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What is, then, that makes scientists wander about in universe
of ideas and experimentation? It may be the search for knowledge
or, in more mundane terms, simple curiosity. Nagging questions;
the pressing need to figure something out and the inability to do
anything else until the answer is found; the tingling feeling that a

discovery may be just around the corner; the intuition that a puzzle
is starting to take shape, until eventually one reaches the answer

and feels the thrilling joy of understanding.

—Rodrigo Quian Quiroga
Borges and Memory: Encounters with the Human Brain
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Introduction

In the last decades a growing amount of researchers have focused their attention on the
study of brain and human memory, because it is widely believed that a full understanding
of the mechanisms of memorization, recognition and retrieval of objects is necessary to
understand the other functions of the brain.
Human brain is usually described as a highly complex, nonlinear, parallel computer (information-
processing system), that has the capability to organize its structural constituents so as to
perform certain computations (e.g. pattern recognition, perception and motor control) many
times faster than the fastest digital computer in existence today. Its complex structure made
of interconnected neurons and suitable to memorize our memories has led to the creation of
a mathematical model, called neural network, that could simulate the biological one in the
structure and in the great computational skills.
Therefore in analogy with the characteristics of the brain, a neural network can be defined as
a massively parallel distributed processor made up of simple processing units (the neurons),
which has a natural propensity for storing experiential knowledge and making it available
for use. As proposed in Haykin’s book [25], the most important characteristics of neural
networks are:

• Knowledge is acquired by the network from its environment through a learning process.

• Interneuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.

• A popular paradigm of learning, called learning with a teacher or supervised learning,
involves modification of the synaptic weights by applying a set of labeled training
samples or task examples. Each example consists of a unique input signal and a
corresponding desired response. The network is presented with an example picked at
random from the set and the synaptic weights of the network are modified to minimize
the difference between the desired response and the actual response produced by the
input signal in accordance with an appropriate statistical criterion. The training of the
network is repeated for many examples in the set until it reaches a steady state where
there are no further significant changes in the synaptic weights. Thus the network
learns from the examples by constructing an input-output mapping for the problem at
hand.

• Adaptivity. Neural networks have a built-in capability to adapt their synaptic weights
to changes in the surrounding environment. In particular, a neural network trained to
operate in a specific environment can be easily retrained to deal with minor changes in
the operating environmental conditions.

• Knowledge is represented by the very structure and activation state of a neural network.
Every neuron is potentially affected by the global activity of all other neurons in the
network. Consequently, contextual information is dealt with naturally by a neural
network.

• A neural network has the potential to be inherently fault tolerant or capable of robust
computation in the sense that its performance degrades gracefully under adverse
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operating conditions. For example, if a neuron or its connecting links are damaged,
recall of stored pattern is impaired in quality. However, due to the distributed nature
of information stored in the network, the damage has to be extensive before the overall
response of the network is degraded seriously. In other words, a neural network is
error-correcting, in the sense that it can override inconsistent information in the cues
presented it.

• The design of a neural network is motivated by analogy with the brain, which is a
living proof that fault tolerant parallel processing is not only physically possible but
also fast and powerful. Neurobiologists look to neural networks as a research tool for
the interpretation of neurobiological phenomena. On the other hand, engineers look
to neurobiology for new ideas to solve problems more complex than those based on
conventional hard-wired design techniques.

To get a full understanding of the biological model in chapter 1 we present a brief description
of the human brain and memory-related brain structures. We will therefore try to understand
the different stages of the memory process and how neurons communicate with each other
through the synapses.
With this inspiration in mind, a starting point is represented by Hopfield article of 1982 [28],
where a new model for a fully connected neural network that generalized the previous one of
McCullock and Pitts for artificial neurons is proposed. The description and full understanding
of Hopfield model is the main topic of chapter 2, that starts with the introduction of the
discrete model, as proposed by Hopfield in [28].
We consider N neurons, that can take on either bipolar values Vi = −1 when it “not firing”
and Vi = 1 if it is “firing at maximum rate”. The idea of the model is the following: we have
p patterns, ξµ with µ = 1, . . . , p and we want to store and retrieve them when necessary
using a suitable updating algorithm. The dynamics of the i-th neuron is therefore given by
the following discrete-time equation

V
(t+1)
i = sgn

( N∑
j=1

TijV
(t)
j

)
=

{
+1, if

∑
j TijV

(t)
j > 0

−1, if
∑
j TijV

(t)
j < 0

where Tij represents the synaptic matrix, defined through Hebb’s rule

Tij =
1

N

p∑
µ=1

(ξµi ξ
µ
j − δij)

T is characterized by the strong assumption of being symmetrical, that leads to the definition
of an energy function. The presence of this function is very important since it describes
the dynamics of the network and in particular can determine the convergence to memorized
patterns. In this context it seems plausible to think that these vectors are exactly the
stable states of the dynamics and then initial states that are close in Hamming distance to a
particular stable state and far from all others will tend to terminate in that nearby stable
state. Unfortunately this property is not always so easy to verify, in fact there can be two
cases: the stored vectors form an orthogonal basis or not.

• In the former case it can be proved that the ξµ are eigenvectors with positive eigenvalues
for T and then in according to Hopfield [28] the energy function

E = −1

2

∑
i

∑
j

TijViVj



xi CHAPTER 0. INTRODUCTION

is a Lyapunov function.

• In the latter case, the presence of a crosstalk term, that represents a sort of noise,
breaks this harmony and the fundamental memories are just approximate eigenvectors.
Only a probabilistic handling can be carried out in this context, giving conditions to
obtain network stability.

Using as main reference Hopfield article [29], a continuous version of the model, that maintains
the same salient characteristics of the other, can be constructed:

duj
dt

=
∑
i

TjiVi − uj + Ij

Hence, the extension of the analysis to this domain leads to a more reasonable model, since
neurons are more likely to be continuous variables than an all-or-none basis.
Hopfield model is thus essential as a starting point to understand the process of memorization
in the brain, but it has many weaknesses that make it scarcely biologically plausible. The
hypothesis of having symmetrical connections will be strongly used throughout chapter 2, but
this is not the case of human brain. From medical studies it is well known that for a given
neuron the synapses are of only one type (excitatory or inhibitory) and with the requirement
of symmetry this would imply two populations of neurons not connected to each other. So
following Amit in [4] and Sompolinsky in [55], we will present several ways to account for
this property without losing the main features of the original model. Even if, from the point
of view of the number of spurious states and network capacity, the new model works well, it
lacks a fundamental characteristic: a Lyapunov energy function that guarantees convergence.
A different approach can thus be carried out in the study of neuronal dynamics: instead
of following the individual deterministic trajectories of every neuron, we can prefer its
probabilistic evolution. Starting from the continuous Hopfield equation, we will derive the
associated Fokker-Planck equation, inspired by [18] and [52]:

∂P (u, t)

∂t
= −

N∑
j=1

∂

∂uj
[Fj(u)P (u, t)] +D

N∑
j=1

N∑
i=1

∂2

∂uj∂ui
[Gji(u, t)P (u, t)]

where G(u) represents the scaled diffusion matrix, F (u) is the driving force for the dynamics
of the underlying neural networks, that in our case is given by

Fj(u) = −uj +
∑
i

JjiVi + Ij for j = 1, . . . , N

and Jij the asymmetric interconnection matrix. We will thus be able to determine a Lyapunov
energy function, that will characterize and describe the convergence to stable states also in
this case.
Beside this description of the neuronal dynamics linked to the transmission of impulses
(spikes) between neurons, there is a description in terms of oscillators. In the third chapter of
this thesis, we have thus studied Kuramoto model for coupled oscillators, following Strogatz
[58], Mori and Kuramoto [41] and Acebroń et al. [2].
We consider a set of N oscillators, whose states are defined by phase alone, φi(t). The actual
time evolution of these phases is governed by a system of coupled differential equations with
phase-interaction terms between the oscillators and is given by

φ̇i(t) = ωi +
K

N

N∑
j=1

sin(φi − φj) i = 1, 2, . . . , N



xii

where ωi is the natural frequency of the i-th oscillator and K is the coupling strength between
all oscillator pairs. As was famously proved analytically by Kuramoto, the sine-coupling
term drives the oscillators towards synchronization, but only if the coupling constant K
exceeds a critical value of Kc. In fact, under appropriate hypotheses, the model exhibits a
transition behavior in which a critical coupling constant Kc separates two types of regime:
one in which the system is incoherent (K < Kc) and the other in which there is a partial and
progressive synchronization. In our work, we have then investigated the plausibility of this
model; in this regard, the condition of existence that regulates the stability of the interacting
oscillator systems is exposed. The focal point of our elaboration consists in the structural
verification of the model, which works despite the generating function is perturbed, as can
be seen using Malkin Theorem.
From the biological point of view we know that oscillations occur in the brain, thus Kuramoto
model seems to be a good candidate to describe the memorization process and neural
networks. Following Hoppensteadt and Izhikevich [30], we will show how Kuramoto model
has interesting neurocomputational properties. In fact, the existence of a convergence
theorem guarantees how it can be used to store new patterns that coincide with phase-locked
oscillations to which the network converges. Then, thanks to the contribution of Haken, [24],
we can move from the neuronal description through spikes to a phase model, connecting the
neurons to the oscillators:

φi = π(ui + 1)

in this way each oscillator i can be seen as a point on a circumference that emits an action
potential every time its phase φi is equal to 2π. In this context, therefore, the synchronization
status is reached if neuron i transmits a spikes to neuron j, to which it is connected, when
its phase is close to 2π, thus increasing the possibility of triggering an action potential in
neuron j. This situation then occurs when the frequencies of the start and arrival neurons
are outof phase by an arbitrary small factor ε̃, which takes into account the delay due to the
finite propagation speed in an electrical resistance environment.
Our aim is therefore to understand how and why neurons can be seen as oscillators and to
establish a strong link between this model and Hopfield approach. Inspiring from Haken’s
book [24] and Hoppensteadt and Izhikevich [30], we will trace a path that will take us from
Hopfield model to that of Kuramoto, exploiting the realistic hypothesis of weakly connections.



Introduzione

Negli ultimi anni un gran numero di ricercatori ha focalizzato la loro attenzione sullo
studio del cervello e della memoria umana, poichè si ritiene che una comprensione completa
dei meccanismi di memorizzazione, riconoscimento e recupero degli oggetti rappresentanti i
nostri ricordi sia necessaria per capire le altre funzioni del cervello.
Il cervello umano di solito è descritto come un computer altamente complesso e non lineare
(un sistema processante informazioni), che ha la capacità di organizzare i suoi costituenti
strutturali in modo da eseguire determinati calcoli (e.g. il riconoscimento di pattern, la
percezione e il controllo motorio) molto più velocemente del più veloce computer digitale
esistente oggi. La sua struttura complessa fatta di neuroni interconnessi e adatta a memo-
rizzare i nostri ricordi ha portato alla creazione di un modello matematico, chiamato rete
neurale, che potesse simulare il modello biologico nella struttura e nelle grandi capacità
computazionali.
In analogia con le caratteristiche del cervello, una rete neurale può quindi essere definita
come un processore distribuito parallelamente fatto di singole unità processanti (i neuroni),
che ha una naturale predisposizione a immagazzinare la conoscenza esperienziale e a renderla
disponibile all’uso. Come proposto da Haykin in [25], le più importanti caratteristiche delle
reti neurali sono:

• La conoscenza è acquisita della rete dall’ambiente circostante tramite un processo di
apprendimento.

• Le forze delle connessioni interneuronali, note come pesi sinaptici, sono usate per
immagazzinare la conoscenza acquisita.

• Un paradigma popolare per l’apprendimento, chiamato apprendimento supervisionato,
coinvolge modificazioni dei pesi sinaptici applicando un insieme di esempi di addestra-
mento etichettati o esempi di attività. Ogni esempio è costituito da un segnale di
ingresso unico e una corrispondente risposta desiderata. La rete viene inizializzata con
un esempio scelto a caso dall’insieme e i pesi sinaptici della rete vengono modificati
per ridurre al minimo la differenza tra la risposta desiderata e la risposta effettiva
prodotta dal segnale di ingresso in conformità con un criterio statistico appropriato.
L’addestramento della rete viene ripetuto per molti esempi dell’insieme fino a raggiun-
gere uno stato stazionario in cui non vi sono ulteriori cambiamenti significativi nei pesi
sinaptici. Quindi la rete impara dagli esempi costruendo una mappa di input-output
per il problema in questione.

• Adattività. Le reti neurali hanno una capacità integrata di adattare i loro pesi sinaptici
ai cambiamenti dell’ambiente circostante. In particolare, una rete neurale addestrata
per operare in un ambiente specifico può essere facilmente riqualificata per far fronte a
piccoli cambiamenti nelle condizioni ambientali operative.

• La conoscenza è rappresentata dalla struttura e dallo stato di attivazione di una rete
neurale. Ogni neurone è potenzialmente influenzato dall’attività globale di tutti gli altri
neuroni nella rete. Di conseguenza, l’informazione contestuale è trattata naturalmente
da una rete neurale.
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• Una rete neurale ha il potenziale per essere tollerante agli errori o capace di un calcolo
robusto nel senso che le sue prestazioni si degradano con garbo in condizioni operative
avverse. Ad esempio, se un neurone o i suoi collegamenti sono danneggiati, il richiamo
del pattern memorizzato è compromesso in termini di qualità. Tuttavia, a causa della
distribuzione naturale delle informazioni memorizzate nella rete, il danno deve essere
molto esteso prima che la risposta complessiva della rete sia seriamente compromessa.
In altre parole, una rete neurale è in grado di correggere gli errori, nel senso che può
ignorare e oltrepassare le informazioni incoerenti nei segnali presentati.

• La costruzione di una rete neurale è motivata dall’analogia con il cervello, che è una
prova vivente che l’elaborazione parallela tollerante agli errori non è solo fisicamente
possibile, ma anche veloce e potente. Da un lato, i neurobiologi guardano alle reti
neurali come uno strumento di ricerca per l’interpretazione dei fenomeni neurobiologici.
D’altra parte, gli ingegneri guardano alla neurobiologia per nuove idee per risolvere
problemi più complessi di quelli basati su tecniche di progettazione convenzionali.

Per ottenere una completa conoscenza del modello biologico, nel capitolo 1 presentiamo una
breve descrizione del cervello umano e delle sue strutture collegate alla memoria. Cercheremo
quindi di capire i vari passaggi del processo di memorizzazione e come i neuroni comunichino
tra di loro attraverso le sinapsi.
Con questa ispirazione in mente, un punto di inizio è rappresentato dall’articolo di Hopfield
del 1982 [28], dove è proposto un nuovo modello per una rete neurale completamente connessa,
che generalizza il lavoro di McCullock e Pitts. La descrizione e completa comprensione del
modello di Hopfield rappresenta l’argomento principale del capitolo 2, che inizia introducendo
il modello discreto come proposto da Hopfield in [28].
Si considerino N neuroni, i cui stati possono assumere due diversi valori: Vi = −1 quando
non è acceso e Vi = 1 quando è accesso. L’idea del modello è la seguente: si hanno p pattern
ξµ con µ = 1, . . . , p e vogliamo immagazzinarli e recuperarli quando necessario usando un
appropriato algoritmo di aggiornamento. La dinamica del neurone i-esimo è quindi data
dalla seguente equazione a tempo discreto

V
(t+1)
i = sgn

( N∑
j=1

TijV
(t)
j

)
=

{
+1, if

∑
j TijV

(t)
j > 0

−1, if
∑
j TijV

(t)
j < 0

dove Tij reppresenta la matrice sinaptica, definita attraverso la regola di Hebb

Tij =
1

N

p∑
µ=1

(ξµi ξ
µ
j − δij)

T è caratterizzata dal forte presupposto di essere simmetrica, che porta alla definizione di
una funzione energia. La presenza di questa funzione è molto importante in quanto descrive
la dinamica della rete e in particolare può determinare la convergenza ai pattern memorizzati.
In questo contesto sembra plausibile pensare che questi vettori siano esattamente gli stati
stabili della dinamica e quindi gli stati iniziali che sono vicini nella distanza di Hamming a
un particolare stato stabile e lontani da tutti gli altri tenderanno a terminare in quello stato
stazionario vicino. Purtroppo questa proprietà non è sempre così facile da verificare, infatti
ci possono essere due casi: i vettori memorizzati formano una base ortogonale o meno.

• Nel primo caso può essere provato che i vari ξµ sono autovettori con autovalore positivo
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per T e che la funzione energia

E = −1

2

∑
i

∑
j

TijViVj

è una funzione di Lyapunov, in accordo a quanto discusso da Hopfield in [28].

• Nell’ultimo caso, la presenza di un “termine di crosstalk”, che rappresenta una sorta di
rumore per il modello, rompe questa armonia e i vari vettori memorizzati sono solo
autovettori approssimati. In questo contesto si può quindi portare avanti soltanto una
trattazione di tipo probabilistico per ottenere condizioni sulla stabilità della rete.

Usando come riferimento maggiore l’articolo di Hopfield [29], una versione continua del
modello, che mantenga le stesse caratteristiche salienti dell’altro, può essere costruita:

duj
dt

=
∑
i

TjiVi − uj + Ij

Quindi, l’estensione dell’analisi a questo dominio porta a un modello più ragionevole, poichè
i neuroni hanno più probabilità di essere variabili continue piuttosto che di tipo “tutto o
niente”.
Il modello di Hopfield è quindi essenziale come punto di partenza per comprendere il processo
di memorizzazione nel cervello, ma ha molte debolezze che lo rendono poco plausibile dal
punto di vista biologico. L’ipotesi di avere connessioni simmetriche sarà fortemente utilizzata
in tutto il capitolo 2, ma questa non è verificata nel caso del cervello umano. Dagli studi
medici è noto che per un dato neurone le sinapsi sono di un solo tipo (eccitatorio o inibitorio)
e con il requisito della simmetria ciò implicherebbe due popolazioni di neuroni non collegate
tra loro. Quindi, seguendo Amit in [4] e Sompolinsky in [55], presenteremo diversi modi per
introdurre questa proprietà senza perdere le caratteristiche principali del modello originale.
Anche se, dal punto di vista del numero di stati spuri e della capacità di rete, il nuovo modello
funziona bene, manca una caratteristica fondamentale: una funzione energia di Lyapunov
che garantisce la convergenza.
Un approccio diverso può quindi essere portato avanti nello studio della dinamica neuronale:
invece di seguire le traiettorie individuali deterministiche di ogni neurone, possiamo con-
centraci sulla sua evoluzione probabilistica. Iniziando dall’equazione di Hopfield continua,
deriveremo l’equazione di Fokker-Planck associata, prendendo ispirazione da [18] e [52]:

∂P (u, t)

∂t
= −

N∑
j=1

∂

∂uj
[Fj(u)P (u, t)] +D

N∑
j=1

N∑
i=1

∂2

∂uj∂ui
[Gji(u, t)P (u, t)]

dove G(u) rappresenta la matrice di diffusione scalata, F (u) è la forza che guida la dinamica
della rete neurale sottostante, che nel nostro caso è espressa da

Fj(u) = −uj +
∑
i

JjiVi + Ij for j = 1, . . . , N

e Jij la matrice di connessioni asimmetrica. Saremo quindi capaci di determinare una funzione
energia di Lyapunov, che caratterizzerà e descriverà la convergenza verso gli stati stabili
anche un questo caso.
Oltre a questa descrizione della dinamica neuronale collegata alla trasmissione di impulsi
(spikes) tra i neuroni, c’è una descrizione in termini di oscillatori. Nel terzo capitolo di questa
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tesi, abbiamo quindi studiato il modello di Kuramoto per oscillatori accoppiati, seguendo
Strogatz [58], Mori e Kuramoto [41] e Acebroń et al. [2].
Consideriamo un insieme di oscillatori N , i cui stati sono definiti dalla sola fase, φi(t).
L’evoluzione temporale di queste fasi è regolata da un sistema di equazioni differenziali
accoppiate con termini di interazione di fase tra gli oscillatori ed è data da

φ̇i(t) = ωi +
K

N

N∑
j=1

sin(φi − φj) i = 1, 2, . . . , N

dove ωi è la frequenza naturale dell’oscillatore i-esimo e K è la forza di accoppiamento tra
tutte le coppie di oscillatori. Come è stato provato analiticamente da Kuramoto, il termine
di accoppiamento sinusoidale guida gli oscillatori verso la sincronizzazione, ma solo se la
costante di accoppiamento K supera un valore critico di Kc. Di fatto, in ipotesi appropriate,
il modello mostra un comportamento di transizione in cui una costante di accoppiamento
critica Kc separa due tipi di regime: uno in cui il sistema è incoerente (K < Kc) e l’altro
in cui vi è una sincronizzazione parziale e progressiva. Nel nostro lavoro, abbiamo quindi
studiato la plausibilità di questo modello; a questo proposito, viene esposta la condizione
di esistenza che regola la stabilità dei sistemi di oscillatori interagenti. Il punto focale
della nostra elaborazione consiste quindi nella verifica strutturale del modello, che funziona
malgrado la perturbazione della funzione generatrice, come vede grazie al Teorema di Malkin.
Dal punto di vista biologico sappiamo che le oscillazioni si verificano nel cervello, quindi
Il modello di Kuramoto sembra essere un buon candidato per descrivere il processo di
memorizzazione e le reti neurali. Seguendo Hoppensteadt e Izhikevich [30], mostreremo come
il modello di Kuramoto abbia interessanti proprietà neurocomputazionali. Infatti, l’esistenza
di un teorema di convergenza garantisce come possa essere utilizzato per memorizzare nuovi
pattern che coincidono con le oscillazioni a fasi bloccate a cui la rete converge. Quindi, grazie
al contributo di Haken, [24], possiamo passare dalla descrizione neuronale attraverso gli
spikes a un modello per le fasi, collegando i neuroni agli oscillatori:

φi = π(ui + 1)

in questo modo ogni oscillatore i può essere visto come un punto su una circonferenza che
emette un potenziale d’azione ogni volta che la sua fase φi è uguale a 2π. In questo contesto,
quindi, lo stato di sincronizzazione viene raggiunto se il neurone i trasmette un picco al
neurone j, a cui è connesso, quando la sua fase è vicina a 2π, aumentando così la possibilità
di innescare un potenziale d’azione nel neurone j. Questa situazione si verifica quando le
frequenze dei neuroni di inizio e di arrivo sono fuori fase di un piccolo fattore arbitrario
ε̃, che tiene conto del ritardo dovuto alla velocità di propagazione finita in un ambiente di
resistenza elettrica.
Il nostro obiettivo è quindi capire come e perchè i neuroni possono essere visti come oscillatori
e stabilire un forte legame tra questo modello e l’approccio di Hopfield. Traendo ispirazione
dal libro di Haken [24] e Hoppensteadt e Izhikevich [30], tracciamo un percorso che ci porterà
dal modello di Hopfield a quello di Kuramoto, sfruttando l’ipotesi realistica di connessioni
deboli.



CHAPTER 1 Memory in Human Brain

In this chapter we present some basic notions about neurons, brain and memory from the
biological and physiological point of view following the books of Klinke et al. [33], Haykin [25],
Haken [24] and Quiroga [50].

1.1 Human Brain

The human nervous system may be viewed as a three-stage system, as depicted in the
block diagram of Fig. 1.1. Central to the system is the brain, represented by the neural

Figure 1.1: Block diagram representation of nervous system. Figure taken from the book of Arbib and
Bonaiuto, [7].

(nerve) net, which continually receives information, perceives it and makes appropriate
decisions. Two sets of arrows are shown in the figure. Those pointing from left to right
indicate the forward transmission of information-bearing signals through the system. The
arrows pointing from right to left signify the presence of feedback in the system. The receptors
convert stimuli from the human body or the external environment into electrical impulses
that convey information to the neural net (brain). The effectors convert electrical impulses
generated by the neural net into discernible responses as system outputs.
The human brain is hugely interconnected but three major components can be identified:
the cerebrum, the cerebellum and the brainstem.

• The brainstem, which includes the medulla, the pons and the midbrain, controls
breathing, digestion, heart rate and other autonomic processes, as well as connecting
the brain with the spinal cord and the rest of the body.

• The cerebellum plays an important role in balance, motor control, but is also involved
in some cognitive functions such as attention, language, emotional functions (e.g.
regulating fear and pleasure responses) and in the processing of procedural memories.

• The cerebrum (or forebrain) is a large part of the brain containing the cerebral cortex
(of the two cerebral hemispheres), as well as several subcortical structures, including
the hippocampus, basal ganglia and olfactory bulb. In the human brain, the cerebrum
is the uppermost region of the central nervous system and is involved in many cognitive
functions such as movements, sensory processing, language, communication, learning
and memory.

Since most of the memory processes take place in the cerebrum we will now focus on the
description of its structure and functionality.

1
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Figure 1.2: The three major components of the human brain.

1.1.1 The cerebrum
The cerebrum is the largest and, for most people, the most easily recognizable part of

the brain, where processes such as perception, decision-making, thought, judgement and
imagination occur.

• The cerebrum is divided into nearly symmetrical left and right hemispheres by a deep
groove, the longitudinal fissure. The hemispheres are connected by five commissures
that span the longitudinal fissure, the largest of these is the corpus callosum. The
surface of the brain is folded into ridges (gyri) and grooves (sulci), many of which are
named, usually according to their position, such as the frontal gyrus of the frontal lobe
or the central sulcus separating the central regions of the hemispheres (Fig. 1.3).

Figure 1.3: Superior view of the brain.

As seen in Fig. 1.3 each hemisphere is then conventionally divided into four lobes: the
frontal lobe, parietal lobe, temporal lobe and occipital lobe, named according to the
skull bones that overlie them. Though there is some functional overlap between the
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lobes, each of them is associated with one or two specialized functions, that can be
summarized as follows and are represented in Fig. 1.4:

Figure 1.4: Medial vision of the brain. In this figure the functions associated with each lobe and other
parts of the brain are emphasized.

– The main functions of the frontal lobe are to control attention, abstract thinking,
behavior, problem solving tasks, physical reactions and personality.

– The occipital lobe is the smallest lobe; its main functions are visual reception,
visual-spatial processing, movement and color recognition.

– The temporal lobe controls auditory and visual memories, language and some
hearing and speech. We then highlight how the inferior temporal lobe is involved
in long term memory.

– The parietal lobe integrates sensory information among various modalities, in
particular spatial sense and navigation. It includes also several areas important in
language processing.

• The outer part of the cerebrum is the cerebral cortex, made up of grey matter arranged
in layers. It is 2 to 4 millimeters thick and deeply folded to give a convoluted appearance.
Its largest part is the neocortex, which has six neuronal layers, whereas the rest is called
allocortex, which has three or four layers. Then, beneath the cortex there is the white
matter of the brain.
The cortex is mapped by divisions into about fifty different functional areas known as
Brodmann’s areas, that are distinctly different when seen under a microscope. They
can then be grouped in the following main subdivisions according to their function:

– The primary motor cortex, which sends axons down to motor neurons in the
brainstem and spinal cord, occupies the rear portion of the frontal lobe, directly
in front of the somatosensory area.

