpoint of human studies, a dichotomy
between predictive and prospective ball catching. The former control strategy relies
on determining in advance a ballistic model of the object’s motion. The later strategy
is based on a close coupling between visual information and movement described by
a feedback control law.

1.2 Objectives

This dissertation addresses both theoretical questions related with the strategy for
intercepting the ball and experimental developments associated with the design of a
testbed for a robotic ball-catching task. The main objectives are twofold: first, to
evaluate different strategies for allocating time for perception and action that might
increase the chances of a successful catch. The primary motivation is to gain insights
on key problems associated with this challenging task, leading to novel implementa-
tions and a more effective robot motion visually guided.
The second central objective is to develop a platform for conducting research on ad-
vanced topics, such as optimal state estimation, robot learning or prediction-based
control. For that purpose, a set of computational tools need to be integrated in a
coherent architecture, aiming to provide a testbed for conducting replicable testing
of new algorithms and technologies in a well-defined scenario. Although having in
mind an application with a physical robot, the use of a virtual environment provides
a powerful way for simulating and training the real situation, while avoiding the te-
dious, expensive and often hard to reproduce experience on a real physical robot. The
simulated arm system is based on a real model. The intention is to have all the topics
and nodes ready to be used with the real physical arm when it will be available (Cy-
ton Gamma 1500 or another industrial manipulator). In this way, topics can be easily
swap between simulated and real robot. This is a change done during the work, due to
problems with the real Cyton Gamma 1500 available in the laboratory in University
of Aveiro, that cannot be fixed before the deadline of Erasmus+ Programme.
At the current stage of development, computer simulations were adopted to allow
the easy and quick test of many ideas for the same problem, test them and then
decide which one will be implemented on the real robotic system. For that purpose,
the robot software development is supported by the Robot Operating System (ROS)
framework. Thus, the application developed in a ROS-enabled simulation environ-
ment can be deployed to the physical robot without significant modifications in the
code.
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1.3 Dissertation Structure

This dissertation is organized into six chapters: the Introduction of the work (Chap-
ter 1), including the topics studied, is followed by the state-of-the-art in Chapter 2,
that introduces the latest advances in ball catching tasks with various works. It also
includes the experimental setup that explains hardware and software, from PC, robot
and vision sensor to ROS, MATLABr and C++.
The analysis of the robot with its inverse kinematics, control, singularities and ma-
nipulability are in Chapter 3.
Chapter 4 is one of the most important: it analyzes the possibles approaches (pre-
dictive and prospective) with simulations in MATLABr. The results of the latter
Chapter are implemented in ROS, with the explanation in Chapter 5, including vi-
sion, ball detection and tracking.
Chapter 6 regards the conclusions of the dissertation with future works to improve
it, followed by Appendix A with mathematical derivations and Appendix B, with
instructions to install packages and get the systems ready to work.
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Chapter 2

Background and Context

This chapter provides a review of the literature and the context of the dissertation
work. Section 2.1 presents an overview of human studies with particular emphasis
on two different approaches in which the control strategies can be divided: predictive
strategies relying on ballistic models and prospective strategies relying on continuous
visual feedback [9]. From the viewpoint of robotics, numerous approaches for robot
ball catching have been developed with their own solutions to the problems of per-
ception and action. Section 2.2 briefly discusses the most relevant works found in
the literature, focusing on how they predict the trajectories of the moving object and
how they generate the robot’s motions. Section 2.3 regards previous studies that are
described within the experimental setup and summarizes the proposed approach to
achieve the objectives outlined in Chapter 1. Finally, Section 2.4 provides the context
for the work, with description of development phases and the main assumptions.

2.1 Overview of Human Studies

A subject that is relevant for this dissertation is the study of human ball-catching,
namely for explaining control strategies used for catching flying objects. Currently,
there is a dichotomy between predictive approaches, also referred to as model-based
approaches or ballistic control, and prospective approaches, also referred to as online
approaches or feedback control. On the one hand, predictive ball-catching relies on
a ballistic model of the ball’s motion, estimated from initial observations, to make a
prediction of the most probable catching point and time. A predictive strategy seems
to be necessary whenever the motion commands have to be started well before the
point of contact, i.e., when the time of flight of the ball is short compared to the
reaction time of the catcher. For example, this is typical for batting in baseball or
cricket ([9]; [23]). On the other hand, prospective strategies are based on continuous
feedback from the task performed without explicit need for a model of the object’s
motion. Instead, motion commands aim to minimize the distance or relative velocity
between the object and the catcher. This type of strategy is viable when there is
enough time to perform several corrections before the point of contact, being useful
when the trajectory is difficult to predict from initial conditions, such as for outfield
players in baseball [9].
A continuous debate exists to better understand whether humans use prospective or
predictive control to intercept an object falling under gravity ([3]; [52]; [17]). Prospec-
tive control involves using continuous information to regulate action. The ratio of the
size of the gap to the rate of gap closure (tau, ⌧) has been proposed as the information
used in guiding interceptive actions prospectively [24]. Movement modulation is ex-
pected to be generated where variability decreases over the course of an action given
the more accurate timing information. In contrast, predictive control assumes that a
pre-programmed movement is triggered at an appropriate time instant. For a falling
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object, it is commonly argued that an internal model of gravitational acceleration is
used to predict the motion of the object and determine movement initiation. When
catching a ball at a moderate velocity in the range 5� 6m/s, the time for the entire
throw is less than 1 s. In these cases, there does not seem to be enough time for a
voluntary continuous feedback loop to correct the hand position. Instead, an initial
estimate of the ball’s trajectory seems to be made such that the hand moves roughly
toward the point of interception. This position can be corrected one or more times to
produce an accurate catch whenever there is time to react [13]. Evidence towards this
is that one can distinguish a distinct trajectory towards an initial predicted catching
position and additional shorter distinct trajectories that correct the initial one.
Katsumata & Russell (2012) [17] attempted to test predictive and prospective control
strategies by disrupting visual information of a falling ball and by examining consis-
tency in movement initiation and duration. The participants in the study were asked
to bat a ball dropped from three different heights (1, 1.3 and 1.5m), under both full-
vision and partial occlusion conditions. The most important findings provide evidence
for predictive control in initiating the swing and prospective control, based on ⌧ , in
guiding the bat to intercept the ball. More recently, the studies of Zhao & Warren [54]
and de la Malla & Lopez-Moliner [27] also investigated the combination of predictive
and online visual information throughout the perception-action cycle.
Other studies have investigated the human gaze behavior during ball-catching (Cesqui
et al. 2015 [6]; Lopez-Moliner & Brenner [26]). In ball games, humans do not direct
ones gaze at the ball all the time, since other aspects of the game need to be judged,
such as the other players’ position and movement. Lopez-Moliner and Brenner [26]
studied whether there are times at which obtaining information about the ball is par-
ticularly beneficial for catching it if they have to perform a secondary task. Authors
verified the existence of a notable flexibility in using information at any relevant time,
meaning that one must determine when visual information would be useful for any
particular task. Faisal and Wolpert (2009) [11] studied how subjects trade-off sensory
and movement uncertainty by deciding when to initiate their actions. The task was
formulated in a probabilistic framework aiming to understand the trade-off between
the time allocated to perception and action: uncertainty in perceptual estimates de-
creases with a longer perception phase, but it leaves less time for action resulting
in less precise movements. Findings revealed that the decisions about when to start
moving are statistically near optimal given their individual sensory and motor uncer-
tainties. Since movements are often guided by multiple sensory inputs with different
uncertainty or variability, it has been suggested that optimal utilization of sensory
inputs can minimize the effects of noise on the movement.
It appears that the acquisition of perceptual-motor skills involve not only refinement
of information extraction, but also the progressive use of earlier relevant sources of
information. Since moving to catch a ball takes time, it is presumably advantageous
to make predictions well before the catch and refine them as the ball approaches.
Initially, visual information results from observation of the thrower’s arm movement
before the ball is released. At the end, the catcher observes the ball’s flight shortly
before the ball is caught. In the same line of thought, evidence suggests that ma-
nipulating participants access to earlier information modifies their hand movements
and gaze behaviors. Stone et al. (2015) [49] manipulated participant access to earlier
information of a thrower’s actions and from ball flight, while recording whole body
kinematic and kinetic data to investigate effects on postural control during perfor-
mance of interceptive actions. Twelve participants attempted to make or simulate
performance of one-handed catches in three experimental conditions: only thrower’s
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actions, only flying ball and both advanced visual information and ball in flight. Find-
ings revealed that movements were initiated earlier when advanced visual information
was available prior to ball flight, resulting in more controlled actions and superior
catching performance.

2.2 Robot Ball-Catching

From the viewpoint of robot ball-catching, numerous approaches have been developed
with their own solutions to the problems of perception and action. In general, a ball
catching task requires solving three challenging problems:

1. to detect and track the ball’s trajectory;

2. to accurately predict the ball’s trajectory for determining the catching position
and time;

3. to adapt adequately the trajectory planning of the robot arm in order to inter-
cept and catch the ball on time.

The pioneering work described in Hove and Slotine (1991) [15] and Hong and Slotine
(1995) [14] used the 4-DOF “WAM” arm equipped with a gripper and an active vision
system. The catch point selection is based on the the closest point of the ball’s trajec-
tory to the robot base, while the gripper is oriented perpendicular to the trajectory.
A Cartesian path is generated as a 3rd order polynomial and executed relying on an
inverse kinematics method running in the control loop. Nishiwaki et al. (1997) [34]
presented a 5-DOF arm attached to a humanoid robot with a basket at the end-effector
for catching the ball and an active vision system. The inverse kinematics is solved by
a neural network that should provide a human-like behavior. A robotic ball catcher
consisting of the 7-DOF DLR-LWR-II arm with a small basket at the end-effector
and an off-the-shelf stereo vision system is described in Frese et al. (2001) [12]. The
catching point is calculated with a heuristic assuming two goals:

1. to choose a point near the robot for reaching the target point on time;

2. to choose a point far away from the robot for avoiding joint limits.

An inverse kinematics algorithm computes the catch configuration, taking into ac-
count a perpendicular orientation of the catching basket with respect to the ball’s
trajectory. Finally, an interpolator generates the joint trajectories based on a trape-
zoidal velocity profile.
Riley and Atkeson (2002) [42] investigated the use of motion primitives for human-
like path generation. A humanoid robot arm equipped with a baseball glove is used
in order to determine the catching point, but without considering the end-effector’s
orientation. In this work, the catching position is chosen to be the intersection of
the ball’s trajectory with a horizontal plane at a given height. An inverse kinemat-
ics algorithm computes the catching configuration. Bäuml et al. (2011) [2] used the
mobile humanoid robot Rollin’ Justin for catching up to two simultaneously thrown
balls with its hands. All DOF are used for the reaching motion, including the arms,
torso and mobile platform, while the head joints are used to keep the ball in the
cameras’ field of view. The system operates completely wireless using only onboard
sensing and an external compute cluster for path planning coupled by WLAN. Very
few works address the monocular case in ball detection and trajectory estimation.
Cigliano et al. 2015 [7] presented a robotic ball catcher employing only a single mov-
ing camera and coping with rolling, bouncing and flying balls in the same framework
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without changing either the estimator or the control law. Authors use an industrial
manipulator arm equipped with a CCD camera mounted directly on the manipulator
end-effector. Therefore, the camera is also moving during the tracking/estimation
since it is mounted in an eye-in-hand configuration
Most works model the trajectory of the flying ball as a parabola and, subsequently,
they predict the ball’s trajectory recursively through least squares optimization (Zhang
and Buehler, 1994 [53]; Hong and Slotine, 1995 [14]; Riley and Atkeson, 2002 [42]).
Another aspect that is also addressed is the incorporation of air drag with the bal-
listic model (Frese et al., 2001 [12]). The same authors apply a common solution to
determine the desired catching point: they intercept the robot’s reachable-space with
the ball’s trajectory in order to find the closest point to the current position of the
end-effector. In what concerns the generation of the end-effector’s trajectories, many
researchers represent them by using polynomials satisfying boundary conditions. For
example, Namiki and Ishikawa (2003) [32] minimize the net torque and angular veloci-
ties to satisfy constraints on the initial and final position, velocity and accelerations of
the end-effector. Learning human demonstrations is another approach for trajectory
planning (Riley and Atkeson, 2002 [42]; Park et al., 2009 [40]; Kim et al., 2010 [18]).
In order to complete the catch, the closure of the fingers should be fast and precise.
Usually, finger closure is triggered as soon as distance between the object and the
end-effector is below a given threshold (Hong and Slotine, 1995 [14]; Lampariello et
al., 2011 [22]; Namiki and Ishikawa, 2003 [32]; Riley and Atkeson, 2002) [42]. Bäuml
et al. (2010) [1] proposed to solve a nonlinear optimization problem that minimizes
the robot’s joints accelerations during the catching task.
More recently, addressing the main challenges of the task demands the implemen-
tation of learning abilities in robots. Kim et al. (2014) [19] presented a learning
framework to teach a robot to catch objects in flight either through observation of hu-
man demonstrations or through exploration. Authors consider the problem of catching
fast objects with uneven shapes using time invariant dynamical systems as a method
for encoding robot motions. Based on the same framework for extracting feasible
postures to intercept general shaped objects, Salehian et al. (2016) [47] used a dy-
namical system (DS) based control law to generate the appropriate reach and follow
motion. These authors proposed a method to approximate the parameters of Linear
Parameter Varying (LPV) systems using Gaussian Mixture Models, based on a set of
feasible demonstrations generated by an off-line optimal control framework.

2.3 Proposed Approach

This section describes the proposed approach for the thesis.

2.3.1 Context and Scope of the work

This dissertation was proposed in the context of current activities aiming to design
and evaluate robotic systems for use by or with humans. An objective of the study
was the use of off-the-shelf components, to make it possible to replicate the setup with
a minimum effort. Two previous studies ([31]; [45]) provide an important contextual-
ization of these earlier activities. The most recent and directly related [45] sought to
develop a testbed for a ball catching task involving an upper-body humanoid robot
and a human partner. The study focused on the development of the hardware and
software infrastructures by employing off-the-shelf components, namely an education-
al/research manipulator Cyton Gamma 1500 [43] and a Kinect depth sensor [21].
The development environment is supported by the Robot-Operating System [44]
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framework under Linux, using C/C++ programming language. Several computa-
tional tools have been developed in previous works, including detection and tracking
algorithms, estimation methods based on Kalman filtering, planning and simple point-
to-point motion control of the dual-arm humanoid torso. This section describes the
main hardware and software components used throughout these earlier studies, the
most important findings and their limitations, that has been outlined in this work.

2.3.2 Vision Sensor: Microsoftr Kinect

The Microsoftr Kinect Sensor [21] is a well known camera that implement a depth
sensor and a RGB camera together in a compact box.
Kinect is a line of motion sensing input devices by Microsoft for Xbox 360. The
first-generation Kinect was first introduced in November 2010, as a combination of
Microsoft built software and hardware. Kinect V1 hardware included a range chipset
technology by Israeli developer PrimeSense, which developed a system consisting of an
infrared projector and camera and a special microchip that generates a grid from which
the location of a nearby object in 3 dimensions can be determined. This 3D scanner
system called Light Coding employs a variant of image-based 3D reconstruction.

(a) Kinect (b) Sensor’s position

(c) Kinect exploded view

Figure 2.1: Microsoftr Kinect Sensor

The Kinect sensor, in Figure 2.1, is a horizontal black bar connected to a small base
with a motorized pivot, ready to be positioned on a plane. The device features an
RGB camera, depth sensor and multi-array microphone running proprietary software,
which provide full-body 3D motion capture, facial recognition and voice recognition
capabilities. It also provides a 3-axis accelerometer and comes with a power supply
cable.
Inside the case, a Kinect sensor contains:

• RGB camera, that stores three channel data. This makes capturing a color
image possible. The default RGB video stream uses 8-bit VGA resolution (640⇥
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480 pixels) with a Bayer color filter, but the hardware is capable of resolutions
up to 1280⇥ 1024 at a lower frame rate.

• Depth sensor, including an infrared (IR) emitter and an IR depth sensor. The
emitter emits infrared light beams and the depth sensor reads the IR beams
reflected back to the sensor. The reflected beams are converted into depth in-
formation measuring the distance between an object and the sensor. This makes
capturing a depth image possible. The depth sensor consists of an infrared laser
projector combined with a monochrome CMOS sensor, which captures video
data in 3D under any ambient light conditions, with adjustable sensing range.
The monochrome depth sensing video stream is in VGA resolution (640 ⇥
480 pixels) with 11-bit depth, which provides 2048 levels of sensitivity. The
Kinect can also stream the view from its IR camera directly (i.e. before it has
been converted into a depth map) as 640⇥ 480 video, or 1280⇥ 1024 at a lower
frame rate.

• Multi-array microphone, which contains four microphones for capturing sound.
It is possible to record audio as well as find the location of the sound source
and the direction of the audio wave using the four microphones. Each channel
processes 16-bit audio at a sampling rate of 16 kHz.

• 3-axis accelerometer, configured for a 2g range, where g is the acceleration
due to gravity. It is possible to use the accelerometer to determine the current
orientation of the Kinect.

The main Kinect specifications are resumed in Table 2.1.

Item Specification

Viewing angle 43 � vertical by 57 � horizontal field of view

Vertical tilt range ±27 �

Depth stream QVGA (320⇥ 240) at 30 frames per second (fps)

Color stream VGA (640⇥ 480) at 30 frames per second (fps)

Audio format 16 kHz, 16-bit mono pulse code modulation (PCM)

Depth distance from 0.8m to 4.5m

Table 2.1: Kinect Specifications

Kinect streams out color, depth, and skeleton data for each frame and can interact in
a defined area with some limitations depending on the environment where it is used:

• Color Space: the color sensor captures a color image of everything visible in
the field of view of the color sensor. A frame is made up of pixels. The number
of pixels depends on the frame size. Each pixel contains the red, green, and blue
value of a single pixel at a particular (x, y) coordinate in the color image.

• Depth Space: the depth sensor captures a grayscale image of everything visible
in the field of view of the depth sensor. A frame is made up of pixels and each
pixel contains the Cartesian distance, in millimeters, from the camera plane to
the nearest object at that particular (x, y) coordinate. The (x, y) coordinates
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of a depth frame do not represent physical units in the room; instead, they
represent the location of a pixel in the depth frame.

• Skeleton Space: the depth image captured is processed by the Kinect runtime
into skeleton data. Skeleton data contains 3D position data for human skele-
tons for up to two people who are visible in the depth sensor. The position
of a skeleton and each of the skeleton joints (if active tracking is enabled) are
stored as (x, y, z) coordinates. Unlike depth space, skeleton space coordinates
are expressed in meters. The x, y, and z-axes are the body axes of the depth
sensor with a right-handed coordinate system that places a Kinect at the ori-
gin with the positive z-axis extending in the direction in which the Kinect is
pointed. The positive y-axis extends upward, while the positive x-axis extends
to the left. Placing a Kinect on a surface that is not level (or tilting the sensor)
to optimize the sensor’s field of view can generate skeletons that appear to lean
instead of be standing upright. Kinect is capable of simultaneously tracking up
to six people, including two active players for motion analysis with a feature
extraction of 20 joints per player. However, PrimeSense has stated that the
number of people the device can see (but not process as players) is only limited
by how many will fit in the field-of-view of the camera. In the thesis, only one
person is tracked for hand recognition.

• Interaction Space: the interaction space is the area in front of the Kinect
sensor where the infrared and color sensors have an unblocked view of everything
in front of the sensor. If the lighting is not too bright and not too dim, and
the objects being tracked are not too reflective, it is possible to get good results
tracking human skeletons. While a sensor is often placed in front of and at
the level of a user’s head, it can be placed in a wide variety of positions. The
interaction space is defined by the field of view of the Kinect. Kinect sensor
records video at a frame rate from 9Hz to 30Hz, depending on resolution. It
has a practical ranging limit of 0.8m � 4.5m, that is better at 1.2m � 3.5m
distance. The area seen by Kinect is roughly 6m2, although the sensor can
maintain tracking through an extended range of approximately 0.4m � 6m.
Figure 2.2 represents the working range. The horizontal field of the Kinect
sensor at the minimum viewing distance of ⇠ 0.8m is therefore ⇠ 87 cm, and
the vertical field is ⇠ 63 cm, resulting in a resolution of just over 1.3mm per
pixel.

Figure 2.2: Working range

The Kinect sensor’s motorized tilt mechanism requires more power than the USB ports
can supply. Therefore, the device makes use of a proprietary connector combining USB
communication with additional power, requiring the included power supply cable that
splits the connection into separate USB and power connections; power is supplied
from the mains by way of an AC adapter.
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Instruction for the installation are available in Appendix B.3.
The following tips help to get started using the Kinect:

• Connect the power supply for the Kinect to an external power source; if the
Kinect has only power from the USB connection, it will be minimally functional
and light the LED, but it must be connected to an external power source to be
fully functional.

• The Kinect is protected from overheating by a fan, controlled by the sensor’s
firmware, which turns off the camera at 90 �C.

• Reasonable lighting, neither extremely dark nor extremely bright, is important
for capturing images with the RGB camera. Incandescent, fluorescent, and
natural lighting provide no special obstacles, but do not point an intense or
constant light source at the camera because this can blind the RGB sensor.

• The depth sensor functions adequately in typical and reduced lighting, although
in near darkness there is increased noise in the signal.

• The depth sensor reads depth information from reflected light. Objects that are
highly reflective (mirrors and shiny metal) or highly absorptive (fluffy and/or
dark materials) may not be registered by the depth sensor as successfully as
other objects.

• When the Kinect is perfectly connected to the PC, it is recognized as 3 devices:
NUI Camera, NUI Motor and NUI Audio. Sometimes the PC can recognize
only NUI Camera, but a simple plug and unplug solves the problem.

2.3.3 Robotic Arm: Cyton Gamma 1500

The robotic arm used is the Cyton Gamma 1500 by Robai Corporation [43]. The arm
has 7-DOF and a motor to control the gripper. Due to that is difficult to compute
the kinematics. It can be controlled both in position and velocity. All the joints are
revolute and it is available a package that includes all the specification of the arm in
ROS.
Humanoid robot arms, with many degrees of freedom, can reach around obstacles and
through gaps, reconfigure for strength, and manipulate objects. These robots have
kinematic redundancy, like that of the human arm, that enables placement of a hand
or tool at a position and orientation in an unlimited number of ways. The Robai
Cyton Gamma can perform advanced control by exploiting its kinematic redundancy.
The overall structure and the dimension of each joint are in Figure 2.3. Among all the
specifications, one of the most important in ball catching task are the joint velocities.
The value is important to choose the best robot to use, because it is needed the highest
velocity possible to catch the ball in a small time. The problem with higher velocity
could be the robustness of the arm.
The specifications of Cyton Gamma 1500 are in Table 2.2, while joints limits are in
Table 2.3 where (A) means Articulate, while (S) means Spin.
The Cyton Gamma 1500 requires an input voltage of 100�240V in AC and works with
ambient temperature between 10 �C and 35 �C under normal atmospheric pressure
conditions. Prongs can be chosen between standard or wide and there is a 3 finger
hand as optional.
The thesis is based on this arm: the intention is to study the kinematics of the arm
and to create a simulation considering the Cyton Gamma 1500 model, both in ROS
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Figure 2.3: Cyton Gamma
1500

Specifications Values

Total weight 3000 g

Payload at full reach 1200 g

Payload at mid reach 1500 g

Arm length 76 cm base to tip

Reach 68 cm

Maximum linear arm speed 45 cm/s

Maximum speed (free move) 70 cm/s

Repeatability ±0.5mm

Gripper fingers 2 (opening range 3.5 cm)

Table 2.2: Cyton Gamma 1500: Specifications

Joint Name Number Displacement Angle limits Velocity limits

Shoulder Roll (S) Joint 0 300 � [�150 �, 150 �] 75 deg/s

Shoulder Pitch (A) Joint 1 210 � [�105 �, 105 �] 75 deg/s

Shoulder Yaw (A) Joint 2 210 � [�105 �, 105 �] 75 deg/s

Elbow Pitch (A) Joint 3 210 � [�105 �, 105 �] 65 deg/s

Wrist Yaw (A) Joint 4 210 � [�105 �, 105 �] 110 deg/s

Wrist Pitch (A) Joint 5 210 � [�105 �, 105 �] 330 deg/s

Wrist Roll (S) Joint 6 300 � [�150 �, 150 �] 330 deg/s

Table 2.3: Cyton Gamma 1500: Joint limits

and in MATLABr. After these verifications, the idea is to move to the real arm using
the nodes created for simulation. Problems with the robot does not allow the use of
the real arm, therefore it is maintained the model in the simulation but it is not used
in reality for this thesis.

2.3.4 Software Development Tools

The Robot Operating System (ROS) [44] is a software framework that provides a set
of tools and libraries to ease the development of robotic applications.
One of its strong points is the support of nodes and their interaction via a network
of topics, which can be published by nodes and subscribed to by other nodes. This
helps in building a network of complex algorithms that each provides a part of the
overall computations, each using the data that is sent via the topics, resulting in a
robust design. This data can consist of sensor information, calculated environment
details or planned tasks. Furthermore, ROS supports a wide range of sensors, varying
from simple force, torque or touch sensors to 3D environment sensing sensors, like
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range finders or cameras. The sensor-driver nodes handle interfacing with these sen-
sors and send the sensors data and control commands through topics. Usually, a node
written in C++ subscribes to a fixed set of topics, which are determined by using
their data structures in the code. As a result the data structures of these topics are
checked by the C++ compiler, resulting in a robust design. Due to its complexity and
extensiveness, ROS is not capable to provide a hard real-time software environment.
The arrival of data on a topic, the scheduled time of a node and so on cannot be
guaranteed, as this depends on too many unknown factors. On the other hand, most
of the time these things will go as expected or designed, making ROS suitable for soft
real-time use.
It provides hardware abstraction, device drivers, libraries, visualizers, message-passing
and package management. ROS is licensed under an open source, BSD license and is
the unifying element of this project.
The distribution of ROS used is the latest available with long term support for Ubuntu
Xenial (16.04 LTS), named ROS Kinetic Kame. The final release is available since
May 2016 and will be update until May 2021, the same end of life date of Ubuntu
Xenial. It includes various packages that allow the interaction among the PC, the
Cyton Gamma 1500 and the Kinect Sensor.
Instruction for the installation of ROS in Ubuntu Xenial are available in Appendix
B.1.
The primary goal of ROS is to support code reuse in robotics research and develop-
ment. ROS is a distributed framework of processes (nodes) that enables executables
to be individually designed and loosely coupled at runtime. These processes can be
grouped into packages, which can be easily shared and distributed. ROS also sup-
ports a federated system of code, called repositories, that enable collaboration to be
distributed as well. This design, from the filesystem level to the community level,
enables independent decisions about development and implementation, but all can
be brought together with ROS infrastructure tools. The other goals of ROS can be
summarized in:

• Thin: ROS is designed to be as thin as possible, so that code written for ROS
can be used and integrate with other robot software frameworks.

• Language independence: the ROS framework is easy to implement in any
modern programming language. It is already implemented in Python and C++.

• Easy testing: ROS has a built in unit/integration test framework called rostest
that makes it easy to bring up and tear down test fixtures.

• Scaling: ROS is appropriate for large runtime systems and for large develop-
ment processes.

The ROS Master stores topics and services registration information for ROS nodes.
Nodes communicate with the Master to report their registration information. As
these nodes communicate with the Master, they can receive information about other
registered nodes and make connections as appropriate. The Master will also make
callbacks to these nodes when this registration information changes, which allows
nodes to dynamically create connections as new nodes are run.
Nodes connect to other nodes directly; the Master only provides lookup information,
much like a DNS server. Nodes that subscribe to a topic will request connections from
nodes that publish that topic, and will establish that connection over an agreed upon
connection protocol. The most common protocol used in a ROS is called TCP ROS,
which uses standard TCP/IP sockets.
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The two sides are decoupled. All the nodes publish without knowledge of whether
anyone is subscribed. All the filters subscribe without knowledge of whether anyone
is publishing them. The two nodes can be started, killed, and restarted, in any order,
without inducing any error conditions.
An example of publish/subscribing between nodes and topics is depicted in Figure 2.4.
This architecture allows for decoupled operation, where the names are the primary

Figure 2.4: Nodes and topic publication and subscription

means by which larger and more complex systems can be built. Names of nodes,
topics, services, and parameters are very important in ROS.

OpenCV

OpenCV (Open Source Computer Vision) [35] is a library of programming functions
aimed at real-time computer vision. Originally developed by Intel’s research center
in Russia, it was later supported by Willow Garage (ROS organization) and is now
maintained by Itseez. The library is cross-platform, free for use under the open-source
BSD license and automatically downloaded with ROS.
Officially launched in 1999, the OpenCV project aim was to advance CPU-intensive
applications, part of a series of Intel’s projects including real-time ray tracing and 3D
display walls. In the early days of OpenCV, the goals of the project were described
as:

• Advance vision research by providing not only open but also optimized code for
basic vision infrastructure.

• Disseminate vision knowledge by providing a common infrastructure that devel-
opers could build on, so that code would be more readily readable and transfer-
able.

• Advance vision-based commercial applications by making portable, performance,
optimized code available for free, with a license that did not require code to be
open or free itself.

OpenCV is written in C/C++, but there are bindings in Python, Java and MATLABr.
All the new developments and algorithms in OpenCV are developed in the C++ inter-
face. It is cross-platform and supports Windows, Linux, Mac OS, iOS and Android.
OpenCV was designed for computational efficiency and with a strong focus on real-
time applications; the library can take advantage of multi-core processing. Enabled
with OpenCL, it can take advantage of the hardware acceleration of the computer
platform.
The library has more than 2500 optimized algorithms, which includes a comprehen-
sive set of both classic and state-of-the-art computer vision and machine learning
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algorithms. These algorithms can be used to detect and recognize faces, identify ob-
jects, classify human actions in videos, track camera movements, track moving objects,
extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch
images together to produce a high resolution image of an entire scene, find similar
images from an image database, remove red eyes from images taken using flash, follow
eye movements, recognize scenery and establish markers to overlay it with augmented
reality, etc. The library is used extensively in companies, research groups and by
governmental bodies.
OpenCV’s deployed uses span the range from stitching street view images together,
detecting intrusions in surveillance video in Israel, monitoring mine equipment in
China, helping robots navigate and pick up objects at Willow Garage, detection of
swimming pool drowning accidents in Europe, running interactive art in Spain and
New York, checking runways for debris in Turkey, inspecting labels on products in
factories around the world on to rapid face detection in Japan.
ROS uses both versions of OpenCV: 2.4 and 3.0. The C++ code needs only some
changes to use it with both versions.

OpenNI and OpenNI tracker

OpenNI [36], where NI stands for Natural Interaction, is a non-profit organization
and open source software project created by Primesense, Willow-Garage, Side-Kick,
Asus and Appside in 2010. It is focused on the certification and the improvement in
interoperability of natural user interfaces for Natural Interaction (NI) devices, such
as Kinect Sensor. It also includes applications that use those devices and middleware
that facilitates access and use of such devices.
PrimeSense, who was the company behind the technology used in the Kinect and
founding member of OpenNI, shutdown the original OpenNI project when it was
acquired by Apple on November, 2013. The OpenNI framework provides a set of open
source APIs that are a standard for applications to access natural interaction devices.
They support voice and voice command recognition, hand gestures but especially
Body Motion Tracking.
OpenNI can be installed and used with ROS in easily way. NITE is a plug-in that
works in OpenNI, developed by PrimeSense. It is proprietary and its sole function is
to perform skeleton tracking.
The package OpenNI Tracker for Human Skeleton comes directly from OpenNI. It
allows the tracking of a person’s skeleton using a depth sensor. It also gives the
positions, relative to the camera frame, of the person’s head, neck, torso, shoulders,
elbows, hands, hips, knees and feet. The OpenNI tracker broadcasts the OpenNI
skeleton frames using tf transforms. For each body part, it will be considered its own
coordinate frame, and the OpenNI tracker publishes the transformation necessary to
convert a body part coordinate frame to the camera’s coordinate frame.
After the user detection with automatic calibration, NITE or OpenNI tracker starts
looking for its skeleton data (tf transforms of all joints of the body detected) with the
user standing in front of the camera, showing to the sensor most of his body.
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2.4 Overview of the Approach

The thesis has two main objectives: find the best approach to catch a ball and create
a simulation of ball catching task in ROS where the simulator can be easily replaced
by the real arm.

2.4.1 Development Phases

In order to pursue the main objectives of the work, two development phases were
considered. In the first phase, the trade-off between the time allocated to perception
and action will be addresses. The study and evaluation of different control strategies
is based on MATLABr simulations carried out on a powerful PC.

Predictive vs Prospective

The choice of predictive approach comes from previous works [45]. In that work, the
comparison is between a least squares estimate and a prediction using Kalman Filter.
The latter could be better in more trajectories but it is very difficult to initialize the
matrix of the filter.
In this study, the first objective is finding a better selection of the landing point in the
predicted trajectory, with the use of the least squares estimate. Thus, the comparison
regards the choice of a landing point in a plane and with minimum distance from the
end-effector. In this case, different robot’s starting pose are used. The limitations
come from the robot’s joint velocities but also from the uncertainty given by the
vision sensor. This work has to deal with this two limitations to find the best possible
solution.
The idea of using Prospective Control comes to anticipate the robot movement that
does not have to wait for a first admissible landing point. The difficulties encountered
in tuning the parameters to setup this control are important, but something can be
taken from prospective control. In fact, the way of acting is similar to the human
behavior. In this context, where the work is related to entertainment games with
interaction between human and robot, the first intention is to teach the same behavior
of humans to the robot.

Simulation vs Reality

The second main objective of the thesis is implement the approach in ROS. The
implementation is made in simulation, due to problems in the real robot available.
Several nodes are created to accomplish the task. They subscribe and publish to topics
that are used also by the real robot. In this way, it will be easy to reuse the nodes
created for simulation with the real robot when it will be available. The simulation
allows also to evaluate the study made with a model of the real robot, to confirm the
solutions found in a simulated environment. With use of ROS visualization tools, it
is possible to see the model of the real robot acting with a simulated ball, showing a
ball thrown that is caught from the robot.

2.4.2 Assumptions

The important assumptions adopted for the proposed study are as follows:

• Air drag ignored;

• Orientation of the hand ignored;



18 Chapter 2. Background and Context

• Catching of spherical objects (ball-like in which the center of mass coincides
with the geometric center);

• Respecting physical constraints, such as joint physical limits, joint maximum
velocities and accelerations.

2.4.3 Overall System’s Architecture

In a second phase, the development of a testbed for robotic catching of a flying ball
is based on the ROS platform and the RViz visualization tool. The overall system’s
architecture is illustrated in Figure 2.5.

The Laboratory 0.24 of IEETA in University of Aveiro includes the main compo-
nents of this work that are:

• PC with Linux Ubuntu and ROS Kinetic

• Robotic arm: Cyton Gamma 1500 by Robai Corporation

• Vision system: Microsoftr Kinect Sensor

These three components together create the overall system that is represented in
Figure 2.5.

Figure 2.5: Overall System

The idea is to accomplish this task using compromise in performance and pricing.
In fact, Cyton Gamma 1500 is available in University of Aveiro, Microsoftr Kinect
Sensor is a depth sensor which holds a compromise among accuracy, sensing range
and price and the PC is a requirement for each student. Software includes ROS in
Linux Ubuntu, both available and downloadable for free. They come together with
tools to code in C++ and with driver, like OpenCV for the vision sensor, OpenNI for
the depth sensor to track people and RViz as visualization tools.
The ball catching task requires both software and hardware. It involves a powerful
PC with software development tools to control the robotic arm, the actor of the task,
and the vision system, that has to return information to guide the movement of the
robot.
The testbed considers the overall system but with two main differences:
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1. The Kinect data was first recorded and then played back, using ROSBag files
(Section 2.4.3), for testing the algorithms;

2. A kinematic simulation is performed using Rviz, a 3D visualization tool (Section
2.4.3).

Thus, the computer simulations are used to validate the kinematic-control algorithms
implemented, instead of using the physical Cyton arm and Kinect data in real-time.

PC with Linux Ubuntu

The first part of the project uses a PC, given by the University of Aveiro, with 2.67GHz
quad-core Intel Core i5 CPU 750 processor, 8GB of RAM and Gallium 0.4 on NVA8
graphics. The OS is Linux Ubuntu 14.04 LTS (called also Trusty Tahr, released in
April 2014) installed. The ROS version used in this PC is ROS Indigo Igloo, released
in July 2014. This PC is the base of the project because it includes all the working
packages for Kinect and Cyton.
The second part uses a laptop, Apple Macbook Pro, with 2.9GHz dual-core Intel
Core i5 processor, 8GB of 2133MHz LPDDR3 onboard memory of RAM and Intel
Iris Graphics 550. The OS is Linux Ubuntu 16.04 LTS [25] (called also Xenial Xerus,
released in April 2016) installed using Parallels Desktopr 12 for Mac software. The
ROS version used in this PC is ROS Kinetic Kame [44], released in May 2016. These
are the latest long term versions available at the moment of writing this thesis. This
laptop is used to import the packages in the latest versions and to verify them with
new codes and improvements in ball catching task. It is installed also MATLABr

version 2016b for simulation and evaluation of approaches.

MATLABr

The MATLABr platform [28] is optimized for solving engineering and scientific prob-
lems, using the matrix-based MATLABr language that express computational mathe-
matics, allowing matrix manipulations, plotting of functions and data, implementation
of algorithms, in easy way. The language also provides features of traditional program-
ming languages, including flow control, error handling, object-oriented programming,
unit testing, and source control integration.
MATLABr is used for its impeccable numerics. It supports both numeric and sym-
bolic calculations, that makes it straightforward to capture the mathematics behind
ideas, which means the code is easier to write, read, understand and maintain. It has
a desktop environment tuned for iterative exploration, design, and problem-solving,
with graphics for visualizing data and tools for creating custom plots. Integrated tools
support simultaneous exploration of data and programs, letting evaluate more ideas
in less time, while 2D and 3D plotting functions enable to visualize and understand
data and communicate results.
It includes a vast library of prebuilt toolboxes with algorithms. These MATLABr

tools and capabilities are designed to work together, also with ROS. It is possible
to interactively preview, select, and preprocess the data to import, while an exten-
sive set of built-in math functions supports engineering and scientific analysis. With
MATLABr, it is possible to visualize how different algorithms work with data, and
iterate until the results wanted are obtained.
This work uses MATLABr version 2016b to test the strategies in the first part of the
thesis, changing easily several parameters. In fact, MATLABr is very useful to debug
all the idea in a faster way, allowing to control the workspace and understand better
and earlier the errors that can be made.
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C++

All codes tested in MATLABr are implemented in C++ programming language [5],
one of the most important object-oriented programming languages. One of the main
goals of this thesis is learning the basic skills to code using C++ programming lan-
guage.
C++ was developed by Bjarne Stroustrup, a Danish computer scientist, since 1979
and released in 1985 when became the reference for the languages. It is an extension
of the C language, adding it classes, to be efficient, flexible and provide high-level
features for program organization. It is a compiled language, standardized by the
International Organization for Standardization (ISO) with the latest version, named
C++14. It maintains all aspects of the C language, while providing new features to
programmers that make it easier to write useful and sophisticated programs.
A C++ program is a collection of commands, which tell the computer to do some
action, usually called C++ source code or just code. Commands are either functions
or keywords. Keywords are a basic building block of the language, while functions
are, in fact, usually written in terms of simpler functions. Thankfully, C++ provides
a great many common functions and keywords ready to use.
Every program in C++ has one function, named main, that is always called when the
program first executes. From main, it is possible to call other functions whether they
are written by the programmer or, as mentioned earlier, provided by the compiler. To
access those standard functions that comes with the compiler, the #include directive
includes the header. What this does is effectively take everything in the header and
paste it into the program. C++ uses variables of different types that need to be de-
clare in the program.
The compiler checks all the lines of the code and does not compile if there is an error.
Debug requires a lot of time but it is needed to obtain useful results and to improve
the code.