– The primary sensory areas receive signals from the sensory nerves and the tracts
by way of relay nuclei1 in the thalamus. Primary sensory areas include the visual

1Relay nuclei represent the group of nuclei to which we normally refer when considering the thalamus as a
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cortex of the occipital lobe, the auditory cortex in parts of the temporal lobe and
insular cortex and the somatosensory cortex in the parietal lobe.

– The remaining parts of the cortex are called the association areas. These areas
receive input from the sensory areas and lower parts of the brain and are involved
in the complex cognitive processes of perception, thought and decision-making.

• The cerebrum also contains several subcortical structures, including the hippocampus
(involved in memory function), the basal ganglia (involved in coordination of movement),
the thalamus (involved in the regulation of consciousness, sleep and alertness), the
hypothalamus (involved in the control of certain metabolic processes and other autonomic
activities such as body temperature, hunger thirst and circadian cycles) and the olfactory
bulb (involved in smell). They can be grouped to form a collection of brain structures,
such as the diencephalon or the limbic system. We now focus our attention on the
latter, since it is connected to memory.

1.1.2 The Limbic system and Memory

The limbic system (also known as the “paleomammalian brain”) is a collection of brain
structures located in the middle of the brain, anatomically related but varying greatly
in function. Collectively we can think at the limbic system as the centre for emotional
responsiveness, motivation, memory formation and integration, olfaction and the mechanisms
to keep ourselves safe. There exists no universal agreement on the entire list of structures
composing the system, but the regions considered include the olfactory bulbs, hippocampus,
hypothalamus, amygdala, columns of fornix, mammillary body, septum, cingulate gyrus and
entorhinal cortex, as can be seen in Fig. 1.4 and more in detail in Fig. 1.5.

Figure 1.5: Major structure of the limbic system. Note how the olfactory bulbs feed directly into the
amygdala, giving smell a particularly important role in emotional memory and evaluation of circum-
stances. It is also striking that the size of these structures has little correlation to their power and impor-
tance in this amazing system.

synaptic station for the sensory pathways. The specific relay nuclei project to a specific area of the cerebral
cortex and in particular to the primary cortical areas.
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One of the main function connected with the structures that are part of the limbic system
is memory. In particular the components involved with the various storage and retrieval
processes are: the amygdala, the hipppocampus and the entorhinal cortex, that we are now
going to describe briefly.

• The amygdala is one of two almond-shaped groups of nuclei2 located deep and medially
within the temporal lobes of the brain in complex vertebrates, including humans. It
performs a primary role in the processing of memory, decision-making and emotional
responses (including fear, anxiety and aggression).

• The hippocampus is a major component of the brain of humans and other vertebrates.
Humans and other mammals have two hippocampi, one in each side of the brain. It
plays important roles in the consolidation of information from short-term memory to
long-term memory and in spatial memory that enables navigation.
The hippocampus contains two main interlocking parts: the hippocampus proper (also
called Ammon’s horn) and the dentate gyrus, as represented in Fig. 1.6.

Figure 1.6: The hippocampal formation is a compound structure in the medial temporal lobe of the brain.
There is no consensus concerning which brain regions are encompassed by the term, with some authors
defining it as the dentate gyrus, the hippocampus proper and the subiculum; and others including also the
entorhinal cortex. On the left of the figure, there is a transverse section of the human brain, indicating
the location of the hippocampal formation. On the right, the topographical zones of the hippocampal
formation are represented. Figure taken from Parkin’s article [45].

- The hippocampus proper refers to the actual structure of the hippocampus which
is made up of four regions or subfields forming a neural circuit. The subfields
CA1, CA2, CA3 and CA4 use the initials of Cornu Ammonis, an earlier name
of the hippocampus. CA3 is then implicated in a number of working theories on
memory and hippocampal learning processes, since its role in this process is still
not clear.

- The dentate gyrus DG is a part of the hippocampus (part of the hippocampal
formation), that is thought to contribute to the formation of new episodic memories,
the spontaneous exploration of novel environments and to play a role in depression.

2A nucleus (plural form: nuclei) is a cluster of neurons in the central nervous system, located deep within
the cerebral hemispheres and brainstem.
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• The entorhinal cortex (ento = interior, rhino = nose, entorhinal = interior to the rhinal
sulcus) is an area of the brain located in the medial temporal lobe and functioning as a
hub in a widespread network for memory and navigation. The EC is the main interface
between the hippocampus and neocortex. Furthermore, the EC-hippocampus system
plays an important role in declarative (autobiographical/episodic/semantic)3 memories
and in particular spatial memories including memory formation, memory consolidation
and memory optimization in sleep.

Now that we have understood which parts of the brain are involved in the process of memory,
we will present the classification of memories, that is usually done in the field of medicine
and psychology, following [33]. In this discussion we will also describe more in detail how
the different brain structures mentioned are related to memory processes and what role they
play.

1.2 Memory

The ability to learn from the experience of memorizing what has been learned and
recovering it when appropriate is one of the most surprising features of the brain, without
which many cognitive operation would not be possible. Memory can thus be defined as the
faculty of the mind by which information is encoded, stored and retrieved.
It can be divided into different categories. A first classification can be made at a qualitative
level: in fact, there are two categories of qualitatively distinct memories:

• Declarative memory or explicit memory is the conscious, intentional recollection of
factual information, previous experiences and concepts that are explicitly stored and
retrieved in the brain. It includes factual knowledge concerning, for example, objects,
people, names, numbers, events and their meaning, which can normally be expressed
by language.
Declarative memory can be further sub-divided into:

– semantic memory, concerning principles and facts taken independent of context.
It allows the encoding of abstract knowledge about the world, such as “Paris is
the capital of France”.

– episodic memory, concerning information specific to a particular context, such as
time and place. It is used for more personal memories, such as sensations, emotions
and personal associations with a particular place or time. Autobiographical
memory, i.e. memory for particular events within one’s own life, is generally
viewed as either equivalent to, or a subset of, episodic memory.

• Non-declarative memory or implicit memory is not based on the conscious recall of
information, but on implicit learning. It concerns the ability to perform certain tasks,
or to associate them with each other, whose recovery often happens in a non-conscious
way. Research into this type of memory indicates that it operates through a different
mental process from explicit memory.
Implicit memory is usually subdivided in 4 subgroups:

– Procedural memory, the slow and gradual learning of skills that often occurs
without conscious attention to learning. In daily life, people rely on implicit

3We will discuss the differences about these types of memory in section 1.2.
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memory every day in the form of procedural memory, the type of memory that
allows people to remember how to tie their shoes or ride a bicycle without
consciously thinking about these activities.

– Priming memory is the process of subliminally arousing specific responses from
memory, as the completion of objects or words presented in an incomplete way.

– Non-associative learning refers to a relatively permanent change in the strength
of response to a single stimulus due to repeated exposure to that stimulus.

– Associative learning is a learning process in which a new response becomes
associated with a particular stimulus.

In addition to the qualitative categories just described, the memory can be subdivided in
time categories (Fig. 1.7):

Figure 1.7: Schematic illustration of human memory processes and the anatomical structures involved.
The medial temporal lobe includes a system of anatomically related structures that are essential for declar-
ative memory (conscious memory for facts and events). The system consists of the hippocampal region
(CA fields, dentate gyrus and subicular complex) and the adjacent entorhinal cortex. Then, the striatum
is a part of the basal ganglia.

• Short-term memory allows recall of informations for a period of several seconds to a
minute without rehearsal. It is subdivided into two main groups: sensory memory and
working memory.

– Sensory memory is our ability to briefly store informations related to the different
senses, which have been perceived for a short durations. Each of the senses has a
different “memory store” such as iconic (visual), echoic (audial) and haptic (touch).
When we focus our attention on a sensory memory it moves into working memory.
The capacity of this register is not very high and the information is constantly
updated as the most recent information overwrites the oldest one. In fact, it holds
sensory information less than one second after an item is perceived.
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– Working memory4 is a low-capacity memory register, which is the bridge between
the present and the most recent past. In fact, it is limited to holding between
five and seven items in the mind at a time for up to about 30 seconds each.
Working memory then represents the way we process the sensory information we
are actively thinking about. Furthermore, it serves as an encoding and retrieval
processor for informations that are stored and thus belong to long-term memory.

• Long-term memory is a high-capacity memory system, where information can be held
indefinitely. As discussed before, the storage in short-term memory generally has a
strictly limited capacity and duration, which means that information is not retained
indefinitely. By contrast, long-term memory can store much larger quantities of infor-
mation for potentially unlimited duration (sometimes a whole life span) since it has an
immeasurable capacity.
The process of storing new information in long-term memory is called consolidation.
Consolidation is stimulated by the recirculation of information in the memory (exercise,
repetition) and is particularly facilitated when the facts are related to categories of
information already present in the memory (association). Then, the process that trans-
fers information into a lasting form is called encoding and the physical representation
of the memory of the corresponding sensory event (“memory trace”) is the engram.
There are then two types of long-term memory: declarative and non-declarative memory,
which have been presented previously.

Short-term memory is supported by transient patterns of neuronal communication, dependent
on regions of the frontal lobe (especially dorsolateral prefrontal cortex) and of the neo-cortex.
Long-term memory, on the other hand, is maintained by more stable and permanent changes
in neural connections widely spread throughout the brain. The hippocampus, for example, is
essential for learning new information and for consolidating information from short-term to
long-term memory, although it does not seem to store information itself.

1.2.1 The multi-store model
In section 1.2 we have presented the classification that can be done for the different

types of memory and in particular outlined the temporal process related to the storage and
retrieval of a memory, that we are now going to explain better following the contribute of
Atkinson and Shiffrin [8].
The multi-store model (also known as Atkinson-Shiffrin memory model) describes the perma-
nent, structural features of the memory system. The basic structural division is into the three
components diagrammed in Fig. 1.8: the sensory, the working and the long-term memory.

- When a stimulus is presented, there is an immediate registration of that stimulus within
the appropriate sensory dimensions. Our brain retains sensory memory information
for a very short period of time. So we have to decide (consciously or unconsciously)
which of this information can catch our attention and be stored in working memory,
the others will be forgotten.

- A stimulus must first be perceived, then in order for the information to be further
processed, attention is key. Attention is a cognitive process that allows us to focus on
particular environmental stimuli. Once perceived, paying attention to something allows

4Sometimes short-term memory is used as a synonymous for working memory, so there are three different
types of memory: sensory, working and long-term memory. In what follows we will use this assumption,
especially in figures that are taken from different sources.
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Figure 1.8: Structure of the memory system based on the multi-store model of Atkinson and Shiffrin [8].

information to pass from sensory memory into working memory. Thus, attention serves
as a filter for stimuli from our environment. By selectively determining what will “get
through” for further examination and what will not, attention allows us to focus only
on the necessary stimuli.

- The second basic component of our system is the short-term store (STS) or working
memory. The character of the information in the working memory does not depend
necessarily upon the form of the sensory input ( for example if it is an image or a
sound). We will use the abbreviation a-v-l to stand for auditory-verbal-linguistic store,
a triple term introduced because it is not easy to separate these three functions.
Information entering the short-term store is assumed to decay and disappear completely,
but the time required for the information to be lost is considerably longer than for
the sensory register. The exact rate of decay of information in the short-term store
is difficult to estimate because it is greatly influenced by subject-controlled processes.
In the a-v-l mode, for example, the subject can invoke rehearsal mechanisms that
maintain the information in STS and thereby complicate the problem of measuring
the structural characteristics of the decay process. However, the available evidence
suggests that information represented in the a-v-l mode decays and is lost within a
period of about 15-30 seconds. Storage of information in other modalities is less well
understood and thus it is difficult to assign values to their decay rates.

- Short-term memories can become long-term memory through the process of consolida-
tion, involving rehearsal and meaningful association. Unlike short-term memory (which
relies mostly on an acoustic, and to a lesser extent a visual, code for storing information),
long-term memory encodes information for storage semantically (i.e. based on meaning
and association). However, there is also some evidence that long-term memory does
also encode to some extent by sound.
Therefore, a process that is fundamental in the transition from working memory to
long term is encoding. Encoding is the first crucial step to create a new memory. It
allows the perceived item of interest to be converted into a construct that can be stored
within the brain and then recalled later from long-term memory.

- The last major component of our system is the long-term store. This store differs from
the preceding ones in that information stored here does not decay and become lost
in the same manner. All information eventually is completely lost from the sensory
register and the short-term store, whereas information in the long-term store is relatively
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permanent (although it may be modified or made temporarily irretrievable as the result
of other incoming information). Forgetting then occurs in long-term memory when the
formerly strengthened synaptic connections among the neurons in a neural network
become weakened, or when the activation of a new network is superimposed over an
older one, thus causing interference in the older memory.
Most experiments in the literature dealing with long-term store have been concerned
with storage in the a-v-l mode, but it is clear that there is long-term memory in each
of the other sensory modalities, as demonstrated by an ability to recognize stimuli
presented to these senses. There may even be information in the long-term store which
is not classifiable into any of the sensory modalities, the prime example being temporal
memory.

- After an item has been stored, we may want to retrieve it in a future moment. The
connected process is called recall or retrieval of memory. It refers to the subsequent
re-accessing of events or information from the past, which have been previously encoded
and stored in the brain. In common parlance, it is known as remembering.

1.2.2 Memory processes

In the previous section, we have discussed the different stages of memory formation (from
perception to sensory memory, then to short-term memory and finally to long-term memory).
We now want to look at the overall processes involved.
Memory is the ability to encode, store and recall information. The three main processes
involved in human memory are therefore encoding, storage and recall (retrieval), as summa-
rized in Fig. 1.9. Additionally, the process of memory consolidation (which can be considered
to be either part of the encoding process or the storage process) is treated here as a separate
process in its own right. Some of the physiological and neurological concepts involved in
these processes are highly complex and technical (and some of them still not completely
understood) and lie largely outside the remit of this thesis, although at least a general
introduction is given here.

Figure 1.9: Fundamental memory processes.
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Memory Encoding

Encoding is a biological event beginning with perception through the senses. The process
of laying down a memory begins with attention (regulated by the thalamus and the frontal
lobe), in which a memorable event causes neurons to fire more frequently, making the
experience more intense and increasing the likelihood that the event is encoded as a memory.
Emotion tends to increase attention and the emotional element of an event is processed on
an unconscious pathway in the brain leading to the amygdala, where the actual sensations
derived from an event are processed.
The perceived sensations are then decoded in the various sensory areas of the cortex and then
combined in the brain’s hippocampus into one single experience. The hippocampus is thus
responsible for analyzing these inputs and ultimately deciding if they will be committed to
long-term memory. It acts as a kind of sorting centre where the new sensations are compared
and associated with previously recorded ones. The various threads of information are then
stored in various different parts of the brain, although the exact way in which these pieces are
identified and recalled later remains largely unknown. The key role that the hippocampus
plays in memory encoding has been highlighted by examples of individuals who have had
their hippocampus damaged or removed and can no longer create new memories (as the case
of patient HM, that is treated in detail for example in Quiroga’s book [50]). It is also one of
the few areas of the brain where completely new neurons can grow.
Although the exact mechanism is not completely understood, encoding occurs on different
levels, the first step being the formation of short-term memory from the ultra-short term
sensory memory, followed by the conversion to a long-term memory by a process of memory
consolidation. The process begins with the creation of a memory trace or engram in response
to the external stimuli. An engram is a hypothetical biophysical or biochemical change in
the neurons of the brain, hypothetical in the sense that no-one has ever actually seen, or
even proved, the existence of such a construct. The hippocampus then receives connections
from the primary sensory areas of the cortex, as well as from associative areas and the rhinal
and entorhinal cortexes. While these anterograde connections converge at the hippocampus,
other retrograde pathways emerge from it, returning to the primary cortexes. Thus, a neural
network of cortical synapses effectively records the various associations which are linked to
the individual memory.
There are three or four main types of encoding:

- Acoustic encoding is the processing and encoding of sound, words and other auditory
input for storage and later retrieval. This is aided by the concept of the phonological
loop, which allows input within our echoic memory to be sub-vocally rehearsed in order
to facilitate remembering.

- Visual encoding is the process of encoding images and visual sensory information.
Visual sensory information is temporarily stored within the iconic memory before being
encoded into long-term storage. The amygdala fulfills an important role in visual
encoding, as it accepts visual input in addition to input from other systems and encodes
the positive or negative values of conditioned stimuli5. It seems in fact that distinct
neurons respond to positive and negative stimuli, but there is no clustering of these
distinct neurons into clear anatomical nuclei.

5Classical or Pavlovian conditioning is an example of associative learning, in which a neutral stimulus (e.g.
a luminous stimulus) is paired with a significant stimulus (unconditioned stimulus, e.g. a high intensity noise
that causes fright). After a series of sessions of learning, the neutral stimulus alone (now become conditional
stimulus) triggers an answer (in the previous example the light stimulus induces a fear response). We then
say that the conditioned stimuli are positive (negative) if they evoke positive (negative) feelings.
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- Tactile encoding is the encoding of how something is perceived, normally through the
sense of touch. Physiologically, neurons in the primary somatosensory cortex of the
brain react to vibrotactile stimuli caused by the feel of an object.

- Semantic encoding is the process of encoding sensory input that has a particular meaning
or can be applied to a particular context, rather than deriving from a particular sense.

It is believed that, in general, encoding for short-term memory storage in the brain relies
primarily on acoustic encoding, while encoding for long-term storage is more reliant (although
not exclusively) on semantic encoding.
Human memory is fundamentally associative, meaning that a new piece of information is
remembered better if it can be associated with previously acquired knowledge that is already
firmly anchored in memory. The more personally meaningful the association, the more
effective the encoding and consolidation. Elaborate processing, that emphasizes familiar
meaning and associations, tends to lead to improved recall. On the other hand, information
that a person finds difficult to understand cannot be readily associated with already acquired
knowledge and so will usually be poorly remembered, or may even be remembered in a
distorted form due to the effort to comprehend its meaning and associations.
Because of the associative nature of memory, encoding can be improved by a strategy of
organization of memory called elaboration, in which new pieces of information are associated
with other information already recorded in long-term memory, thus incorporating them
into a broader, coherent narrative which is already familiar. An example of this kind of
elaboration is the use of mnemonics, which are verbal, visual or auditory associations with
other easy-to-remember constructs, which can then be related back to the data that is to be
remembered. When we use mnemonic devices, we are effectively passing facts through the
hippocampus several times, so that it can keep strengthening the associations and therefore
improve the likelihood of subsequent memory recall.

Memory Consolidation and Synaptic Plasticity

Consolidation is the process of stabilizing a memory trace after the initial acquisition.
It may perhaps be thought as a part of the process of encoding or of storage, or it may be
considered as a memory process in its own right. It is usually considered to consist of two
specific steps: synaptic consolidation (which occurs within the first few hours after learning
or encoding) and system consolidation (where hippocampus-dependent memories become
independent of the hippocampus over a period of weeks to years). In consolidation are
involved also other mechanisms, that can reinforce or weaken it:

- Neurologically, the process of consolidation utilizes a phenomenon called long-term
potentiation, which allows a synapse to increase in strength as increasing numbers of
signals are transmitted between the two neurons. Potentiation is the process by which
synchronous firing of neurons makes those neurons more inclined to fire together in
the future. Thus, long-term potentiation occurs when the same group of neurons fire
together so often that they become permanently sensitized to each other.
At its simplest, whenever something is learned, circuits of neurons in the brain, known
as neural networks, are created, altered or strengthened. These neural circuits are
composed of a number of neurons that communicate with one another through special
junctions called synapses. Through a process involving the creation of new proteins
within the body of neurons and the electrochemical transfer of neurotransmitters across
synapse gaps to receptors, the communicative strength of certain circuits of neurons in
the brain is reinforced. With repeated use the efficiency of these synaptic connections
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increases, facilitating the passage of nerve impulses along particular neural circuits,
which may involve many connections to the visual cortex, the auditory cortex, the asso-
ciative regions of the cortex, etc. In this way, the brain organizes and reorganizes itself
in response to experiences, creating new memories prompted by experience, education
or training. The ability of the connection, or synapse, between two neurons to change
in strength, and for lasting changes to occur in the efficiency of synaptic transmission,
is known as synaptic plasticity or neural plasticity and it is one of the most important
neurochemical foundations of memory and learning.
It should be remembered that each neuron makes thousands of connections with other
neurons and that memories and neural connections are mutually interconnected in
extremely complex ways. Unlike the functioning of a computer, each memory is embed-
ded in many connections and each connection is involved in several memories. Thus,
multiple memories may be encoded within a single neural network by different patterns
of synaptic connections. Conversely, a single memory may involve simultaneously the
activation of different groups of neurons in completely different parts of the brain.

- The inverse of long-term potentiation, known as long-term depression, can also take
place, whereby the neural networks involved in erroneous movements are inhibited by
the silencing of their synaptic connections. This can occur in the cerebellum, which
is located towards the back of the brain, in order to correct our motor procedures
when learning how to perform a task (procedural memory), but also in the synapses
of the cortex, the hippocampus, the striatum and other memory-related structures.
Contrary to long-term potentiation, which is triggered by high-frequency stimulation
of the synapses, long-term depression is produced by nerve impulses reaching the
synapses at very low frequencies, leading them to undergo the reverse transformation
from long-term potentiation and, instead of becoming more efficient, the synaptic
connections are weakened. It is still not clear whether long-term depression contributes
directly to the storage of memories in some way, or whether it simply makes us forget
the traces of some things learned long ago so that new things can be learned.

- Sleep (particularly slow-wave or deep sleep during the first few hours) is also thought
to be important in improving the consolidation of information in memory and the
activation of patterns in the sleeping brain, which mirror those recorded during the
learning of tasks from the previous day, suggesting that new memories may be solidified
through such reactivation and rehearsal6.

- Another important process that takes place is that of re-consolidation. Memory re-
consolidation is the process of previously consolidated memories being recalled and
then actively consolidated all over again in order to maintain, strengthen and modify
memories that are already stored in long-term memory. Several retrievals of memory
may be needed for these memories to last for many years, depending on the depth
of the initial processing. The very act of re-consolidation, though, may change the
initial memory. As a particular memory trace is reactivated, the strengths of the neural
connections may change, the memory may become associated with new emotional or
environmental conditions or subsequently acquired knowledge, expectations rather than
actual events may become incorporated into the memory, etc.

6The interested reader can find more explanations in [51].
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Memory Storage

Storage is more or less a passive process of retaining information in the brain, either in
sensory memory, working memory or the more permanent long-term memory. Each of these
different stages of human memory functions as a sort of filter that helps to protect us from
the flood of information that confront us on a daily basis, avoiding an overload of information
and helping to keep us sane. As previously discussed, the more the information is repeated
or used, the more likely it is to be retained in long-term memory through consolidation.
Since the early neurological work of Karl Lashley and Wilder Penfield in the 1950s and 1960s,
it has become clear that long-term memories are not stored in just one part of the brain, but
are widely distributed throughout the cortex. After consolidation, long-term memories are
stored throughout the brain as groups of neurons that are primed to fire together in the same
pattern that created the original experience and each component of a memory is stored in the
brain area that initiated it (e.g. groups of neurons in the visual cortex store a sight, neurons
in the amygdala store the associated emotion, etc). Indeed, it seems that they may even be
encoded redundantly, several times, in various parts of the cortex, so that, if one engram
(or memory trace) is wiped out, there are duplicates, or alternative pathways, elsewhere,
through which the memory may still be retrieved. Therefore, contrary to the popular notion,
memories are not stored in our brain like books on library shelves, but must be actively
reconstructed from elements scattered throughout various areas of the brain by the encoding
process. Memory storage is therefore an ongoing process of reclassification resulting from
continuous changes in our neural pathways and parallel processing of information.
In the absence of disorders due to trauma or neurological disease, the human brain has the
capacity to store almost unlimited amounts of information indefinitely. Forgetting, therefore,
is more likely to be the result from incorrectly or incompletely encoded memories and/or
problems with the recall/retrieval process. It is a common experience that we may try
to remember something one time and fail, but then remember that same item later. The
information is therefore clearly still there in storage, but there may have been some kind
of a mismatch between retrieval cues and the original encoding of the information. Hence,
forgetting can be better thought of as the temporary or permanent inability to retrieve a
piece of information or a memory that had previously been recorded in the brain. It typically
follows a logarithmic curve, so that information loss is quite rapid at the start, but becomes
slower as time goes on. However, theorists disagree over exactly what becomes material that
is forgotten. Some hold that long-term memories do actually decay and disappear completely
over time; others hold that the memory trace remains intact as long as we live, but the bonds
or cues that allow us to retrieve the trace become broken, due to changes in the organization
of the neural network, new experiences, etc.

Memory Retrieval

There are two main methods of accessing memory: recognition and recall.
Recognition is the association of an event or physical object with one previously experienced
or encountered and involves a process of comparison of information with memory, e.g. recog-
nizing a known face, true/false or multiple choice questions, etc. Recognition is a largely
unconscious process and the brain even has a dedicated face-recognition area, which passes
information directly through the limbic areas to generate a sense of familiarity, before linking
up with the cortical path, where data about the person’s movements and intentions are
processed.
Recall involves remembering a fact, event or object that is not currently physically present
(in the sense of retrieving a representation, mental image or concept) and requires the direct
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uncovering of information from memory, e.g. remembering the name of a recognized person,
fill-in the blank questions, etc. Memories then are not frozen in time and new information and
suggestions may become incorporated into old memories over time. Thus, remembering can
be thought of as an act of creative re-imagination. Because of the way memories are encoded
and stored, memory recall is effectively an on-the-fly reconstruction of elements scattered
throughout various areas of our brain. Memory retrieval therefore requires re-visiting the
nerve pathways the brain formed when encoding the memory and the strength of those
pathways determines how quickly the memory can be recalled. The information pattern is
then re-stored back in the memory, thus re-consolidating and strengthening it.

We have presented a biological model for storing and retrieving memories emphasizing the
parts of the brain involved in the various processes. Unfortunately, we still do not know
a reliable model regarding many aspects of memory, as has already been mentioned. For
example, it is not yet clear how the hippocampus influences the formation of memories and
how its components CA1 and CA3 act for this purpose. Neuroscientists are doing a lot of
studies about it, as Kesner and Rolls [32] and Treves [62], but they are still far from achieving
complete knowledge. Obviously, if everything were clear, it would be even simpler to create a
biologically plausible mathematical model that represents the human brain and in particular
the mechanism of memory. For these reasons, in chapter 2 we are going to introduce a very
simplified model for this dynamics, which does not take into account the difference between
short-term and long-term memory or other properties whose operation has not yet been
fully understood. We will therefore restrict ourselves to presenting a basic model for this
dynamics that maintains its salient characteristics, such as synaptic plasticity, the ability to
remember and store memories, but without the complications of the biological model. At
the end of chapter 2, various studies will be presented to extend Hopfield model to include
some missing aspects or improvements, but there is still no global mathematical model that
includes everything that has been discussed in this chapter.