ROS

ROS contains different concepts. Among all, the most important are:

• Packages: the main unit for organizing software in ROS. A package may contain
ROS runtime processes (nodes), a ROS-dependent library, datasets, configura-
tion files, or anything else that is usefully organized together. Packages are the
most granular thing to build and release.

• Messages: a message is simply a data structure, comprising typed fields. Stan-
dard primitive types (integer, floating point, boolean, etc.) are supported, as are
arrays of primitive types. Messages can include arbitrarily nested structures and
arrays. Message descriptions, stored in my_package/msg/MyMessageType.msg,
define the data structures for messages sent in ROS. Messages are routed via a
transport system with publish/subscribe semantics.

• Nodes: processes that perform computation. Nodes communicate with each
other by passing messages. ROS is designed to be modular; a robot control
system usually comprises many nodes. For example, one node controls a laser
range-finder, one node controls the wheel motors, one node performs localization,
one node performs path planning, one node provides a graphical view of the
system. A ROS node is written with the use of a ROS client library, such as
roscpp in this project.
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• Topics: a node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node that
is interested in a certain kind of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. The idea
is that publishers and subscribers are not aware of each other, to decouple the
production of information from its consumption. Each bus has a name, and
anyone can connect to the bus to send or receive messages, as long as they are
the right type.

• Bags: a format for saving and playing back ROS message data. Bags are an
important mechanism for storing data, such as sensor data, that can be difficult
to collect but are necessary for developing and testing algorithms.

• Distributions: collections of versioned stacks that can be installed. Distribu-
tions play a similar role to Linux distributions: they make it easier to install a
collection of software, and they also maintain consistent versions across a set of
software.

• Repositories: ROS relies on a federated network of code repositories, where
different institutions can develop and release their own robot software compo-
nents.

• ROS Wiki and Answers: the main forum for documenting information about
ROS. Anyone can sign up for an account and contribute their own documenta-
tion, provide corrections or updates, write tutorials. ROS Answers is a Q&A
site for answering the ROS-related questions. Both are very useful to obtain
help in low time.

RViz

RViz (ROS visualization) [46] is a powerful 3D visualization tool for ROS. It allows
the user to view the simulated robot model, log sensor information from the robot’s
sensors, and replay the logged sensor information. By visualizing what the robot is
seeing, thinking, and doing, the user can debug a robot application from sensor in-
puts to planned (or unplanned) actions. The window contains a list on the left with
a check box for each item, where it is possible to show or hide any visual information
instantly.
RViz displays both 3D sensor data from stereo cameras, lasers, Kinects, and other
3D devices in the form of point clouds or depth images, both 2D sensor data from
web-cams, RGB cameras, and 2D laser range-finders.
If an actual robot is communicating with a workstation that is running RViz, RViz
will display the robot’s current configuration on the virtual robot model. ROS top-
ics will be displayed as live representations based on the sensor data published by
any cameras, infrared sensors, and laser scanners that are part of the robot’s system.
This can be useful to develop and debug robot systems and controllers. RViz pro-
vides a configurable Graphical User Interface (GUI) to allow the user to display only
information that are useful.

Environment

The environment considered is the Laboratory 0.24 of University of Aveiro in IEETA
(Institute of Electronics and Informatics Engineering of Aveiro). The robot stands
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with a distance of 4 � 5m from the person that throw the ball at almost the same
height. A vision sensor, like Kinect, is above the robot with a clear and perfect view
about what happen in front of it without obstacles. It can view the person and the
ball.
An overview of the ball catching scenario with robotic arm, depth sensor and subject
throwing the ball is depicted in Figure 2.6.

Figure 2.6: Ball Catching Scenario
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Chapter 3

Robot Kinematics Analysis

This chapter includes the analysis of robot kinematics used in this work. It refers to
the Cyton Gamma 1500, simplified to 3-DOF. It presents the study about forward
and inverse kinematics, Jacobian, error correction, the singularity problem with some
solutions and the manipulability measures.

3.1 3-DOF Cyton Gamma 1500

This work uses a Robai Cyton Gamma 1500, reduced to 3-DOF. From the previous
works [31] [45], the Robai Cyton Gamma 1500 robotic arm with 7-DOF is simplified
with the model in simulation using only 3-DOF. This is done because the simplified
arm is controlled faster (e.g. 30Hz against the 5Hz of the 7-DOF version) and is more
suitable for highly dynamic application like ball catching. Although it is less flexible,
it is easier to implement and to compute the inverse kinematics.
The reduction selects 3 of the 7 joints available, precisely the Shoulder Roll (Joint 0
or q1), Shoulder Pitch (Joint 1 or q2) and Elbow Pitch (Joint 3 or q3), from Table
2.3, maintaining the other joints at angle 0 � and without updating either position or
velocity.
The links’ length of the 3-DOF are: L1 = 0.17735m, L2 = 0.24121m and L3 =
0.34168m.
From Table 2.3 it is possible to take the angle limits: the first and second joints have
velocity limits of 75 deg/s, while the third has 65 deg/s.

3.2 Forward Kinematics

The forward kinematic analysis is used to find the position of the end-effector of the
manipulator with respect to the base frame for the given set of joint parameters.
The Denavit-Hartenberg convention [48], described in Appendix A.1, is applied to
the Cyton Gamma 1500 arm with 3-DOF. The origin of Frame 0 is chosen at the
intersection of z0 with z1 (d1 = 0); further, z1 and z2 are parallel and the choice of
axes x1 and x2 is made as for two link. Thus, since the revolute axes are all parallel,
the simplest choice is made for all axes x

i

along the direction of the relative links (the
direction of x0 is arbitrary) and all lying in the plane (x0,y0). In this way, all the
parameters d

i

are null and the angles between the axes x
i

directly provide the joint
variables.
The DH parameters of Cyton Gamma 1500 3.1 are specified in Table 3.1.
The homogeneous transformation matrices, defined in (A.5) are different for the first
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Link a

i

↵
i

d

i

✓
i

1 0 ⇡/2 L1 ✓1 � ⇡/2

2 L2 0 0 ✓2

3 L3 0 0 ✓3

Table 3.1: Cyton Gamma 1500: Denavit-Hartenberg (DH) parameters

Figure 3.1: Cyton Gamma 1500 with 3-DOF

joint with respect to the second and the third:
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where c
i

= cos(q
i

) represents the cosine while s
i

= sin(q
i

) the sine.
Computation of the direct kinematics function as in (A.1) yields:
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775 (3.5)
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where q = [✓1 ✓2 ✓3]T . Since z3 is aligned with z2, Frame 3 does not coincide with a
possible end-effector frame, and needs a proper constant transformation.
It is desired to find the joint variables ✓1, ✓2 and ✓3 corresponding to a given end-
effector position p

W

. Notice that the direct kinematics for p
W

is expressed by (3.5).
Hence, it follows:

p
w

x

= x
ee

= s1(L2s2 + L3s23) (3.6)
p
w

y

= y
ee

= �c1(L2s2 + L3s23) (3.7)
p
w

z

= z
ee

� L1 = L2c2 + L3c23 (3.8)

Thus, the direct kinematics for the 3-DOF robotic arm is very simple and calculated
as follows:

x
ee

= sin q1 · [L2 · sin q2 + L3 · sin(q2 + q3)] (3.9a)
y
ee

= cos q1 · [L2 · sin q2 + L3 · sin(q2 + q3)] (3.9b)
z
ee

= L1 + L2 · cos q2 + L3 · cos(q2 + q3) (3.9c)

3.2.1 Jacobian

The analytical calculus about the Analytical Jacobian matrix J as first point using:

J =

2
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dx

ee

dq1
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ee

dq2

dx

ee

dq3
dy

ee

dq1

dy

ee

dq2

dy

ee

dq3
dz

ee

dq1

dz

ee

dq2

dz

ee

dq3

3

75 (3.10)

that, in the case of Cyton Gamma 1500 with 3-DOF, is:

J =

2

4
c1 · (L2 · s2 + L3 · s23) s1 · (L2 · c2 + L3 · c23) L3 · s1 · c23
s1 · (L2 · s2 + L3 · s23) �c1 · (L2 · c2 + L3 · c23) �L3 · c1 · c23

0 �(L2 · s2 + L3 · s23) �L3 · s23

3

5 (3.11)

where c1 = cos(q1) and c23 = cos(q2 + q3) represent the cosine with sum of angles.
The same holds for the sine with s1 = sin(q1) and s23 = sin(q2 + q3).

3.2.2 Manipulability

The manipulability measures the robot posture in the workspace from the viewpoint
of object manipulation. The manipulability index of given robot poses, introduced by
Yoshikawa in 1985 [51], can be calculated as a quality value that gives information
about how good an adjustment in workspace is possible. For one arm, Yoshikawa
proposed, the manipulability index µ given by:

µ = µ(x, y) = |det(J(q))| (3.12)

where J is Jacobian of the robot kinematics. The idea is to select a starting pose
based on the highest determinant of the Jacobian, so in different words, is finding for
which values of q2 and q3 the determinant is the maximum possible, considering a
range of angles (q2, q3) 2 [�105�, 0�].
For a non redundant manipulator, the differential kinematics solution

q̇ = J

�1(q)v
e

(3.13)
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is used to derive q̇

T

q̇ = 1 that become:

v

T

e

(J(q)JT (q))�1
v

e

= 1 (3.14)

In this case the points on the surface of the sphere in the joint velocity space are
mapped into points on the surface of the ellipsoid in the end-effector velocity space.
Along the direction of the major axis of the ellipsoid, the end-effector can move at
large velocity, while along the direction of the minor axis small end-effector velocities
are obtained. The closer the ellipsoid is to a sphere, the better the end-effector can
move isotropically along all directions of the operational space. Hence, the ellipsoid
is an index characterizing manipulation ability of the structure in terms of velocities.
As can be recognized from (3.14), the shape and orientation of the ellipsoid are deter-
mined by the core of its quadratic form and then by the matrix JJ

T which is in general
a function of the manipulator configuration. The directions of the principal axes of
the ellipsoid are determined by the eigenvectors u

i

, for i = 1, ..., r, of the matrix JJ

T ,
while the dimensions of the axes are given by the singular values of J, �

i

=
p

�
i

(JJT ),
for i = 1, ..., r where �

i

(JJT ) denotes the generic eigenvalue of JJT . A global repre-
sentative measure of manipulation ability can be obtained by considering the volume
of the ellipsoid. This volume, in the case of a nonredundant manipulator (r = n), is
proportional to the quantity:

w(q) = |det(J(q))| (3.15)

which is the manipulability measure. It is easy to recognize that it is always w > 0,
except for a manipulator at a singular configuration when w = 0. For this reason, this
measure is usually adopted as a distance of the manipulator from singular configura-
tions. In more general cases when it is not easy to find a simple, meaningful index,
one can consider the ratio between the minimum and maximum singular values of the
Jacobian �

r

�1
which is equivalent to the inverse of the condition number of matrix J.

This ratio gives not only a measure of the distance from a singularity (�
r

= 0), but
also a direct measure of eccentricity of the ellipsoid. The disadvantage in utilizing
this index is its computational complexity; it is practically impossible to compute it
in symbolic form, i.e., as a function of the joint configuration, except for matrices of
reduced dimension.
A zero-manipulability configuration (i.e. a singular configuration) expresses the im-
possibility for the robot end-effector to be moved in any direction of its working area,
whereas a non-zero manipulability expresses the possibility for the robot end-effector
to be moved in any direction of its working area with task velocities higher for given
joint velocities as the manipulability criterion is high.
The manipulabity measure of the Cyton Gamma 1500 with 3-DOF is:

w = |det(J)| = L2 · L3 · |(L2 · s2 + L3 · s23) · s3| (3.16)

The best posture for given L2 and L3 is obtained as follows. First, ✓1 is not related
to w and can take any value. Second, deriving @w/@✓2 = 0:

tan ✓2 =
L2 + L3 · c3

L3 · s3
(3.17)

This means that the tip of the arm should be on the xy-plane, that is, at the same
height as the second joint. This can further be interpreted as maximizing the contri-
bution of the angular velocity of the first joint to the manipulability measure.
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Substituting (3.17) into (3.16) yields:

w = L2 · L3 ·
q
L2
2 + L2

3 + 2 · L2 · L3 · c3 · |s3| (3.18)

The value of ✓3 that maximizes w is:

cos ✓3 =

p
(L2

2 + L2
3)

2 + 12 · L2
2 · L2

3 � (L2
2 + L2

3)

6 · L2 · L3
(3.19)

Substituting the real values of the Cyton Gamma 1500, it becomes:

✓2 = arctan(tan ✓2) = 0.8274 rad = 47.4067 � (3.20)
✓3 = arccos(cos ✓3) = 1.2415 rad = 71.1339 � (3.21)

The same can be computed considering:

µ1 = max[µ(x, y) 8x, y 2W ] = |det(J(q))| (3.22)

it is possible to compute the same calculus in MATLABr, considering:

µ1 = max[µ(x, y) 8x, y 2W ] = |det(J(q))| (3.23)

The determinant of J is equal to 0.373 using q2 = �47.4067� and q3 = �71.1339�, or
in radiant q2 = �0.8274 rad and q3 = �1.2415 rad. Obviously, q1 is not needed in the
determinant, therefore it is maintained equals to 0 (e.g. q1 = 0 rad).



28 Chapter 3. Robot Kinematics Analysis

3.3 Inverse Kinematics

The inverse kinematics problem, given the position of the end-effector of the manipula-
tor, is to find the values of joint angles and displacements that can attain the specified
position of the end-effector. The equations formulated to solve the inverse kinematic
problem are nonlinear and it is very difficult to obtain closed form solutions. The
problem may have multiple solutions or sometimes any solution does not exist. The
solutions of the inverse kinematic problem for manipulators are helpful to define the
workspace of manipulators. If solutions exist for a point then it is in the workspace
of the manipulator, and if no solution exists then the point is not in the workspace.

3.3.1 Analytical Inverse Kinematics

The Analytical Inverse Kinematics study starts squaring and summing (3.6), (3.7)
and (3.8), yielding:

p2
w

x

+ p2
w

y

+ p2
w

z

= (L2s2 + L3s23)
2 + (L2c2 + L3c23)

2 (3.24)
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from which:
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w

x

+ p2
w

y

+ p2
w

z

� L2
2 � L2

3

2L2L3
(3.29)

where the admissibility of the solution obviously requires that �1  c3  1, or
equivalently |L2 � L3| 

q
p2
w

x

+ p2
w

y

+ p2
w

z

 |L2 + L3|, otherwise the wrist point is
outside the reachable workspace of the manipulator. Hence, it is:

s3 = ±
q

1� c23 (3.30)

and thus.
✓3 = atan2(s3, c3) (3.31)

giving the two solutions, according to the sign of s3:

✓3,I 2 [�⇡,⇡] (3.32)
✓3,II = �✓3,I (3.33)

After determining ✓3, it is possible to compute ✓2 as follows. Squaring and summing
(3.6) and (3.7) gives:
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w

x

+ p2
w

y

= (L2s2 + L3s23)
2 (3.34)

from which:

±
q

p2
w
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+ p2
w

y

= L2s2 + L3s23 = (L2 + L3c3)s2 + L3s3c2 (3.35)

while:
p
w

z

= L2c2 + L3c23 = (L2 + L3c3)c2 � L3s3s2 (3.36)
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The system of the two equations (3.35) and (3.36), admits the solutions:
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From (3.37) and (3.38) it follows:

✓2 = atan2(s2, c2) (3.39)

which gives the four solutions for ✓2, according to the sign of s3 in (3.30):
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corresponding to s+3 = +
p
1� c23 and:
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corresponding to s�3 = �
p
1� c23. Finally, to compute ✓1, it is sufficient to rewrite

(3.6) and (3.7), using (3.35), as:
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which, once solved, gives the two solutions:

✓1,I = atan2(p
w

x

, p
w

y

) (3.47)
✓1,II = atan2(�p

w

x

,�p
w

y

) (3.48)

Consider that (3.48) gives:
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(
atan2(p

w

x

, p
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y

)� ⇡ p
w

x

� 0

atan2(p
w

x

, p
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) + ⇡ p
w

x

< 0
(3.49)

Remembering that atan2(�y,�x) = �atan2(y,�x) and:

atan2(y,�x) =
(
⇡ � atan2(y, x) y � 0

�⇡ � atan2(y, x) y < 0
(3.50)
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As can be recognized, there exist four solutions according to the values of ✓3 in (3.32),
(3.33), ✓2 in (3.40), (3.41), (3.42), (3.43) and ✓1 in (3.47), (3.48):

(✓1,I , ✓2,I , ✓3,I) (✓1,I , ✓2,III , ✓3,II) (✓1,II , ✓2,II , ✓3,I) (✓1,II , ✓2,IV , ✓3,II)
(3.51)

It is possible to find the solutions only if at least

p
w

x

6= 0 or p
w

y

6= 0 (3.52)

If p
w

x

= p
w

y

= 0, infinity solutions are obtained, since it is possible to determine the
joint variables ✓2 and ✓3 independently of the value of ✓1; the arm in such configuration
is kinematically singular.

3.3.2 Inverse Jacobian

To obtain the inverse kinematics, it is needed to compute the inverse of the Analytical
Jacobian. To avoid losing time, it is better to compute it, that is:

J�1 =

2

64

c1
L2·s2+L3·s23

s1
L2·s2+L3·s23 0

s1·s23
L2·s3

�c1·s23
L2·s3

c23
L2·s3

�s1·(L2·s2+L3·s23)
L2·L3·s3

c1·(L2·s2+L3·s23)
L2·L3·s3

�(L2·c2+L3·c23)
L2·L3·s3

3

75 (3.53)

From this point, only Jacobian will be used instead of Analytical Jacobian.

3.4 Kinematics control

The procedure uses inverse Jacobian to compute joints velocities, represented by q̇,
from end-effector velocity, represented by v

e

. Therefore, using the Euler integration
method, it integrates joint velocities to obtain joint positions.
Once obtained end-effector velocity:

v
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ẋ
ee

ẏ
ee

ż
ee
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ee

3

5 (3.54)

It is easy with inverse Jacobian to obtain joint velocities, as follows:

q̇ = J

�1(q)⇥ v

e

)
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4
q̇1
q̇2
q̇3

3

5 = J

�1(q)⇥
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ẋ
ee

ẏ
ee

ż
ee

3

5 (3.55)

Then it compares q̇ = [q̇1, q̇2, q̇3]T with the velocity limits of each joint (see Table
2.3), and, in case that they exceed the limits, it scales the velocities to be inside the
bounds in the following way:

k =
v
max

q̇
i

< 1) q̇ =

(
v
max

for joint i

k · q̇
j

for joint j 6= i
(3.56)

and so on for the other joints, if their velocity stills outside the bounds.
After, it uses the technique of the Euler integration method in discrete time:

dq(t
i

)

dt
= q̇(t

i

) =
q(t

i+1)� q(t
i

)

�t
(3.57)



3.4. Kinematics control 31

that given an integration interval or time step �t and knowing joint positions and
velocities at time t

i

, it can compute the joint positions at time t
i+1 = t

i

+�t in the
following way: 2

4
q1(ti+1)
q2(ti+1)
q3(ti+1)

3

5 =

2

4
q1(ti)
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q3(ti)

3

5+�t ·
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q̇1(ti)
q̇2(ti)
q̇3(ti)

3

5 (3.58)

or more precisely:

q(t
i+1) = q(t

i

) + J

�1(q(t
i

))⇥ v

e

(t
i

) ·�t (3.59)

Algorithm 3.2 resumes the procedure.

Data: End-effector velocity
Result: Joint positions
for each end-effector velocity received do

Obtain joints velocities using Inverse Jacobian;
Compute Inverse Jacobian;
Compare with velocity limits;
Compute numerical integration (Euler method);

end

Algorithm 3.2: Velocity Control

Thus from (3.59) it is clear that the robot is actually controlled in position and not
in velocity. It has to be highlighted that it is always necessary that the Jacobian be
square and of full rank to avoid problems of singularity, as will be treated in Section
3.4.2.

3.4.1 Avoiding error

Using (3.59), the numerical integration does not satisfy the values of the continuous
time because of drift phenomena in the solutions.
To avoid this error, it is used a simple scheme that considers the error between the
desired and the actual end-effector position:

e = x

d

� x

e

(3.60)

and deriving it:
ė = ẋ

d

� ẋ

e

) ė = ẋ

d

� J

A

(q)q̇ (3.61)

where J

A

is the analytical Jacobian, cause it is in the operational space, that it is
assumed square and nonsingular. The goal is to find:

q̇ = q̇(e) : e! 0 (3.62)

choosing:
q̇ = J

�1
A

(q)(ẋ
d

+Ke) (3.63)

that brings to the linear system:

ė+Ke = 0 (3.64)
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with matrix K positive definite to have the system asymptotically stable. The eigen-
values of K influence the convergence rate of the error to zero; the smaller the eigen-
values, the slower the convergence. The Jacobian used in this scheme is called Pseudo-
inverse.
Another method includes the use of the Jacobian transpose, to find q̇ = q̇(e) without
linearizing error dynamics.
Using the Lyapunov method:

V (e) =
1

2
e

T

Ke (3.65)

where:

V (e) > 0 8e 6= 0 with V (0) = 0 (3.66)
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= e
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d

� e
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KJ

A

(q)q̇ (3.68)

choosing:
q̇ = J

T

A

(q)Ke (3.69)

it leads to:
V̇ (e) = e

T

Kẋ

d

� e

T

KJ

A

(q)JT

A

(q)Ke (3.70)

From (3.70), if ẋ

d

= 0, there is asymptotic stability because V̇ < 0 and V > 0; if
ẋ

d

6= 0, there is e(t) bounded and e(1)! 0.

3.4.2 Kinematic Singularities

It is remarkable that solution (3.55) can be computed only when the Jacobian has
full rank. If it is not, the manipulator is at a singular configuration and the system
v

e

= Jq̇ has linearly dependent equations.
Identifying manipulator singularities is important for several reasons, such as:

1. Singularities represent configurations from which certain directions of motion
may be unattainable;

2. At singularities, bounded end-effector velocities may correspond to unbounded
joint velocities;

3. At singularities, bounded end-effector forces and torques may correspond to
unbounded joint torques;

4. Singularities usually, but not always, correspond to points on the boundary of
the manipulator workspace, that is, to points of maximum reach of the manip-
ulator;

5. Singularities correspond to points in the manipulator workspace that may be
unreachable under small perturbations of the link parameters, such as length,
offset;

6. Near singularities there will not exist a unique solution to the inverse kinematics
problem. In such cases there may be no solution or there may be infinitely many
solutions.

The Jacobian inversion is a real problem also in the neighborhood of a singularity.
There are different possible solutions to avoid it. The singularities can happen when
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Jacobian has determinant equal to 0.
In this study, the determinant of the Jacobian for a Cyton with 3-DOF is:

det(J) = L2 · L3 · (L2 · s2 · s3 + L3 · c2 � L3 · c2 · c23 + L3 · c3 · s2 · s3)
= L2 · L3 · (L2 · s2 · s3 + L3 · c2 · (1� ·c23) + L3 · c3 · s2 · s3)
= L2 · L3 · (L2 · s2 · s3 + L3 · c2 · s23 + L3 · c3 · s2 · s3)
= L2 · L3 · s3 · (L2 · s2 + L3 · c2 · s3 + L3 · c3 · s2)
= L2 · L3 · s3 · (L2 · s2 + L3 · s23) (3.71)

The determinant does not depend on the first joint variable q1, while L2, L3 6= 0.
Determinant is equal to zero, so singularities can happen, when s3 = 0 or when
(L2 · s2 + L3 · s23) = 0. The first situation occurs when:

q3 = 0 q3 = ⇡ (3.72)

This means that the joint represented by q3 is totally extended (outstretched), as
in Figure 3.3a, and is termed elbow singularity, while the second is termed shoulder
singularity and occurs when p

w

x

= p
w

y

= 0, characterized by the end-effector point
that is on axis z0, as in Figure 3.3b. The rotation of q1 does not cause any translation
of the end-effector position and the kinematics equation admits infinite solutions.

(a) Cyton 3-DOF at an elbow singularity (b) Cyton 3-DOF at a shoulder singularity

Figure 3.3: Representation of singularities about Cyton 3-DOF

Damped least-squares inverse

One solution to avoid singularities is the damped least-squares inverse:

J

? = J

T (JJT + k2I)�1 (3.73)
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where k is the damping factor to have a better inversion. The vector q̇ minimizes the
cost function:

g00(q̇) = kv
e

� Jq̇k2 + k2kq̇k2 (3.74)

Avoid workspace’s limits

The last and simplest implementation to avoid singularities regards the addition of
a constraint to the end-effector: it cannot reach the boundary of the workspace and
if it reaches it has to come back with the same velocity but opposite direction. The
workspace limits are represented in Figure 3.4.

Figure 3.4: Workspace limits
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Chapter 4

Control Strategies for Ball
Catching

This chapter discusses the general approaches for robot ball catching: predictive and
prospective control strategies. The key difference between them is the way to act.
The first needs a prediction of the ball motion to know where the robot has to go.
The second uses, at each time, information about robot and ball positions to know the
velocity at which the robot has to move. The analysis and evaluations are made with
various parameters and scenarios. In the beginning, it introduces the tools used: the
assumptions, the ways to create different parabolas in a grid, the errors of the vision
system and how are considered, the number of balls that it is possible to catch. The
evaluation of predictive control is made in two ways, proving the variations between
them and selecting the best solution. The evaluation of prospective control shows the
problems of tuning and controlling using this technique.

4.1 Scope and assumptions

This section takes into account the assumptions made to reduce the number of pa-
rameters. Assumptions are among all about environment, frame-rate, errors, way to
select how consider the ball caught.

4.1.1 Robot Implementation

The 3-DOF implementation robot is described in Section 3.1.
The workspace is bounded by the circumference of a sphere with radius L2 + L3 =
0.5829m and origin in O 2 [0, 0, L1] = [0, 0, 0.17735].

4.1.2 Time of Perception and Action

The approaches for ball catching normally split in perception and action. In ball
catching tasks, the time is really important because it is very small.
A ball threw by a human that is 4 � 5m from the target with a common velocity
of about 4 � 5m/s needs 1 s to reach it. In this time, the vision sensor needs about
0.3 s to predict the movement with acceptable results. Therefore, the robot has only
about 0.7 s to move from its starting pose to the final predicted pose. To do this, it is
important both the vision and the robot: the vision to detect the ball and predict its
behavior; the robot to move as fast as it can to the predicted catch point.

4.1.3 Frame-rate

The time is one of the most important parameter among all projects. In this work
there are many ways to select it to have a good result in MATLABr. ROS instead
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needs a different selection.
The beginning of this work in MATLABr starts with �t = 0.001s that brings very
precise calculus to evaluate the system but that does not respect the real values
available. Therefore, it selects two different values: �t = 1/30 = 0.0333 s represents
the Kinect Sensor’s frame rate (30 fps); �t = 1/120 = 0.008333 s represents a normal
nowadays Stereo Camera’s frame rate (120 fps).

4.1.4 Spatial uncertainty in perception

Hypothesis takes into account the use of Kinect, or another camera, as sensor to detect
the ball. These sensors cannot detect the ball with a very high precision and there is
an error in the point detected for each frame.
The errors often have distributions that are nearly the Normal or Gaussian distri-
bution. A random variable X is distributed normally with mean µ and variance �2

(notation: X ⇠ N (µ,�2)). The probability density of the normal distribution is:

f(x|µ,�2) =
1p
2⇡�2

e�
(x�µ)2

2�2

To simulate this error, the Gaussian error is added to the projectile motion in each
axis, using in MATLABr the function randn(), scaled to have a maximum error of
about 10 cm (i.e. the Kinect sensor has a maximum error of about 5 cm but the idea
is to take care of bigger errors in evaluation process). The error is in a range between
0 and 10 cm, to see how the error changes the performances of the strategies. To
simplify, the possibles errors are five: 0m, 0.01m, 0.025m, 0.05m and 0.1m.

4.1.5 Caught flag

In each throw, the robot can catch the ball or not. If it is caught, obviously, the
distance between the ball and the end-effector is equal to 0. If it does not catch, the
processor computes the minimum distance between the real ball and the end-effector
to understand how much far and at which time the ball is away from the end-effector.
This is used also to select some possible ball’s trajectories that are very close to be
intercepted by the robot if the distance is less than a threshold (e.g. dist < 10 cm).

4.2 Tools to evaluate the best strategy

The evaluation of strategies needs a setup of different tools to help understand which
is the best to use. This section describes the creation of various parabolas to test and
the check of parameters.

4.2.1 Creation of projectile motions

The ball trajectory is considered as a parabolic motion, also known as a projectile or
a ballistic motion. The model is simplified neglecting the air friction. Equations that
describe the motion are:

x = x0 + v
x

t (4.1a)
y = y0 � v

y

t (4.1b)

z = z0 + v
z

t� 1

2
gt2 (4.1c)
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where [x0, y0, z0]T are the coordinates of the points where the motion starts, [v
x

, v
y

, v
z

]T

is the vector representing the velocity in each direction, g is the gravitational constant
of acceleration and t is the time.
Hence, the motion is linear through x and y-axes (horizontal and depth directions),
while it has acceleration in z-axis (vertical direction). Equations (4.1) become:

x = x0 + v0 cos(✓) cos(�)t (4.2a)
y = y0 � v0 cos(✓) sin(�)t (4.2b)

z = z0 + v0 sin(✓)t�
1

2
gt2 (4.2c)

where v0 is the absolute value of the ball’s initial velocity (i.e. v0 =
q
v2
x

+ v2
y

+ v2
z

)
and � and ✓ are the angles that denote the inclination of the motion. In simpler words,
� is the angle between the initial velocity and x-axis that means the direction of the
projectile motion from the top (e.g. � = 90� is a ball thrown towards to the center),
as in Figure 4.1a and ✓ is the initial launch angle between the initial velocity and
y-axis that means the direction of the projectile motion from the side, as in Figure
4.1b. The parabolic motion changes with these parameters.

(a) View with angle � of plane xy (b) View with angle ✓ of plane xz

Figure 4.1: Parabola with angles

The tool creates several projectile motions. The model of the ball neglects the effect
of air friction.
Using equations (4.2), described in Section 4.2.1, the tool creates different parabolas
selecting the landing point on a grid (x 2 [�0.7, 0.7], y 2 [�1, 1] or y 2 [�0.7, 1.3])
using the same starting point ([x0, y0, z0]T = [0, 4, 0]T ) and same time (t = 1) for all
the possible trajectories. Using these parameters, the values of initial velocity and the
angles ✓ and � obtained are:

v
x

= v0 cos(✓) cos(�) =
x� x0

t
(4.3a)

v
y

= v0 cos(✓) sin(�) = �
y � y0

t
(4.3b)

v
z

= v0 sin(✓) =
z � z0 +

1
2gt

2

t
(4.3c)

From (4.3), using the arc tangent, the inverse of the tangent function that is in
MATLABr, the four quadrant arc tangent of the elements of X and Y such that
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�⇡  atan2(Y,X)  ⇡, it becomes:

� = arctan
v
y

v
x

(4.4)

✓ = arctan
v
z

· sin(�)
v
y

(4.5)

The range of angles obtained is: 76.866�  �  103.134�, 44.1725�  ✓  58.5492�

and 5.7497m/s  kv0k  7.0391m/s, where kv0k =
q
v2
x

+ v2
y

+ v2
z

.
The landing grid points are represented in Figure 4.2 with one example of the 315 (15⇥
21) parabolas created.

Figure 4.2: Parabolas in a grid

This is the simulated motion of the real ball, but with the addition of the Gaussian
error to simulate vision sensor uncertainty.
The caught flag is one of the most important parameter in the cycle that use the
different parabolas created, as in Section 4.2.1. The parameter flag_caught is equal
to 1 if ball is caught or to 0 if not.
A parameter that represent the time of action, named action_count, reported in
Figure 4.3, is also important in this work. It is a counter of the steps when the robot
moves (circle in position one at that step). Therefore, if the predicted trajectory is
outside the robot’s workspace, the robot does not need to move to this point. Hence,
it stops in its position for that step so the counter does not update (circle in position
zero at that step).
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Figure 4.3: Example of time of action
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4.3 Predictive Control

The predictive control is the first approach used to solve the catching problem, with
block scheme in Figure 4.4.
The procedure takes into account all the assumptions (Section 4.1) and uses the tools
to evaluate the study (Section 4.2).
In the following, the analysis considers two starting poses: one used in previous study
[45] and one based on manipulability measures (Section 3.2.2).

Figure 4.4: Predictive control block scheme

Ball data

For each case, the cycle creates parabolas with landing point in a grid and different
errors to obtain results, following the explanation of Section 4.2.1.
The cycle simulates ball data at two frame-rates: 30Hz and 120Hz. In real scenario,
Kinect sensor gives the data at 30Hz.

Model estimation

The estimation of the possible pose (position and orientation) of moving targets has a
big importance in ball catching tasks. It includes several issues such as air-drag, angle
of throw, initial velocity. The estimation method used among all in this work is the
curve fitting method. Kalman was analyzed [45] but the problem of matrix initializa-
tion creates difficulties in the estimation, losing important time at the beginning of
the throw.
Catching a flying ball implies to predict its trajectory ahead of time so that to de-
termine the intersection point along the same trajectory. In this work, a well-known
model of the dynamics of the motion was assumed by modeling the trajectory of a
flying ball as a parabola (ballistic model). In addition to that, this study is tuned for
spherical objects by estimating only the position of the ball. Whereas, other possible
estimation parameters can be velocity and acceleration along with position. The poly-
nomial approximation and estimation of the parameters are done recursively through
least squares optimization.
The least squares method is one of the best-known approaches to solve the problem
of finding the best polynomial approximation to the input samples. It was originally
developed for statistical regression, but nowadays a general concept of least squares
approximation is widely used for various applications beyond the statistics. In this
work, the method of approximation is used to estimate the ball position from a few
past samples using simple and quadratic linear regressions.
This choice is due to ball motion in different axis that follows both a first (simple
linear regression) and a second order (quadratic linear regression). Algorithm 4.5 re-
sumes the procedure. In Appendix A.2.1 and A.2.2 are reported the mathematical
derivation of Linear and Quadratic Regressions. Model estimation is the process of
picking the best kind and structure of model and finding the coefficients that enable a
model (the kind and structure of which is already determined) to most closely reflect
a particular known dataset.
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for each frame received do
if ball detected then

Add ball in the array ;
end
Compute linear regression for two axes;
Compute quadratic regression for one axis;
Update ball trajectory ;
Find possible landing point ;

end

Algorithm 4.5: Ball estimation and prediction

The solution of Kalman Filter, studied in [45], has the problem of matrix initializa-
tion. Thus, the choice is the more simple and effective Polyfit function, discarding
Kalman Filter.
The Polyfit function P = polyfit(X,Y,N) finds the coefficients of a polynomial
P (X) of degree N that fits the data Y best in a least-squares sense. P is a row
vector of length N + 1 containing the polynomial coefficients in descending powers,
P (1) ·XN + P (2) ·XN�1 + · · · + P (N) ·X + P (N + 1). The order chosen is N = 1
for x and y directions and order N = 2 for z direction.

Prediction

The prediction using Polyfit function takes into account the Kinect data obtained for
the ball.
One of the main problem of this approach is the time needed to have a good prediction
of the trajectory (Figure 4.6). In the upper, the robot waits for a reliable landing point,
based on the fact that after some frames (e.g. 6 � 8 frames at 30Hz) the predicted
landing point does not change more than 1 � 3 cm. After this time, it continues to
move to the final position.
In the upper, the robot loses the initial time because it does not move until it has
a prediction point that is inside its workspace area. Then, it starts moving and it
continues to update the final position, based on new ball data received. Due to this,
the robot fails to catch the ball in many situations, but it is more reliable to accomplish
this task.

Figure 4.6: Different ways to use prediction
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Time and Location

After the prediction, this study includes two different ways to select the time and the
location.
The approach starts from the prediction at a given height, solutions used in previous
study [45]. The results obtained suggest finding and verify other approaches. The
second way selects as landing point the one in the ball’s trajectory that has minimum
distance from the end-effector. This allows the robot to move in three axes, taking
advantage of the 3-DOF.

Robot Control

The robot uses velocity control, described in Section 3.4, with limits in velocity and
position to take care of the real limits of the Cyton Gamma 1500. It updates its joint
positions at each frame to reach the previous location selected that can be updated
at each frame.

4.3.1 Prediction at a given height

The first way to use the prediction is to obtain the intersection point between the
predicted ball’s trajectory and the plane at a given height and send the command to
the robot to move directly at that point.
In this case, height is equal to 17.73 cm to the ground that it is also equal to the best
starting pose in z-axis. Therefore, the robot moves only along the x and y-axes and
this is not a good solution because the robot does not use all the DOF, remembering
that it is already simplified from 7-DOF to 3-DOF.
To confirm it, simulations predict the landing point at the height where the end-
effector is. Histograms will report the number of ball caught or not caught, represent-
ing different errors and distance for the balls that robot does not catch. Each color
represents a different error and each set of 5 columns represents the ball’s distance
from the end-effector. In Figure 4.7, it is possible to see why this type of prediction
is not a good solution. At 30Hz (Figure 4.7a) the balls cannot be caught from the
end-effector. At 120Hz (Figure 4.7b), the catching task is better but it stills have a
low number of balls caught.
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These results constrain to select and verify other strategies.