1.3 Neurons and Synapses

The struggle to understand the brain has been made easier because of the pioneering work
of Ramón y Cajál in 1911, who introduced the idea of neurons as structural constituents
of the brain. Then, in 1990 it has been estimated by Shepherd and Koch that there are
approximately 10 billion neurons in the human cortex and 60 trillion synapses or connections.
Neurons are the basic units that make up the brain and nervous system. They are specialized
cells that act like telegraph wires carrying messages in the form of electrochemical impulses
throughout the body. Though there are about 20 different types of neurons, their structure
is basically the same. A neuron is composed of its soma, its dendrites that quite often form a
treelike structure and the axon that, eventually, branches (Fig. 1.10). Information produced
in other neurons is transferred to the neuron under consideration by means of localized
contacts, the synapses, that are located on the dendrites and also on the cell body. Electrical
charges produced at the synapses propagate to the soma and produce a net postsynaptic
potential. If the postsynaptic potential at the soma is sufficiently large to exceed a threshold
value, typically a depolarization of 10− 15 mV, the neuron generates a brief electrical pulse,
called a spike or action potential, at its axon hillock, that is the point of connection between
the soma and the axon. The spikes run down the axon, finally reach the synapses that, in a
way to be discussed below, transfer the information to another neuron. Using the terminology
of electronic circuits we can therefore say that the dendrites represent the input device
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Figure 1.10: Sketch of two neurons in synaptic contact.

(“input”), the axons the output device (“output”) and the soma the information processing
unit.
In order to be able to model the functioning of a neuron we have to deal with these processes
in more detail. In this chapter we will be satisfied by a qualitative discussion, whereas a
mathematical discussion will be developed in the next chapters.

1.3.1 The action potential
The membrane potential is defined as the potential difference measured at the ends

of two electrodes, one placed inside the neuronal cell and one placed in the surrounding
extracellular fluid. When we talk about the neuronal signal we refer to the temporal and
spatial variation of the membrane potential. When the neuron is at rest, that is, it is not in
some way excited from the outside, the membrane potential assumes a characteristic value
called resting potential, typically in the order of −65 mV , i.e. the inside of the cell is at a
lower potential than outside.
Action potentials are typical voltage pulses7 generated during neuronal dynamics; they have
a nearly stereotypical form and are not subject to attention or distortion during propagation
along the axon. Fig. 1.11 shows the typical form of an action potential. Note the following
characteristics:

• The voltage pulse has a duration of about 1−2 ms and an amplitude measured between
the minimum and the maximum of about 100− 120 mV;

• In the first phase of the impulse there is a vigorous growth of the membrane potential
up to the so called depolarization phase where the membrane potential becomes positive,
i.e. the inside of the cell is at a higher potential than the external;

• During the descent phase, the impulse before returning to the resting value goes through
a phase called hyperpolarization, typically lasting about 10 ms (and therefore much
slower than depolarization), in which the cell has a membrane potential lower than
that at rest.

7The voltage pulse represents the cycle-time of a biological neuron, i.e. the time the spike travels the
full length of the pre-synaptic axon, the neurotransmitter crosses the synaptic gap and the post-synaptic
potential diffuses the soma.
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Figure 1.11: Single neuron in a drawing by Ramoń y Cajal, where the inset shows an example of a neu-
ronal action potential. The action potential is a short voltage pulse of 1− 2 ms duration and an amplitude
of about 100 mV. The figure is taken from Gersten and Kistler’s book, [21].

The action potential, once it is generated, travels along the axon and is transmitted to the
other neurons. Thus it constitutes the elementary unit associated with the transmission of
neuronal signals. Typically therefore when referring to the signal emitted by a neuron we
mean the temporal sequence of these action potentials, also called spike train.

1.3.2 Synapses
Synapses, or nerve endings, are the elementary structural and functional units that mediate

the interactions between neurons. In this context, the presynaptic neuron is defined as the
neuron “transmitting” the action potentials upstream of the synapse and the postsynaptic
neuron as the neuron “receiving” the action potentials downstream of the synapse. With
this terminology the synapse is thus the region in which the axon of the presynaptic neuron
“interacts” with the postsynaptic neuron dendrite and the post-synaptic potential (which has
the acronym PPS) is defined as the voltage response of the postsynaptic neuron following
the arrival of the action potential coming from the presynaptic neuron.
There are essentially two types of synapses: the chemical synapse and the electrical synapse.

• The chemical synapse, which is shown in the diagram in Fig. 1.12, is the most common
in the vertebrate brain and is based on the mechanism that we are now going to describe.
The presynaptic neuron generates an action potential, that when it reaches the end of
the axon, locally depolarizes the cell membrane causing the release within the synaptic
fissure (i.e. the small gap between the two presynaptic and postsynaptic cell membranes)
of particular chemical substances called neurotransmitters. The neurotransmitter, as
soon as it reaches the postsynaptic side of the synapse, is revealed by special molecules
(chemoreceptors) placed on the postsynaptic membrane that cause the opening (or
directly or through a chain of biochemical signals) of specific channels through which
an ionic current flows from the extracellular fluid to the cell. The entry of these ions in
turn leads to a change in the value of the postsynaptic membrane potential. So in a
chemical synapse there is first the transformation of an electrical signal into a chemical
signal on the presynaptic membrane and then the subsequent transformation on the
postsynaptic membrane of a chemical signal into an electrical signal.
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Figure 1.12: Scheme of a synapse. Figure taken from Haken’s book, [24]

• The electric synapse instead realizes an electrical coupling between two neurons through
highly specialized ion channels (called gap-junctions) that connect the presynaptic and
postsynaptic membrane. The electric synapse allows a direct current flow between
adjacent neurons.

Excitatory and inhibitory synapses

We have already mentioned that the arrival of an action potential from the presynaptic
neuron causes a voltage response (the postsynaptic potential) in the membrane potential of
the receiving neuron. In this regard, we distinguish between excitatory postsynaptic potential
(which has the acronym PPSE) and inhibitory postsynaptic potential (which has the acronym
PPSI) depending on whether the effect is to increase or decrease the value of the membrane
potential. A similar meaning has the distinction between excitatory synapses and inhibitory
synapses, or between a depolarizing stimulus and a hyperpolarizing stimulus.
From biological studies it is known that each neuron can have only one type of synapse:
either all excitatory or all inhibitory, while it can receive action potentials from synapses
of any kind. The difference between the two types of synapses resides in the post-synaptic
receptors, which bind different neurotransmitters and allow different ions to pass through
their channels: sodium Na+ and potassium K+ for the excitatory synapses, chlorine Cl+
for the inhibitory ones. Therefore the opening of the channels of a determined ion allows to
bring the membrane potential towards the equilibrium potential of that specific ion, that is
−65 mV for Cl+ and 0 mV for Na+ and K+.



CHAPTER 2 Hopfield Model

This chapter represents the main part of the thesis, where we will present the model of
Hopfield and the various strategies that can be implemented to make it more biologically
plausible and to study some of its salient characteristics.

2.1 Towards the Hopfield model

The modern era of neural networks began with the pioneering work of McCullogh and
Pitts published in 1943 [38]. McCulloch was a psychiatric and neuroanatomist by training,
while Pitts was a mathematical prodigy. In their paper they have described a logical calculus
of neural networks that united the studies of neurophysiology and mathematical logic. Their
formal model of a neuron was assumed to follow an “all-or-none” law. With a sufficient number
of such simple units and synaptic connections set properly and operating synchronously,
McCulloch and Pitts showed that a network so constituted would compute any computable
function. This was a very significant result and it is generally agreed that the disciplines of
neural networks and of artificial intelligence were born with it.
The next major development in neural networks came in 1949 with the publication of Hebb’s
book “The Organization of Behavior” [26], in which an explicit statement of a physiological
learning rule for synaptic modification was presented for the first time. Specifically, Hebb
proposed that the connectivity of the brain is continually changing as an organism learns
different functional tasks and that neural assemblies are created by such changes. He followed
up an early suggestions by Ramón y Cajál and introduced his now famous postulate of
learning, which states that the effectiveness of a variable synapse between two neurons is
increased by the repeated activation of one neuron by the other across that synapse. For this
reason, Hebb’s book has been a source of inspiration for the development of computational
models of learning and adaptive systems. The paper by Rochester, Holland, Habit and Duda
(1956) is the first attempt to use computer simulation to test a well-formulated neural theory
based on Hebb’s postulate of learning. In that same year, Uttley demonstrated that a neural
network with modifiable synapses may learn to classify simple sets of binary patterns into
corresponding classes, introducing the so-called leaky integrate and fire neuron model.
In the 1950s a work on associative memory was initiated by Taylor. Then, this was followed
by the introducing of the learning matrix by Steinbuch (1961); this matrix consists of a
planar network of switches interposed between arrays of sensory receptors and motor effectors.
Other significant contributions to the early development of associative memory include papers
by Anderson (1972), Kohonen (1972) and Nakano (1972), who independently and in the
same year introduced the idea of a correlation matrix memory based on the outer product
learning rule, of which Hebb’s rule is an example.
Some 15 years after the publication of McCulloch and Pitt’s classic paper, a new approach
to the pattern recognition problem was introduced by Rosenblatt (1958) in his work on
perceptron, a novel method of supervised learning. In the 1960s it seemed as if neural
networks could do anything, thanks also to the crowning achievement of Rosemblatt, the
perceptron convergence theorem. But then came the book of Minsky and Papert (1969), who
used mathematics to demonstrate that there are fundamental limits on what single-layer
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perceptrons can compute. They even stated that there was no reason to assume that any of
the limitations of single-layer perceptrons could overcome in the multilayer version.
All these problems that emerged with perceptrons contributed to the dampening of contin-
ued interest in neural networks in the 1970s. Many of the researchers, except for those in
psychology and the neurosciences, deserted the field during that decade.
In the 1980s major contributions to the theory and design of neural networks were made on
several fronts and with it there was a resurgence of interest in neural networks.
In 1982 Hopfield used the idea of an energy function to formulate a new way of understanding
the computation performed by recurrent networks with symmetric synaptic connections.
Moreover, he established the isomorphism between such a recurrent network and the Ising
model used in statistical physics. This analogy paved the way for a deluge of physical theory
to enter neural modeling, thereby transforming the field of neural networks. This particular
class of neural networks with feedback attracted a great deal of attention in the 1980s and in
the course of time it has come to be known as Hopfield neworks. Although Hopfield networks
may not be realistic model for neurobiological system, the principle they embody, namely
that of storing information in dynamically stable networks, is profound.
In 1983 Cohen and Grossberg established a general principle for assessing the stability of a
content addressable memory that includes the continuous-time version of the Hopfield network
as a special case. A distinctive feature of an attractor neural network is the natural way in
which time, an essential dimension of learning, manifests itself in the nonlinear dynamics of
the network.
In the same year Kirkpatrick, Gelatt and Vecchi described a new procedure called simulated
annealing for solving combinatorial optimization problems. This idea was later developed
by Ackley, Hinton and Sejnowski (1985) in the development of a stochastic machine known
as the Boltzmann machine, which was the first successful realization of a multilayer neural
network.
In 1986 the development of the back-propagation algorithm was reported by Rumelhart,
Hinton and Williams. In that same year, the celebrated two-volume book, “Parallel Dis-
tributed Processing: Explorations in the Microstructures of Cognition” edited by Rumelhart
and McLelland, was published. This latter book has been a major influence in the use of
back-propagation learning, which has emerged as the most popular learning algorithm for
the training of multilayer perceptrons.
More than any other publications, the 1982 paper by Hopfield and the 1986 two-volume
book by Rumelhart and McLelland were the most influential publications responsible for the
resurgence of interest in neural networks in the 1980s. Neural networks have certainly come a
long way from the early days of McCulloch and Pitts. Indeed, they have stablished themselves
as an interdisciplinary subject with deep roots in neuroscience, psychology, mathematics,
physical sciences and engineering.

We will now focus our attention on the study of the Hopfield Model, one of the most
important examples of recurrent neural network (RNN).
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2.2 Hopfield model: an example of Content Addressable
Memory

The Hopfield model describes a system of a large number8 of highly interconnected
neurons, that have useful collective computational properties. The auto-associative memory
model proposed by Hopfield, [28], has attracted considerable interest both as a content
addressable memory and as a method of solving difficult optimization problems. Content
addressable memory (CAM) is indeed one of the simplest collective properties of such a
system and describes the capability of retrieving the entire memory (the memorized pattern)
on the basis of partial information (a stimulus).
The model consists of a certain number, N , of neurons, which are the processing elements,
and a large number of connections having fixed weights between these neurons. In general,
the i-th processing element or neuron is described by two variables: its “mean soma potential”
denoted by ui and its output denoted by Vi. The output is usually related to the variable ui
by a simple nondecreasing monotonic output function g. This function is normally designed
to limit the possible values of Vi to the range −1 to +1: hence the function will be nonlinear.
For simplicity, g is frequently a step function or a hyperbolic tangent.
Each neuron has feedback connections to the output of all the other neurons as well as itself
and its current state is a weighted sum of all the outputs of the previous instant. Thus the
output of the i-th neuron is fed to the input of the j-th neuron by a connection of strength
Tij . In addition, each neuron has an offset bias I fed to its input.
There are two variants of the Hopfield model (Hopfield, [29]):

• Discrete time version: The dynamics of the network is described by the following
difference equation

V (t+ 1) = f(TV (t) + I) (2.1)

where f(·) : R → R is a sigmoid type nonlinearity or sign function. We note that f
acts on every component of its argument.

• Continuous time version: The dynamics of the network is described by the following
differential equation

u̇ = −u
τ

+ Tg(u) + I (2.2)

where g(·) : R→ R is a sigmoid type nonlinearity or sign function and τ = CR.

We will start by describing the discrete version of the model, following Hopfield article of
1982 [28], and then we will see how the relevant properties are also found in the continuous
case, as done by Hopfield in [29].

2.2.1 The discrete Hopfield model
Consider a set of N pairwise connected neurons described by their states Vi, i = 1, . . . , N ,

where any Vi can take two values9: Vi = −1 when it is “not firing” and Vi = +1 if it is “firing
8In the following analysis this number will be infinitely large. The results approximate well even networks

with a couple of hundred neurons, that are indistinguishable from simulations on networks with a couple of
thousand neurons (Amit, [4]).

9In the original model of Hopfield the possible states of the neurons are 0 and 1, but we have decided to
use as states −1 and +1 for simplicity and because this choice is widely adopted. It is easy to prove that the
two approaches are equivalent and linked trough the formula Vi = 2σi − 1, where σi are the components of
the vector in the binary notation {0, 1} and Vi in the ±1 notation.
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at maximum rate”. Thus the term discrete refers to the fact that neurons take on either
binary or bipolar values. The instantaneous state of the system is specified by listing the N
values of Vi, i = 1, . . . , N , so it is represented by a bipolar word of N bits.
We assume the network to be fully connected, i.e. any two neurons are equally likely to be
connected by a synapse. As outlined in section 1.3, the fundamental dynamical process of
neuronal communication is based upon the following steps:

1. The neuronal axon is in an all-or-none state. In the first state it propagates a signal,
spike, or action potential (A.P.), based on the result of the summation performed in
the soma. The shape and amplitude of the propagation signal (the potential difference
across the cell membrane) is very stable and is replicated at branching points in the
axon. In the none state there is no signal traveling in the axon, rather there is a resting
potential. It is important to highlight that the presence of a traveling impulse in the
axon blocks the possibility of a second impulse transmission.

2. When the traveling signal arrives at the ending of the axon it causes the secretion of
neurotransmitters into the synaptic cleft.

3. The neurotransmitters arrive, across the synapse, at the membrane of the postsynaptic
neuron. On the postsynaptic side these neurotransmitters bind to the receptors, thus
causing the latter to open up and allow for the penetration of ionic current into the
postsynaptic neuron. The amount of penetrating current per pre-synaptic spike is a
parameter which specifies the efficacy of the synapse.

4. The postsynaptic potential (PSP) diffuses in a graded manner (unlike the spike in the
axon) toward the soma where the inputs from all the pre-synaptic neurons connected
to the postsynaptic one are summed. The individual PSP’s are about one millivolt
in amplitude. These inputs may be excitatory and in this case they depolarize the
membrane of the postsynaptic neuron, increasing the likelihood of the appearance of a
spike (firing), or they may be inhibitory and then they hyperpolarize the postsynaptic
membrane, reducing the likelihood of firing.

5. If the total sum of the PSP’s arriving within a short period surpasses a certain
threshold, which is the level at which the postsynaptic membrane becomes unstable
against depolarizing ionic current flows, the probability for the emission of a spike,
which is a manifestation of this instability, becomes significant. This threshold is again
of millivolts and hence quite a number of inputs are required in order to produce a
spike.

6. After the emission of a spike, the neuron needs time to recover. There is a period of
1− 2 milliseconds in which the neuron cannot emit a second spike, no matter how large
the depolarizing potential may be. This time interval is called the absolute refractory
period of the neuron.

Now, going back to the communication process, we have that in general the total input hi of
each neuron i comes from two sources: external inputs Ii and inputs from other neurons; so
is given by

hi =

N∑
j=1
j 6=i

TijVj + Ii (2.3)

where
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• The first term represents the postsynaptic currents induced in i by the presynaptic
activity in neuron j.

• The second term is an offset bias. As highlighted by Amit in [4], the Hopfield model is
isomorphic to the Ising model of magnetism at temperature zero. Thus, in analogy with
that model, Ii expresses the external magnetic field hei , independent of the dynamics of
the system, as indicated in [4]. For simplicity we will assume from now on that Ii = 0
for every i.

• The matrix Tij describes the synaptic interconnection strength from neuron j to i,
so in the case of non-connected neurons Tij ≡ 0. A first model simplification can be
introduced by imposing the symmetry of the matrix T , which implies that the efficacy
of a synapse communicating output from neuron j to neuron i equals the efficacy of the
synapse communicating the output of neuron i as input to neuron j ( i.e. Tij = Tji).
This strong assumption has no biological justification, but it has made the model
completely tractable. For this reason, as it will be stressed in section 2.4, various
attempts go in the direction of the introduction of the asymmetry in the model and of
other features that make it closer to the biological one.
We now assume the symmetry of the interconnection matrix T .

The updating algorithm

Every neuron i receives inputs from connected neurons and changes its state at each
discrete time step t. This dynamic process can be described by the following equation10 :

Vi(t+ 1) = sgn
(
hi(t+ 1)− Ui

)
(2.4)

where hi(t+1) =
∑N
i=1 TijVj(t) and Ui represents a fixed threshold. Thus a neuron i changes

the value of its output or leaves it fixed according to a fixed threshold Ui and to the following
updating algorithm:

Vi(t+ 1)→ 1 if
N∑
j=1

TijVj(t) > Ui

Vi(t+ 1)→ −1 if
N∑
j=1

TijVj(t) < Ui

(2.5)

From now on we will set the value of Ui to zero for every neuron i and so we can rewrite the
previous algorithm in this way

Vi(t+ 1) = sgn
( N∑
j=1

TijVj(t)
)

=

{
+1, if

∑
j TijVj(t) > 0

−1, if
∑
j TijVj(t) < 0

(2.6)

where we indicate with Vi(t+ 1) the updated state.
What if the argument of the sign function is zero? The action taken here can be quite
arbitrary. We will use the same convention of Baram [9]: if the argument is zero, neuron i
remains in its previous state, regardless of whether it is on or off.

10 The terms in brackets t+ 1 and t are used to indicate the time step we are referring to.
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Synchronous and asynchronous update

The neurons can be updated in two different ways, synchronously or asynchronously, as
reported by Amit [4], p. 70:

• In synchronously or parallel updating all neurons of the network update their activity
states simultaneously according to rule (2.6) at discrete time steps k = 1, 2, . . . , so
they can fire only at integral multiples of a time period. The inputs of every neuron
in the network are determined by the same activity state of the network in the time
interval (k − 1) < t < k and at the beginning of each period the neurons start from a
zero PSP, carrying no trace of previously accumulated inputs. In other words, after
every time unit they all return to their resting membrane potentials. This type of
dynamics was introduced in earlier studies of neural networks and is still a favorite
among investigators with a foothold in the culture of cellular automata. Given the
inherent stochastic nature of neural communication, the strong synchronicity makes
this type of dynamics even more unrealistic than would be implied by all the other
simplification we introduce. It does in fact have some special features which are not
robust, such as two-cycles, i.e. a kind of “anti-ferromagnetic” order, characterized by
alternating sites.

• In the asynchronous or sequential dynamics the neurons are updated one by one in
some prescribed sequence or in a random order. In this mode every neuron coming
up for a decision has full information about all the decisions of the individual neurons
that have been updated before it. Also in this case the components of the current state
vector are updated according to rule (2.6), where the one component i, chosen to be
updated, is selected among the N indices with equal probability 1/N , independently of
which components were updated previously and of what the values of the probe were
before and after update. This alternative class of dynamical process for networks of
discrete neurons is still an idealization of the real picture but comes closer to capturing
the asynchronous and stochastic nature of the operation of a neural network. For this
reason this type of updating is preferred.

Associative memory

Another feature of this model is that it behaves as an associative memory when the state
of flow generated by the previous algorithm (2.6) is characterized by stable fixed points.
If these stable points describe a simple flow in which nearby points in state space tend
to remain close during the flow, then initial states that are close (in Hamming distance11)
to a particular stable state and far from all others will tend to terminate in that nearby
stable state. Hence, the location of a particular stable point in the state space represents
the information of a precise memory of the system (i.e. a stored pattern) and states nearby
that stable point contain partial information about that memory. From an initial state with
partial information a memory is reached supplying in the initial state some subpart of the
memory. This highlights how this memory is truly addressable by content and not by location.

We need now to prove and understand better this last topic, starting from the defini-
tion of the interconnection matrix T and the study of its properties. Before going deeply
onto this discussion, we introduce two different measures to quantify the distance between
stored patterns and a probe vector.

11 The Hamming distance is used to recognize the stored pattern closer to a given one and will be defined
in section 2.2.2.
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2.2.2 Hamming distance and overlap measure
In this space of network states we will need a measure for a distance between states, each

of which is an N -bit word. A natural one is given by the Hamming distance dH , that points
out how many components are different between the two vectors.

Definition 2.2.1 (Hamming distance). The Hamming distance dH between two vectors V
and W is defined as

dH(V,W ) :=
1

2

N∑
j=1

|Vj −Wj | (2.7)

Remark. Notice that 0 ≤ dH ≤ N, where 0 is attained when all the components of the two
vectors are equal and N when they differ.
In our context, we will use it to judge how far is a suitable stored pattern ξµ from the initial
state of the network V and we will stress the pattern we are referring to with an apex:

dµH =
1

2

N∑
j=1

|ξµj − Vj | (2.8)

An alternative measure is the overlap12, which measures the degree of similarity between
vectors.

Definition 2.2.2 (Overlap measure). The overlap measure between two vectors V and W
is defined by setting

m(V,W ) :=
1

N

N∑
j=1

VjWj (2.9)

Remark. Notice that −1 ≤ m ≤ 1, where −1 is reached if the two vectors differ in all the
components and 1 if they are the same vector.
In what follows, we will use the overlap m to describe how similar the probe vector V is to a
memorized pattern ξµ, putting an apex to underline which memory we are considering

mµ =
1

N

N∑
j=1

ξµj Vj (2.10)

These two measures are completely equivalent and are linearly related, as we proceed to
show following Amit [4], pp. 33-35.
Let NR be the number of bits which are identical between a vector V and vector W and N
the number of total bits in each word. We have that

N = NR + dH =⇒ NR = N − dH (2.11)

Then defining M as the difference between the number of agreeing bits and the number of
differing bits NR − dH and using the previous relation, we gain

M = N − 2dH =⇒ dH =
1

2
N(1− M

N
) =

1

2
N(1−m) (2.12)

where the quantity M/N corresponds to the overlap m defined above. Hence

m = 1− 2

N
dH (2.13)

12This is the kind of quantity which naturally maps on such familiar theoretical constructs as magnetization
and for this reason is appreciated by physicists.
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2.2.3 The interconnection matrix and Hebb’s rule
In 1949 Hebb in [26] has formulated a postulate that has inspired a large body of

theoretical and experimental work on learning in neural networks: “When an axon of cell A is
near enough to excite cell B or repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” This famous postulate is often rephrased in the sense that
modifications in the synaptic transmission efficacy are driven by the correlations in the firing
activity of the pre- and post-synaptic neuron. The translation of this wise speculation in
mathematical form gives Hebb’s rule (2.16), that represents this synaptic plasticity, i.e. the
ability of the brain to change and adapt to new information by strengthening or weakening
the synapses over time.
Let ξ̄ = {ξ(1), . . . , ξ(p)} be a p-set of N -dimensional bipolar (±1) column vectors, which are
to be stored. These vectors will be called fundamental memories or stored patterns. We
assume that the memories to be stored are random and the number of memories intentionally
stored in the network is small compared to the number of neurons in the network, i.e p� N .
For each memory ξµ we form the N ×N matrix Tµ as

Tµ =
1

N

(
ξµ(ξµ)T − IN

)
(2.14)

where I denotes the N ×N identity matrix and the coefficient in front of the sum is there
for technical reasons13. To be more precise we are requiring that Tµ = 1

N (ξµ(ξµ)T ) and that
the diagonal elements of the matrix are zero.

Definition 2.2.3. The Hopfield interconnection matrix T for the set of p memories
ξ̄ = {ξ(1), . . . , ξ(p)} is defined by setting

T =

p∑
µ=1

Tµ, with Tµ defined in (2.14), (2.15)

or in components can be written as

Tij =
1

N

p∑
µ=1

(ξµi ξ
µ
j − δij) (2.16)

where Tij is often called synaptic weight. This last formula represents an outer product
learning rule, called Hebbian learning rule.

The main features of this rule are the following:

• It is local. Each pattern contributes to synapse ij with a term which is the product of
the corresponding ξi and ξj . These are exactly the activities of the neurons i and j
when the network is in a state identical to the pattern.

• It is additive, which is reminiscent of learning.

• It is generic, in the sense that it involves no knowledge about the memories.

The main limitation is perhaps the equal intensity with which all the patterns are imprinted,
that leads to excessive symmetry between all the stored memories.
Then it is assumed that the performance of the network can be analyzed keeping the synaptic
values fixed, or quenched. This implies that during a typical retrieval time the changes that
may occur in synaptic values are very small.