4.3.2 Prediction at the minimum distance from the end-effector

The second way to use the prediction is to find the point in the predicted ball’s
trajectory that has minimum distance from the end-effector and send the command
to the robot to go directly at that point.
To do that, for each new ball detected the polyfit function (Section 4.3) returns the
coefficients of each axis trajectory. Then, the procedure chooses the predicted points
that are inside the robot’s workspace. Among these points, after calculating the
distance between end-effector and each point, it selects the one which is the closest
point to the end-effector, so the one with minimum distance from the end-effector and
sends this point to the robot.
To be more precise, the ball predicted points (x̂

b

, ŷ
b

, ẑ
b

) are inside the workspace when
they are almost inside a sphere, given by the following equation:

x̂2
b

+ ŷ2
b

+ (ẑ
b

� L1)
2 < (L2 + L3)

2 (4.6)

Actually this is not exactly the real workspace but gives an idea of the space where
the robot can moves. The real workspace limits was already represented in Figure 3.4.
The following equation compute the distance between all the predicted point and the
position of the end-effector:

kdist(ball, ee)k =
p
(x̂

b

� x
ee

)2 + (ŷ
b

� y
ee

)2 + (ẑ
b

� z
ee

)2 (4.7)

The procedure takes the x̂
b

, ŷ
b

, ẑ
b

that has the minimum distance:

x̂
b

, ŷ
b

, ẑ
b

2 Workspace s.t. min(kdist(ball, ee)k) (4.8)

If there are no predicted balls inside the workspace, the robot does not move and
remain in its position waiting for a new possible point.
Once that it has a possible landing point, the difference between the landing point
and the actual end-effector position gives the direction of the end-effector’s velocity
vector:

v

ee

=

2

4
x̂
b

� x
ee

ŷ
b

� y
ee

ẑ
b

� z
ee

3

5 (4.9)

If the difference between the previous predicted ball landing point and the actual one
is less than a threshold, the robot continues to move in the same previous direction.
If the ball is at a distance less than 1 cm from the end-effector, the procedure considers
that the robot catches the ball.
Algorithm 4.8 resume the explanation.
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Vector Initialization;
for i 2 to balls seen by camera do

Creation of parabolic motion with error ;
Polyfit of ball’s trajectory points received ;
if trajectory passes inside workspace then

Find the closest point of the predicted trajectory to the end-effector ;
Compute Inverse Jacobian;
Control joints limits;
Compute numerical integration (Euler method);
Update robot’s position;

end
if distance ball-ee < 0.01m then

Ball caught ;
end

end

Algorithm 4.8: Predictive Control implementation

4.3.3 Performance Evaluation of Predictive Control

MATLABr computes different simulations, always using the inverse Jacobian J�1 to
planning the movement of the robot, trying errors of 0.0m (Figure 4.9), 0.01m (Figure
4.10), 0.025m (Figure 4.11), 0.05m (Figure 4.12) and 0.1m (Figure 4.13) and frequen-
cies of 30Hz (Subfigure (a) and (c)) and 120Hz (Subfigure (b) and (d)), using Algo-
rithm 4.8 with two starting poses, one selected from past works, called standard pose,
with q1 = 0 rad, q2 = �0.1745 rad = �10 � and q3 = �0.5236 rad = �30 � (Subfigure
(a) and (b)) and the other one selected as described in 3.2.2 , called manipulability
pose, with q1 = 0 rad, q2 = �0.8275 rad = �47.41 � and q3 = �1.2415 rad = �71.13 �

(Subfigure (c) and (d)).
Figures represent scenarios with the balls caught and the color grid in the landing
plane representing the trajectories landing points. The points are green if the robot
catches the ball, blue if the ball pass at a distance of the end-effector less than a
threshold (e.g. 0.1m) or red if it is not caught and distant from the end-effector. The
evaluation just from the view of the plot could be: the more green points are in the
plot, the better is the proposed approach.
Figure 4.14 represents histograms of the ball’s number caught or balls that have a
distance from the end-effector between 0.0m and 0.05m and so on each 5 cm.
From Figure 4.14a, with error higher than 2.5 cm the robotic arm does not catch the
ball, while in Figure 4.14b, it catches in all the cases but with a decreasing number
inverse proportional to the growing error. Figure 4.15a refers to the same situation
but without joint velocities limitations. This is done to understand better how much
the velocity could cause a limit to accomplish the task. The velocity chosen is not
unlimited, but can exceed the limits of the Cyton Gamma 1500, considered in this
work. Therefore, without limitations the number of balls caught increases enormously.
This is extremely true also for the higher frame rate case, in Figure 4.15b.
Then, the initial position of the robot changes to a new pose, related to the manipu-
lability measures, because the catching task is dependent also to the robot’s starting
pose.
From Figure 4.16a it is possible to catch more balls with error 2.5cm, but the robotic
arm does not catch more balls than in the previous case. In Figure 4.16b, the higher
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(a) Cycle at 30Hz with standard pose (b) Cycle at 120Hz with standard pose

(c) Cycle at 30Hz with manipulability pose (d) Cycle at 120Hz with manipulability pose

Figure 4.9: Catching predictive cycle with error 0.0m
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(a) Cycle at 30Hz with standard pose (b) Cycle at 120Hz with standard pose

(c) Cycle at 30Hz with manipulability pose (d) Cycle at 120Hz with manipulability pose

Figure 4.10: Catching predictive cycle with error 0.01m
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(a) Cycle at 30Hz with standard pose (b) Cycle at 120Hz with standard pose

(c) Cycle at 30Hz with manipulability pose (d) Cycle at 120Hz with manipulability pose

Figure 4.11: Catching predictive cycle with error 0.025m
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(a) Cycle at 30Hz with standard pose (b) Cycle at 120Hz with standard pose

(c) Cycle at 30Hz with manipulability pose (d) Cycle at 120Hz with manipulability pose

Figure 4.12: Catching predictive cycle with error 0.05m
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(a) Cycle at 30Hz with standard pose (b) Cycle at 120Hz with standard pose

(c) Cycle at 30Hz with manipulability pose (d) Cycle at 120Hz with manipulability pose

Figure 4.13: Catching predictive cycle with error 0.1m
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Figure 4.14: Histograms of predictive cycle with different errors and with limitations
starting from standard pose
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Figure 4.15: Histograms of predictive cycle with different errors without limitations
starting from standard pose

frame rate causes an improvement with respect to the lower one, but it is worst in
general for small error but better for higher error. Using this starting pose, there are
more balls that are not caught.
The low number of balls caught using the first strategy (Section 4.3.1) forced to find
a new one to evaluate (Section 4.3.2). The results confirm the effort and also with
low frequency rate it is possible to have acceptable results and select it as approach
to be used.
Figure 4.17a can be compared to Figure 4.16a. In this comparison, there is a big dif-
ference among the errors considered but the ratio remains similar in both cases. The
same evaluation can be done with Figure 4.17b where the difference is in the highest
number of balls caught due to the higher frame rate.
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Figure 4.16: Histograms of predictive cycle with different errors and with limitations
starting from manipulability pose
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Figure 4.17: Histograms of predictive cycle with different errors without limitations
starting from manipulability pose
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4.4 Prospective Control

The prospective control is a totally new idea, completely different from the predictive
control, just described in Subsection 4.3.2.
It tries to reduce the error between the ball and the end-effector each frame but takes
into account also the time to contact.
The procedure starts from the model, described by Bootsma et al. [29] that controls
the amount of acceleration produced on the basis of the difference between the required
velocity and the current velocity of the end-effector. The required velocity at any
instant is equal to the ratio of the current lateral distance between the end-effector and
the ball to the current first-order time to contact between the ball and the end-effector
movement axis. The first-order time-to-contact (TTC1) at any instant is equal to the
ratio of the current distance between the moving ball and the end-effector movement
axis to the current speed of the moving ball.
One of the advantages of the required velocity model is that, it proposes an interesting
concept to link these three variables. The distance traveled and the speed are not
very important on their own; it is the relationship between the two that is relevant
for movement control.

4.4.1 Time to contact

The time to contact is one of the most important aspect of this control. This function
can be of first or second order. First order time to contact for linear motion is
calculated as:

TTC1(x) =
x

ẋ
(4.10)

and for angular motion is:

TTC1(✓) =
✓

✓̇
(4.11)

Second order time to contact for linear motion is calculated as:

TTC2(x) =
�ẋ+

p
ẋ2 � 2 · ẍ · x
ẍ

(4.12)

and for angular motion is:

TTC2(✓) =
�✓̇ +

p
✓̇2 � 2 · ✓̈ · ✓
✓̈

(4.13)

where x is the distance between the ball and the end-effector, ẋ is the instantaneous
linear velocity, ẍ is the instantaneous linear acceleration; ✓ is the angle formed by the
ball and the target with respect to the end-effector, ✓̇ is the instantaneous angular
velocity of the closure of this angle, and ✓̈ is the angular acceleration of the closure of
this angle.
In this work, the time to contact chosen is the first order for linear motion of (4.10),
as described in [4]. The angular motion is not used in this case because there is not
a clear target point, while the second order time to contact is not necessary for this
first view of the control.
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4.4.2 Update law

The acceleration law is at time t
i

:
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where ẍ

ee

is the acceleration, ẋ
ee,req

is the required end-effector velocity and ẋ

ee

is
the end-effector velocity. The parameters (gains) ↵ and � are constant, while x

ee

is
the end-effector’s position, x

ball

is the ball’s position and TTC1 is the first order time
to contact between the ball and the end-effector, computed in this way from (4.10):
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���� ·�t (4.16)

.

4.4.3 Tuning of ↵ and �

The main complication of the prospective control is to find the right values for ↵ and
�. It does not exist a rule to select it, thus the values are selected using a trial and
error method cycle. This cycle combined values ↵ = 10{�2,�1,0,1,2}, 5{�1,1}, 2{�1,1}

and � = {1, 2, 3, 4, 5, 6, 7, 8} · ↵

4 .
For a 2D-DOF robotic arm, the cycle creates 9·9·8·8 = 5184 different combinations for
↵
x

, ↵
y

, �
x

and �
y

, but only 381 are good enough to catch the ball. This cycle uses the
same trajectory for all the possible combinations. After it, a successive cycle tries the
381 successful combinations with a different trajectory, where only 6 combinations of
values leads to a ball caught by the robotic arm. These results confirm the enormous
difficult to find right values for this law and suggest to look for other possible solutions.

4.4.4 Performance Evaluation of Prospective Control

Montagne et al. in [29] and [30] describe a movement in only 1 axis and it is easy
to find good values of ↵ and �. The application in 2D or 3D brings problems. The
strategy considers the end-effector as a point that can move wherever in the axis
without limitation. Adding the link length, joint positions and velocities limitations,
the strategy becomes even harder to setup. This section discusses four trials: 1D, 2D
with two planes xy and xz and 3D. Algorithm 4.18 is for 1D and 2D with plane xz,
while 2D with plane xy and 3D use Algorithm 4.19.

1D Prospective Control

The 1D Scenario, in Figure 4.20, shows the movement of the point, that represents
the possible end-effector in only one axis, the x-axis, and tries to catch the ball using
Algorithm 4.18. The model is very simple but necessary for a first examination of the
problem and a recognition of the importance of the tuning of ↵ and �. This scenario
selects T

s

= 1/1000 s, ↵
x

= 50 and �
x

= 25. In the case of Figure 4.20, the ball starts
from x0_ball

= 1.0m, y0_ball

= 3.5m with velocity v
x_0_ball

= 4m/s, v
y_0_ball

=

4m/s and angle ✓ = �100 ⇡

180rad that intersects the x-axis in x0_ball

� y0_ball

tan(⇡+✓) , while
the point (end-effector) starts in position x0_point

= 0.0m, y0_point

= 0.0m with
velocity v

x_0_point

= 0m/s, v
y_0_point

= 0m/s.
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Vector Initialization;
Gain selection;
for i 2 to balls seen by camera do

Creation of parabolic motion;
Compute TTC for x and for x, z;
Compute required end-effector velocity for x and for x, z;
Compute required end-effector acceleration for x and for x, z;
Compute numerical integration (Euler method);
if distance ball-ee < 0.01m then

Ball caught ;
end

end

Algorithm 4.18: Prospective Control in 1D and in 2D with plane xz

Vector Initialization;
Gains selection;
for i 2 to balls seen by camera do

Creation of parabolic motion;
Compute TTC for x, y and z;
Compute required end-effector velocity for x, y and z;
Compute required end-effector acceleration for x, y and z;
Compute numerical integration (Euler method);
if distance ball-ee < 0.2m (2D xy) or distance ball-ee < 0.5m (3D) then

Change gains;
Compute TTC for x, y and z;
Compute required end-effector velocity for x, y and z;
Compute required end-effector acceleration for x, y and z;
Compute numerical integration (Euler method);

end
if distance ball-ee < 0.01m then

Ball caught ;
end

end

Algorithm 4.19: Prospective Control in 2D with plane xy and in 3D

Figure 4.21a shows in the top the position of the ball (blue line) and of the hand (red
line) w.r.t. x-axis, while in the bottom the error between the two that this algorithm
try to reduce. The ball is caught after about 0.887 s, time when the ball passes through
the x-axis and unique step when it can be caught.
Figure 4.21b represents the required velocity and the effective velocity of the hand
along the x-axis. After an initial time where the hand moves to the x-position of
the ball the required velocity reach a constant value and when it equals the position
it changes oscillating between two opposite values, until it catches the ball. This is
due to the gains ↵ and � that lead the hand to overshoot and bring the velocity to
oscillate, but also tuning the gains did not give better results.
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Figure 4.20: 1D Prospective Scenario
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Figure 4.21: Position and Velocity of the hand in 1D

2D Prospective Control in plane xy

The second implementation, in Figure 4.22, shows the movement of the point in two
axes, x and y-axes, expressed by Algorithm 4.19. It maintains the same block of the
1D case (4.4.4) with T

s

= 1/1000 s, with the addition of the computation about the
y-axis and the change of gains when the ball is less than 20 cm distant from the hand.

At the beginning, using the same gain for x and y-axes, it is possible to obtain a bigger
velocity and therefore bigger movement, due to the high distance in y-axis between
the ball and the hand. Thus, the constraint is changing gains, reflecting on the fact
that in future works the idea is substituting the hand with the end-effector of the
robot that has joint limits to be considered.
In this example, gains in the first phase are ↵

x

= 100 and �
x

= 45, ↵
y

= 1 and �
y

= 1
to limit the movement in y-axis. Then, with distance less than 20 cm, gains are equal
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Figure 4.22: 2D Prospective Scenario

in both directions (e.g. ↵
x,y

= 100 and �
x,y

= 45).
Figure 4.23 has in the left (Figure 4.23a) the position of the ball (blue line) and of the
hand (red line) w.r.t. x-axis, while in the right (Figure 4.23b) is w.r.t. y-axis. In the
bottom of each it is represented the error between ball and hand in their respective
axis. The ball is caught at about 0.686 s, and this is represented by the error that is
zero from that time and the two positions that still in the same line after that time.
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Figure 4.23: Position and Velocity of the hand in 2D

Figure 4.24 is split in two subfigures: Figure 4.24a in the top shows the required (blue
line) and real velocity (red line) in x-axis and in the bottom shows them in y-axis,
where it is easy to recognize the change when the ball is close to the hand (20 cm).
Figure 4.24b represents the absolute error between ball and hand, confirming the
linear trend to zero and the catching at about 0.686 s.
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Figure 4.24: Velocity and Distance of the hand in 2D

2D Prospective Control in plane xz

The second implementation in 2D, in Figure 4.25, maintains the movement of the point
in two axes, but in x and z-axes, expressed by the Algorithm 4.18. It maintains the
same block of the 1D case (4.4.4) with T

s

= 1/1000 s, with addition of the computation
about z-axis.
It uses also the parabolic motion instead of linear to control z-axis, with equations of
Section 4.2.1, with starting point in x0_ball

= 1.5m, y0_ball

= 3.5m, z0_ball

= 0.0m,
starting velocity |v0_ball

| = 6.1m/s, angles ✓ = 45 ⇡

180rad (formed by the motion with
plane xy) and � = 80 ⇡

180rad (formed by the motion with plane yz). In this example,
gains are ↵

x

= 90, ↵
z

= 50 and �
x

= 50, �
z

= 45.
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Figure 4.25: 2D Prospective Scenario in plane xz

Figure 4.26 has in the left (Figure 4.26a) the position of the ball (blue line) and of
the hand (red line) w.r.t. x-axis, while the right (Figure 4.26b) is w.r.t. z-axis. In
the bottom of each there is the error between ball and hand in their respective axis,
that goes linearly to zero in x and change its trend in z. This depends on the fact
that in x case ball and hand start at a different point and the hand tries to reach
the ball position, while in z case they start from 0 and the hand can follow the ball.
The ball is caught at about 0.822 s (i.e. the time when the ball intersect the x-axis),
represented by the error that is zero since that time and the two positions that still
in the same line after that time.
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Figure 4.26: Position and Velocity of the hand in 2D in plane xz

Figure 4.27a shows in the top the required (blue line) and real velocity (red line) in
x-axis while the bottom shows them in z-axis, where there is a small oscillation due
to the gains found. At the beginning gains was ↵

x

= ↵
z

= 100 and �
x

= �
z

= 45, but
the oscillation was even bigger. A tuning session found these parameters that let the
system to have low oscillation in z-axis and almost zero in x-axis.
Figure 4.27b represents the absolute error between ball and hand, confirming the
catching at about 0.822 s and the linear trend to zero.
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Figure 4.27: Velocity and Distance of the hand in 2D in plane xz

3D Prospective Control

The third implementation, expressed by the Algorithm 4.19, is in three dimensions,
with the same addition and change of gains explained in Section 4.4.4 plus the z-axis.
It uses, as in Section 4.4.4, the parabolic type of motion instead of linear, with the
equations of Section 4.2.1 and the same initialization plus the y-axis.
The point that represents the hand can move in the three x, y and z-axes. Initial
gains are not equal for the three axes (e.g. ↵

x

= 100 and �
x

= 45, ↵
z

= 100 and
�
z

= 45 while ↵
y

= 1 and �
y

= 1) and when between the ball and the hand there is
a distance less than half a meter (e.g. distance(ball,hand) < 0.5m), gains of y-axis
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become equal to x and z-axes. In this way, the point can move initially to the right
plane where the ball will fly and when it is almost in the plane, it can move to catch
it with more success. This is one of the solutions tried to solve the problem of tuning
↵ and �.
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Figure 4.28: 3D Prospective Scenario

Figure 4.29 has in the left (Figure 4.29a) the position of the ball (blue line) and of the
hand (red line) w.r.t. x-axis, in the center (Figure 4.29b) the same positions w.r.t.
y-axis and in the right (Figure 4.29c) w.r.t. z-axis. In this case, the ball is caught at
about 0.702 s and after that time ball and hand still in the same positions for each
axis.
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Figure 4.29: Position of the hand and the ball in 3D for each axis

Figure 4.30 is split in three figures. Each subfigure 4.24a shows the velocity of the
hand with a cyan line and the distance of the hand w.r.t. ball for each axis, with
Figure 4.30a for x-axis, Figure 4.30b for y-axis and Figure 4.30c for z-axis. From
that, it is possible to recognize that the error becomes zero at 0.702 s, confirming the
catch point and time. Figure 4.31 represents the absolute value of the velocity of the
hand and of the distance between ball and hand where the hand comes very close to
ball at about 0.62 s. It was not possible to find the right tuning of ↵ and � to catch
it at that time.
This evaluation shows the severe problem of tuning. It has to be highlight that frame
rate used is very high (e.g. 1000 fps) for this evaluation. This value is impossible
to have in real time application, but it is necessary to show acceptable results that
cannot be reached using a Kinect with only 30 fps. Thus, it is problematic to use only
Prospective control, but it can be used in a hybrid system with Predictive, to move
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Figure 4.30: Velocity of the hand and distance in 3D for each axis
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Figure 4.31: Velocity of the hand and distance between hand and ball in 3D Prospec-
tive

from the first time to the possible traveling plane of the ball and then correct the
landing point using Predictive.

4.5 Discussion about results

The problem of tuning the parameters of the Prospective control demonstrates that
this is not a suitable control for ball catching task. Indeed, to use it is needed a very
high frame-rate that it is not possible to have with camera available in shop at an
accessible price. The other problem is the tuning of the parameters that needs to adapt
to each situation that can occur. The impossibility of finding a general solution using
the prospective control leads to other strategies to find out. If Prospective Control
can be considered a successful solution, it has to work with other plans of action to
find a solution that can work in various situations, that it is not achievable only with
prospective. The idea will be to improve this control and try a hybrid version with
predictive to obtain the desirable control to perform this task.
Therefore, this chapter validates the predictive control with minimum distance from
the end-effector as the best possible strategy for this work. It is clear that this solution
is better than the one used in previous works, that intersected the predicted trajectory
with a plane, forcing the robot to move only to this plane without using all the 3D
area. Due to this, the minimum distance predictive control is the choice implemented
in ROS using C++ functions, that will be explained in Chapter 5, creating a simulation
with only this effective control. Nothing of the other idea need to be discarded at all,
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because this work is a starting point for other possible successful idea, using new
control strategies.
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Chapter 5

Implementation in ROS

This chapter describes the implementation in ROS of the control strategies studied
in the previous Chapter 4. This is the transposition from MATLABr code to C++
programming language in ROS that is necessary to use with a real robot in real time.
Learning ROS is one of the objective of the master thesis and this chapter describes
mainly what has been learned about this fundamental tool.
The implementation takes into account both real and simulated balls. Using the
vision part, described in Section 5.1, ROS with C++ code detects the real ball and
save a matrix including all the points seen by Kinect of the ball thrown. Instead, for
the simulated ball, using the projectile motion creation (Section 4.2.1), it considers
directly a matrix including all the points created by MATLABr. RViz visualizes the
ball and the robot while ROS publishes and subscribes to them, performing a complete
simulation of ball catching task. All the nodes that will be presented in this chapter
are ready to be used also by the real robot in future work.

5.1 Improvements on the Visual Perception

This section describes the vision algorithms used and developed within this work for
ball, body and hand detection. It starts from the type of ball trajectory, the methods
considered for detecting the ball, considerations about the body and hand detection
and the methods used to predict the ball.
At the beginning, following previous works [45], there are two solutions to detect the
ball: one based on voxelization grid [10], one based on color [33]. The challenge is
to develop a reliable 3D ball tracking algorithm in order to provide a good trajectory
estimation, because the more ball’s points the system has, the better the trajectory
is estimated.

5.1.1 Ball Detection

Computer vision includes four phases: object detection, segmentation, tracking, and
estimation. Robotic arms use them to recognize and manipulate objects. The main
problems for these algorithms are the changes in illumination, occlusion, scales, back-
ground and dynamics. In this case, the necessity for a quick estimation of the tra-
jectory given the time constraints of ball catching make the process even more chal-
lenging, because of these factors, mixed with computational performances and sensor
errors.
Kinect sensor has limits in depth working range (Section 2.3.2) that can be overtaken
suffering more errors. The thesis explores two different methods of ball detection and
tracking: the first method uses OpenCV with color processing in the images to detect
the ball; the second uses point cloud data of the environment acquired from Kinect’s
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depth sensor. The latter suffers more with errors at a longer distance from the sensor,
while the first depends more on illumination.

Point Cloud data with CGrid 3D

A point cloud is a set of data points in a 3D coordinate system. These points represent
the external surface of an object and are usually defined by x, y, and z coordinates.
A voxel represents a 3D volume on a regular grid in 3D space. The name is originated
from vo representing volume and el representing element. A voxel is considered as a
box of certain dimension, A set of voxel creates a mask and a voxel grid is a group
containing masks. To detect the ball, given the properties of a flying ball for ball
catching task, the work space is voxelized in an occupancy grid space rather than
considering the whole cloud of points. The workspace is limited to maximize the al-
gorithm execution speed.
The flying object [10], using this method, is an object that occupies a given number
of voxels with a minimum number of points and whose surrounding voxels are empty.
The grid and mask size depend on the ball’s size or radius. The grid size must be
large enough to allow that a real flying ball, when voxelized, does not become smaller
than the space between any two planes. This is a big issue if the ball is at further
distances. The grid mask must be large enough to accommodate a volume larger than
the ball, since a ball with its high speeds achieved can occupy more than its normal
volume. If the ball is on the ground, it is possible to detect it considering only the
upper half of isolated cloud. This is done in cooperation with plane segmentation. A
flying object is defined as an object that occupies a given number of voxels with a
minimum number of points and whose surrounding voxels are empty. It can be seen
as a 3D mask inside voxels non-empty (containing a minimum number of points) and
the outside voxels empty. Figure 5.2 represents an example of 3D mask.
Number of voxels in the grid of specific volume depends on ball radius: larger the ball
radius, less the number of voxels. This method works fairly well and it avoids most
of false positive.
Implemented algorithm is resumed in Algorithm 5.1 using only point cloud data given
by depth sensor.

for each point cloud do
Voxelization of grid ;
Detection of flying ball using mask ;
Computation of ball’s 3D coordinates;

end

Algorithm 5.1: Point cloud ball detection

First, the point cloud data are acquired using OpenNI and subscribing in ROS the
depth sensor. Point cloud data are used to voxelized the workspace creating a grid,
according to ball size.
Then the algorithm look for flying object in the voxelized workspace using a mask of
a given size.
Third, if the flying ball is found, ball’s 3D coordinates are computed and published
for further processing. RViz shows the ball and the confirmation is done visually.
This method is implemented in ROS platform [45]. The topic /camera/depth/
points is used to get cloud of points. At a later stage, point cloud are voxelized know-
ing the volume. Mask are used in the voxelized grid and, if it found any isolated set of
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points, it computes the center. Other topics of interest are published by vision_node
for further use. The topic /ballCord is subscribed by /estimation_node to estimate
ball’s landing point, while a marker (/ball3D) is published to RViz for visualization
in real-time.
The Kinect works at 30Hz but is slower because give the large amount of data to
process point cloud data. The performance is not affected by light and background
but with the ball in hand it loses a lot of points, because the algorithm can not find
the ball in a voxel space if there is the hand that occupies the voxel with the ball.
This is useless for a real-time work with a limited frame rate, due to Kinect sensor.
Hence, the idea in this work is to use color detection with some limitations to avoid
errors in detection.

Figure 5.2: Example of 3D Mask used for flying object identification. [10]

Color detection

The choice of coming back to color detection is done with limitations in the environ-
ment about lights. Controlling lights in the laboratory and using a glove in the hand
of the person who throw the ball it is possible to obtain good object identification.
The object segmentation depends on light conditions, because it is important the val-
ues of the color but also the color difference between the object and the background.
Color selection were tested using implementations based on OpenCV with HSV and
RGB.
HSV stands for Hue, Saturation and Value (i.e. Brightness or Lightness) and is a
representation of points in a RGB color model. Based on CIECAM02 that is the color
appearance model (abbreviated CAM), a mathematical model that seeks to describe
the perceptual aspects of human color vision, published in 2002 by the International
Commission on Illumination (CIE) Technical Committee 8-01, Hue is defined techni-
cally as the degree to which a stimulus can be described as similar to or different from
stimuli that are described as red, green, blue, and yellow. Saturation is the colorful-
ness of an area judged in proportion to its brightness, which in effect is the perceived
freedom from whiteness of the light coming from the area. Value is the attribute of a
visual sensation according to which an area appears to emit more or less light (radi-
ating or reflecting light), or also a representation of variation in the perception of a
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color or color space’s brightness.
The RGB (Red, Green and Blue)color model is an additive color model in which red,
green and blue light are added together in various ways to reproduce a broad array
of colors.
The procedure works as described in [45]. OpenCV functions are widely used in this
part. The RGB color image is converted to HSV color-space. In this space the image
can be easily threshold to extract the desired object through color. The algorithm
obtains first the object’s center in the color image and, after, the 3D coordinates of
the detected object in 3D scene, since depth and color image are registered in Kinect
sensor.

HSV image The user chooses the color with a track-bar, representing ranges of
values in the three specifications of HSV. In this way, the selection needs to give to
the ball a white color, while the background is black. After the threshold, the image
stills have some small white points. These points can be noise or other object with
the same color of the ball. Normally, due to light conditions and reflection, the image
could have some false positive objects.

Figure 5.3: Blue ball seen with Kinect sensor

Figure 5.4: Orange ball seen with Kinect sensor

Mathematical morphology, as its name implies, is concerned with the form or shape
of objects in the image.
A common use of morphological opening is to remove noise after a thresholding oper-
ation. The intention is to remove the white pixels that do not belong to the ball and
to fill in the black holes in the ball. With a symmetric circular structuring element,
the procedure applies a closing operation to fill the holes in the ball. After that, the
noise pixels have grown to be small circles and some have agglomerated. An opening
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operation eliminates that and cleans up the image. If operations are applied in the in-
verse order, opening then closing, the results are much poorer. Although the opening
removes the isolated noise pixels, it removes large chunks of the targets which cannot
be restored.
Morphological opening is done with image erosion followed by a dilation, while the
closing with image dilation followed by an erosion.
Figure 5.3 represents on the left the color image by Kinect with the tracked ball,
selected using the HSV values in the central track-bar. On the right there is the
threshold image to evaluate and tune the values in the image where the white repre-
sents the color area selected using values H 2 [50; 160], S 2 [91; 190], V 2 [120; 256].
Figure 5.4 shows same windows with different values to select the orange ball that is
on the right of the blue ball using values H 2 [0; 23], S 2 [132; 199], V 2 [116; 204].

Blob detection The detection of the ball’s center uses moments.
Moments are a rich and computationally cheap class of image features which can
describe region size and location as well as shape. The moment of an image I is a
scalar:

m
pq

=
X

(u,v)2I

upvqI[u, v] (5.1)

where (p+ q) is the order of the moment. The zero-th moment p = q = 0 is:

m
pq

=
X

(u,v)2I

I[u, v] (5.2)

and for a binary image where the background pixels are zero this is simply the number
of non-zero (white) pixels.
Moments can be given a physical interpretation by regarding the image function as a
mass distribution. Consider the region as being made out of thin metal plate where
each pixel has one unit of area and one unit of mass. The total mass of the region is
m00 and the center of mass or centroid of the region is

u
c

=
m10

m00
v
c

=
m01

m00
(5.3)

where m10 and m01 are the first-order moments.
The central moments are computed with respect to the centroid:
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)qI[u, v] (5.4)

and are invariant to the position of the region. They are related to the moments m
pq

by:

µ10 = 0, µ01 = 0 (5.5)

µ20 = m20 �
m2

10

m00
, µ02 = m02 �

m2
01

m00
, µ11 = m11 �

m10m01

m00
(5.6)

Using the thin plate analogy again, the inertia matrix of the region is:

J =


µ20 µ11

µ11 µ02

�
(5.7)
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about axes parallel to the u- and v-axes and intersecting at the centroid of the region.
The central second moments µ20, µ02 are the moments of inertia and µ11 is the product
of inertia. The product of inertia is non-zero if the shape is asymmetric with respect
to the region’s axes.
The equivalent ellipse is the ellipse that has the same inertia matrix as the region.
The eigenvalues (denoted as �1 and �2) and eigenvectors (denoted, respectively, as v1
and v2) of J are related to the radii of the ellipse and the orientation of its major and
minor axes. The maximum and minimum radii of the equivalent ellipse are:

a = 2

r
�2

m00
, b = 2

r
�1

m00
(5.8)

respectively where �2 � �1. The ratio b/a is the aspect ratio of the region and is a
useful measure to characterize the shape of a region that is scale and rotation invariant.
The eigenvectors of J are the principal axes of the ellipse, namely, the directions of its
major and minor axes. The major, or principal, axis is the eigenvector corresponding
to the maximum eigenvalue; according to the notation this eigenvector is v2. The
orientation of the ellipse is computed using the angle of v2 with the respect to the
horizontal axis, namely,

✓ = tan�1 v2,y
v2,x

(5.9)

where v2,x and v2,y are, respectively, the x and y components of v2.
The orientation and aspect ratio of the equivalent ellipse is a useful indicator of the
region’s shape and orientation.
To summarize, the procedure creates an image containing a spatially contiguous set
of pixels corresponding to one of the objects in the scene that is segmented from the
original color image. It determines its area, a box that entirely contains it, the loca-
tion of its centroid, the equivalent ellipse and its orientation.
In order to recognize particular objects, it needs some measure of shape that is in-
variant to the relative pose of the camera and the object. This section concerns only
with planar objects that are fronto-parallel to the camera and which are subject to
translation, rotation and scale change. The shape of an object can be described very
simply by the aspect ratio, the ratio of major to minor ellipse axis lengths a/b, and this
is invariant to translation, rotation and scale. Another commonly used and intuitive
shape feature is circularity which is defined as:

⇢ =
4⇡m00

p2
(5.10)

where p is the region’s perimeter length. Circularity has a maximum value of ⇢ = 1
for a circle, is ⇢ = ⇡/4 for a square and zero for an infinitely long line. Circularity is
also invariant to translation, rotation and scale. More complex ratios of moments can
be used to form invariants for recognition of planar objects irrespective of position,
orientation and scale, see for instance Hu moments which are invariant to translation,
scale and orientation within a plane.
In this thesis, the centroid is the parameter extracted with OpenCV. The equation
(5.4) computes the moments of the object.

ROS implementation for ball detection The ball detection and tracking algo-
rithm is implemented in ROS using Kinect’s depth sensor, OpenNI, and OpenCV.
The message format of ROS for images is sensor_msgs/Image, but this format is
not compatible with OpenCV. The ROS image needs to be converted to be used in
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OpenCV. ROS library provides CvBridge, an interface between ROS and OpenCV.
CvBridge defines a CvImage type containing an OpenCV image, its encoding and a
ROS header and has exactly the same information of sensor_msgs/Image. After
conversion to OpenCV format, it can be processed to detect objects. The moments
method to detect the center gives it in pixels. To get ball position in 3D space it is
necessary to use point cloud data from Kinect’s depth sensor.
The procedure subscribes two topics, the RGB image and point-cloud topics with syn-
chronization in time, to get ball position with time. The point cloud can be accessed
in real-time to get 3D coordinate of a particular pixel-index. Further details about the
camera calibration process are shown in Appendix B, establish the relation between
2D pixel index and 3D point.
Algorithm 5.5 resumes the procedure:

for each frame received do
Conversion to OpenCV format ;
Conversion from RGB image to HSV format ;
Image threshold ;
Application of morphological operations;
Computation of moments;
Computation of 3D coordinate of the detected object ;

end

Algorithm 5.5: Color ball detection in ROS

The vision node is written in C++ language in ROS and subscribes to two topics from
depth sensor through OpenNI: /camera/rgb/image_color and /camera/depth/
points. The topic /camera/rgb/image_color publishes the RGB image in ROS
format that is later converted using CvBridge to OpenCV format inside the vision
node. The ball is detected in this image, from which can be calculated the centroid
using moments. The node subscribes the topic /camera/depth/points and gets the
3D coordinates from the depth camera points. The estimation uses the 3D ball point
obtained, that it is also published for visualization in RViz.
The point cloud image of the laboratory used during this work is in Figure 5.6. This
is saved directly from RViz, the ROS visualization tool that subscribe to point cloud
data seen by Kinect.

Mixture of color and depth information

The third idea is not implemented in this work but it is by theory [33] the best one.
In this solution, color information to detect blobs of the ball color is mixed with the
depth information to filter the image in order to remove objects that are found but
that are not the real ball thrown.
After performing a color segmentation on the input image, a filter is applied based on
depth information in order to remove the color classification of objects that are not
balls.
In [33], it is proved by experimental results that it is possible to have a fast detection
of aerial objects in clustered environments by merging color and depth information.
This algorithm can be used successfully in real-time applications.
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Figure 5.6: Point Cloud of the laboratory

5.1.2 Hand Detection

The hand detection is considered in this work to anticipate the ball tracking using the
movement of the person who throw the ball. Better, the movement of the hand where
the ball is almost the same of the ball itself and that information could be very useful
to understand the resulting trajectory of the ball and start earlier the prediction to
obtain faster the point where the robot has to catch the ball.
The procedure starts from the whole body detection using the openni_tracker package.
In Figure 5.7 it is shown the detection of a body while it is moving in the environment
of the laboratory.
OpenNI tracker can detect 15 body joints such as:

• neck joint

• head joint

• torso joint

• left and right shoulder joints

• left and right elbow joints

• left and right hand joints

• left and right hip joints

• left and right knee joints

• left and right foot joints

and can return the (x, y, z) position of each joint.
The aim of body’s tracking is to receive information about the position of the hand
while the person is throwing the ball with the objective to anticipate the motion of
the ball before it enter in ballistic motion gaining some time. With this, it is possible
to receive information about the starting velocity and the plane where the ball will
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Figure 5.7: RViz screen with openni_tracker

pass. Then, the procedure can publish the direction where the robot has to move and
then it can correct this information with the predictive or the prospective control.
To use body detection in ROS, the setup needs to have:

• a ROS master running (roscore);

• the openni_tracker node running, which will be publishing skeleton positions
acquired by the Kinect on a specific topic;

• a subscriber that will connect to the topic to get the skeleton positions and make
them accessible.

The following command launches the openni_tracker node:

rosrun openni_tracker openni_tracker

and if everything is OK, nothing should be outputted until someone is detected in
front of the Kinect and it outputs something similar to:

[ INFO] [time]: New User 1

The user adopts the Psi pose, reported in Figure 5.8, to calibrate the tracker that com-
putes skeleton data from the Kinect. With the transform listener (tf::TransformListener
listener;) in ROS, it is possible to compute the transform from each joint frame

to the openni_depth frame, considered as the reference frame. The Algorithm 5.9
resumes the procedure used. This tracking can bring a lot of little problem to adjust.
The subject’s wrist rotation cannot be taken in consideration and so if he/she does
not have a perfect throw and launch the ball in the same direction of his hand, only
bad and useless information are received. Another possibility is that the ball can hide
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Figure 5.8: Psi Pose

for each joint do
Get transform from joint frame to reference frame;
Get pose of each joint ;
Publish pose;

end

Algorithm 5.9: Body detection

the hand and information can be lost.
The other problem to take care is the difficult to switch from the hand detection to
the ball detection instantly. The use of two laptops and two Kinect sensors can solve
this problem in future works.

5.2 ROS-Based Software Architecture

This section shows the software architecture in ROS, with different type of files, from
packages to messages and nodes to complete a simulation of the robot.

5.2.1 Packages

The packages are stored in the src folder of the catkin_ws, the workspace used by
ROS. The workspace contains two different packages for the two approaches. The
packages released in ROS allow an easily robot’s implementation.

Roslaunch files

Each package contains multiple launch files. The command roslaunch starts nodes
together as defined in a launch file, allowing time saving. It includes options to auto-
matically re-spawn processes that have already died and to set parameters. Roslaunch
files are as reusable as possible. In this case, moving from the robot to a simulator
can be done with only a few changes or without changing the launch files at all.

Cyton Gamma 1500 Description

The package cyton_gamma_1500_description contains RViz configuration files (with
joint names and limits), meshes of each joint robot in .dae format (Digital Asset Ex-
change (.dae), the filename extension used by COLLADA Collaborative Design Ac-
tivity), .urdf ( Unified Robot Description Format (URDF), which is an XML format
for representing a robot model) file that connect all the joints. The filename .dae
stands for Digital Asset Exchange, an extension used by COLLADA (Collaborative
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Design Activity), while URDF stands for Unified Robot Description Format, which is
an XML format for representing a robot model. XML (Extensible Markup Language)
is a markup language that defines a set of rules for encoding documents in a format
that is both human-readable and machine-readable.
The package includes also a .xacro (XML Macros), a XML macro language and the
launch files to visualize the Cyton Gamma 1500 in RViz. Xacro allows the construc-
tion of shorter and more readable XML files by using macros that expand to larger
XML expressions.
Figure 5.10 represents joints description from this package.
Figure 5.11 shows the model of Cyton Gamma 1500 in two singularity positions.

Transform tf

Package tf2 is the second generation of the transform library, which lets the user keep
track of multiple coordinate frames over time. The package maintains the relationship
between coordinate frames in a tree structure buffered in time, and lets the user
transform points or vectors between any two coordinate frames at any desired point
in time.
With tf it is possible to create both listener and broadcaster. Listener is used in this
thesis to compute skeleton data for a possible hand detection and tracking.
This package uses geometry_msgs/TransformStamped messages, that expresses a
transform from coordinate frame header to the coordinate frame child, including the
transform between two coordinate frames in free space.

Robot and joint state publisher

The robot_state_publisher is a tool that publish robot’s relevant frames all to tf.
In practice, it helps to broadcast the state of the robot to the tf transform library.
The robot state publisher internally has a kinematic model of the robot; so given the
joint positions of the robot, the robot state publisher can compute and broadcast the
3D pose of each link in the robot.
Two things are needed to run the robot state publisher as a node:

1. A urdf xml robot description loaded

2. A source that publishes the joint positions as a sensor_msgs/JointState

The robot_state_publisher is used in conjunction with the joint_state_publisher
. This package contains a tool for setting and publishing joint state values for a given
URDF and publishes sensor_msgs/JointState messages for a robot. It reads
the robot_description parameter, finds all the non-fixed joints and publishes a
JointState message with all those joints defined.

MoveIT!

Using the configuration wizard of MoveIT!, it is created a package to control robot
and take advantage of its features. MoveIT! includes a tool, called IKfast, that creates
a C++ file to have a very fast inverse kinematics algorithm based on the model of
the robot, to solve it without taking care of the time. Although this, it is better to
reduce the degrees of freedom from 7 to 3 with an inverse kinematics algorithm easy
to implement and faster than the IKfast. Indeed, the joints that are ignored does
not help with a faster movement for ball catching task. Instead, the control of more
degrees of freedom slows down the action.
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base_footprint
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xyz: 0 0 0 
rpy: 0 -0 0

base_link

shoulder_roll_joint
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Figure 5.10: Cyton Gamma 1500 package joints description
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(a) Cyton Gamma 1500 at an elbow singularity (b) Cyton Gamma 1500 at a shoulder singularity

Figure 5.11: Representation of singularities about Cyton Gamma 1500 in Rviz

5.2.2 Messages

Messages are an important part of the publisher and subscriber nodes creation. In
this packages, the messages available to use are:

• standard_msgs - Float32MultiArray: carries the vector with the three fi-
nal joint angle The multiarray declares a generic multi-dimensional array of a
particular data type. Dimensions are ordered from outer most to inner most. It
is composed of:
std_msgs/MultiArrayLayout layout
float32[] data

• geometry_msgs

– PoseArray: carries the joint angles to perform the trajectory until the
three final angles, it is an array of poses with a header for global reference.
It is assembled of:

∗ std_msgs/Header header

∗ geometry_msgs/Pose[] poses

– PoseStamped: carries the possible landing point, represent a Pose with
reference coordinate frame and timestamp. It is made up of:

∗ std_msgs/Header header

∗ geometry_msgs/Pose pose

– Pose: is a representation of pose in free space, composed of position and
orientation, with Point for position and Quaternion for orientation.