13The explanation of this fact is connected to the analogy with the Ising model. The interested reader can
refer to chapter 3 of Amit’s book [4].
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2.2.4 Fixed stable points
We wish to prove that the stored patterns ξµ are stable points for the dynamics we have

described. There are two different concepts of stability that can be investigated: the network
stability or the condition to be fixed points, that we will describe in this section, and the
Lyapunov stability, that will be the main topic of section 2.2.5.

Definition 2.2.4 (Network stability). A vector V is said to be network stable or a fixed
point of the system if

sgn((TV )i) = Vi, ∀ i (2.17)

or equivalently if applying the updating algorithm (2.6), it does not change

V (t+ 1) = V (t), ∀ t, i.e. Vi(t+ 1) = Vi(t), ∀ t, ∀ i (2.18)

We make it plausible for the memories to be fixed points by proving they are eigenvectors for
T . Assume that a memory ξµ is the initial state of the system. For each i = 1, . . . , N we
have

[Tξµ]i =

N∑
j=1

Tijξ
µ
j =

1

N

N∑
j=1
j 6=i

p∑
β=1

ξβi ξ
β
j ξ

µ
j =

N − 1

N
ξµi +

1

N

∑
β 6=µ

∑
j 6=i

ξβi ξ
β
j ξ

µ
j (2.19)

where the first term can be seen as the signal component and the second addend in the last
equality, called crosstalk term, as the noise component. To obtain an exact result, we need to
require that the stored patterns form an orthogonal basis. Unfortunately this is not always
true, so for this reason we need to take into account two different situations and study them
separately.

Orthogonal case

Following the contribution by McEliece et al. in [39], if the stored patterns form an
orthogonal basis (i.e. they are uncorrelated), the second term in the last equality of (2.19) will
simplify, since the dot product between two different memories vanishes: 0 = ξβ ·ξµ =

∑
j ξ

β
j ξ

µ
j .

Now starting from the following relation

0 =
∑
j

ξβj ξ
µ
j =

∑
j 6=i

ξβj ξ
µ
j + ξβi ξ

µ
i =⇒

∑
j 6=i

ξβj ξ
µ
j = −ξβi ξ

µ
i (2.20)

and substituting it in (2.19) we have:

[Tξµ]i =
N − 1

N
ξµi −

1

N

∑
β 6=µ

ξβi ξ
β
i ξ

µ
i =

N − 1

N
ξµi −

1

N

∑
β 6=µ

ξµi =

=
N − 1

N
ξµi −

p− 1

N
ξµi =

N − p
N

ξµi

(2.21)

Thus we gain that

→ The stored patterns ξµ are eigenvectors for T with positive eigenvalues

λµ =
N − p
N

, µ = 1, . . . , p (2.22)
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→ The memories ξµ are fixed point of the dynamics (y = f(y) = sgn(Ty)):

sgn((Tξµ)i) = sgn(λµξµi ) = ξµi ∀ i (2.23)

since ξµ is an eigenvector of T with positive eigenvalue λµ. Therefore if we apply the
updating algorithm to these vectors, they will not change: ξµi (t+ 1) = ξµi (t).

To gain the fact that our stored patterns are fixed points, we have required that they form
an orthogonal basis. It is important to stress that they are orthogonal from the beginning,
we do not orthogonalize them later and they have not unit norm: ‖ξµ‖ = N, ∀ µ.
The next step will be to guarantee that the orthogonality condition is maintained by the
neural network, as it is presented by Baram in [9].
Denoting by T(k) the matrix of synaptic connections corresponding to k stored patterns, we
modify the previous storage rule as

T(k+1) =

T(k) +
1

N
V k+1(V k+1)T if T(k)V

k+1 = 0

T(k) otherwise
(2.24)

always requiring that the diagonal terms in the matrix T(k+1) are equal to zero. The condition
T(k)V

k+1 = 0 is equivalent to the request of orthogonality of the new pattern respect all the
stored memories. We have indeed that

0 = T(k)V
k+1 =

1

N

∑
β

ξβ(ξβ)TV k+1 =
∑
β

cβξ
β (2.25)

where we used that (ξβ)T ξk+1 = cβ ∈ R from the property of the scalar product. Now there
are two possibilities: or the constants cβ are all zero or some constants are zero and other not.
If cβ = 0 for every β we gain the orthogonality condition between V k+1 and all the stored
patterns. If not all the cβ are zero, we have a linear combination of independent vectors that
is equal zero with not all the coefficient zero and so we have an absurd.

General case

As discussed in [39], if we are not in the case of having an orthogonal set of memories, we
cannot in general neglect the crosstalk term, that represents a sort of noise. From Eq. (2.19)
it follows that the p fundamental memories are approximately eigenvectors of the linear
transformation T , with approximate positive eigenvalues 1. We also deduce a probabilistic
pseudoorthogonality by considering the mean value of the product

[Tξµ]i =

N∑
j=1

Tijξ
µ
j =

1

N

∑
β

ξβi

[∑
j 6=i

(ξβj ξ
µ
j )
]
≡ Hµ

i (2.26)

It is easy to prove that the mean value of the bracketed term in the previous equation is 0
unless β = µ for which is N − 1.
First, we recall the definition of mean value for a variable X

〈X〉 =
∑
j

XjP(Xj)

where Xj are the values that the variable can assume and P(Xj) the associated probability.
In our context the variables in exam are the component of the stored pattern ξµj , which are
independent random variables with values ±1, each with probability 1/2, and zero mean.
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→ In the case of β = µ we have

〈
∑
j 6=i

(ξµj ξ
µ
j )〉 =

∑
j 6=i

〈(ξµj )2〉 =
∑
j 6=i

〈1〉 = N − 1 =⇒ 〈Hµ
i 〉 =

N − 1

N
ξµi

where we have used the linearity of the mean value.

→ When β 6= µ we obtain:

〈
∑
j 6=i

(ξβj ξ
µ
j )〉 =

∑
j 6=i

〈ξβj ξ
µ
j 〉 =

∑
j 6=i

(
〈ξβj 〉 〈ξ

µ
j 〉
)

= 0

since ξβj and ξµj are independent variables with zero mean.

In this situation the crosstalk term will also determine the network stability of our stored
patterns, as explained by Hertz, Palmer and Krogh in [27]. We start by defining the quantity
Cµi :

Cµi = −ξµi
1

N

∑
j

∑
β 6=µ

ξβi ξ
β
j ξ

µ
j (2.27)

• If Cµi < 0, the crosstalk term has the same sign of ξµi and so this term does not affect
the network stability of the pattern.

• If Cµi > 0, they have different sign and there are two possible situations that can
happen:

– if 0 < Cµi < (N − 1)/N , with the absolute value of the crosstalk term less
than (N − 1)/N , it does not change the sign of [Tξµ]i and we have that the
stability condition sgn([TV µ]i) = V µi is satisfied. In this case there can be some
wrong bits but they will be correct during the evolution.

– If Cµi > (N − 1)/N the crosstalk term modifies the sign of our product and the
pattern is unstable. Hence, the dynamics of the network tends to depart from the
fundamental memory.

Storage Capacity and network stability

The concept of network stability is linked to the maximum capacity of the network. An
estimate of the number of state vectors that can be made fixed points in a Hopfield network
can serve as common criterion for evaluation of Hopfield networks functioning as associative
memory. This measure is known as storage capacity or capacity of Hopfield network. To
study the storage capacity we need to define some new tools, as stated in [25], pp. 715-718.
We assume for simplicity that N, p� 1 and we note that Cµi , defined in Eq. (2.27), is the
sum of (roughly) N(p− 1) independent and identically distributed (i.i.d.) random variables,
say ym for 1 ≤ m ≤ Np, that are equally likely to be +1 or −1. We then observe that
every ym has zero mean and variance σ2 = 1. Thus, using the Central Limit Theorem14

we obtain that Cµi has approximately a Gaussian distribution with zero mean and variance

σ2 =
1

N2
(N(p− 1)) =

p− 1

N
.

14Central Limit Theorem: If zm is a sequence of i.i.d. random variables each with mean µ and variance
σ2 then for large n, Xn = 1

n

∑n
m=1 zm has approximately a normal distribution with mean µ and variance

σ2/n.
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Definition 2.2.5. We introduce the following notions, which we will need in the study of
network capacity, as presented in [25], p.716:

1. The signal-to-noise ratio is defined by setting

ρ =
variance of signal
variance of noise

=
1

(p− 1)/N
' N

p
for large p (2.28)

2. The reciprocal of the signal-to-noise ratio, that is,

α =
p

N
(2.29)

is called the load parameter or storage efficiency and is the ratio of number of candidate
state vectors p that are made stored stable states to the number of neurons N in the
network. Thus α is the number of candidate state vectors made stable state per neuron.
From Eq. (2.29) we define the storage capacity of a Hopfield network as

p = αN (2.30)

3. The critical storage capacity pc is defined as that storage capacity of Hopfield network
beyond which it is not possible to store candidate state vectors without affecting the
network stability of already stored state vectors.

Statistical physics considerations reveal that the quality of memory recall of the Hopfield
network deteriorates with increasing load parameter α and breaks down at the critical value
αc = 0.14 (see for example Amit, 1989 [4]). This critical value is in agreement with the
estimate of Hopfield (1982, [28]), where it is reported that as a result of computer simulation
0.15N states can be recalled simultaneously before errors become severe.

→ With αc = 0.14, we find from Eq. (2.28) that the critical value of the signal-to-noise
ratio is ρc ' 7 and below this critical value memory recall breaks down. Therefore,
it follows from Eq. (2.28) that as long as the storage capacity of the network is not
overloaded (i.e. is the number p of fundamental memories is small compared to the
number N of neurons in the network) the fundamental memories are network stable.
Then, the critical value

pc = αcN = 0.14N (2.31)

defines the storage capacity with errors on recall.

To determine the storage capacity without errors we must use a more stringent criterion
defined in terms of probability of errors as described by Hertz et al. in [27] and Orhan [43].
Coming back to what we have seen before for Cµi , now we want to evaluate the probability
to have an unstable condition:

Perr = P
(
Cµi >

N − 1

N

)
(2.32)

If we choose an acceptable performance criteria with the error probability fixed, we can
determine the maximum storage capacity, i.e. the maximum value of p that satisfies this
criteria.
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1. If we store p patterns in a Hopfield network with a large number of N neurons, then
the probability of error, i.e. the probability that Cµi > (N − 1)/N , is:

Perr =
1√
2πσ

∫ ∞
N−1
N

e−
x2

2σ2 dx =
1√
2πσ

∫ ∞
0

e−
x2

2σ2 dx− 1√
2πσ

∫ N−1
N

0

e−
x2

2σ2 dx (2.33)

because Cµi has a Gaussian distribution.

2. Using in Eq. (2.33) the substitution u = x√
2πσ

we gain

Perr =
1

2
−
∫ 1√

2σ2

N−1
N

0

e−u
2

du =
1

2

(
1− erf

( 1√
2σ2

N − 1

N

))
=

=
1

2

(
1− erf

(N − 1

N

√
N

2p

)) (2.34)

where

erf
( 1√

2σ2

)
:=

2√
π

∫ 1√
2σ2

0

e−u
2

du (2.35)

3. Fixing an acceptable value for the error probability, e.g. Perr < 0.001, we find the
maximum number of memories pmax that can be stored using the chosen criteria. A
long and sophisticated analysis of the stochastic Hopfield network shows that p cannot
be larger than about 0.185N , otherwise small errors can pile up in updating and the
memory becomes useless.

4. The above result gives the single-bit error probability. Since there are N bits in a stored
pattern, the probability of error-free recall of a stored pattern is given by (1− Perr)N .
We require that this probability be grater than some set value, say 0.99, i.e.

(1− Perr)N > 0.99

Using the binomial expansion of the left-hand side and keeping the two lowest-order
terms with respect to Perr (because Perr is small), we get

Perr < 0.01/N

Thus, Perr → 0 as N →∞.

5. From equation (2.34), this implies

erf
(N − 1

N

√
N

2p

)
→ 1 =⇒ N − 1

N

√
N

2p
→∞

which yields p/N → 0 as N →∞. Therefore, using the following asymptotic approxi-
mation for the erf function in Eq. (2.34):

1− erf(x)→ exp(−x2)/
√
πx as x→∞ (2.36)

we gain

log(Perr) ≈ − log 2−
(N − 1

N

)2N

2p
− 1

2
log π − log

(N − 1

N

)
−1

2
log
(N

2p

)
(2.37)
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6. Requiring Perr < 0.01/N in Eq. (2.37), we have

− log 2−
(N − 1

N

)2N

2p
− 1

2
log π− log

(N − 1

N

)
−1

2
log
(N

2p

)
< log 0.01− logN (2.38)

Keeping only terms of leading order in N , we find

(N − 1)2

2Np
> logN =⇒ p <

(N − 1)2

2N logN
(2.39)

Thus asymptotically, for N →∞, this behaves as

p <
N

2 logN
(2.40)

7. We have found an upper bound for the storing capacity and we have proved that as
long as the number of the stored patterns p satisfies Eq. (2.40), the absolute value of
the crosstalk term will be highly unlikely to be larger than (N − 1)/N . Thus in these
hypothesis the patterns ξµ are fixed points of the network dynamics.

→ The storage capacity almost without errors pmax is defined as the largest number of
fundamental memories that can be stored in the network and most of them be recalled
correctly. From Eq. (2.40) we gain the formula

pmax =
N

2 logN
(2.41)

2.2.5 The energy function
The main feature of the Hopfield model is the converge of the state space flow algorithm

to stable states. Any symmetric matrix T with zero diagonal elements (i.e Tij = Tji and
Tii = 0) will produce such a flow. The proof of this property is based on the construction of
an appropriate energy function, that is monotonically decreasing and represents a candidate
Lyapunov function. If this is true, we obtain that the Hopfield net is Lyapunov stable15, a
condition stronger than the simple network stability.

Definition 2.2.6 (Lyapunov stability). Given a discrete in time system

x(t+ 1) = f(x(t))

where f : D → RN continuous on D, with D ⊂ RN an open set containing the origin
and x(t) ∈ D ⊂ RN . Suppose f has an equilibrium point x∗ so that f(x∗) = 0, then this
equilibrium is said to be

• Lyapunov stable if, for every ε > 0, there exists a δ = δ(ε) > 0 such that

‖x(0)− x∗‖ < δ =⇒ ‖x(t)− x∗‖ < ε ∀ t ≥ 0

• asymptotically Lyapunov stable if it is Lyapunov stable and there exists δ > 0 such
that

‖x(0)− x∗‖ < δ =⇒ lim
t→∞

‖x(t)− x∗‖ = 0

15A neural network is said to be stable, if all its neurons are stable.
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We assume asynchronous updating. Then the state of an asynchronous Hopfield network can
be characterized by an energy function, defined as follows

E = −1

2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

IiVi +

N∑
i=1

UiVi (2.42)

We assume Ui = 0 and Ii = 0, thus E is simplified into

E = −1

2

∑
i

∑
j

TijViVj (2.43)

We also assume that the stored patterns form an orthogonal basis and are not correlated to
simplify the notations, but the result we will present (Prop. 2.2.9) holds also in the general
case.
We recall the classical definition of Lyapunov function and introduce the definition of
Lyapunov function in the abstract theory of dynamical systems, as reported in [1].

Definition 2.2.7 (Lyapunov function). A function f(x), x ∈ RN is said to be a Lyapunov
function if there exists an equilibrium state x∗, such that the following three conditions are
satisfied:

1. f(x) is continuous with respect to all components of x.

2. f(x) is positive definite, that is f(x∗) = 0 and f(x) > 0 for x 6= x∗.

3. The time derivative ḟ(x) is negative semidefinite, i.e. the function decreases in time.

If it is defined only on a open neighborhood of the equilibrium point, f is said to be a local
Lyapunov function ([23]).

Definition 2.2.8 (Lyapunov function-2). Let (X, d) be a metric space. A function h : X → R
is said to be a Lyapunov function for the flow ψ = {ψt}t∈R on X if

h ◦ ψt ≤ h, ∀ t ≥ 0 (2.44)

and is said to be a first integral if

h ◦ ψt = h, ∀ t ∈ R (2.45)

Proposition 2.2.9. The energy function (2.43) is a Lyapunov function16.

Proof. The function (2.43) satisfies the tree conditions of the definition of Lyapunov func-
tion (2.2.7):

1. ∂
∂Vi

E(V ) = −
∑
j TijVj , ∀ Vi, implying17 E(V ) is continuous with respect to all

components of V .

16In this proof we will follow [6], pp. 30-31, except for the second point where we will prove that E is also
positive definite and not only bounded.

17If f : A → RN is differentiable at c ∈ A, then there exists strictly positive numbers δ,K such that
‖x− c‖ < δ, then ‖f(x)− f(c)‖ ≤ K ‖x− c‖. In particular, it follows that f is continuous.
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2. Equation (2.43) does not satisfy Condition (2) of the Lyapunov function. In general
this condition is substitute with the boundedness of the function, that can be easily
proved and that highlights the existence of stopping points for the dynamics of the
network, at which the function attains its lower bound. This represents the definition of
Lyapunov function in the abstract theory of dynamical systems, as defined in Def. 2.2.8.
As presented in [6], a rough bound18 for E can be found in this way:

E ≥ −1

2

∑
i

∑
j

|TijViVj | = −
1

2

∑
i

∑
j

|Tij | ≥ −
1

2
N2 p

N
= −1

2
pN (2.46)

where in the last inequality we used that |Tij | ≤ 1
N

∑
β |ξ

β
i ξ

β
j | =

p
N and that the absolute

value of all the components of the vector Vi are equal to one.

Statement. The bound given in Eq. (2.46) is never realized and so the inequality is
strict.

Proof. For absurd we suppose that for a pattern V the inequality (2.46) is satisfied
exactly:

E(V ) = −1

2

∑
i

∑
j

TijViVj = −1

2
pN

We can find a bound for the argument of this double sum TijViVj by considering the
best case that can occur.
First, we have that

Tij =
1

N

p∑
µ=1

ξµi ξ
µ
j ≤

p

N

because ξµi ξ
µ
j ≤ 1 for every µ and i, j. The equality is obtained when for every µ and

i, j fixed
ξµi ξ

µ
j = 1 =⇒ ξµi = 1 = ξµj or ξµi = −1 = ξµj

Now we consider TijViVj and we have

TijViVj ≤
p

N

where we used Tij ≤ p
N and ViVj ≤ 1 for every i, j. From these considerations we have

that for i, j fixed

TijViVj =
p

N
⇐⇒ Tij =

p

N
and ViVj = 1

Now we take the sum over i and over j of these quantities and to maximize this double
sum the conditions seen before have to be true for every i and j:

(a) Vi = 1 = Vj or Vi = −1 = Vj for every i, j.
(b) ξµi = 1 = ξµj or ξµi = −1 = ξµj for every µ, i, j.

and in this way we obtain

−1

2

∑
i

∑
j

TijViVj = −1

2
pN

18The boundedness of E is very important, because is telling us that E cannot converge to −∞, but is
bounded from below by its value in the minimum points.
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• The first condition (a) implies that V is equal to one of these two N−vectors
V1 = (1, . . . , 1)T or V2 = (−1, . . . ,−1)T .

• The second condition (b) means that the unique stored patterns we can have, are
represented by V1 and V2! This is absurd for the model we are describing, where
the number of memories is quite high.

We have thus obtain that (2.46) can be rewritten as

E > −1

2
pN (2.47)

We now can derive a better lower bound identifying the minimum points of the energy
function.
First, we compute the time derivative19, that in this case corresponds to the change of
energy ∆E due to the change in the state of the Hopfield network ∆Vi,

∆E = −
∑
i

∑
j

TijVj∆Vi = −
∑
i

∆Vi
∑
j

TijVj = −∆V T (TV ) (2.48)

where
∆E = E(t+ 1)− E(t), ∆Vi = Vi(t+ 1)− Vi(t)

Then we identify the points at which this derivative becomes zero and thus ∆E = 0 if
and only if one of this condition is satisfied:

(a) ∆Vi = 0 ∀ i: The vectors V satisfying this property correspond to fixed points
of the net, i.e. points such that their value does not change in further updating,
Vi(t+ 1) = Vi(t), thus the stored patterns. Using (2.21), the value of E in such
points is equal to

E(ξµ) = −1

2

∑
i

∑
j

Tijξ
µ
j ξ

µ
i = −1

2

∑
i

[N − p
N

(ξµj )2
]
=

= −N(N − p)
2N

= −N − p
2

< 0

(2.49)

(b)
∑
j TijVj = 0, ∀ i: This condition implies that V is in the kernel of the connection

matrix T
ker(T ) = {V | (TV )i =

∑
j

TijVj = 0, ∀ i}

and evaluating E in these patterns we obtain

E(V ker(T )) = −1

2

∑
i

∑
j

TijV
ker(T )
j V

ker(T )
i = 0 (2.50)

(c)
∑
j

∑
i TijVj∆Vi = 0: In this case we are requiring that TV⊥∆V and thus we

obtain a null value for E also for these points.

Statement. The first vectors analyzed represent minimum points for E and thus the
only minimum points for E are represented by the stored patterns.

19For the explicit calculation of the time derivative see Appendix A.



2.2. HOPFIELD MODEL: AN EXAMPLE OF CONTENT ADDRESSABLE
MEMORY

36

Proof. We consider the last two types of points that cancel the derivative of E.

• The second type of vectors are in ker(T ), so they are such that
∑
j TijVj = 0.

Since we have assumed that the stored patterns form an orthogonal basis and we
have seen previously in (2.24) how to modify the storage rule in order to memorize
a new vector as a fundamental memory, we have that a vector of this type is
exactly a new stored pattern. Therefore these are also minimum points for the
energy function20.

• In the last situation we have that TV⊥∆V with ∆V 6= 0 and TV 6= 0, otherwise
we are in one of the previous cases. For this type of vectors we have that E(V ) = 0,
which is different from the value attained in the stored patterns, and they are not
fixed points because ∆V 6= 0. So they are only critical points and not minimum
points.

Thus, we have proved that the only minimum points21 for E are represented by the
stored patterns ξµ.

Remark. We note that the minimum points of E are global minimum points and thus
we have obtained that the value of E in all the minimum points is the same.

Therefore, we can improve the lower bound of E:

E(V ) > E(ξµ) = −1

2
(N − p), ∀ V 6= ξµ. (2.51)

From Eq. (2.51), we can immediately see how the energy function (2.43) is not the
correct candidate to be a Lyapunov function, because from (2.49) if we evaluate it in
a fundamental memory ξµ, E(ξµ) is not equal zero. In order to gain the Lyapunov
characterization we have to substitute (2.43) with

E = −1

2

∑
i

∑
j

TijViVj +
N − p

2
(2.52)

and for this function we have that E(ξµ) = 0 and the property of positive definiteness
is achieved:

E(V ) > 0, ∀ V 6= ξµ. (2.53)

3. Condition (3) of the Lyapunov function is satisfied if we can prove that there is a
decreasing in the energy when we update one or more components, thus any change in
Vi results in a decrease of E. As seen before, we have that

∆E = −
∑
ij TijVi(t)(Vj(t+ 1)− Vj(t))

= −
∑
j

(∑
i TjiVi(t)

)
(Vj(t+ 1)− Vj(t))

(2.54)

20In the general case, this deduction is not correct. For these patterns we have that the network stability
condition is satisfied if and only if Vi = sgn((TV )i) ∀ i and in our assumptions this is true. Furthermore
they are also minimum points, because using the updating algorithm they change in this way: Vi(t+ 1) =
sgn((TV )i) = Vi(t) ∀ i. Thus in this case we have to take into account also these points with null value of
energy and null eigenvalue, that in section 2.2.6 we will call spurious states.

21In the general case we have that also the points with null eigenvalue are minimum points for E, but
this is not a problem. For the deduction of the better bound (2.51) the presence of these points does not
affect the result, since the value of E in these points is larger than that in the stored patterns, where

E(ξµ) = − (N−1)
2
− 1

2N

∑
β 6=µ

[∑
i ξ
β
i ξ
µ
i

]2
< 0.
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where E(t+ 1) is the energy associated with the updated pattern V (t+ 1). By using
rule (2.6) we have {∑

i TjiVi(t) ≥ 0 =⇒ 1− Vj(t+ 1) ≥ 0∑
i TjiVi(t) < 0 =⇒ −1− Vj(t+ 1) ≤ 0

(2.55)

From this consideration we can conclude that E(t+ 1)−E(t) ≤ 0 and it reaches the
value zero when we are considering a stored pattern ξµ, that is a fixed point.

Therefore we have proved that the energy22 (2.52) is a Lyapunov function characterized by a
matrix of weights with zero diagonal.

We now recall the Lyapunov stability criterion:

Theorem 2.2.10 (Lyapunov stability criterion). The equilibrium state23 x∗ is Lyapunov
stable if in a neighborhood of x∗ there exists a positive definite function L(x), whose time
derivative is negative semidefinite in that neighborhood and such that L(x∗) = 0. Thus L
is a Lyapunov function. If the time derivative of L is negative definitive, x∗ is said to be
asymptotically Lyapunov stable.

We have seen24 that in the Hopfield net the equilibrium points are the stored patterns and
thus from the Lyapunov theorem we have that they are asymptotically Lyapunov stable.
For this reason starting from a probe pattern we will converge through the iterations of the
updating algorithm to a Lyapunov stable state, that do not further change with time.

2.2.6 Spurious states and eigenanalysis

The weight matrix T of a discrete Hopfield network is symmetric. Therefore, the
eigenvalues of T are all real and T can be completely characterized by its eigenvalues and
corresponding orthogonal eigenvectors. Let these be denoted

λ1, . . . , λN e1, . . . , eN

→ For large p, the eigenvalues are ordinarily degenerate, which means that there are
several eigenvectors with the same eigenvalue. The eigenvectors associated with a
degenerate eigenvalue form a subspace.

→ The weight matrix T has a degenerate eigenvalue with a value of zero, whose relative
subspace is called the null space. The null space exists by virtue of the fact that the
number of fundamental memories, p, is smaller than the number of neurons N in the
network. The presence of this null space is an intrinsic characteristics of the Hopfield
network.

22If in Eq. (2.42) we assume Ii 6= 0 and Ui 6= 0 this result is not true and we will have only local Lyapunov
functions, one for each ξµ. A detailed proof for a case similar to this has been done for the continuous time
energy and can be found in Prop. 2.3.1.

23An equilibrium point for a differential equation ẋ = f(t, x) is a point x∗ such that f(t, x∗) = 0, ∀ t or
equivalent is an equilibrium point for x(t+ 1) = f(t, x(t)) if f(t, x∗) = x∗ for t = 0, 1, 2, . . .

24As discussed above the same result holds also in the general case with an analogous proof. Indeed, we
have used the hypothesis of orthogonality only in the analysis of the vector in ker(T ) (we have already seen
how we can overcome this) and in the evaluation of the energy function in the stored pattern. In the general
case we don’t know these values exactly, because they depend on the scalar product ξµ · ξβ and so for this
reason we have preferred to present the proof with the simplest case.
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To understand better, we make an eigenanalysis of T , as done in Aiyer et al. [3].
Let e1, . . . , ep1 be the eigenvectors with non zero eigenvalue λ1, . . . , λp1 and ep1+1, . . . , eN

those with null eigenvalue. A vector V can be written in terms of its component V k in the
direction of the eigenvector ek, k = 1, . . . , p1, plus its component q in the null subspace as
follows:

V =

p1∑
k=1

V k + q (2.56)

where
V · ek = V k = γke

k

Similarly, the connection matrix, energy function and dynamic update equation can be
expressed as follows:

T =

p1∑
k=1

λke
k(ek)T

E = −1

2

p1∑
k=1

λk|V k|2 = −1

2

p1∑
k=1

λkγ
2
k

TV =

p1∑
k=1

λkv
k

(2.57)

It can be seen that to minimize E the network must move V so as to:

• reduce to zero magnitude all V k’s where λk < 0

• increase the magnitude of all V k’s where λk > 0

Let V be a memory vector and thus a network stable state. The condition of network stability
requires

Vi = sgn((TV )i) for i = 1, . . . , N

= sgn
( p1∑
k=1

λkV
k
i

)
using (2.56) =⇒

p1∑
k=1

V ki + qi = sgn
( p1∑
k=1

λkV
k
i

) (2.58)

The only way that (2.58) can be guaranteed for any set of memory vectors is if

qi = 0 for i = 1, . . . , N and λk = λ for k = 1, . . . , p1 with λ > 0

In other words:

1. To ensure q = 0, the null subspace must be orthogonal to all the memory vectors.

2. As a result, all the memory patterns must be completely specified by
∑p1

k=1 V
k, hence

the eigenvectors of T must at least span the subspace formed by the memory vectors.
This will automatically ensure that the previous point is true.

3. So that λk = λ, ∀ k with k = 1, . . . , p1, the connection matrix must have a single
positive degenerate eigenvalue corresponding to the memory vector subspace.
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LetM denote the subspace spanned by the memory vectors. From 1. the complementary
subspace to this will be the null subspace of T , denoted with Q. Thus a vector V can be
written in terms of its component inM, denoted by m̃, and its component in Q, denoted
by q

V = m̃+ q, where m̃ · q = 0 (2.59)
Remark. We note that if the memorized patterns formed an orthogonal basis, they correspond
to the eigenvectors ek of T , as seen in section 2.2.4, and thus p1 = p.

This eigenanalysis of the weight matrix T leads us to take the following viewpoint of the
discrete Hopfield network used as a CAM:

→ The discrete Hopfield network acts as a vector projector in the sense that it projects a
probe vector onto a subspaceM spanned by the fundamental memory vectors. Then
the underlying dynamics of the network drives the resulting projected vector to one of
the corners of a unit hypercube where the energy function is minimized.

→ The p fundamental memories, spanning the subspace M, constitute a set of fixed
points represented by certain corners of the unit hypercube. The other corners of
this hypercube that lie in or nearM are potential locations for spurious states, also
referred to as spurious attractors. Spurious states represent network stable states of
the Hopfield network that are different from the fundamental memories of the network
and are characterized by a higher energy. Furthermore, their number increases very
rapidly with the number of stored memory vectors p (Ayer et al. [3]).

Following Amit [4], the spurious states may be grouped as follows:

• Reversed fundamental memories. The spurious states are reversed (i.e. negative)
versions of the fundamental memories of the network. To explain this kind of spurious
state, we note that the energy function E is symmetric in the sense that its value
remains unchanged if the states of the neurons are reversed (i.e. the state Vi is replaced
by −Vi for all i). Accordingly, if the fundamental memory ξµ corresponds to a particular
local minimum of the energy landscape, that same local minimum also corresponds to
−ξµ. This sign reversal does not pose a problem in the retrieval of information if it is
agreed to reverse all the information bits of a retrieved pattern if it is found that a
particular bit designed as the “sign” bits is −1 instead of +1.

• Mixture states A mixture spurious state is a linear combination of an odd number of
stored patterns. For example, consider the state

Vi = sgn(ξµ1

i + ξµ2

i + ξµ3

i )

which is a three-mixture spurious state. It is a state formed out of three fundamental
memories ξµ1

i , ξµ2

i , ξµ3

i by a majority rule. The network stability condition y = sgn(Ty)
is satisfied by such a state for a large network.

• Spin-glass states. This kind of spurious state is so named by analogy with spin-glass
models of statistical mechanics. Spin-glass states are defined by local minima of the
energy landscape that are not correlated with any of the fundamental memories of the
network.

In the design of a Hopfield network as a content-addressable memory we are therefore faced
with a tradeoff between two conflicting requirements:

1. the need to preserve the fundamental memory vectors as fixed points in the state space

2. the desire to have few spurious states.
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2.2.7 The Attraction Basin
From what has been said up to now, it is obvious that stored memories are attractors

for the dynamics, i.e. they have a region of influence around them so that states which are
sufficiently similar to a stored pattern are mapped into it by repeated iterations of the system
operator. In Hopfield neural network this region is called basin of attraction25.

Definition 2.2.11 (Basin of Attraction). The basin of attraction is the set of states in the
system within which almost all states flow to one attractor and it is usually measured by
Hamming distance.

Using the “landscape description” of the dynamical process, we have that the basins of
attraction correspond to the valleys around each minimum. Thus, for any starting point
the state slides down hill until it comes to rest (a stable state) at one of these minima (the
attractors). The flow of a state to a pattern is not determined solely by the Hamming
distance, but depends also on the proximity of the state to the other stable states and to
the spurious states and secondly on the path that is taken. This means that the basins
of attraction are sensitive to the details of the dynamics. For instance, serial and parallel
dynamics may define different basins of attraction, that may be affected also by order of
updating in the serial dynamics.
The attraction size of the basin of attraction is represented by the hamming radius, that is
defined by Kanter and Sompolinsky in [31] and by Storkey and Valabregue in [57] as follows:

Definition 2.2.12 (Radius of attraction). Given specific dynamic rules, the radius of
attraction Rµ of a stored pattern ξµ is defined as the largest Hamming distance within which
almost all of the states (but not necessarily all of them) flow to the pattern.

R(ξµ) = Rµ = max{dµH(ξµ, V ) : V ∈ Basin(ξµ)} (2.60)

where Basin(ξµ) is the basin of attraction of ξµ, i.e. the set of states that are attracted to ξµ.
It is common for R to be normalized with respect to the size of the network, so that it lies
between zero and one: 0 ≤ Rµ ≤ 1.
The average size of attraction basin over all the stored patterns is then defined as

R =
〈
R(ξβ)

〉
ξβ

=
1

p

∑
ξβ∈ξ̄

R(ξβ) (2.61)

Remark. Recalling the relation between Hamming distance and overlap measure given in
Eq. (2.12) and using it in Eq. (2.60), we have that

R(ξµ) =
1

2
(1−mµ) (2.62)

where we omit the value N at the denominator because R(ξµ) has been normalized.

The mean radius of attraction over the patterns R can act as a measure of the quality of
a particular associative memory and clearly, the larger the sample size the higher the quality
of the estimate. As done in [31], the radii of attraction R of the embedded memories can be
measured by following the time evolution of states with varying initial overlaps.
Let V = {V 1, . . . , V k} be a set of probe vectors. Consider one of the sample state V i ∈ V,

25All the definitions and the results we will present in this section are true both for uncorrelated and for
correlated pattern, that willl be presented in section 2.4.2.
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that has an overlap mµ
i = m(V i, ξµ) with the pattern ξµ, i.e. a fixed fraction mµ

i N of the
state identical to the corresponding one of the stored pattern ξµ and the rest of the state is
random. From simulations, it can be seen that at high value of mµ

i , states always flow to the
pattern ξµ, whereas as it is reduced, a substantial number of states flow to different fixed
points. From Eq. (2.62) a working definition26 of R(ξµ) is given by

Rµ =
1

2
(1−mµ

c ) (2.63)

where mµ
c is the smallest value of the overlap mµ

i such that as N → ∞ almost all of the
states having mµ

i > mµ
c will evolve toward ξµ.

Averaging the final value of mµ
c over different sets of probe patterns W and all the stored

patterns yields

R =
1

2

(
1− 〈〈mµ

c 〉W〉ξµ
)

(2.64)

As pointed out in [31], for finite size associative memories another factor needs to be
considered. A probe vector V i may overlap also other stored patterns ξβ , with β 6= µ, and
to compensate for this the definition of R is modified to:

R =
1

2

〈〈
1−mµ

c

1−mav

〉
W

〉
ξµ

(2.65)

where mav is the average overlap of the given state with all of the other stored states, e.g.
the largest overlap with the rest of the patterns mav = max{mβ}, β 6= µ, and the brackets
indicate an average over all stored states and all starting configurations. Note that as N →∞,
mav → 0 and Eq. (2.65) reduces to Eq. (2.64).
In [31], Kanter and Sompolinsky have also shown the dependance of R on the load parameter
α, because as α increases, the number of spurious states becomes bigger and affects the radius
of attraction of the memories. Trough measures of R for asynchronous and synchronous
dynamics, they have found that R follows approximately a straight line as a function of α,
i.e.

R ' 1− α, with 0 ≤ α ≤ 1. (2.66)

Thus, the radius of attraction R(α) is unit as α→ 0 and decreases monotonically to zero as
α→ αc.

2.3 A continuous deterministic model

From the original Hopfield model [28] we can construct a model based on continuous
variables and responses with all the significant behavior of the previous one, as described by
Hopfield in [29]. The extension of the analysis into this domain is very important, because real
neurons have input-output relations which may be more reasonably modeled on a continuous
basis than on an all-or-none basis.

26In [31] this definition is given without the factor 1/2, because as discussed in Personnaz et al. [47], they
exemplified the model by considering stored patterns with equal distance N/2 between them. This implies
that the minimum overlap a probe vector can have with ξµ to be attracted to it is 0, i.e. at most N/2
different components.
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2.3.1 Additive model
Following Chapter 17 of Gerstner et al. [22] and Chapter 14 of Haykin [25], in particular

pp. 698-706, we derive an equation for the dynamics of the network in the continuous case.
A neuron is surrounded by a cell membrane, which is a rather good insulator. If a short
current pulse I(t) is injected into the neuron, the additional electrical charge q =

∫
I(t′)dt′

has to go somewhere: it will charge the cell membrane. The cell membrane therefore acts
like a capacitor of capacity C. Because the insulator is not perfect, the charge will, over
time, slowly leak through the cell membrane, which therefore can be characterized by a finite
leak resistance R.
Let consider neuron j and let the output variable Vj for neuron j have the range −1 ≤ Vj ≤ +1
and suppose that Vj is a continuous and monotone-increasing function of the instantaneous
input uj to neuron j. Typically the input-output relation between uj and Vj is described by
a sigmoid function g with asymptotes −1 and +1, i.e.

Vj = g(uj) =⇒ uj = g−1(Vj) (2.67)

where we have assumed that the inverse of the nonlinear activation function exists. Figure 2.1
shows a plot of a standard nonlinear sigmoidal function g(u) and of its inverse g−1(V ).
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Figure 2.1: Plot of a standard sigmoidal function g(u) = tanh(u/2) and its inverse g−1(V ) = − log( 1−V
1+V

).

From the biological point of view we have that:

• uj can be interpreted as the mean soma potential of neuron j from the total effect of
its excitatory and inhibitory inputs or the membrane potential (that corresponds to hj
defined in Eq. (2.3) with Ij = 0)

• Vj can be seen as the output potential, i.e. the short-term average of the firing rate of
neuron j.

In physical terms, the synaptic weights Tj1, . . . , TjN represents conductances and the re-
spective inputs V1(t), . . . , VN (t) represents potentials. These inputs are applied to a current-
summing junction, that acts as a summing node for the input currents and is characterized
as follows:
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• Low input resistance

• Unity current gain

• High output resistance

The total current flowing towards the input node of the nonlinear element (activation function)
in Fig. 2.2 is therefore

N∑
i=1

TjiVi(t) + Ij

where the first (summation) term is due to the stimuli V1(t), V2(t), . . . , VN (t) acting on the
synaptic weights (conductances) Tj1, . . . , TjN respectively and the second term is due to the
current source Ij representing an externally applied bias.

Figure 2.2: Additive model of a neuron. This figure is taken from Haykin’s book [25], that uses a different
notation from the one used here: wji, for i = 1, . . . , N , corresponds to the synaptic weights Tji, xj(t),
with j = 1, . . . , N , to the inputs Vj(t), ϕ to the activation function g and vj the local field uj .

Let uj(t) denote the induced local field at the input of the nonlinear activation function g(·).
We may then express the total current flowing away from the input node of the nonlinear
element as the sum of two terms:

uj(t)

Rj
+ Cj

duj(t)

dt

where the first term is due to leakage resistance Rj and the second term is due to leakage
capacitance Cj . From Kirchoff’s current law, we know that the total current flowing towards
any node of an electrical circuit is zero. By applying Kirchoff’s current law to the input node
of the nonlinearity in Fig. 2.2, we get

Cj
duj(t)

dt
+
uj(t)

Rj
=

N∑
i=1

TjiVi(t) + Ij (2.68)
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Therefore, the dynamics of the system is given by a resistance-capacitance (RC) charging
equation27 that determines the rate of change of uj

Cj

(duj
dt

)
=
∑
i

TjiVi −
uj
Rj

+ Ij (2.69)

where TjiVi represents the electrical current input to cell j due to the present potential of
cell i and Tji is the synapse efficacy. Then Cj is the input capacitance of the cell membranes
and Rj the transmembrane resistance.
We assume the symmetry of T , but we do not require that T has a zero diagonal and thus
do not have self-loops.

2.3.2 The energy function
The energy associated to this dynamical system is given by (Hopfield, [29])

E = −1

2

∑
i

∑
j

TijViVj +
∑
i

1

Ri

∫ Vi

0

g−1
i (V )dV −

∑
i

IiVi (2.70)

As in the discrete case, it can be proved that E is a Lyapunov function:

Proposition 2.3.1. The energy function (2.70) is a Lyapunov function in the sense of
Def. (2.2.8).

Proof. We want to prove that the Lyapunov conditions of Def. (2.2.8) holds. In reality, in a
sense to be specified, the three conditions of Def. (2.2.7) are satisfied:

1.
∂

∂Vk
E(V ) = −

∑
j

TkjVj +
uk
Rk
− Ik, ∀ Vk, implying28 E(V ) is continuous in its

interval of definition with respect to all components of V .

2. We have that Vi ∈ [−1, 1] and g−1 in such interval are inferior bounded, thus the energy
function is bounded and E admits at least a minimum.
To prove that E is positive definite we can note that the second factor in (2.70) is
always positive, thus

E ≥ −1

2

∑
i

∑
j

TijViVj −
∑
i

IiVi (2.71)

Now the right-hand side coincides with the energy function of the discrete case (2.43)
with Ii 6= 0. Thus arguing in the same way we gain the result E(V ) ≥ c, with
c = minξµ E(ξµ), since now the values of E in the stored patterns are not equal.
As in the discrete case, the correct energy function has to be shifted in order to have
E(ξµ) = 0, ∀ µ. Here the values cµ = E(ξµ) are different for the various stored patterns
because of the presence of the second and third term on the right-hand side of Eq.
(2.70). Thus, we will obtain only local Lyapunov functions, one for each ξµ. In the
basin of attraction Basin(ξµ) of a stored pattern ξµ the energy (2.70) is replaced with
Eµ = E − cµ, where

cµ = E(ξµ) = −N − p
2
−
∑
i

Iiξ
µ
i +

∑
i

1

Ri

∫ ξµi

0

g−1
i (V )dV

27For the connection between Eq. (2.69) and the discrete dynamics equation (2.6) see Appendix B .
28If f : A → RN is differentiable at c ∈ A, then there exists strictly positive numbers δ,K such that
‖x− c‖ < δ, then ‖f(x)− f(c)‖ ≤ K ‖x− c‖. In particular, it follows that f is continuous.
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where the second and third addend in the last equality are obviously constant. There-
fore, in that neighborhood Basin(ξµ) we get Eµ(ξµ) = 0 and Eµ(V ) > 0 for every
V ∈ Basin(ξµ).

3. The time derivative of E is given by

dE

dt
= −

∑
i

dVi
dt

(∑
j

TijVj −
ui
Ri

+ Ii

)
(2.72)

Using (2.69) and then the inverse relation that defines Vi in terms of ui we gain

dE

dt
= −

N∑
i=1

Ci

(dVi
dt

)(dui
dt

)
= −

N∑
i=1

Ci

(dVi
dt

) d
dt
g−1
i (Vi)

= −
N∑
i=1

Ci

(dVi
dt

)2 d

dVi
g−1
i (Vi)

(2.73)

Since Ci is positive and g−1
i (Vi) is a monotone increasing function, it follows that

d

dVi
g−1
i (Vi) ≥ 0, ∀ Vi (2.74)

We also note that (dVi
dt

)2

≥ 0, ∀ Vi (2.75)

Therefore all the factors that make up the sum on the right-hand side of Eq. (2.73) are
nonnegative. In other words, for the energy function E defined in Eq. (2.70), we have

dE

dt
≤ 0 and

dE

dt
= 0 =⇒ dVi

dt
= 0 ∀i (2.76)

Remark. The condition dVi
dt = 0 ∀i corresponds to the definition of networks stability

(Def. 2.2.4). Thus it implies that the vectors V satisfying this property are the fixed
points of the dynamics.

Thus we can write
dE

dt
< 0 except at fixed points (2.77)

In conclusion, we have proved that E is a Lyapunov function in the sense of Def. (2.2.8) and
can be made a classical Lyapunov function (as in Def. (2.2.7)) only locally in neighborhoods
of the stored patterns29.

Therefore, the time evolution of the continuous Hopfield model described by the system
of nonlinear first-order differential equation (2.69) is a motion in state space, which seeks
out minima of the energy (Lyapunov) function E and comes to a stop at such fixed points.
Furthermore, from the Lyapunov theorem 2.2.10 the Hopfield network is asymptotically
stable; the attractor fixed-points are the minima of the energy function and vice versa.

29Also in the case of local Lyapunov function, exists a theorem that guarantees the asymptotic Lyapunov
stability analogous to theorem 2.2.10, as discussed by Giesl and Hafstein in [23].
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2.3.3 Relation between the stable states of the two models
The Hopfield network may be operated in a continuous mode or discrete mode, depending

on the model adopted for describing the neurons. The continuous mode of operation is based
on an additive model, on the other hand the discrete mode of operation is based on the
McCulloch-Pitts model.
Following the contributions of Hopfield [29] and Haykin [25], pp. 706-708, we may readily
establish the relationship between the stable states of the continuous Hopfield model and the
corresponding ones of the Hopfield discrete model by redefining the input-output relation for
a neuron such that two simplifying characteristics are satisfied:

• The output of a neuron Vi has the asymptotic values

Vi =

{
+1 for ui = +∞
−1 for ui = −∞

(2.78)

• The midpoint of the activation function of a neuron lies at the origin

gi(0) = 0 (2.79)

Correspondingly, we may set the bias Ii equal to zero for all i.
In formulating the energy function E for a continuous Hopfield model, the neurons are
permitted to have self-loops. A discrete Hopfield model, on the other hand, needs not to
have self-loops. We may therefore simplify our discussion by setting Tii = 0 for all i in both
models.
In light of these observations, the energy function of the continuous Hopfield model given in
Eq. (2.70) is given by

E = −1

2

∑
i

∑
j, j 6=i

TijViVj +
∑
i

1

Ri

∫ Vi

0

g−1
i (V )dV (2.80)

whereas the discrete energy is given by

E = −1

2

∑
i

∑
j, j 6=i

TijViVj (2.81)

We may rewrite Eq. (2.80) by scaling the gain function g in the following way

Vi = gi(ui) replaced by Vi = gi(λui) (2.82)

and
ui = g−1

i (Vi) replaced by ui =
1

λ
g−1
i (Vi) (2.83)

This scaling changes the steepness of the sigmoid gain curve without altering the output
asymptotes. Therefore, Eq. (2.80) becomes

E = −1

2

∑
i

∑
j, j 6=i

TijViVj +
1

λ

∑
i

1

Ri

∫ Vi

0

g−1
i (V )dV. (2.84)

The integral is zero for Vi = 0 and positive otherwise, getting very large as Vi approaches ±1.
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• In the high-gain limit λ→∞ the second term on Eq. (2.84) becomes negligible and the
location of the maxima and minima of the full energy expression in the continuous case
become the same of (2.81). The only stable points of the very high gain, continuous
system correspond to the stable points of the discrete system. In particular, the
maxima and minima lie at the corners of the N -dimensional hypercube space [−1, 1]N ,
representing the domain of operation of the equation of motion (−1 ≤ Vi ≤ 1).

• For large but finite λ the second term in (2.80) begins to contribute. In particular,
this contribution is large and positive near all the surfaces, edges and corners of the
unit hypercube that defines the state space of the model. On the other hand, the
contribution is negligibly small at points that are far from the surface. This leads to an
energy surface that still has its maxima at corners but the minima become displaced
slightly toward the interior of the hypercube.

• As λ decreases minima disappear one at time making the minimum and a saddle point
join together. For very small λ this term dominates and the only minimum is at Vi = 0.

Figure 2.3 depicts the energy contour map or energy landscape for a continuous Hopfield
model using two neurons. The outputs of the neurons define the two axes of the map. The
lower left-and upper right-hand corners of Fig. 2.3 represent stable minima for the limiting
case of infinite gain; the minima for the case of finite gain are displaced inward. The flow to
fixed points (i.e. stable minima) may be interpreted as the solution to the minimization of
the energy function E defined in Eq. (2.70).

Figure 2.3: An energy contour map for a two-neuron, two-stable state system. The ordinate and abscissa
are the output of the two neuorns. Stable states are located near the lower left and upper right corners
and unstable extrema at the other two corners. The arrows show the motion of the state. This motion is
not generally perpendicular to the energy contours. (Figure taken from Hopfield, 1984 [29])
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2.3.4 Cohen-Grossberg Theorem
Hopfield was not the first person to use a Lyapunov energy function to prove that a

system reaches equilibrium. Cohen and Grossberg [14], have proven an even stronger result
for certain continuous neural networks with less restriction on the functions and parameters.
Furthermore, this model represents a generalization of many neural network models that are
capable for content addressable memory such as additive neural networks, cellular neural
networks and bidirectional associative memory networks, Hopfield model and also biological
models such as Lotka-Volterra models of population dynamics.
In Cohen and Grossberg (1983) [14], a general principle for assessing the stability of a certain
class of neural networks is described by the following system of coupled non linear differential
equations30:

d

dt
ui = ai(ui(t))

[
bi(ui(t))−

N∑
j=1

cijgj(uj(t))
]
, i = 1, . . . , N (2.85)

where ui(t) denotes the state of the ith neuron at time t, cij are the interaction coefficients,
gj(·) is the activation function, ai(·) and bi(·) represent the amplification function and
behaved function at time t.
According to Grossberg and Cohen, this class of neural networks admits a Lyapunov function
defined as

E = −1

2

N∑
i=1

N∑
j=1

cijgi(ui)gj(uj)−
N∑
i=1

∫ ui

0

bi(λ)g′i(λ)dλ (2.86)

where
g′i(λ) =

d

dλ
(gi(λ)) (2.87)

In these definitions we require the following conditions to hold:

• The synaptic weights of the network are symmetric: cij = cji.

• The function ai(ui) satisfies the condition for nonnegativity : ai(ui) ≥ 0.

• The nonlinear input-output function gi(ui) satisfies the condition for monotonicity :

g′i(ui) =
d

dui
gi(ui) ≥ 0

We may now formally state Cohen-Grossberg theorem, as presented in [25], pp. 723-724 :

Theorem 2.3.2 (Cohen-Grossberg theorem). Provided that the system of nonlinear differ-
ential equation (2.85) satisfies the conditions of symmetry, non negativity and monotonicity,
the Lyapunov function E of the system defined by Eq. (2.86) satisfies the condition

dE

dt
≤ 0

Once this basic property of the Lyapunov function E is in place, global stability of the
system follows from Lyapunov’s Theorem (2.2.10).

30This equation was derived by Grossberg in the 1960s and 1970s generalizing the Additive and Shunting
models to a class of dynamical systems that included these models as well as non-neural biological models. He
proved content addressable memory theorems for this problem and then together with Cohen he discovered
in 1981 a Lyapunov function useful for studying the stability of the network.
We recall that the additive models are models like the one described in section 2.3.1, whereas the shunting
model is a similar one, that takes into account that the inputs can be excitatory and inhibitory.
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Table 2.1: Correspondence between Cohen-Grossberg theorem and Hopfield model

Cohen-Grossberg Theorem Hopfield model

ui Ciui
ai(ui) 1
bi(ui) −(ui/Ri) + Ii
cij −Tij
gi(ui) gi(ui)

Hopfield model as a special case of the Cohen-Grossberg theorem

By comparing the general system of Eq. (2.85) with the system of Eq. (2.69) for a
continuos Hopfield model, we make the correspondence between Hopfield model and Cohen-
Grossberg theorem, that are summarized in Table 2.1. The use of this table in Eq. (2.86)
yields the following Lyapunov function for the continuous Hopfield model:

E = −1

2

N∑
i=1

N∑
j=1

Tijgi(ui)gj(uj)−
N∑
i=1

∫ ui

0

( ui
Ri
− Ii

)
g′i(u)du (2.88)

We observe that:

1. gi(ui) = Vi

2.
∫ ui

0
g′i(u)du =

∫ Vi
0
dV = Vi

3.
∫ ui

0
ug′i(u)du =

∫ Vi
0
udV =

∫ Vi
0
g−1
i (V )dV

Basically, relations 2 and 3 result from the use of V = gi(u). Note that although gi(u) must
be a nondecreasing function of the input u, it does not need to have an inverse in order for
the generalized Lyapunov function of Eq. (2.88) to hold.
Thus, the use of these observations in the Lyapunov function of Eq. (2.88) yields a result
identical to that we defined earlier in Eq. (2.70), but more general.