• sensor_msgs - JointState: includes the joints position This is a message
that holds data to describe the state of a set of torque controlled joints. The
state of each joint (revolute or prismatic) is defined by:

– the position of the joint (rad or m),
– the velocity of the joint (rad/s or m/s) and
– the effort that is applied in the joint (Nm or N).
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Each joint is uniquely identified by its name. The header specifies the time at
which the joint states were recorded. All the joint states in one message have to
be recorded at the same time. This message consists of a multiple arrays, one for
each part of the joint state. The goal is to make each of the fields optional. All
arrays in this message should have the same size, or be empty. This is the only
way to uniquely associate the joint name with the correct states. It is composed
of:

– Header header

– string[] name

– float64[] position

– float64[] velocity

– float64[] effort

• visualization_msgs - Marker: includes the different markers representing
predicted and real ball and the landing point. It is made up of:

– Header header

– string ns

– int32 id

– geometry_msgs/Pose pose

– geometry_msgs/Vector3 scale

– std_msgs/ColorRGBA color

– duration lifetime

ROS has builtin time and duration primitive types, described respectively by ros::
Time and ros::Duration classes. A Time is a specific moment whereas a Duration
is a period of time. The system time in ROS, using ros::time::now(), follows the
Unix or POSIX time standard. POSIX time is defined as the time that has elapsed
since 00:00:00 Coordinated Universal Time (UTC), 1 January 1970, not counting leap
seconds. It stores the time past from the beginning. It also exists the ros::Rate
class which makes a best effort at maintaining a particular rate for a loop (e.g. ros
::Rate(30) means a rate of 30Hz).
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5.3 Simulation of the Ball Catching Task

The tool simulates in RViz the real environment that can be used in the laboratory.
A sphere represents the ball. This simulation requires different nodes and topics to
publish and subscribe. In this way, the future use of the real robot will be easier.
Thus, it will replace only some nodes of the simulation with the ones of the real
robot that have to subscribe and publish to the same topics. Practically, the only
things to do is to plug the real robot and substitutes the simulation with it. The
topic list published and subscribed is obtained typing in the terminal rostopic
list. With the commands rostopic info nameofthetopic or rostopic echo
nameofthetopic it is possible to obtain info about the topic and the things that are
published for each topic, respectively.
Several nodes execute tasks that can be resumed in:

• Vision node

• Inverse Kinematics node

• Planning node

5.3.1 Vision Node

The Vision node regards the initial part of the task. It subscribes to ball information
each time that a new ball point is available. It subscribes also to actual joint positions
and computes the forward kinematics to compare the distance between the ball and
the end-effector. It estimates the possible landing point with polyfit function, imple-
mented by OpenCV: in the first implementation, it selects the target point where the
ball will land considering the intersection between the predicted trajectory and the
plane at a given height; in the second, it selects the point with minimum distance from
the end-effector. It publishes the ball point as a sphere in the simulated environment,
the predicted trajectory as an array of little spheres with a green sphere for the target
point.

5.3.2 Inverse Kinematics Node

The second node computes the Inverse Kinematics algorithm. It subscribes the ex-
pected target point from the previous node and the actual joint positions. It computes
the Jacobian considering as end-effector velocity the difference between the landing
point and the end-effector position. If the target point is outside the workspace or if
the joints angle computed are not real number, it does not compute any velocity. Fi-
nally, it publishes the joint velocities obtained with inverse Jacobian and end-effector
velocity.

5.3.3 Planning Node

The Planning node concerns the update of robot position. It subscribes the joints
velocity that the robot needs to have and updates the positions using Euler formula
from the previous and actual velocity needed. It takes into account joint limits in
velocity and position. To update the position it publishes all the joints angle of the
robot.
In another version, the planning is a trapezoidal planning, as described in Section
5.3.3. This node takes care about the time of execution, the maximum velocity and
acceleration that can be reach by each joint. The prospective strategy does not use
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the trapezoid because it updates the velocity and therefore the position step by step.
In Figure 5.12 and 5.13 are reported the two graph with all the nodes and topics active
to perform the predictive and prospective strategies.

Figure 5.12: Nodes and topics of predictive strategy

Figure 5.13: Nodes and topics of prospective strategy

Trajectory planning

At the beginning, the controller implementation was different to the one used in
MATLABr. The inverse kinematics algorithm does not use the Jacobian, controlling
the robot directly in position, planning different types of trajectories.

Linear Trajectory Planning The linear trajectory planning is a simple linear
interpolation between the initial and final joint position with a �t time used for
calculate the joint position at each iteration. It follows from:

s(t) = s0 + (t� t0)

✓
s1 � s0
t1 � t0

◆
(5.11)

where s1 is the final angle, s0 is the initial angle, t1 is the final time and t0 the initial
time. s is the actual angle during the trajectory at the actual time t. The latter
formula (5.11) is rewritten to be implemented in C++ in the following way:

s(t) = a · t+ b (5.12)

where:

a =
s1 � s0
t1 � t0

(5.13a)

b = �at0 + s0 (5.13b)



5.3. Simulation of the Ball Catching Task 77

Therefore, the velocity is constant:

ṡ(t) = a =
s1 � s0
t1 � t0

(5.14)

and the acceleration is equal to zero (s̈(t) = 0). In the beginning phase of the the-
sis is chosen the linear interpolation to have easily a working system that, after, has
been improved. Figure 5.14 represents the linear trajectory (Figure 5.14a), constant
velocity (Figure 5.14b) and zero acceleration (Figure 5.14c).
These Figures and all the following about trajectory planning consider s(0) = 0 rad
and s(t) = 1 rad with time t0 = 0 s and t

f

= 1 s.
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(c) Acceleration trajectory

Figure 5.14: Linear Interpolation Trajectory

The linear interpolation is a simple solution that does not take into account accel-
eration that it is always equal to zero and a linear velocity that it is not possible
in practice because the robotic arm starts from a standing position. Thus, other
solutions need to be found.

Fifth-Order Polynomial Trajectory Planning The Fifth-Order Polynomial Tra-
jectory interpolates two points, the initial and the final:

s(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F (5.15a)
ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E (5.15b)
s̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D (5.15c)

with t 2 [0, T ]. It imposes the initial and final values to solve the linear system:
2

6666664

s(0)
s(T )
ṡ(0)
ṡ(T )
s̈(0)
s̈(T )

3

7777775
=

2

6666664
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T 5 T 4 T 3 T 2 T 1
0 0 0 0 1 0
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20T 3 12T 2 6T 2 0 0

3

7777775

2

6666664

A
B
C
D
E
F

3

7777775
(5.16)

Once the parameters A, B, C, D, E and F are found computing the inverse, they
can be substitute in (5.15) to obtain the complete trajectory. The problem of this
trajectory is that it does not use the maximum velocity for a long time but it reaches
only for a little time. Sometimes the velocity limits are below the maximum velocity
point reached using this trajectory type and this is not applicable in real motion.
An example of Fifth-Order Polynomial Trajectory, including position, velocity and
acceleration is in Figure 5.15. In this case, the choice of initial and final values in
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matrix computation is: s(0) = 0 rad, s(T ) = 1 rad, ṡ(0) = ṡ(T ) = 0 rad/s and
s̈(0) = s̈(T ) = 0 rad/s2 (e.g. [s(0) s(T ) ṡ(0) ṡ(T ) s̈(0) s̈(T )]T = [0 1 0 0 0 0]T ).
Therefore, the parameters D, E and F are equal to zero (e.g. D = E = F = 0) while
the other are different from zero.
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(c) Acceleration trajectory

Figure 5.15: Fifth-Order Polynomial Trajectory

Trapezoidal Trajectory Planning The Trapezoidal Trajectory wants to improve
both the linear and the fifth-order: starting from the first it is important to include
acceleration and deceleration phases; the shape of the second takes into account these
phases but needs to have maximum velocity for a longer time. Thus, trapezoidal name
comes from the shape of the velocity using this trajectory planning that is a trapezoid.
This profile splits the time in three intervals:

I1 = {t : t0  t < t1} = [t0, ta) (5.17a)
I2 = {t : t

a

 t  t
d

} = [t
a

, t
d

] (5.17b)
I3 = {t : t

d

< t  t
f

} = (t
d

, t
f

] (5.17c)

The first phase with t 2 I1 (5.17a) and the third phase with t 2 I3 (5.17c) have same
equations with different parameters, a and c respectively:

s(t) = a2 · t2 + a1 · t+ a0 (5.18a)
ṡ(t) = 2 · a2 · t+ a1 (5.18b)
s̈(t) = 2 · a2 (5.18c)

The second phase with t 2 I2 (5.17b) is:

s(t) = b1 · t+ b0 (5.19a)
ṡ(t) = b1 (5.19b)
s̈(t) = 0 (5.19c)

The assumption is ṡ(t0) = 0 = a1, thus s(t0) = a0 = q0, whereas ṡ(t
f

) = 0, where t
f

is the trajectory’s final time. The first phase becomes:

s(t) = s(t0) +
ṡ
max

2 · t
a

· t2 = q0 +
↵

2
· t2 (5.20a)

ṡ(t) =
ṡ
max

t
a

· t = ↵ · t (5.20b)

s̈(t) =
ṡ
max

t
a

= ↵ (5.20c)
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At time t
a

the trajectory needs to be continue, therefore:

s(t0) +
ṡ
max

2 · t
a

· t2
a

= b0 + ṡ
max

· t
a

) b0 = s(t0)�
ṡ
max

2
· t

a

(5.21)

Thus, the second phase, with b1 = ṡ
max

changes into:

s(t) = s(t0)�
ṡ
max

2
· t

a

+ ṡ
max

· t (5.22a)

ṡ(t) = ṡ
max

(5.22b)
s̈(t) = 0 (5.22c)

The third phase is opposite to the first one and turns into:

s(t) = s(t
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The second phase (5.22) has by symmetry:

q

✓
t
f

2

◆
=

q0 + q
F

2
= b0 + V ·

t
f

2
) b0 =

q0 + q
F

� V · t
f

2
(5.24)

where V = ṡ
max

. From (5.21) and (5.24), it is possible to obtain t
a

and t
f

:

t
a

=
q0 � q

F

+ V · t
f

V
(5.25)

t
f

=
q
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V
(5.26)

It is known that 0 < t
a

 t

f

2 and, using (5.26), it holds if:

q
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< V  2 · qF � q0
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(5.27)

The final trajectory representing only the position angle in three phases is:

s(t) = q(t) =

(
q0 +

V

2·t
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· t2 t 2 I1

q
F

� V

2·t
a

· (t
f

� t)2 t 2 I3
(5.28)

The profiles of position, velocity and acceleration are in Figure 5.16.
It is possible to distinguish the three phases: Figure 5.16c depict the acceleration
with constant values in all the phases, in the second is equal to zero while in first and
third has opposite values; Figure 5.16b shows the velocity that is at maximum value
for the majority of the time with a linear trend in first and third, due to constant
acceleration; in Figure 5.16a, first and third phases follow a quadratic trend, while
the second has linear trend. These figures confirm the movement using trapezoidal
motion.
The parameters chosen in the example figures are: q0 = 0 rad, q

f

= 1 rad and
t
a

= 0.3 s. From these three parameters all the other can be derived easily.
Finally, Figure 5.17 compares position, velocity and acceleration for three trajectories:
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(a) Position trajectory
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(b) Velocity trajectory
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(c) Acceleration trajectory

Figure 5.16: Trapezoidal Trajectory

position (Figure 5.17a), velocity (Figure 5.17b) that shows trapezoidal planning with
its trend linear-constant-linear and acceleration (Figure 5.17c) shapes. All the trajec-
tories use the same values of initial and final position angle, velocity and acceleration
but the shape of the movement is different for each.
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(b) Velocities
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Figure 5.17: Linear interpolation, 5-th order and Trapezoidal Trajectories

Using planning node with trajectory planning, the choice implemented in ROS is the
trapezoidal motion planning. It is one of the easier to implement in C++ code and to
compute during a real-time task. Using this trajectory, it is easy to take into account
joint velocities and accelerations limits. It is possible to see that using trapezoidal
planning, the shape is almost equal to the fifth-order but includes limitation that are
fundamental for the real execution of the task.

5.4 Performance Evaluation

This chapter shows that the simulator created is a good alternative to the real robot
to test the algorithm. The cost of a PC as simulator environment is clearly less than
a real robot, but, moreover, it is also easier to understand the behavior of the robot
without report big damages to the robot itself.
The environment created using ROS and C++ is easy to use for the user and with
future works it can implement other functions. At this time, the simulation of the
ball trajectory and the robot movement to catch it is the ideal work that wanted to
be done in this work, due to the impossibility of repairing the real robot, damaged
some weeks before the beginning of this thesis, that could not be repaired before the
end of the dissertation.
The time to catch and the kinematics of the robot are perfectly reproduced. The
results using Kinect data are quite different from the ones obtained in simulation
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using MATLABr where the data used was obtained mathematically with a gaussian
noise added artificially to the data. Also, the polyfit function in C++ is implemented
in a different way from the function available in MATLABr.
Although these little differences, the result is achieved. The simulation works properly
and all the nodes are perfectly set with ROS messages and ROS topics that can be
published and subscribed either from the real and the simulated robot, with an easily
swap of some lines of code.
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Chapter 6

Conclusion

The latest chapter of the thesis regards the conclusion about the work done with the
summary of the results and the possibles works that can be done in the future.

6.1 Result

The starting aim of the thesis was the optimization of the trade-off between the time
allocated to perception and action, that it is required by ball catching task for suc-
cessful completion and to maximize task performance.
The frame rate of the Kinect sensor was certainly a constraint that could cause an
unsuccessful performance. Therefore, the evaluation in simulation using different
frame-rate was necessary to be done. The other point to act is the time used for
the prediction of the point where the ball will be caught. The choice of moving the
arm, as soon as a point in the manipulability area is available, is the right direction
but the results obtained do not satisfy at all with the frame-rate of the Kinect. The
simulation in MATLABr includes the error of the camera recognizing the ball. It is
obvious that it is needed a camera with a frame-rate higher than 30 fps and an error
lower than 0.5m to accomplish perfectly the task.
This dissertation explored approaches by which the robot can anticipate the intentions
of the human partner and/or learn how and when to act.
Anticipation refers to taking prior actions on the basis of information about their
effects, including during the period in which he/she is preparing to throw the ball
towards the robot. The use of skeleton data was taken into account to include the
anticipation but this information was not useful as expected. Indeed, the person who
throws the ball needs to respect a behavior that is not normal, and with the skeleton
tracking it is almost impossible to track the rotation of the wrist of the person that,
at the moment when the ball leaves the hand, could extremely change the trajectory
of the ball. The aim is to find a solution that is more general as possible and the
skeleton data added problems instead of simplifying the problem.
The how and when to act was developed with the evaluation of two different strategies:
the Predictive Control and the Prospective Control, an essential task to evaluate the
overall system’s performance with different approaches. In this task, the knowledge
obtained from past experiences [31] [45], including that obtained from failed trials,
was useful. The Predictive Control was improved changing the selection of the land-
ing point, using both plane intersection and closest point to the end-effector, while
the Prospective strategy was a totally new area to evaluate.
The Predictive control was confirmed as one of the best method to solve this task.
With a good prediction, that can be done using a simple least squares method (linear
and quadratic regression), the point where the ball will be is predicted easily. Then
it remains to move the robot in time to that point.
The Prospective control was a new area to explore. It considers an online approach
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with time to contact, trying to reduce the error between the ball and the end-effector.
The tuning of the parameters ↵ and � is certainly the big difficult of this control. It
is almost impossible to find two parameters that are suitable for all different throws.
This control works very well in only one dimension and very bad in 3D. The best
idea is to use a hybrid system, both in 2D moving in the first part of the throw the
robot in only 2 axes and then at the end correct it with the third axis, both mixing
prospective with predictive control.
Another aim of this work was to create tools to simulate the ball catching task and
try new possibles strategies in a simulated environment before applying it to the real,
avoiding possible error in effort that can reduce the potential of the real robotic arm.
This was necessary because of a failure of the real robot that happened just before
the start of this master thesis. The evaluation was done in MATLABr, the easiest
way to study algorithms, and after the evaluation, the solutions were implemented in
C++.
Therefore, the second main objective was the implementation of a simulated arm sys-
tem in ROS, based on a real model, to have all the topics and nodes ready to be used
with the real physical arm when it will be available (Cyton Gamma 1500 or another
industrial manipulator). In this way, topics can be easily swap between simulated and
real robot. This was a big change done during the work, due to problems with the real
Cyton Gamma 1500 available in the laboratory in University of Aveiro, that cannot
be fixed before the deadline of Erasmus+ Programme.
This constraint leaves the possibility, as future works, to confirm the study made in
this thesis, using the real robot and not only the simulated one. Other robots were
considered but, because of time, there was no possibility to move to a new one that
requires some adjustments in topics but especially new study about the model and its
kinematics.

6.2 Future Work

First of all, the future work will be to implement all the effort done in this disser-
tation with MATLABr and ROS with C++ in a real robot and confirm, in a real
environment, what was obtained in the simulation.
According to the previous results, future works includes the idea to replace the cur-
rent Kinect sensor and the Cyton manipulator arm by a new camera and an industrial
manipulator, because the time and problems with real manipulator available in the
university laboratory did not permit the change. The Kinect sensor must be replaced
with a new sensor with a higher frame-rate or by a stereo camera. Less error and
higher frame-rate allow a better and faster estimation that is fundamental to accom-
plish the task in less than a one-second throw.
A faster manipulator is the other requirement, also if it has fewer degrees of freedom,
that in this thesis puts only bigger errors in kinematics than improvements in velocity.
A higher joint velocity is required, considering that the robot has to move in almost
a one-meter cube in less than one second.
With these improvements, it is possible to apply the predictive strategy analyzed in
this thesis that will allow the best performance in a real environment.
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Appendix A

Mathematical Derivations

The Appendix A regards the mathematical derivations computed during the work.

A.1 Denavit-Hartenberg convention

The Denavit-Hartenberg convention is presented to compute the robot’s kinematics
[48]. It considers an open-chain manipulator constituted by n+ 1 links connected by
n joints, where Link 0 is conventionally fixed to the ground. It is assumed that each
joint provides the mechanical structure with a single DOF, corresponding to the joint
variable.
Using the typical open kinematic chain of the manipulator structure, it derives the
construction of an operating procedure for the computation of direct kinematics. In
fact, since each joint connects two consecutive links, it considers the description of
kinematic relationship between consecutive links and then obtain the overall descrip-
tion of manipulator kinematics in a recursive fashion. To this purpose, it is worth
defining a coordinate frame attached to each link, from Link 0 to Link n. Then, the
coordinate transformation describing the position and orientation of Frame n with
respect to Frame 0 (Figure A.1) is given by:

T 0
n

(q) = A0
1(q1)A

1
2(q2) . . . A

n�1
n

(q
n

) (A.1)

The recursive computation of the direct kinematics function is obtained in a system-

Figure A.1: Coordinate transformations in an open kinematic chain

atic way by simple products of the homogeneous transformation matrices Ai�1
i

(q
i

)(for i =
1, . . . , n), each of which is a function of a single joint variable. The actual coordinate
transformation, describing the position and orientation of the end-effector frame with
respect to the base frame, can be obtained as:

T b

e

(q) = T b

0T
0
n

(q)Tn

e

(A.2)
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where T b

0 and Tn

e

are two constant homogeneous transformations describing the posi-
tion and orientation of Frame 0 with respect to the base frame, and of the end-effector
frame with respect to Frame n, respectively.
In order to compute the direct kinematics equation for an open-chain manipulator
according to the recursive expression (A.1), a general method is to be derived to de-
fine the relative position and orientation of two consecutive links. The problem is
that to determine two frames attached to the two links and compute the coordinate
transformations between them. It is convenient to set some rules for the definition of
the link frames.

Figure A.2: Denavit-Hartenberg kinematic parameters

With reference to Figure A.2, let Axis i denote the axis of the joint connecting Link
i�1 to Link i; the so-called Denavit-Hartenberg convention (DH) is adopted to define
link Frame i:

• Choose axis z
i

along the axis of Joint i+ 1;

• Locate the origin O
i

at the intersection of axis z
i

with the common normal to
axes z

i�1 and z
i

Also, locate O
i

0 , at the intersection of the common normal with
axis z

i�1;

• Choose axis x
i

along the common normal to axes z
i�1 and z

i

with direction from
Joint i to Joint i+ 1;

• Choose axis y
i

so as to complete a right-handed frame.