2.4 Improvements of the Hopfield model

From previous discussion it is clear how the Hopfield model with Hebb’s learning rule
has many weaknesses: the symmetry of the synapses, the full-connectivity, the limitation
of the model to random uncorrelated patterns and many others. All these characteristics
restrict the applicability of Hopfield model to biological and practical situations. No amount
of lifting of simplifications will closely approximate the full glory of an assembly of real live
neurons. Yet, as the grossest assumptions are replaced by more realistic ones and as the
model is modified to account for more complex types of behavior without a significant loss in
its basic functional features and in its effectiveness, the model gains plausibility. The lifting of
simplifications is not performed as an end in itself. If the more complicated system functions
in a qualitative way that can be captured by the simplified system, then the complication is
removed and analysis continues with the simplified system (Amit, [4]).
We will present now some changes that can be made to the model to improve it, following
also Amit’s book [4] (in particular Chapters 7 and 8) .
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2.4.1 Asymmetric neural networks

Hopfield network [28] has a synaptic matrix which is symmetric. In the previous discussion
we have used strongly the hypothesis of having symmetrical connections, but this is not
the case of human brain. From medical studies it is well known that for a given neuron
the synapses are of only one type (excitatory or inhibitory) and with the requirement of
symmetry this would imply two populations of neurons not connected to each other.
Another drawback of symmetric networks is the presence of spurious stable states. Much
work has been done on the nature and origin of spurious states (e.g. [4]). A small amount
of noise can be useful for escaping from them. Such noise can be added by introduction of
weak random asymmetry into a symmetric well functioning Hopfield network, as done by
Feigelman and Ioffe in [17] and Sompolinsky in [55]. However, such addition of noise does
not change the qualitative performance very drastically, even at high level of asymmetry.
For these reasons various attempts go in the direction of generalizing the Hopfield model
to the case of asymmetric synapses, i.e. such that the value of the synaptic connection in
the i→ j direction is not correlated with the value of the connection in the direction j → i.
Hopfield network with asymmetric synaptic matrix can also be referred to as Asymmetric
Hopfield Network. The dynamics of that type of network has been discussed by Derrida,
Gardner and Zippellius in [16], Parisi in [44], Crisanti, Sompolinsky and Sommers in [56] and
by many other researchers. One of the results of these studies is the enormous robustness of
the Hopfield model to structural changes in the model. Asymmetries, dilution, delays, etc. do
not affect the retrieval properties significantly and sometimes even improve the performance
of the network, as we will see.
Asymmetry in the synaptic matrix can be introduced by

1. Asymmetric learning rule. There is no differentiation in the post-synaptic and pre-
synaptic neuron in a symmetric learning rule. If pre-synaptic and post-synaptic neurons
are differentiated, then the synaptic matrix will be asymmetrical.

2. Random changes. In a symmetric synaptic matrix, asymmetry can be introduced by
randomly selecting and changing the synaptic weights to some other value. Random
selection of a pair of synaptic weights and swapping the values will also introduce
asymmetry. The number of random changes depends on the degree to which asymmetry
is to be introduced.

3. Dilution. Dilution is a special case of random changes. Synaptic values are randomly
selected from the symmetric synaptic matrix and these selected values are changed
to zero. These changes in the synaptic matrix can be viewed as representing Diluted
Hopfield networks, i.e. networks which are not fully connected. The study of this type
of networks is reported for example in [4] and in [16]. Although dilution and asymmetry
are two different and distinct concepts most of the relevant works reported in literature
uses dilution as a means for introducing asymmetry in Hopfield network. In other
words, dilution is used to achieve asymmetry but symmetric dilution does not lead to
asymmetry.

We now proceed to describe all this in detail.

Dale’s principle

As we mentioned, all the synapses, which connect a given neuron to others, are either
excitatory or inhibitory. Even though exceptions are known, this so-called Dale’s law seems
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widely accepted for biological networks. What is implied is that a given type of neuron
can release one type of neurotransmitter and hence can produce a single type of synapse,
either excitatory or inhibitory. Clearly, a network obeying this law cannot have a symmetric
synaptic connectivity matrix: neurons may receive inputs excitatory and inhibitory, but send
outputs of a single type.
It is customary to use the following version of Dale’s principle [48]:

Statement (Dale’s law). A given neuron has the same physiological action at all its synapses.
If all its synapses are excitatory (inhibitory), then the neuron is said to be excitatory
(inhibitory).

Another version of this law is mathematical [30]: Suppose ui denotes the activity of
the i-th neuron, i = 1, . . . , N . We assume that increasing (decreasing) ui corresponds to
depolarization (hyper-polarization). Suppose the network of such neurons is governed by a
dynamical system of the form given in Eq. (2.69), where Tij represents the synaptic weight
from neuron j to neuron i. Applying Dale’s principle we gain:

• If Tij ≥ 0 for all i, then the j-the neuron is excitatory.

• If Tij ≤ 0 for all i, then the j-the neuron is inhibitory.

It is easy to see that if Tij > 0, then increasing the j-th neuron activity uj facilitates
increasing the i-th neuron activity ui. Hence, the j-th neuron has an excitatory effect on the
i-th neuron. Thus, it follows that the effect is the same for any other neuron, provided that
the neurons are connected (that is, if the synaptic coefficient is not identically zero).

Remark. We observe that the coefficient Tjj is not subject to Dale’s principle.

Asymmetry and Dilution

An asymmetric and diluted version of Hopfield network was proposed by Derrida et al.
in [16], where an exact analytic solution of the dynamics of a standard ANN (Attractor
Neural Network), whose connections have been randomly diluted to a level where the mean
number of remaining synapses per neuron is smaller than lnN , is proposed. The significance
is not that it presents a state affairs closer to biological reality than the standard model.
Quite the contrary, it is probably less so. After all, while cortical connectivity is certainly
not symmetrical and even in small regions is not complete, it remains true that average
connectivity is a few thousand per neuron. For a network to have lnN > 1000, N must be a
super-astronomical number.
Starting from the synaptic matrix defined in Eq. (2.16), the diluted version is represented by:

Jij = cijNTij = cij

p∑
µ=1

(ξµi ξ
µ
j − δij) (2.89)

where cij ∈ {0, 1} is an independent random number which represents dilution and asymmetry.
The dilution matrix is chosen with the distribution

Pr(cij) =
c

N
δ(cij − 1) +

(
1− c

N

)
δ(cij) (2.90)

where c is a constant representing mean connectivity per neuron and δ is the Dirac delta
function, that satisfies δ(0) = 1 and δ(x) = 0 for x 6= 0. Thus, this is a random dilution
which gives the probability c/N for a synaptic efficacy to remain intact and (1− c/N) for it
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to be set to zero.
Furthermore since c/N → 0 as N →∞, the network is heavily diluted and the analysis is
carried out under the restriction that

c� lnN (2.91)

In agreement with [16], the neurons are updated according to the following rule

Vi(t+ ∆t) =

{
+1 with probability (1 + exp(−2hi(t)/T0))−1

−1 with probability (1 + exp(2hi(t)/T0))−1
(2.92)

where hi(t) =
∑N
j=1 JijVj(t) and T0 measures the strength of the noise and is therefore called

“temperature”31.
In this context it is natural to redefine the load parameter (and thus the storage capacity),
relative to the number of connections per neuron, at a reduced temperature T as

ᾱ ≡ p− 1

c
and T =

T0

c
(2.93)

Through simulation at 0 temperature32, it is found that the critical value αc of α is

αc =
2

π
= 0.6366 . . . (2.94)

which is larger than the value 0.15 of the non-diluted symmetric case.

• For α < αc two initial configurations close to a stable state vector remain close to the
stable state vector but do not become identical.

• Above αc (α > αc) the system does not remember (i.e. it does not converge to a stored
pattern).

Therefore, in the Derrida-Gardner-Zippellius’s study [16] they proved that the retrieval
properties of an ANN with a standard storage prescription sustain any degradation that
is not intelligently intended to damage its retrieval properties and an extremely randomly
diluted ANN can perform at least as well as the standard, fully connected, symmetric network.

Asymmetric Learning Rule

We now proceed to describe an asymmetric version of Hopfield network using asymmetric
learning rule, as reported by Gardner-Mertens-Zippellius in [19].
In 1949 Hebb [26] suggested that the efficacy of an excitatory synapse should increase when
both the pre- and the postsynaptic neuron are active and that it should decrease when the
postsynaptic neuron is active while the presynaptic neuron is silent. Taking into account that
type of learning rule and following [19], a synaptic matrix for a network of bipolar neurons
can be constructed in that way

∆J̃ij =
1

2

p∑
µ=1

(ξµi + 1)(ξµj ) (2.95)

31We called this parameter temperature in analogy with the Ising model, which can be shown to be
isomorphic to that of Hopfield, and the thermodynamic approach developed for that model.

32If we consider Ising model with temperature T = 0, we have the Hopfield model, always referring to the
isomorphism that exists between them.
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In other words, we consider a Hebbian learning mechanism, which gives rise to a change in
the synaptic efficacy J̃ij , operating between the presynaptic neuron j and the postsynaptic
neuron i, only if the postsynaptic neuron is active33. An excitatory synapse is changed as
suggested by Hebb, whereas inhibition becomes less effective if both neurons are simultane-
ously active and becomes more effective if the postsynaptic one is active and the presynaptic
one is not.

Remark. We note that the synaptic efficacies in Eq. (2.95) are not symmetric, because our
learning rule differentiates between post- and presynaptic neurons. Hence there is no a
priori Lyapunov functional, which decreases monotonically during the time evolution of the
network.

Each active neuron Vj = 1 contributes to the postsynaptic potential of neuron i through

hi(t) =
1

2

∑
j 6=i

J̃ij(Vj(t) + 1) (2.96)

according to the synaptic strength J̃ij (2.95). As before, if the postsynaptic potential exceeds
a threshold Ui then the postsynaptic neuron is activated

Vi(t+ ∆t) = sgn(hi(t)− U0) (2.97)

where for simplicity we have considered a uniform threshold Ui = U0 > 0 and the updating
procedure is given by

Vi(t+ ∆t) =


+1 with probability

[
1 + exp

(
−2hi(t)− 2U0

T0

)]−1

−1 with probability

[
1 + exp

(
2hi(t)− 2U0

T0

)]−1 (2.98)

By introducing a strong dilution and asymmetry parameter cij the final synaptic weights are
obtained as

Jij = cij J̃ij (2.99)

with cij ∈ {0, 1}, chosen with the same distribution as before (2.90).
Under the condition c/N → 0 as N →∞ with reduced temperature T = T0/c and reduced
threshold U = U0/c, the load parameter with respect to existing coupling is obtained as

α =
p− 1

c
(2.100)

We note that this relation for α is the same as that given in Eq. (2.93). Then, from simulations
the capacity of the network is found to depend on the threshold Ui of the post-synaptic
neuron: it is optimal for Ui ≈ 0.1 and no retrieval is possible for Ui > 0.5.

2.4.2 Biased Patterns

As discussed in section 2.2.3, we have stored p patterns ξµi , µ = 1, . . . , p, i = 1, . . . , N ,
where ξµi = ±1 with equal probability. Hence, each stored pattern have on average 50% of

33We should remember that in the case in exam, if we change the value of J̃ij , the value of J̃ji is not
affected.
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the neurons active (+1) and 50% passive (−1). Consequently, in the process of retrieval when
the network enters an attractor, 50% of the neurons are active on average. These vectors are
termed as unbiased or uncorrelated patterns; namely, in a large network

1

N

∑
i

ξµi ξ
ν
i = 0, if µ 6= ν. (2.101)

This situation is unsatisfactory for several reasons:

1. Neurophysiological evidence indicates that mean firing rates are significantly lower
than 50%.

2. Hopfield dynamics is symmetric with respect to the interchange of firing by non-firing
(Vi → −Vi). Hence, with every stored pattern the network stores the reversed pattern
as well. Usually, this type of symmetry, when undesired, is lifted by an external field
(threshold). But here, if the learned patterns are of Hopfield random type, it is difficult
to find a natural way of suppressing the doubling of the stored patterns.

3. More realistic networks have to confront the presence of correlated patterns in models of
associative memory. A model, which deals with correlated patterns, has been proposed
for example by Amit, Gutfreund and Sompolinksy in 1986, [5]. This model involves a
much more complicated dependence of Tij on the learned patterns. In order to learn
and retrieve correlated patterns, one has to introduce non locality, either in the learning
process or in the dynamics.

In [5], Amit et al. have studied associative memory of random patterns whose mean activities
differ from 50%. Patterns of this type are called biased patterns. For instance, every
component ξµi in a learned pattern can be chosen independently with probability Pr(ξµi ):

Pr(ξµi ) =
1

2
(1 + a)δ(ξµi − 1) +

1

2
(1− a)δ(ξµi + 1) (2.102)

where δ(·) is the delta Dirac function.

Definition 2.4.1. The average34 of each ξµ, also called bias parameter, is

a =
1

N

N∑
i=1

ξµi , with − 1 ≤ a ≤ 1 (2.103)

and the mean activity in each stored pattern is

A =
1

2
(1 + a) (2.104)

With such an asymmetric distribution of stored patterns, memories are necessarily correlated
in the following way

〈〈ξµi ξ
ν
i 〉〉 =

1

N

N∑
i=1

ξµi ξ
ν
i = δµν + a2(1− δµν) (2.105)

34As discussed in [5], this can also be generalized to the case

1

N

∑
i

ξµi = aµ, µ = 1, . . . , p
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→ A naive application of Hopfield dynamics with the ξµ’s chosen according to the asym-
metric distribution (2.102) is catastrophic in that, even at small values of the bias
parameter a, the stored patterns become unstable at very low storage levels. This is
due to the fact that the noise generated by the other patterns in the retrieval of each
pattern does not average to zero.
In fact, if we consider Eq. (2.19) in the usual Hopfield context, but with correlated
stored patterns, we have

hi = [Tξµ]i =

N∑
j=1

Tijξ
µ
j =

1

N

N∑
j=1

p∑
β=1

ξβi ξ
β
j ξ

µ
j = ξµi +

1

N

∑
β 6=µ

∑
j

ξβi ξ
β
j ξ

µ
j (2.106)

where we have separated the expression into a signal and a noise term and we have
neglected in the summation j 6= i, taking into account that the diagonal terms are
equal zero and so we are adding zero terms.
The noise term can be rewritten as

1

N

∑
β 6=µ

∑
j

ξβi ξ
β
j ξ

µ
j = 〈〈ξµξβ〉〉

∑
β 6=µ

ξβi = a2
∑
β 6=µ

ξβi (2.107)

where the last factor on the right hand side can take values between −(p − 1) and
(p− 1).
Arguing in the same way of section 2.2.4, the crosstalk term Cµi = ξµi a

2
∑
β 6=µ ξ

β
i has

not the same sign of ξµi if Cµi ≥ 1. Using that condition and that

• ξµi ≥ −1, ∀ i

•
∑
β 6=µ ξ

β
i ≥ −(p− 1),

we have
−a2(−1)(p− 1) ≤ ξµi a

2
∑
β 6=µ

ξβi ≤ 1 =⇒ a2(p− 1) ≤ 1

and thus the patterns become destabilized when

(p− 1)a2 ≤ 1. (2.108)

To appreciate the scale of disaster consider, for example, the case where the mean level
of activity is 5%. The value of the bias a can be deduced from the mean activity A

a = 2A− 1 ≈ −0.9 (2.109)

Substituting this in Eq. (2.108) we gain that p must not exceed 2 irrespective of the
value of N and this is an absurd.

→ To overcome this difficulty, Hebb’s rule is replaced with the following non-local learning
rule

T̃ij =
1

N

∑
µ

(ξµi − a)(ξµj − a) (2.110)

This equation is an expression of the non locality in this learning scheme. In getting
modified each synapse has to be aware of the mean, allowed activity rate of the entire
network. Then, these synaptic weights avoid catastrophe by shifting the noise back to a
zero mean. Considered from a biological point of view, Eq. (2.110) can be interpreted
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as learning by modification of synaptic efficacies due to neural activity. If the network
persists in some activity states Vi = ξνi , then

∆T̃ij =
1

N
(ξνi − a)(ξνj − a) (2.111)

Since ∑
i

ξνi = Na (2.112)

we have ∑
j

∆T̃ij = 0, (2.113)

which states that the total modification of synapses on a given neuron is unchanged
during learning. This is, of course, also a property of the original Hopfield description,
if the patterns are uncorrelated and unbiased pattern, i.e. 1

N

∑
i ξ
µ
i = 0.

With this prescription (2.110), the system will then follow the dynamics of the Hamiltonian
energy function

E = − 1

2N

∑
i,j

∑
µ

(ξµi − a)(ξµj − a)ViVj (2.114)

and the local field on neuron i is given by

hi =
∑
j,j 6=i

T̃ijVj =
1

N

∑
j 6=i

∑
µ

(ξµi − a)(ξµj − a)Vj (2.115)

Consider now the stability of the stored patterns by the simple signal-to-noise estimation.
Thus, taking Vi = ξνi and substituting in Eq. (2.115), we find that the signal term is

S =
1

N

∑
j 6=i

(ξνi − a)(ξνj − a)ξνj = (ξνi − a)
1

N

∑
j 6=i

(ξνi − a)ξνi = (ξνi − a)(1− a2) (2.116)

whereas the noise is determined by

W =
1

N

∑
j 6=i

∑
µ6=ν

(ξµi − a)(ξµj − a)ξνj =
∑
µ6=ν

(ξµi − a)
1

N

∑
j 6=i

(ξµj − a)ξνj (2.117)

Since in W , j 6= i and µ 6= ν, its mean vanishes35. The effect of the noise has to be estimated
by its variance, i.e. the mean of the square of the noise term36 〈〈W 2〉〉, which is

ρ2 ≡ 〈〈W 2〉〉 =
(N − 1)(p− 1)

N2
(1− a2)2 ≈ p

N
(1− a2)2 (2.118)

where the brackets indicate an average over all the components j 6= i and the stored patterns
µ 6= ν. Clearly, this network can have a macroscopic number of stable patterns. In fact, the
lower limit of the signal is

|S| ≥ (1− a2)(1− |a|) (2.119)

and hence
ρ

|S|
≤
√

p

N

( 1

1− |a|

)
(2.120)

35For the proof of this statement see section 2.2.4.
36For a complete proof of this relation see Appendix 8.5.1, pp. 423-425, in Amit’s book [4].
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In contrast to the naive introduction of biased patterns, if

α =
p

N
� (1− |a|)2

then using that relation in (2.120) we get

ρ2 � (1− |a|)2

(1− |a|)2
|S|2 =⇒ ρ2 � |S|2 (2.121)

Thus, the noise is essentially zero and the original patterns are stable at T = 0 in absence of
fast noise. On the other hand, we have here an indication, even on this simple level, that
the storage capacity decreases as a increases. Furthermore, the storage capacity is reduced
compared to the capacity of the network storing unbiased patterns.
A more careful treatment of the probability distribution of the noise term has led in [5] to
the conclusion that patterns are retrieved with no errors if

α < αc =
(1− |a|)2

2lnN
= (1− |a|)2αc(0) (2.122)

where αc(0) denotes the storage efficiency provided by the naive signal-to-noise estimate.
This decrease in the storage capacity with the bias a is not a feature of a proper network
storing low activity patterns: a reasonable functioning network would increase its capacity
as the level of activity is lowered (as the bias is increased).
Therefore, this modification restores the ability of the model to store a macroscopic number
of patterns, but as proved in [5], spurious states are found to plague the dynamics. As a
increases, spurious states start dominating the dynamics, even though the stored patterns
remain locally stable. In addition, the number of spurious states is found to increase with a
and they become the absolute minima of the energy as a increases. All this indicates that to
have a network which can effectively store and retrieve biased patterns, it does not suffice to
modify the couplings. In fact, from a biological perspective, the dynamical process should be
modified as well to be consistent with the levels of activity of the stored patterns. This is
implemented by adding a global constraint, which restricts the configuration space to states
Vi, such that they obey

1

N

∑
i

Vi = a (2.123)

In other words, the dynamics of the network is restricted to a part of the full space of 2N

possible network states, where the mean activity is in the neighborhood of the activity in the
biased patterns.
An immediate consequence of Eq. (2.123) is the breaking of the symmetry Vi → −Vi. Thus,
symmetry has led to the doubling of every solution for the attractors, as was discussed in
section 2.2.6. Two memorized states which have all the corresponding components reverse are
no longer equivalent37. In particular, it implies that on storing a set of patterns, their reversed
states are no longer attractors unless a = 0. Note that these reversed patterns have not be-
come unstable. They have only been pushed out of the space of states visited by the dynamics.
The consequences of the restricted dynamics are then analyzed by Gutfreund-Amit-Sompolinsky
[5] using the replica symmetric mean-field theory. From that, they observed that the global
constraint suppresses spurious states and leads to the unexpected result that the storage

37We recall that in the Hopfield model if V is a stored pattern, V and −V are equivalent because they are
eigenvectors relative to the same eigenvalue and have the same characteristics.
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capacity is higher than that of the unbiased network, αc(a) > αc(0), up to very high values
of the bias (|a| ' 0.99).
Technically, the imposition of the constraint can be affected either in a hard or in a soft way.
A biological system is not expected to impose such a global constraint rigidly. Hence, the
rigid constraint (2.123) is relaxed by adding a cost term to the energy (2.114)

Ec =
λ

2N

(∑
i

Vi −Na
)2

(2.124)

where λ is a positive number, that measures the stiffness of the constraint. Such a term
represents an extra uniform contribution to the local field of a neuron, proportional to the
deviation of the level of activity from the normal level. The membrane potentials (local
fields) are then modified by adding

h̃i = −λ
( 1

N

N∑
j=1

Vj − a
)

(2.125)

which represents a uniform level depending on the momentary activity in the network. This
additional term can be interpreted in two ways:

• As an external control by potential inputs, which ensures that the activity in the
network be constantly corrected towards the desired mean.

→ If it is too high, h̃i dominates on hi and becomes inhibitory (hyper-polarizing).

→ If it is too low, hi prevails and all neurons receive an equal excitatory (depolarizing)
input.

Moreover, the magnitude of these inputs increases with the magnitude of the deviation
from the desired mean activity a.

• As a uniform inhibitory contribution to the synapses of efficacy −λ/N and a constant,
uniform excitatory potential aλ. This can be interpreted as a uniform lowering of the
thresholds.

Clearly, the properties of the network should not be too sensitive to the particular value of
the constraint parameter λ. For very large values of λ, it is showed in [5] that the results
become essentially independent of λ and that one returns to the rigid constraint with reduced
numbers of spurious sites, high αc and excellent retrieval quality.

Non-local learning rules: The pseudo-inverse learning rule

Hopfield model has been constructed using Hebb’s learning rule, whose main characteristic
is that of being a local law. Each Tij depends only on the values of ξµi and ξµj . Therefore, the
synapses are modified presumably by past activities of the neurons they connect, represented
by the quenched values ξµi and ξµj . Locality of the learning rule is a reasonable condition
for biological networks, but it is not unreasonable that, even in biological systems, some
long-term synaptic modifications which depend on the history of activity of a large group of
neurons might occur in addition to the main local modifications.
As seen in section 2.2.4, this type of learning rule has some limitations. Indeed while using
this rule it may either be difficult or not possible to deal with correlated candidate state
vectors. For this reason, we introduce non-local learning rules, that can suppress the adverse
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effects of the overlaps among the candidate state vectors. An example is given in (2.110),
where we have taken into account the mean activity rate of the entire network. An alternative
is represented by the pseudo-inverse learning rule.
In section 2.2.3 we have introduced Hebbian learning rule and seen how it works well when
the stored patterns are orthogonal or nearly orthogonal. A more complex learning rule
can be chosen to ensure that T has a single degenerate eigenvalue regardless of whether
the memory vectors are orthogonal. We can thus use in Hopfield pseudo inverse learning
rules to encode the pattern information if pattern vectors are even non orthogonal. Such
“spectral schemes” have been explored by Personnaz, Guyon and Dreyfus in [47] and then by
Venkatesh and Psaltis in [64]38. In these works they have shown constructive schemes for the
generation of the weight matrix which yield a larger capacity than the outer-product scheme
and the memorized vectors ξµ are true eigenvectors for the linear operator T and not only
“pseudo-eigenvectors”. Furthermore, they have constructed a nonlocal model in which any set
of patterns, correlated or not, can be memorized without errors as long as they are linearly
independent.
Firstly, consider the Moore-Penrose generalized inverse of Ξ = [ξ1, . . . , ξp], the N × p matrix
containing all the stored memory,

Ξ† =

ξ
†
1
...
ξ†p

 = (ΞTΞ)−1ΞT (2.126)

This matrix has the property that is orthogonal to the starting matrix Ξ

Ξ†Ξ = I or ξ†µξ
β = δµβ (2.127)

where I is the p×p identity matrix and δµβ is the Kronecker delta. Hence, the pseudo inverse
weight matrix is given by

T̃ = ΞΞ† =

p∑
µ=1

ξµξ†µ (2.128)

This matrix (2.128) is always symmetric: T̃T = T̃ and satisfies the following property:

T̃Ξ = ΞΞ†Ξ = Ξ =⇒ T̃ ξµ = ξµ (2.129)

In other words, each memory pattern is an eigenvector of the weight matrix T̃ with eigenvalue 1
and this is true as long as the ξµ’s are linearly independent (as we have supposed in Hopfield
model).
The pseudo-inverse learning rule can then be reformulated using the correlation matrix
between stored patterns, as described by Kanter and Sompolinsky in [31]:

Cµν ≡
1

N

N∑
i=1

ξµi ξ
ν
i , µ, ν = 1, 2, . . . , p (2.130)

The model consists of a set of synapses

T̃ij =
1

N

p∑
µ,ν=1

ξµi ξ
ν
j (C−1)µν (2.131)

38Venkatesh and Psaltis have started from the article and theory of Personnaz et al. and have developed a
theory using this pseudo-inverse learning rule.
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where C−1 is the inverse of the matrix defined in Eq. (2.130). Also in this case, the network
stability condition holds for any set of patterns, provided they are linearly independent.
In both models, the self-coupling term T̃iiVi is not neglected, when considering the local field
h̃i of neuron i

h̃i =

N∑
j=1

T̃ijVj (2.132)

because this term is needed for the validity of the network stability relation. The presence of
the self-coupling restricts severely the size of the basins of attraction of the patterns especially
for large α. In [31], it is proven, through numerical simulations, that although the memories
are stable up to α = 1 the maximum load parameter of the system for providing associative
memory is

αc =
1

2
(2.133)

A modification of the above model is proposed in [31] by eliminating the self-coupling term
in the expression of the local field of neuron i

h̃i =
∑
j,j 6=i

T̃ijVj (2.134)

In this case, they have found that for synchronous as well as asynchronous update the radius
of attraction R is unity at α→ 0, then it decreases monotonically and vanishes at αc = 1, as
can be understood from relation (2.66). Then, there is an increase in the number of spurious
stable states as α increases, but the occurrence of linear combinations of stable state vectors
as spurious states is very rare. Thus the presence of spurious states does not affect the basins
of attraction of the stored stable states.
Hence, we have presented a model capable of storing both correlated and uncorrelated state
vectors, overcoming the assumption of uncorrelated patterns of Hopfield. Unfortunately, this
is achieved at the expense of a huge increase in computational complexity, a problem which
plagues all the alternatives to the outer product rule.

2.4.3 Inferring Learning rule from In Vivo data
In the previous discussion, we have proposed the Hopfield model as an attractor network

capable of learning and retrieving memories. In this model, synaptic connectivity is set up in
such a way that the network dynamics have multiple attractor states, each of which represents
a particular item that is stored in memory. In the original model, the appropriate synaptic
connectivity is assumed to be generated through a Hebbian learning process according to
which synaptic efficacies are modified by the activity of pre- and post-synaptic neurons. The
attractor network scenario was originally instantiated into highly simplified, fully connected
networks of binary neurons (Hopfield, 1982 [28]). Although theorists have since strived to
incorporate more neurophysiological realism into associative memory models, using, e.g.,
asymmetric and sparse connectivity (Derrida et al. [16]), sparse coding of memories and
correlated patterns (Kanter and Sompolinsky [31], Tsodyks and Feigel’Man [63]), spiking
neuron (Gerstner and Van Hemmen [20]), there is still a large gap between the models
and experimental data. First, most models use bimodal distributions of firing rates with
neurons either activated by a stimulus or not, whereas there is no indication of such a
bimodality in the data. Second, the connectivity matrices used in these models are essentially
engineered (and sometimes highly fine-tuned) to produce attractor dynamics but are totally
unconstrained by data.
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In a recent article of Brunel and Pereira (July 2018, [46]), they have compared the distribution
of responses to novel and familiar stimuli to allow the inference of the dependence of the
learning rule on the post-synaptic firing rates. The inferred learning rule is Hebbian, but with
some differences from the classical one: the post-synaptic dependence of the rule is dominated
by depression so that the vast majority of external inputs leads to a net decrease in total
synaptic inputs to a neuron with learning, leading to a sparser representation of external
stimuli, and the dependence of the rule on post-synaptic firing rates is highly non-linear.
Consider a model of N neurons, whose firing rates39 are described by variables ri. Firing
rates obey a standard rate equation (a slight change of Eq. (2.69))

τ ṙi = −ri + φ
(
Ii +

∑
j 6=i

Tijrj

)
(2.135)

where τ is the time constant of firing rate dynamics, φ is the input-output single-neuron
transfer function. The connectivity matrix is sparse and existing connections are shaped by
external inputs (“patterns”) through a non-linear unsupervised Hebbian synaptic plasticity
rule.
In this context, external synaptic input ξµi to neuron i are supposed to be generated
randomly and independently from a Gaussian distribution. The assumption of independence
is reasonable, because it is consistent with the data. The external inputs shape the connectivity
matrix through

• the firing rates φ(ξµi ) generated by such inputs

• through two non-linear functions f1 and f2, that characterize the dependence of the
learning rule on the post-synaptic rate (f1) and pre-synaptic rate (f2), respectively.

When p patterns are learned by the network, the final connectivity after learning is structured
as

Jij =
Acij
cN

p∑
β=1

f1[φ(ξβi )]f2[φ(ξβj )] (2.136)

where cij � 1 is a sparse random connectivity matrix with a distribution similar to that seen
previously in Eq. (2.90)

Pr(cij) = cδ(cij − 1) + (1− c)δ(cij) (2.137)

This synaptic connectivity matrix can be obtained by a learning rule that changes the
synaptic connectivity matrix by a factor ∆Jij ∝ f1[φ(ξβi )]f2[φ(ξβj )] when a pattern ξµ is
presented to the network, starting from an initial tabula rasa Jij = 0 and neglecting the
contributions of recurrent connections during learning.
This rule represents a generalization of the classical Hebbian rule with two important
differences:

• patterns have a Gaussian distribution instead of binary

• the dependence of the rule on firing rates is non-linear instead of linear.

The model defined by Equations (2.135) and (2.136) depends on three functions: φ, f1 and
f2, that define the single-neuron transfer function and synaptic learning rule, respectively.
In [46], it is used a method to infer the transfer function (φ) and the postsynaptic dependence

39Firing rates are defined as the averaged number of spikes in a unit interval time.
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of the learning rule f1 from electrophysiological data recorded in ITC (inferior temporal
cortex 40), whereas f2 cannot be inferred. As an additional step to previous studies, sigmoidal
functions for f1 and φ are used, because they provided good fits to the data.
A question that can be addressed is whether the model exhibits attractor dynamics or not.
Consider two order parameters, that describe how network states are correlated (or not) with
stored patterns:

• the overlap mµ between the current state of the network and the learned patterns of
interest, defined as in Eq. (2.10)

• the interference I due to the other stored patterns in the connectivity matrix, that is
proportional to the averaged squared firing rates of the network

I =
1

N

N∑
i=1

r2
i (2.138)

Through numerical simulations of large networks and mean field theory, in [46] it is proved
that this type of network behaves as an associative memory when constrained by ITC data,
without any need for parameter variation or fine tuning. The learning rule inferred from this
data is then close to maximizing the number of stored patterns (αc ≈ 0.85) in a space of
unsupervised Hebbian learning rules with sigmoidal dependence on pre- and post-synaptic
firing rates.

2.5 A probabilistic approach

Hopfield developed a model that makes it possible to explore the global natures of
large neural networks without losing the information of essential biological functions. For
symmetric neural circuits, an energy landscape can be constructed and thus a memory
retrieval process from a cue (incomplete initial information) to the corresponding memory
(complete information) is obtained. However, in real neural networks, the connections among
neurons are mostly asymmetric rather than symmetric, as we have discussed previously in
section 2.4.1. Under this more realistic biological situation, the original Hopfield model fails
to apply, because there is no easy way of finding out the underlying energy function and
studying the global stability. In order to overcome this problem, following the contributions
of Yan et al. in [67] we will study the global behavior of neural circuits with synaptic
connections from symmetric to general asymmetric ones. Thus, we will develop a potential
and flux landscape theory for neural networks based on the statistical probabilistic description
of non-equilibrium dynamical systems.
In general, when exploring the global dynamics of a neural network, there are several
approaches: one is to follow individual deterministic trajectories and the other one is to
describe the system from thermodynamics perspectives with energy, entropy and free energy
for a global characterization of the system. Hopfield in [28] proposed a model that quantifies
how individual neurons evolve with time based on their biological features, i.e. Eq. (2.69),
that can be improved as explained in section 2.4. However, neural networks are often
under fluctuations from intrinsic source and external environments. Therefore, rather than
individual trajectory evolution, the probabilistic evolution can characterize the dynamics
globally and often more appropriate.

40The IT cortex (ITC) in humans, also known as the Inferior Temporal Gyrus, is the anterior region of the
temporal lobe located underneath the central temporal sulcus, that processes visual stimuli of objects in our
field of vision and is involved in memory and memory recall to identify that object.
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2.5.1 Symmetric case
We start by considering Hopfield continuous model (2.69) with the assumptions Cj = 1,

Rj = 1 for all j = 1, . . . , N .

duj
dt

= −uj +
∑
i

TjiVi + Ij , with Vj = g(uj) (2.139)

Then, under these hypothesis the energy function (2.70) becomes

E = −1

2

∑
i

∑
j

TijViVj +
∑
i

∫ Vi

0

g−1
i (V )dV −

∑
i

IiVi (2.140)

It is easy to observe that E can be written as the gradient of the r.h.s of Eq. (3.102):

∇kE =
∂E

∂uk
=

∂E

∂Vk

∂Vk
∂uk

= g′(uk)
(
−
∑
j

TkjVj + g−1
k (Vk)− Ik

)
= g′(uk)

(
−
∑
j

Tkjgj(uj) + uk − Ik
) (2.141)

Note that g′(uk) is a constant since g is a sigmoidal function and for this type of function
the following property holds:

g′(u) =
dg(u)

du
= g(u)(1− g(u))

Thus in our case g′(uk) = Vk(1− Vk) ∈ R and using Eq. (2.141) in (3.102) we gain

duj
dt

= − 1

g′(uj)
∇jE (2.142)

with E that represents the potential energy.
We then obtain a set of Langevin equations considering the stochastic dynamics of the neural
network under fluctuations:

duj
dt

= − 1

g′(uj)
∇jE + ζj (2.143)

where ζ represents the stochastic fluctuation force with an assumed Gaussian distribution.
The autocorrelations of the fluctuation are assumed to be

〈ζj(u, t), ζi(u, t̃)〉 = 2Dji(u)δjiδ(t− t̃) (2.144)

where δ is the δ-function and the diffusion matrix D(u) is defined as D(u) = DG(u), where
D is a scale constant giving the magnitude of the fluctuations and G(u) represents the scaled
diffusion matrix, that is symmetric and positive definite. Then, we can define the vector field
X as X(u) = −∇E(u), which represents the driving force for the dynamics of the underlying
neural network.
Starting from the Langevin equation (2.143), we want now to derive a Fokker-Planck equation
following the approach presented in [18], [52] and [54]. We recall that in general we can write
a Fokker-Planck equation for the multivariate case as

∂tP (ũ, t|u0, t0) = (−1)
∑
j

∂

∂ũj
[M

(1)
j (ũ, t)P (ũ, t|u0, t0)]+

∑
j,i

∂2

∂ũj∂ũi
[M

(2)
ji (ũ, t)P (ũ, t|u0, t0)]

(2.145)



2.5. A PROBABILISTIC APPROACH 64

by considering a Kramers-Moyal expansion41 of the probability density. We recall that
M (1)(u, t) is a vector and M (2)(u, t) a semidefinite positive and symmetric matrix.
In order to establish the corresponding Fokker-Planck equation we have to determine the
drift term M (1) and the diffusion term M (2). This can be done by computing the moments of
the variable ũ = (ũ1, . . . , ũN ) starting from u0 at time t0 directly from the Langevin equation.
Those moments will be then identified with the definitions

M
(m)
j1,...,jm

(ũ, t) ≡ 1

m!
lim

∆t→0

1

∆t

∫
RN

du(uj1 − ũj1) · · · (ujm − ũjm)P (u, t+ ∆t|ũ, t)

=
1

m!
lim

∆t→0

1

∆t
E
{ m∏
η=1

(ujη (t+ ∆t)− ujη (t))|uj1(t) = ũj1 , . . . , ujm(t) = ũjm

}
(2.146)

Let us consider the finite difference version of Eq. (2.143)

∆ujη (t) ≡ ujη (t+ ∆t)− ujη (t) =
1

g′(ujη )
Xjη (u)∆t+ (2Djη,jµ)1/2∆W (t) (2.147)

where ∆W (t) = W (t+ ∆t)−W (t) are increments of the related Wiener process. We then
define Fjη (u) = 1

g′(ujη )Xjη (u) to simplify the notation.
By using the properties E{∆W (t)} = 0, E{(∆W (t))2} = ∆t and the independence of the
increments ∆W (t) one obtains:

E{Fjη (u)∆t|ujη (t) = ũjη (t)} = E{Fjη (u)|ujη (t) = ũjη (t)}∆t (2.148)
= Fjη (ũ)∆t (2.149)

E{(2Djηjµ)
1
2 ∆W (t)|ujη (t) = ũjη (t)} = (2Djηjµ)

1
2E{∆W (t)|ujη (t) = ũjη (t)}(2.150)

= (2Djηjµ)
1
2E{∆W (t)} = 0 (2.151)

E{2Djηjµ(∆W (t))2|ujη (t) = ũjη (t)} = 2DjηjµE{(∆W (t))2|ujη (t) = ũjη (t)}(2.152)
= 2DjηjµE{(∆W (t))2} = 2Djηjµ∆t (2.153)

By using the above relations one gets

E{∆ujη (t)|ujη (t) = ũjη (t)} = E{Fjη (u)∆t+ (2Djη,jµ)
1
2 ∆W (t)|ujη (t) = ũjη (t)}

= Fjη (ũ)∆t
(2.154)

E{(∆ujη (t))2|ujη (t) = ũjη (t)} =

= E{(Fjη (u))2(∆t)2 + Fjη (u)(2Djη,jµ)
1
2 ∆t∆W (t)+

+2Djη,jµ(∆W (t))2|ujη (t) = ũjη (t)} =
= 2Djη,jµ∆t+O((∆t)2)

(2.155)

41The Kramers-Moyal expansion refers to a Taylor series expansion of the Master equation for the probability
density, that can thus be transformed into a partial differential equation:

∂tP (ũ, t|u0, t0) =

N∑
m=1

(−1)m
∑

i1···im

∂m

∂ũi1 · · · ∂ũim
[M

(m)
i1,...,im

(ũ, t)P (ũ, t|u0, t0)]

where M(m) is the m-th coefficient of the expansion. If we consider only the first two terms M(1)(u, t) and
M(2)(u, t) we get the Fokker-Planck equation.
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and

E{∆ujη (t)∆ujµ(t)|ujη (t) = ũjη (t), ujµ(t) = ũjµ(t)} =

= E{Fjη (u)Fjµ(u)(∆t)2 + 2Fjη (u)(2Djη,jµ)
1
2 ∆t∆W (t) + Fjµ(u)(2Djµ,jη )

1
2 ∆t∆W (t)+

+2Djη,jµ(∆W (t))2|ujη (t) = ũjη (t), ujµ(t) = ũjµ(t)} =
= 2Djη,jµ∆t+O((∆t)2)

(2.156)
where we use the symmetry of the matrix D, i.e. Djη,jµ = Djµ,jη . Hence

M
(1)
j (ũ, t) = lim

∆t→0

1

∆t

∫
du(uj − ũj)P (u, t+ ∆t|ũ, t)

= lim
∆t→0

1

∆t
E
{

∆uj |uj(t) = ũj

}
= Fjη (ũ)

(2.157)

and

M
(2)
ji (ũ, t) = lim

∆t→0

1

∆t

1

2

∫
du(uj − ũj)(ui − ũi)P (u, t+ ∆t|ũ, t)

=
1

2
lim

∆t→0

1

∆t
E
{

∆uj∆ui|uj(t) = ũj , ui(t) = ũi

}
=

2Dji

2
= Dji

(2.158)

Therefore, the corresponding Fokker-Planck equation becomes

∂tP (u, t|u0, t0) = −
∑
j

∂

∂uj
[Fj(u)P (u, t|u0, t0)] +

∑
j,i

∂2

∂uj∂ui
[Dji(u, t)P (u, t|u0, t0)]

(2.159)
Using the definition of Fj(u) and Dji(u) given above we obtain

∂tP (u, t|u0, t0) = −
∑
j

∂

∂uj
[

1

g′(uj)
Xj(u)P (u, t|u0, t0)]+D

∑
j,i

∂2

∂uj∂ui
[Gji(u, t)P (u, t|u0, t0)]

(2.160)
where we recall that Xj(u) = −∇jE(u).
Now since we can find an energy function E and the driving force X is the gradient of that
energy function, we know that for the Fokker-Planck equation (2.160) exists an equilibrium
stationary solution

Pss(u) = e−
E(u)
D (2.161)

that represents the long time limit solution and it is easy to understand that its point of
maximum u∗ corresponds to a point of minimum of E, i.e. a stored pattern.

2.5.2 General asymmetric case
For the Hopfield model with symmetric synapses we can always find an energy function E

and use it to study the global stability of the system. We have also seen that we can derive
a Fokker-Planck equation with an associated equilibrium solution Pss. However, in reality,
the connections of neurons in neural networks are often asymmetric. Hopfield model with
symmetric connections does not apply in this regime, because there is no easy way of finding
out the energy function determining the global nature of the neural networks in such general
case.
Realistic neural networks are open systems with constant exchanges of energy and information
with the environment. Thus they are not conserved systems. The driving force therefore
cannot often be written as a gradient of an energy function in such non-equilibrium conditions.



2.5. A PROBABILISTIC APPROACH 66

However, finding an energy-like function such as a Lyapunov function (monotonically going
down as the dynamics) is essential for quantifying the global stability of the system. Following
[67] and [69], we want to prove whether such a potential function exists and can be used to
study the stability.
As done for the symmetric case in section 2.5.1, starting from the continuous version of the
Hopfield equation for the dynamics with an asymmetric interconnection matrix J , defined
for example as in Eq. (2.89) or in Eq. (2.136),

duj
dt

= −uj +
∑
i

JjiVi + Ij , with Vj = g(uj) (2.162)

and adding a stochastic fluctuation force ζ, we obtain the following Langevin equation

duj
dt

= Fj(u) + ζj (2.163)

where ζj is defined as in the symmetric case and satisfies the property given in Eq. (2.144),
F (u) is the driving force for the dynamics of the underlying neural networks and in our case

Fj(u) = −uj +
∑
i

JjiVi + Ij for j = 1, . . . , N (2.164)

Then also in this case we can establish the corresponding Fokker-Planck diffusion equation
for probability evolution of the state variable uj by following the same reasoning of the
symmetric case, where we never use the hypothesis of symmetry of the interconnection
matrix. Thus we obtain

∂P (u, t)

∂t
= −

N∑
j=1

∂

∂uj
[Fj(u)P (u, t)] +D

N∑
j=1

N∑
i=1

∂2

∂uj∂ui
[Gji(u, t)P (u, t)] (2.165)

The Fokker-Planck equation (2.165) can be written in the form of the probability conservation:

∂P

∂t
+∇ · Φ = 0 (2.166)

where Φ is the probability flux: Φ = FP −∇ · (DP ). The driving force of the neural network
systems F can be decomposed as follows:

F =
Φss
Pss

+D · ∇(Pss)

Pss
+∇ ·D =

Φss
Pss
−D · ∇U +∇ ·D (2.167)

where the non-equilibrium potential U here is naturally defined as

U(u) = − ln(Pss(u)) (2.168)

and is related to the steady-state probability distribution42. Then we note that for steady
state the divergent condition of the flux ∇ ·Φss = 0 is satisfied. Thus, F can be decomposed

42To obtain the potential landscape characterized by U we have to calculate the probability distribution
of steady state Pss. The corresponding Fokker-Planck equation describes the evolution of the system that
can give exact solution of steady-state probability. However, it is hard to solve this equation directly due to
the huge dimensions of the network. Therefore, in [67] a self-consistent mean field approximation is used
to reduce the dimensionality. This method can effectively reduce the dimensionality from exponential to
polynomial by approximating the whole probability as the product of the individual probability for each
variable and be carried out in a self-consistent way (treating the effect of other variables as a mean field).
The interested reader can refer to [67].
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into a gradient of a non-equilibrium potential and a divergent free flux, modulo to the
inhomogeneity of the diffusion, which can be absorbed and redefined in the total driving
force. The divergent free force Φss has no source or sink to go to or come out, therefore it
has to rotate around and become curl.
When the flux is divergent free ∇·Φ = 0 in steady state, it does not necessarily mean Φss = 0.
There are indeed two possibilities:

1. Φss = 0: the detailed balance43 is satisfied and the system is in equilibrium. Further-
more, the dynamics is determined by purely the gradient of the potential. This is
exactly the equilibrium case for the Hopfield model for neural networks of learning and
memory assuming underlying symmetrical connections between neurons.

2. Φss 6= 0: the detailed balance is broken and we are in the non-equilibrium state.
The steady-state probability distribution can quantify the global nature of the neural
network, whereas the local dynamics is determined by both the gradient of the non-
equilibrium potential landscape and the nonzero curl flux. This curl flux can lead to
spiral motion with the underlying network dynamics deviating from the gradient path
and even generate coherent oscillations44, which are not possible under pure gradient
force.

To quantitatively study the global stability of the neural network, we need to find out whether
a Lyapunov function, that monotonically goes down in time, exists and how it is related
to the potential landscape constructed. Following [67], expand U(u) with respect to the
parameter D for the case of weak fluctuations, D � 1 in realistic neural networks

U =
1

D
ψ =

1

D

∞∑
j=0

Diψi

and replace it with the steady-state Fokker-Planck diffusion equation. Then we obtain the
D−1 order part and this leads to the Hamilton-Jacobi equation for ψ0, [67]:

N∑
j=1

Fj(u)
∂ψ0(u)

∂uj
+

N∑
j=1

N∑
i=1

Gji(u)
∂ψ0(u)

∂uj

∂ψ0(u)

∂ui
= 0 (2.169)

that can also be rewritten in a more compact form as

F · ∇ψ0 +∇ψ0 ·G · ∇ψ0 = 0 (2.170)

Proposition 2.5.1 ([67]). ψ0 is a Lyapunov function in the sense of definition 2.2.8.

Proof. ψ0 satisfies the Lyapunov properties given in definition 2.2.8:

1. In the weak fluctuation assumptions ψ0 = UD = −D ln(Pss(u)), thus it a continuous
function in u.

2. ψ0 has a lower bound:

ψ0 = −D ln(Pss(u)) ≥ −D|ln(Pss(u))| ≥ −D

where D is a constant.
43The principle of detailed balance states that at equilibrium each elementary process should be equilibrated

by its reverse process.
44A coherent state is a state which has a dynamics most closely resembling the oscillatory behavior of

classical harmonic oscillator.
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3. Consider the time evolution of ψ0.

dψ0(u)

dt
= ∇ψ0 · u̇ = ∇ψ0 · F = −∇ψ0 ·G · ∇ψ0 ≤ 0

Since this derivation is based on the weak fluctuation assumptions (D � 1), the
temporal evolution u̇ can be written as F (u) here and therefore is deterministic without
the noise term ζ. Then, the diffusion matrix G is positive definite and thus ψ0 decreases
monotonously with time.

From that property, we gain that the dynamical process will not stop until the system
reaches a minimum that satisfies ∇ψ0 = 0. In this case there are two possible situations: we
are in a point attractor or in a limit cycle.

• For point attractors, ψ0 will settle down at the minimum value as happened for the
classical Hopfield model.

• For limit cycles, the values of ψ0 on the attractors must be constant. Therefore, the
limit cycle cannot emerge from Hopfield model for neural networks with a pure gradient
dynamics because there is no driving force for the coherent oscillation, that is provided
from the nonzero flux.

ψ0, being a Lyapunov function, is closely associated with the non-equilibrium potential U
under the small fluctuation limit, therefore it reflects the intrinsic properties of the steady
state without the influences from the magnitude of the fluctuations. When the underlying
fluctuations are not weak, we can no longer expand the non-equilibrium potential U with
respect to the fluctuation amplitude parameter D as shown above and the noise term ζ
cannot be neglected in the derivation. Thus, there is no guarantee that ψ0 is a Lyapunov
function for finite fluctuations.
In analogy with equilibrium thermodynamics, we can construct non-equilibrium thermody-
namics and apply it to neural networks following Yan et al. [67].
Starting from ψ0, define the steady-state probability Pss as

Pss(u) =
1

Z
e−

ψ0
D (2.171)

where Z can be defined as the time-independent (steady-state) non-equilibrium partition
function

Z =

∫
e−

ψ0
D du (2.172)

and the diffusion scale D measures the strength of the fluctuations. We also note that Z is
not dependent on time t.
As presented in [67], the entropy S, the energy E and the free-energy F of the non-equilibrium
neural network can then be defined as follows:

S = −
∫
P (u, t) lnP (u, t)du (2.173)

E =

∫
ψ0P (u, t)du = −D

∫
ln[ZPss]P (u, t)du (2.174)

F = E −DS = D
(∫

P ln
( P

Pss

)
du− lnZ

)
(2.175)
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As an open system that constantly exchanges energy and materials with the environment,
the entropy does not necessarily increase all of the time. Through some algebra it can be
seen that the system entropy evolution in time is contributed by two terms45:

Ṡ = − d

dt

∫
P (u, t) lnP (u, t)du = −

∫
∂P (u, t)

∂t
lnP (u, t)du = Ṡt − Ṡe

where

• Ṡt =
∫
du(Φ ·G−1 · Φ)/P 2 is the entropy production rate, which is either positive or

zero since G is positive definite.

• Ṡe =
∫
du(Φ · G−1 · F ′)/P is the heat dissipation rate or entropy flow rate to the

non-equilibrium neural network from the environment, that can either be positive or
negative. F̃ = F −∇ ·G is the effective force.

Hence, the system entropy change rate Ṡ is not necessarily positive. Therefore, rather than
entropy maximization, it is better to consider the free-energy minimization as the global
principle and optimal design criterion for neural networks, as stated in [67].

Proposition 2.5.2 ([67], [69]). F is a Lyapunov function in the sense of definition 2.2.8.

Proof. F satisfies the Lyapunov property of definition 2.2.8:

1. Consider the time derivative of the free-energy

dF
dt

= D d

dt

(∫
P ln

( P

Pss

)
du
)

= D
∫
dP

dt
ln
( P

Pss

)
du+D

∫
dP

dt
du =

= −D
∫

(∇ · J ) ln
( P

Pss

)
du+D d

dt

∫
Pdu =

= −D
(∫
∇ ·
[
J ln

( P

Pss

)]
du−

∫
J · ∇ ln

( P

Pss

)
du
)

Here J is defined as J = Φ|D→0. Now using Gauss’s theorem and the boundary
condition n · Φ = 0, which is the result of the conservation of total probability, we
obtain

dF
dt

= D
(∫
J · ∇ ln

( P

Pss

)
du
)

From Φ = FP −D∇ · (GP ) = (F −D∇ ·G−DG · ∇ lnP )P we can get

J
P

+DG · ∇ lnP =
Jss
Pss

+DG · ∇ lnPss

Consequently, we gain

J = P
[Jss
Pss
−DG · ∇ ln

( P

Pss

)]
45To see that this equality holds, just think of the definition of Φ and substitute it in this equality and

then after some calculations it is easy to obtain the derivative of S.
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So,

dF
dt

= D
(∫

P
[Jss
Pss
−DG · ∇ ln

( P

Pss

)]
·∇ ln

( P

Pss

)
du
)

= D
(∫

P
Jss
Pss
· ∇ ln

( P

Pss

)
du
)
−D2

(∫ [
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)]
Pdu

)
= D

(∫
Jss · ∇

( P

Pss

)
du
)
−D2

(∫ [
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)]
Pdu

)
= D

(∫
∇ ·
(
Jss

P

Pss

)
du−

∫
P

Pss
∇ · Jssdu

)
−D2

(∫ [
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)]
Pdu

)
= D

(∫
∇ ·
(
Jss

P

Pss

)
du−

∫
P

Pss

∂Pss
∂t

du
)
−D2

(∫ [
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)]
Pdu

)
= D

(∫
∇ ·
(
Jss

P

Pss

)
du
)
−D2

(∫ [
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)]
Pdu

)
Using again Gauss’s theorem and the boundary condition n · Φ = 0 we obtain

dF
dt

= −D2

∫
∇ ln

( P

Pss

)
·G · ∇ ln

( P

Pss

)
Pdu ≤ 0

where to conclude we have used the positive definiteness of the diffusion matrix G.