The Denavit-Hartenberg convention gives a non-unique definition of the link frame in
the following cases:

• For Frame 0, only the direction of axis z0 is specified; then O0 and x0 can be
arbitrarily chosen;

• For Frame n, since there is no Joint n + 1, z
n

is not uniquely defined while x
n

has to be normal to axis z
n�1. Typically, Joint n is revolute, and thus z

n

is to
be aligned with the direction of z

n�1;

• When two consecutive axes are parallel, the common normal between them is
not uniquely defined;

• When two consecutive axes intersect, the direction of x
i

is arbitrary;

• When Joint i is prismatic, the direction of z
i�1 is arbitrary.
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In all such cases, the procedure can be simplified making parallel the axis of consec-
utive frames.
Once the link frames have been established, the position and orientation of Frame i
with respect to Frame i� 1 are completely specified by the following parameters:

• a
i

: distance between O
i

and O
i

0 ;

• d
i

: coordinate of O
i

0 along z
i�1;

• ↵
i

: angle between axes z
i�1 and z

i

about axis x
i

to be taken positive when
rotation is made counter-clockwise;

• ✓
i

: angle between axes x
i�1 and x

i

about axis z
i�1 to be taken positive when

rotation is made counter-clockwise.

Two of the four parameters (a
i

and ↵
i

) are always constant and depend only on
the geometry of connection between consecutive joints established by Link i. Of the
remaining two parameters, only one is variable depending on the type of joint that
connects Link i� 1 to Link i. In particular:

• if Joint i is revolute the variable is ✓
i

;

• if Joint i is prismatic the variable is d
i

.

At this point, it is possible to express the coordinate transformation between Frame
i and Frame i� 1 according to the following steps:

• Choose a frame aligned with Frame i� 1;

• Translate the chosen frame by d
i

along axis z
i�1 and rotate it by ✓

i

about axis
z
i�1; this sequence aligns the current frame with Frame i0 and is described by

the homogeneous transformation matrix:
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;

• Translate the frame aligned with Frame i0 by a
i

along axis x
i

0 and rotate it by
↵
i

about axis x
i

0 ; this sequence aligns the current frame with Frame i and is
described by the homogeneous transformation matrix:
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;

• The resulting coordinate transformation is obtained by postmultiplication of the
single transformations as:
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.
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Notice that the transformation matrix from Frame i to Frame i� 1 is a function only
of the joint variable q

i

, that is, ✓
i

for a revolute joint or d
i

for a prismatic joint. To
summarize, the Denavit-Hartenberg convention allows the construction of the direct
kinematics function by composition of the individual coordinate transformations ex-
pressed by (A.5) into one homogeneous transformation matrix as in (A.1).
The procedure operates in the following form:

1. Find and number consecutively the joint axes; set the directions of axes z0, . . . , zn�1;

2. Choose Frame 0 by locating the origin on axis z0; axes x0 and y0 are chosen so
as to obtain a right-handed frame. If feasible, it is worth choosing Frame 0 to
coincide with the base frame;

3. Locate the origin O
i

at the intersection of z
i

with the common normal to axes
z
i�1 and z

i

. If axes z
i�1 and z

i

are parallel and Joint i is revolute, then locate
a
i

so that d
i

= 0; if Joint i is prismatic, locate O
i

at a reference position for the
joint range, e.g., a mechanical limit. Compute this step for i = 1, . . . , n� 1;

4. Choose axis x
i

along the common normal to axes z
i�1 and z

i

with direction from
Joint i to Joint i+ 1. Compute this step for i = 1, . . . , n� 1;

5. Choose axis y
i

so as to obtain a right-handed frame. Compute this step for
i = 1, . . . , n� 1;

6. Choose Frame n; if Joint n is revolute, then align z
n

with z
n�1, otherwise, if

Joint n is prismatic, then choose z
n

arbitrarily. Axis x
n

is set according to step
4;

7. Form the table of parameters a
i

, ↵
i

, d
i

, ✓
i

for i = 1, . . . , n;

8. On the basis of the parameters in 7, compute the homogeneous transformation
matrices Ai�1

i

(q
i

) for i = 1, . . . , n;

9. Compute the homogeneous transformation T 0
n

(q) = A0
1 . . . A

n�1
n

that yields the
position and orientation of Frame n with respect to Frame 0;

10. Given T b

0 and Tn

e

, compute the direct kinematics function as T b

e

(q) = T b

0T
0
n

Tn

e

that yields the position and orientation of the end-effector frame with respect
to the base frame.

A.2 Regression

A.2.1 Simple Linear Regression

A simple linear regression considers the relationship between variables y, called re-
sponse, and x, called predictor. The linear model is:

y = �1x+ �0 + ✏ (A.6)

where ✏ is a random disturbance or error, �1 and �0 are the parameters, also known
as the intercept (the predicted value of y when x = 0) and the slope of the line (the
change in y for unit change in x), respectively.
From (A.6), each observation can be written as

y
i

= �1xi + �0 + ✏
i

, i = 1, 2, . . . , n (A.7)
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where i represents the i-th value of the response, the predictor and the error variables.
The estimation of the parameters is equivalent to finding the straight line that gives
the best fit of the points. This is done using least squares method, which gives the
line that minimizes the sum of squares of the vertical distances from each point to the
line. The vertical distances represent the errors in the response variable. These errors
can be obtained by (A.7) as:

✏
i

= y
i

� �1xi � �0, i = 1, 2, . . . , n (A.8)

The sum of squares of these distances is:

S(�0,�1) =
nX

i=1

✏2
i

=

nX

i=1

(y
i

� �1xi � �0)
2 (A.9)

The condition for S(�0,�1) to be a minimum is that:

�S(�0,�1)

��
i

= 0, i = 0, 1 (A.10)

that in this case become for �0 and �1:

�S(�0,�1)

��0
= �2

nX
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(y
i

� �1xi � �0) = 0 (A.11)
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nX
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These lead to the equations:
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=
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(A.13)
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Remember that:
ȳ =

P
n

i=1 yi
n

, x̄ =

P
n

i=1 xi
n

(A.15)

is the way to compute the mean of each variable. The values of �̂0 and �̂1 that
minimize S(�0,�1) are given by:

�̂1 =

P
(y

i

� ȳ)(x
i

� x̄)P
(x

i

� x̄)2
(A.16)

and:
�̂0 = ȳ � �̂1x̄ (A.17)

The estimates �̂0 and �̂1 are called the least squares estimates of �0 and �1 because
they are the solution to the least squares method. The least squares regression line is
given by:

ŷ = �̂1x+ �̂0 (A.18)

The fitted regression equation can be used for prediction of the value of the response
variable y which corresponds to any chosen value, x0, of the predictor variable. The
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predicted value ŷ0 is:
ŷ0 = �̂1x0 + �̂0 (A.19)

A.2.2 Quadratic Regression

In quadratic regression, the data consist of n observations on a dependent or response
variable y and a predictor variable x. The relationship is a quadratic model:

y = �0 + �1x+ �2x
2 + ✏ (A.20)

where �0,�1,�2 are constants referred to regression coefficients and ✏ is a random
disturbance of error.
The model is linear from the point of view of estimation, since the regression function
is linear in terms of the unknown parameters. The technique for solving the problem
is the same of multiple linear regression, treating x and x2 as distinct independent
variables.
It is assumed that for any set of fixed values of x, x2, that fall within the range
of the data, the linear equation (A.20) provides an acceptable approximation of the
true relationship between y and the two x. From that, equation (A.20), for each
observation, can be rewritten as:

y
i

= �0 + �1xi + �2x
2
i

+ ✏
i

, i = 1, 2, . . . , n (A.21)

where i represents the i-th value of the variables and the error. It is an extension of
the simple linear regression of Section A.2.1.
The least squares method minimize the sum of squares of the errors, rewritten as:

✏
i

= y
i

� �0 � �1x1 � �2x
2
i

, i = 1, 2, . . . , n (A.22)

The sum of squares of these errors is:

S(�0,�1,�2) =
nX
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✏2
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=
nX
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2
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)2 (A.23)

The least squares estimates �̂0, �̂1, �̂2 which minimize S(�0,�1,�2) are given by the
solution of linear equations, that is assumed solvable and with unique solution. The
solution will be discussed later in the section. Using the estimated coefficients, the
least squares regression equation is:

ŷ = �̂0 + �̂1x+ �̂2x
2 (A.24)

For each observation:

ŷ
i

= �̂0 + �̂1xi + �̂2x
2
i

, i = 1, 2, . . . , n (A.25)

To solve it, it is needed to define the following matrices:

Y =
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...
y
n
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The linear model in (A.20) can be expressed in terms of the above matrices as:

Y = X� + ✏ (A.27)

The assumptions made about ✏ for least squares estimation are:

E(✏) = 0, V ar(✏) = E(✏✏T ) = �2I
n

(A.28)

where E(✏) is the expected value (mean) of ✏, I
n

is the identity matrix of order n,
and ✏T is the transpose of ✏. Accordingly, ✏

i

are independent and have zero mean and
constant variance. This implies that:

E(Y) = X� (A.29)

The least squares estimator �̂ of � is obtained by minimizing the sum of squared
deviations of the observations from their expected values. Hence, the least squares
estimators are obtained by minimizing S(�), where

S(�) = ✏T ✏ = (Y �X�)T (Y �X�) (A.30)

Minimization of S(�) leads to the system of equations:

(XT

X)�̂ = X

T

Y (A.31)

Assuming that (XT

X) has an inverse, the least squares estimates �̂ can be written
explicitly as:

�̂ = (XT

X)�1
X

T

Y (A.32)

from which it can be seen that is a linear function of Y. The vector of fitted values
Y corresponding to the observed Y is:

Ŷ = X�̂ = X(XT

X)�1
X

T

Y = PY (A.33)

where P is the hat or projection matrix. The vector of residuals is given by:

e = Y � Ŷ = Y �PY = (I
n

�P)Y (A.34)
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Appendix B

Tutorials

The Appendix reports all the tutorial to follow for installing ROS in Linux Ubuntu
and setup the Kinect in a PC.

B.1 Installing ROS

To install ROS, it is needed a PC with Linux Ubuntu 16.04 LTS [25], the latest
long-term support version available. In this study, Linux Ubuntu is installed through
Parallels Desktop 12 for Mac.
To do that, the installation guide in the official site of ROS is followed [44], precisely
in http://wiki.ros.org/kinetic/Installation/Ubuntu.

• Setup sources list: setup the computer to accept software from [39], pack-
ages.ros.org.

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu$(
lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.
list'

• Setup keys:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net
:80--recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

• Installation: first, make sure that Debian package index is up-to-date:

$ sudo apt-get update

Install the Desktop-Full install that includes: ROS, rqt, rviz, robot-generic li-
braries, 2D/3D simulators, navigation and 2D/3D perception.

$ sudo apt-get install ros-kinetic-desktop-full

To find available packages, use:

$ apt-cache search ros-kinetic

• Initialize rosdep: before use ROS, it is needed to initialize rosdep that enables
to easily install system dependencies for source that is wanted to compile and
is required to run some core components in ROS.

http://wiki.ros.org/kinetic/Installation/Ubuntu
packages.ros.org
packages.ros.org
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$ sudo rosdep init
$ rosdep update

• Environment setup: it is convenient if the ROS environment variables are
automatically added to the bash session every time a new shell is launched:

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
$ source ~/.bashrc

and

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

• Getting rosinstall: rosinstall is a frequently used command-line tool in ROS
that is distributed separately. It enables to easily download many source trees
for ROS packages with one command. To install this tool on Ubuntu, run:

$ sudo apt-get install python-rosinstall

ROS at this point is installed.
The following tutorial allows the user to understand how it works and create a working
ROS workspace:

• Create a catkin workspace:

$ mkdir -p ~/catkin_ws/src
$ cd ~/catkin_ws/src
$ catkin_init_workspace}

• Build a catkin workspace: even though the workspace is empty (there are
no packages in the src folder, but just a single CMakeLists.txt link) it can
still build the workspace:

$ cd ~/catkin_ws/
$ catkin_make

The catkin_make command is a convenience tool for working with catkin
workspaces. In current directory there should be a build and devel folder.
Inside the devel folder there are now several setup.*sh files. Sourcing any of
these files will overlay this workspace on top of the environment.

• Source the setup file: before continuing source the new setup.*sh file:

$ source devel/setup.bash

• Control workspace: to make sure the workspace is properly overlayed by the
setup script, make sure ROS_PACKAGE_PATH environment variable includes the
current directory.

$ echo $ROS_PACKAGE_PATH
/home/youruser/catkin_ws/src:/opt/ros/kinetic/share

The environment is now setup.
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B.2 Installing Cyton packages for ROS

To install the Robai Cyton Gamma 1500, it has to be downloaded the git clone of
Gert Kanter [8]. To use Gazebo, already installed, with ROS use:

$ sudo apt-get install ros-kinetic-gazebo-ros-control

To install MoveIt in Kinetic use:

$ sudo apt-get install ros-kinetic-moveit
$ source /opt/ros/kinetic/setup.bash

The last command install and setup the environment.

B.3 Install Kinect

To install the Kinect, the tutorial made by 20paper [20] has to be followed. Different
packages are downloaded to use Kinect in Linux environment using openni_launch
[16]. At the beginning, it is possible to have problems due to incompatibility.
The tutorial installs packages to use Microsoft Kinect in Linux Ubuntu using OpenNI
1.5.4 and NITE 1.5.2 [37]. This tutorial does not work with OpenNI 2. To talk to the
Kinect, there are two basic parts: OpenNI itself, and a Sensor module that is actually
responsible for communicating with the hardware. Then, if needed, there is NITE,
which is another module for OpenNI that does skeletal tracking [50], gestures, and
stuff.

• Prerequisites: the readme file included with OpenNI lists all the packages to
install

$ sudo apt-get install git build-essential python libusb-1.0-0-
dev freeglut3-dev default-jdk doxygen

There are also some optional packages

$ sudo apt-get install graphviz mono-complete

• OpenNI 1.5.4: OpenNI is a framework for working with what they are calling
natural interaction devices. Anyway, this is how it is installed:

– Check out from Git: OpenNI is hosted on Github, so checking it out is
simple:

$ mkdir -p ~/Kinect
$ cd Kinect
$ git clone https://github.com/OpenNI/OpenNI.git

– Checkout Unstable 1.5.4: the first thing to do is checkout the Unstable
1.5.4 tag. If it is not, then the SensorKinect library won’t compile in next
step. From there, change into the Platform/Linux-x86/CreateRedist
directory, and run the RedistMaker script. Note that even though the

directory is named x86, this same directory builds 64 bit versions just fine.
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$ cd OpenNI
$ git checkout Unstable-1.5.4.0
$ cd Platform/Linux/CreateRedist
$ chmod +x RedistMaker
$ ./RedistMaker

– Install: the RedistMaker script will compile everything. Then change into
the Redist directory and run the install script to install the software on the
system.

$ cd ../Redist/OpenNI-Bin-Dev-Linux-[xxx]
(where [xxx] is architecture and this particular OpenNI

release)

In this study, the command is:

$ cd ../Redist/OpenNI-Bin-Dev-Linux-x64-v1.5.4.0/
$ sudo ./install.sh

• Kinect Sensor Module: OpenNI does not actually provide anything for talk-
ing to the hardware, it is more just a framework for working with different
sensors and devices. It is needed to install a Sensor module for actually doing
the hardware interfacing. Think of an OpenNI sensor module as a device driver
for the hardware. The sensor module needed is also on GitHub, but from a
different user. Check out the code looking for the Kinect branch, not master.

$ git clone https://github.com/avin2/SensorKinect
$ cd SensorKinect

The install process for the sensor is pretty much the same as for OpenNI itself:

$ cd Platform/Linux/CreateRedist
$ chmod +x RedistMaker
$ ./RedistMaker
$ cd ../Redist/Sensor-Bin-Linux-[xxx] (where [xxx] is

architecture and this particular OpenNI release)

In this thesis, the command is:

$ cd ../Redist/Sensor-Bin-Linux-x64-v5.1.2.1/
$ chmod +x install.sh
$ sudo ./install.sh

On Ubuntu, regular users are only given read permission to unknown USB de-
vices. The install script puts in some udev rules to fix this, but if find that none
of the samples work unless run them as root, try unplugging and plugging the
Kinect back in again, to make the new rules apply.

• Test the OpenNI Samples: at this point, enough is installed to get data from
the Kinect. The easiest way to verify this is to run one of the OpenNI samples.

$ cd OpenNI/Platform/Linux-x86/Bin/Release

In this dissertation, the command is:
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$ cd Kinect/OpenNI/Platform/Linux/Bin/x64-Release/
$ ./Sample-NiSimpleViewer

There should be a yellow-black depth image. At this point, it is an option
installing the higher level NITE module.

• Install NITE 1.5 (optional): To obtain NITE 1.5.2, download NITE 1.5.2
for the platform at the link: http://www.openni.org/openni-sdk/openni-sdk-
history-2/ [37] Extract the archive, and run the installer:

$ sudo ./install.sh

At some point, it asks for a license key that can be found just about anywhere
on the Internet. Just copy that license into the console, including the equals
sign at the end, and NITE will install just fine.

After following these steps, it is possible to write programs that use the Microsoft
Kinect through OpenNI and NITE middleware.

B.3.1 Second Install Kinect

To install only openni_camera:

$ sudo apt-get install ros-kinetic-openni-camera

where kinetic is the ROS distribution. It is also recommended to install openni_launch
:

$ sudo apt-get install ros-kinetic-openni-launch

After that there will be some errors like:

[ INFO] [1484047391.416383018]: Number devices connected: 2
[ INFO] [1484047391.522740482]: 1. device on bus 001:04 is a SensorKinect

(2ae) from PrimeSense (45e) with serial id '0'
[ INFO] [1484047391.522801766]: 2. device on bus 001:04 is a SensorV2 (2ae

) from PrimeSense (45e) with serial id 'A00364A10508108A'
[ INFO] [1484047391.523781988]: Searching for device with index = 1
[camera/camera_nodelet_manager-2] process has died [pid 4522, exit code

-11, cmd /opt/ros/kinetic/lib/nodelet/nodelet manager __name:=
camera_nodelet_manager __log:=/home/ubuntunick/.ros/log/294eb2c6-d727
-11e6-b4de-001c42e1662f/camera-camera_nodelet_manager-2.log].

log file: /home/ubuntunick/.ros/log/294eb2c6-d727-11e6-b4de-001c42e1662f/
camera-camera_nodelet_manager-2*.log

So uninstall SensorKinect:

$ cd Kinect/SensorKinect/Platform/Linux/Redist/Sensor-Bin-Linux-x64-v5
.1.2.1/

$ sudo ./install.sh -u

To use openni_tracker, downloaded from GitHub [38], install the NiTE v1.5.2.23,
available in [36]. Installing OpenNI SDK on Linux Extract the tarball to a directory,
go into this directory and run the install script:

$ ./install.sh

http://www.openni.org/openni-sdk/openni-sdk-history-2/
http://www.openni.org/openni-sdk/openni-sdk-history-2/
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The installation creates udev rules which will allow usage of OpenNI-compliant USB
devices without root privileges. And then follow the guide in [16].

B.3.2 Calibration

To calibrate the Kinect, there is a tutorial and are needed other packages found on
the internet. It is useful to understand how to do the calibration: it is needed a check
board 10⇥ 7 that is 9⇥ 6 to put as command to make the calibration that is detected
by the software using the Kinect camera.
Two different calibration are made, one for RGB camera and one for IR depth camera.

B.3.3 Skeleton tracking

To track the skeleton it is necessary the use of openni_tracker package [50] that,
using Kinect, can extract the information of all the joint of the skeleton and publish-
ing their in RViz through a tf transform topic. The skeleton data are reported in
MATLABr as an animation using the .csv file exported using tf listener. The code
in C++ to obtain data in a .csv file, uses a tf listener to get the position in 3 axis
of all the joint of the skeleton with a frame rate that is a little bit lower than 30Hz.
Kinect is acquiring information at 30Hz so openni_tracker cannot compute all the
information at the same frame rate but a bit lower.
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