2. F decreases in time until reaching the minimum value at steady state, that is a lower
bound and is given by

F = D
(∫

P ln
( P

Pss

)
du− lnZ

)
≥ −D lnZ

since we know from the equilibrium thermodynamics that Ĥ[P ](t) =

∫
P ln

( P

Pss

)
du

is a positive definite function, equal to zero only when P = Pss.

Therefore, the free-energy function F related to the stationary state probability Pss is
a Lyapunov function for stochastic neural network dynamics at finite fluctuations and is
suitable to explore the global stability of non-equilibrium neural networks. F is thus the
natural extension of the energy landscape description to situations with noise and asymmetry.
As discussed in [67], the minimization of F leads to the steady state probability distribution,
that corresponds to the attractor probability distribution of states.



CHAPTER 3 Kuramoto Model

The object of this chapter is to study a network of N neurons in terms of oscillators,
taking into account the rhythmical activity of each element and also of the brain. In order
to do so, we will derive and then describe the Kuramoto model following the contributions of
Acebrón et al. [2], Mori and Kuramoto [41] and Strogatz [58].

3.1 The role of synchronization in nature

Time plays a key role for all living beings. In fact their activity is governed by cycles of
different duration which determine their individual and social behavior. There are biological
processes and specific actions which require precise timing. Some of these actions demand
a level of expertise that can only be acquired after a long period of training, but others
take place spontaneously. How do these actions occur? Possibly through synchronization of
individual actions in a population.
Synchronization has attracted the interest of scientists for centuries, because it is observed in
biological, chemical, physical and social systems. A paradigmatic example is the synchronous
flashing of fireflies observed in some South Asian forests. At night these fireflies start to
emit flashes in an uncoordinated way, but after a certain period of time, their pulsations
spontaneously synchronize, so that the entire population emits light perfectly in unison. This
surprising phenomenon has been the subject of several studies and only in the 60s of the
twentieth century has found a first explanation: the rhythm of flashes is not set by a single
leader firefly, but depends on the interaction between all components of the population. In
fact, in some way, the frequency of each firefly corrects itself spontaneously in order to blink
in unison with the others. Synchronism, of course, is not limited to the case of fireflies, but
is present in many other areas of reality: in physics we find it in the arrays of lasers and
Josephson junctions, in sociology in the applause of a vast audience, in medicine, for example,
in heartbeat due to pacemaker cells and in the dynamics of neuronal networks46.
The mathematical study of synchrony arises from the need/will of describing, and therefore
understanding, through a rigorous theory, these phenomena of collective self-organization
that are clearly evident in various scientific and engineering fields. Schematically, these
phenomena consist of a huge system of different oscillators that spontaneously, at a certain
time step in their evolutions, collectively converge at a common frequency, in spite of the
different individual frequencies from which they are characterized in the initial configu-
ration. Therefore, two or more oscillating systems are said to be totally synchronized if
their trajectories, in phase space, converge asymptotically in time to the same trajectory
with exponentially fast convergence. A less stringent definition of synchronization has been
proposed by Pikovsky et al. in “Synchronization, an universal concept in nonlinear sciences”
(2001, [49]): “an adjustment of rhythms of oscillating objects due to their weak interaction”.
Research on synchronization phenomena focuses inevitably on ascertaining the main mecha-
nisms responsible for collective synchronous behavior among members of a given population.
Generally to obtain a correlated global activity, interacting oscillating elements are required:
the “oscillating objects” are described as systems with oscillating motion caused by internal

46This last topic is at the center of our interest for this model and it will be discussed in section 3.6.
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processes or external energy sources, able to oscillate autonomously (self-sustaining oscilla-
tors) and to interact with each other with an intensity according to the coupling strength
that distinguishes them.
There are different ways to tackle this problem:

• Suppose that the rhythmical activity of each element is described in terms of a physical
variable that evolves regularly in time. When such a variable reaches a certain threshold,
the element emits a pulse (action potential for neurons), which is transmitted to the
neighborhood. Later on, a resetting mechanism initializes the state of this element and
then a new cycle starts. Essentially the behavior of each element is similar to that
of an oscillator. Assuming that the rhythm has a certain period, it is convenient to
introduce the concept of phase, a periodic measure of the elapsed time. The effect
of the emitted pulse is to alter the current state of the neighbors by modifying their
periods, lengthening or shortening them. This disturbance depends on the current
state of the oscillator receiving the external impulse and it can also be studied in terms
of a phase shift. The analysis of the collective behavior of the system can be carried
out in this way under two conditions:

– the phase shift induced by an impulse is independent of the number of impulses
arriving within an interspike interval

– the arrival of one impulse affects the period of the current time interval, but
memory thereof is rapidly lost and the behavior in future intervals is not affected.

• There is another scenario in which synchronization effects have been studied extensively.
Let us consider an ensemble of nonlinear oscillators moving in a globally attracting
limit cycle of constant amplitude. These are phase- or limit-cycle oscillators. We now
couple them weakly to ensure that no disturbance will take any of them away from the
global limit cycle. Therefore only one degree of freedom is necessary to describe the
dynamic evolution of the system: the phase.

Even at this simple level of description it is not easy to propose specific models and the
description becomes much more complicated for a large number of coupled elements. Hence,
we are forced to consider models that are mathematically tractable, with continuous time
and specific nonlinear interactions between oscillators.
In the last decades numerous authors have been looking for a “solvable” model of this type
for years. Winfree, for example, persistently sought a model with nonlinear interactions. He
realized that synchronization can be understood as a threshold process: when the coupling
among oscillators is strong enough, a macroscopic fraction of them synchronizes to a common
frequency. The model he proposed was hard to solve in its full generality, although a solvable
version has been recently found by Ariaratnam and Strogatz in 2001.
The most successful attempt to find such solvable model was due to Kuramoto (1975), who
analyzed a model of phase oscillators running at arbitrary intrinsic frequencies and coupled
through the sine of their phase differences. Kuramoto not only noted that, under appropriate
hypotheses, the model exhibits a transition behavior in which a critical coupling constant
Kc separates two types of regime: one in which the system is inconsistent (K < Kc) and
the other in which there is a partial and progressive synchronization, but it was also able to
determine the exact value of this critical constant. The Kuramoto model is simple enough to
be mathematically tractable, yet sufficiently complex to be nontrivial. It is also rich enough
to display a large variety of synchronization patterns and sufficiently flexible to be adapted
to many different contexts.
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3.2 The Kuramoto model

We now proceed with the derivation of the Kuramoto model following Mori and Ku-
ramoto’s book “Dissipative Structures and Chaos” [41].

3.2.1 Phase method

Consider the N -dimensional differential equation

dX

dt
= F (X) F : RN → RN (3.1)

that describes the motion of a single limit-cycle oscillator with angular frequency ω. Let
t 7→ X0(t) be an asymptotically stable and T -periodic solution, i.e.

1. <(Spect(F ′(X0(t)))) < 0

2. dX0(t)
dt = F (X0(t)) and X0(t+ T ) = X0(t), ∀t

Following the idea of Winfree in “The Geometry of Biological Time” [66], used also by
Kuramoto, we first introduce the phase of a periodic event.
Every periodic solution t 7→ X̂(t) is represented by a closed orbit O and each of these closed
orbits is in bijective correspondence with a circumference. The crucial point of this argument
lies in the correspondence

{closed orbit} ←→ S1

where the phase is a point in S1, that is defined on the circumference and moved on the
closed orbit O of our interest. It can be interpreted both as a spatial coordinate (it gives the
direction in which the orbit is traveled) and temporal, on which we will focus.
Consider the unit circle as the reference circumference:{

x = cos(2πt)

y = sin(2πt)

with x, y, t ∈ R, or using the complex notation

z = x+ iy = e2πt

Note that while t varies between 0 and 1, the point indicating the phase travels the circum-
ference counterclockwise.
Since the phase describes a certain rhythm, it is a function of t: it is the interval of time
elapsed since the event we have marked with φ = 0 occurred for the last time. In other
words:

Definition 3.2.1 (Phase). The phase of a periodic motion is defined as

φ(z(t)) = f(t) =
time elapsed since φ = 0

period T
(mod 1) (3.2)

where mod 1 let φ = 0 be equivalent to φ = 1.
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During a non-perturbed motion of period T , the definition implies that φ grows constantly:

φ̇ =
df(t)

dt
=
ω

T

For simplicity we consider a unitary period T , so that the above expression becomes:

φ̇ = ω

Defined in this way, the phase is a convenient measure of time in periodic phenomena.
Now go back to our initial problem. If the dynamical system (3.1) is equipped with a stable,
periodic solution of period T, with cycle-limit C, then the motion on C can be described by
the phase φ(X). Let C be this closed orbit that corresponds to the periodic solution X0(t).
Using what we have just seen, we can define the phase on C through:

dφ(X0(t))

dt
= ω, X0 ∈ C

In our case it is very restrictive that the phase is defined only for the points that are on C.
In fact, if we consider the perturbed system, it can happen that points belonging to C go
away, due to the perturbation. We therefore see the need to understand how the phase is
influenced by it and to extend its definition to points that are “close” to C (it is enough to
focus attention on the vicinity of C, because we have assumed that the perturbation is weak).

Statement. The phase is defined also for every point in a tubular region T around the
closed orbit C.

Proof. Imagine that the closed orbit C crosses a thin tube with a circular section. We
want to define φ(X(t)) for every X that belongs to the tubular region. Denote with T this
N -dimensional tubular region, containing the neighborhoods close to C. Moreover, suppose
that the basin of attraction47 of C contains T . We take a point P such that: P ∈ T but
P /∈ C, and a point Q ∈ C. From definition, we can associate the phase φQ to Q.
Suppose that P and Q start moving following the non-perturbed equation (3.1). For t→∞,
P ends on C, thus φP is the phase related to P . If, on C, P and Q are infinitely close, we
have φP = φQ. Since P is an arbitrary point on T , this proves that we can associate a phase
to every point on T .

We can imagine that T is covered by a mono-parametric family of (N − 1)−dimensional
surfaces, where the phase is constant. These surfaces are called isochronous and are indicated
with I(φ). It follows directly from the definition of φ that all the points on T , which are
in a certain instant in the same isochronous, will remain in the same isochronous until the
system remains unperturbed. In particular, the variation of φ in a given point is the same as
it belongs to C or T . Therefore:

dφ(X(t))

dt
= ω, X ∈ T (3.3)

Now we want to find an equation that describes the phase behavior. We have the obvious
identity:

dφ(X(t))

dt
= gradXφ ·

dX

dt
(3.4)

47We recall the definition of basin of attraction. An equilibrium point x∗ is said to be attractive if there
exists a neighborhood U of x∗ such that for every orbit x(t) that starts from an interior point of U we have

lim
t→∞

x(t) = x∗

The biggest U for which this happens is called basin of attraction of x∗.
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Combining Eq. (3.3) and Eq. (3.4) with Eq. (3.1), we gain

gradXφ · F (X) = ω, X ∈ T (3.5)

Since we have extended the definition of phase to all the X near the orbit C, we can deduce
something about the perturbed motion of φ.
A perturbation on the initial equation leads to a deviation of φ from the linear growth φ̇ = ω,
leading to phase locking or phase diffusion effects.
The phase method is extremely effective in describing a collection of weakly coupled oscillators,
which, in the hypothesis of weak coupling strength, are geometrically confined in a N -
dimensional TN torus. Denote with q(t) the weak external force, which is due to the overall
effect of the interactions on the single oscillator. Thus, we perturb the vector field F with a
small perturbation εq(t), that in general depends on t and we obtain:

dX

dt
= F (X) + εq(t) (3.6)

Our aim is to study what happens at the periodic solution t 7→ X0(t). The motion remains
periodic even having introduced the perturbation, only the period deviates slightly from the
original T . We want to see that this variation is of order ε.
If we substitute Eq. (3.6) in Eq. (3.4) and using Eq. (3.5), we have

dφ(X(t))

dt
= gradXφ · [F (X) + εq(t)] = ω + εgradXφ · q(t) (3.7)

The right-hand side of Eq. (3.7) depends on the location of the point X on the isochronous
I(φ). We would like to find an equation that describes the motion of the phase in terms of
φ itself. We therefore try to obtain an equation in a closed form in φ, without dependence
on X. To do this we use the “perturbative idea”. Even if we specify the value of the phase,
for example φ = φ̄, we cannot locate the point X, since this is on a surface where the phase
is constantly φ̄. Let X0(φ) be the intersection point between I(φ) and C. We know that
X is close to X0(φ) and the distance |X −X0(φ)| tends to zero when ε → 0. In this way,
approximating to the minimum order the right member of (3.7) we can replace X with X0(φ).
Thus, we obtain a differential equation in the only variable φ, which describes its dynamics:

dφ

dt
= ω + εW (φ) (3.8)

where
W (φ) = Z(φ) ·Π(φ),

with
Z(φ) = gradXφ

∣∣
X=X0(φ)

, Z(φ+ T ) = Z(φ)

and
Π(φ) = q(X0(φ))

Z(φ) is the sensitivity function (already introduced by Winfree) and indicates how the
oscillators respond to external perturbations. Figure 3.1 shows the geometric interpretation
of Z(φ). It is represented by a vector which is normal to the surface I(φ) in X0, because the
vector gradXφ is perpendicular to the isochronous I(φ). Furthermore, its module is given by
the density of surfaces I through X0(φ).

Remark. Z(φ) and Π(φ) are T -periodic functions in φ; this means that the instantaneous
frequency, expressed in the right-hand side of Eq. (3.8), is T -periodic in φ.
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Figure 3.1: (a) Geometrical interpretation of the gradient vector gradXφ. (b) When the point-state X is
close to the limit cycle, the gradient vector can be evaluated assuming that X belongs to the trajectory C.

3.2.2 Derivation of the model
In the following, according to the theory proposed by Kuramoto, the dynamics in the

trivial case of two identical and interacting oscillators are derived; from this follows the
generalization to N elements. The interaction between two oscillators is represented by
the perturbation q = q̃(X,X ′) in which X and X ′ are respectively the vector-state of the
oscillator i and j. Now, with the same reasoning seen above, we can replace X and X ′ in V
with X0(φ) = I(φ)∩C and X0(φ′) = I(φ′)∩C, obtaining the following equation that depends
only on the phases:

dφ

dt
= ω +G(φ, φ′) (3.9)

with G a T -periodic function in φ and φ′ expressed by

G(φ, φ′) = Z(φ)q̃(X0(φ), X0(φ′))

To obtain the average frequency, we introduce the disturbances ψ and ψ′ to the phases
through φ = ωt+ ψ and φ′ = ωt+ ψ′. Equation (3.9) becomes:

dψ

dt
= G(ωt+ ψ, ωt+ ψ′) (3.10)

Note that since the coupling factor between the oscillators is weak, G is small and ψ and ψ′
vary very slowly, so they change very hardly during a period T that they can be considered
constant without loss of generality. Then, Eq. (3.10) can be mediated with respect to time
and we gain

dψ

dt
= Γ(ψ,ψ′) (3.11)

with

Γ(ψ − ψ′) =
1

T

∫ T

0

G(ωt+ ψ, ωt+ ψ′)d(ωt) (3.12)

that in terms of φ gives:
dφ

dt
= ω + Γ(φ− φ′) (3.13)

with Γ a T -periodic function in φ− φ′.
It is easy to observe that the generalization to the case of N interacting oscillators leads to



77 CHAPTER 3. KURAMOTO MODEL

N differential equations:

dφi
dt

= ωi +

N∑
j=1
j 6=i

Γij(φi − φj) i = 1, 2, . . . , N (3.14)

where, as before, the function Γij determines the coupling between the oscillators i and
j. Equation (3.14) cannot be treated analytically: it becomes solvable if we take further
and appropriate simplifications. In particular, the simplest case is represented by Kuramoto
model, which needs the following additional hypothesis:

1. The function Γij is the same for every couple of oscillators (i, j) and is of order N−1,
i.e. Γij(φi − φj) = N−1Γ(φi − φj);

2. The function Γ is trigonometric: Γij(φi − φj) = −K sin(φi − φj) with K ≥ 0 coupling
strength. We have to observe that the choice of this trigonometric function is crucial
for the analytical solvability of the model.

3.2.3 Analysis of the Kuramoto model

As seen, the mean-field Kuramoto model consists of a collection of N oscillators lying
on the unit circle S1 and with natural frequencies ωi, whose phases φi are governed by the
differential equations:

φ̇i = ωi +
K

N

N∑
j=1

sin(φj − φi) i = 1, 2, . . . , N (3.15)

where K is the coupling constant and N the total number of oscillators. The presence of the
multiplicative factor 1

N in the equation is necessary to maintain the model well-defined if we
work with N →∞.
To simplify the theoretical passages, some assumptions are made:

• The natural frequencies ωi are in general distributed according to a probability density
g(ω) symmetric with respect to the average frequency ω0 =

∫∞
−∞ ωg(ω)dω, so as to

have g(ω0 + ω) = g(ω0 − ω).

• In most cases it is required also that g(ω) is monotonically increasing in (−∞, ω0] and
monotonically decreasing in [ω0,∞).

• We also assume that the probability density g is an unimodal function.

Under these hypotheses Kuramoto formulates the following conjecture: for K < Kc the
oscillators do not seem to be affected by the mutual interaction and therefore persist in
their motion around the unit circle with a frequency close to the intrinsic one, generating a
de-synchronous state asymptotically stable; exceeding the critical threshold Kc, however, the
oscillators are divided into two groups. Those with natural frequency sufficiently far from
the center of the function g continue to rotate with their natural frequency, while those with
frequency near the center become phase-locked and rotate with frequency ω0 and average
phase θ.
The intrinsic difficulties related to the demonstration of this conjecture are essentially due
to the impossibility of using standard analysis techniques, such as spectral theory and
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asymptotic stability criteria, because of the presence of a linear operator with a continuous
spectrum in the imaginary axis. Among the ideas emerged to overcome the problem there
is that of Chiba, who was able to prove the linear stability of stationary solutions by first
developing the spectral theory on a space of generalized functions with the help of Hilbert’s
theory and later admitting a spectral decomposition for the linear operator consisting of a
set of countable cardinality autofunctions. For a theoretical study we refer to [13].
As regards the transition process that underlies the model, it is possible to determine a direct
equation able to supply the exact value of the critical coupling constant Kc, necessary for
the synchronization phenomena to occur.
To investigate the behavior of Eq. (3.15) we now follow the analysis procedure proposed
by Strogatz in “From Kuramoto to Crawford: Exploring the onset of synchronization in the
population of coupled oscillators”, [58].

3.2.4 Order Parameter
The first step is to introduce the following complex order parameter:

reiθ =
1

N

N∑
j=1

eiφj (3.16)

where 0 ≤ r ≤ 1 measures the global phase coherence level of the system and θ gives the
average of the phases of all the oscillators. The right interpretation key to be given to
Eq. (3.16) is the following: interpreting the phase of each oscillator as a point on the unit
circumference, the order parameter reiθ is represented by an arrow whose length depends on
the state of the system and increases as the phases of the oscillators approach each other as
shown in Fig. 3.2.

Figure 3.2: The order parameter is represented by an arrow from the center of the unit circle. Notice
how the length of the order parameter increases as the oscillator phases approach each other. The point
identified by reiθ is called centroid.

The order parameter can be interpreted as the macroscopic quantity that indicates the
collective rhythm of the oscillator system. In particular,

• r ≈ 0 corresponds to a configuration in which no macroscopic rhythm is produced,
because the oscillators are located uniformly on the circle and moves individually,

• r ≈ 1 indicates that the phases are almost all similar and the system will act as a single
macro-oscillator.

• In the case where r(t) assumes an intermediate value, 0 < r(t) < 1, there is partial
synchronization, that is a part of the oscillators moves in a compact group, while the
others continue their individual motion.
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Using the order parameter it is possible to rewrite Eq. (3.15) in a more convenient form.
Multiply both members of Eq. (3.16) for e−iφi to obtain

rei(θ−φi) =
1

N

N∑
j=1

ei(φj−φi) i = 1, . . . , N (3.17)

whose imaginary part is

r sin(θ − φi) =
1

N

N∑
j=1

sin(θ − φi) (3.18)

Substituting this last relation in Eq. (3.15) we obtain the governing equation as a function
of the order parameter:

φ̇i = ωi +Kr sin(θ − φi) i = 1, 2, . . . , N (3.19)

It should be noted, in particular, how the interaction between the oscillators is described
only in terms of the “mean-field” quantities r and θ. The coupling term shows how the phase
of each individual oscillator is pushed towards the middle phase of the whole ensemble with
a force proportional to the magnitude of the order parameter and the coherence r. This
establishes a deep link between coupling and coherence. When the population becomes
more and more coherent, the increase of r and therefore of the coupling tends to bring more
oscillators in the synchronized group. If consistency continues to increase, the synchronization
process continues, otherwise it stops.

3.2.5 Synchronization

The qualitative and heuristic considerations presented so far are analytically summarized
in the following theorem, as stated and proved in [58]:

Theorem 3.2.2 ([58]). Let be given a system of N identical oscillators that satisfy the
model of Kuramoto, i.e. Eq. (3.19) with the assumptions described before. In the continuous
thermodynamic limit, N →∞, there is a threshold value Kc = 2

πg(ω0) ≥ 0 for the coupling
constant such that:{

limt→+∞ r(t) = 0 for K < Kc

limt→+∞ r(t) = r∞ (with 0 < r∞ ≤ 1) for K ≥ Kc

(3.20)

and where g(ω0) is the value assumed in ω0 by the distribution g(ω) of the frequencies
(Fig. 3.48).

Proof. Following Kuramoto, we are looking for stable solutions of Eq. (3.19), in which r(t)
is constant and θ(t) rotates uniformly at the frequency ω0, i.e.:{

θ(t) = θ0 + Ωt

r(t) = r, constant (≤ 1)
(3.21)

Our system is described by Eq. (3.19):

φ̇j = ωj +Kr sin(θ − φj) (= Φj(φ)) j = 1 . . . , N (3.22)
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Figure 3.3: Below Kc there is only one stable solution, r = 0. This will be a completely incoherent state.
As the coupling reaches Kc there is a nonzero solution, which branches off. As K increases to infinity r
tends to 1. This will thus be a completely coherent state where every oscillator will be in phase due to the
strong coupling. The above image was taken from Strogatz [58].

where r(t) and θ(t) are defined by the definition (3.16) of the order parameter.
Since r(t) is assumed to be constant in Eq. (3.19), the equations are decoupled and, therefore,
the oscillators are all independent of each other. Our work now consists in solving the
resulting motions of all the oscillators, which will depend on r as a parameter. These motions
must give values for r and θ consistent with those assumed. The stratagem of this method
for analyzing the system is the condition of self-consistency for the order parameter.
We start by checking the compatibility of (3.21) with the asymptotic motion of the oscillators:

φj → φ
(0)
j + Ωt for t→ +∞ (3.23)

and by finding the necessary stability conditions.
We will proceed by exploiting the results in Appendix C, since this can be considered a
simple case of that theory. The fundamental difference lies in the work environment. Now,
in fact, we are not in RN , but in TN .
Consider the model of Kuramoto, that is described by the system:

φ̇j = ωj +
K

N

N∑
j=1

sin(φi − φj)

żj = 0

where zj , for j = 1, . . . , N , indicates the radius. The second equation only says that the
radius remains stationary. For this reason it is useless for the dynamics of the problem, since
it does not provide any information, but only clarifies the new geometry of the system. We
will then work on the “universal covering” of TN , which is RN .

• Consider the t-dependent diffeomorphism:

ψj = φj − φ(0)
j − Ωt (= ψ(φ, t))

and calculate the conjugate field Ψ(ψ) of Φ(φ):

ψ̇l = Ψl(ψ, t) =

N∑
j=1

∂ψl

∂φj
Φj +

∂ψl

∂t
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that gives
ψ̇l = ωl +Kr sin(θ(t)− ψl − φ(0)

l − Ωt)− Ω

Substituting θ0 = θ(t)− Ωt, derived from the first equation in (3.21), in the previous
equation, we gain:

ψ̇l = ωl − Ω +Kr sin(θ0 − ψl − φ(0)
l ) (= Ψl(ψ)) (3.24)

• We want the solution ψl = 0 to be an asymptotically stable equilibrium solution for
Eq. (3.24):

→ ψl = 0 is an equilibrium for Eq. (3.24) if it is true:

0 = ωl − Ω +Kr sin(θ0 − φ(0)
l ) =⇒ φ

(0)
l = arcsin

ωl − Ω

Kr
+ θ0 (3.25)

Hence, the condition that guarantees the existence of equilibria is given by∣∣∣∣ωl − Ω

Kr

∣∣∣∣ ≤ 1 =⇒ |ωl − Ω| ≤ Kr (3.26)

Now examine the stability condition for ψ∗l = 0. Consider Eq. (3.24) as

dψ

dt
= X(ψ(t)) with X(ψ∗) = 0

From theorem C.0.2, if <(Spect(X ′(ψ∗))) < 0, ψ∗ is an asymptotically stable equilib-
rium, i.e.

∂Ψl

∂ψm

∣∣∣∣
ψ∗l =0

= −Kr cos(θ0 − φ(0)
l )δlm < 0 (3.27)

If we consider the weak condition: −Kr cos(θ0 − φ(0)
l )δlm ≤ 0, then we have “linear

stability”.
Starting from Eq. (3.27), the condition, that must satisfy ψ∗l , l = 1, . . . , N , to be
asymptotically stable, is:

cos(θ0 − φ(0)
l ) > 0, i.e. |θ0 − φ(0)

l | <
π

2
(3.28)

thus: θ0 − φ(0)
l ∈]− π

2 ,
π
2 [.

To sum up: if

1. |ωl − Ω| ≤ Kr

2. θ0 − φ(0)
l ∈]− π

2 ,
π
2 [

then the solution ψ∗l = 0 is asymptotically stable for Eq. (3.24). Hence, those oscillators,
whose frequencies satisfy (3.26), will tend to the asymptotic motion (3.23). Then the
quiet motions in the equilibria:

ψl(t) = ψ∗l (t) ≡ 0 l = 1, . . . , N

correspond to the synchronization for those l indices that satisfy (3.26). These oscillators
are called locked, because in their original reference system their phase is blocked at the
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frequency Ω. If, however, it does not apply (3.26), that is |ωl−Ω| > Kr, oscillators are
called drifting ; they move on the circumference unevenly, accelerating in the vicinity of
some phases and slowing down near others.
The condition (3.26) is, therefore, fundamental to understand which oscillators will
form the synchronized group and which ones do not. The system will be composed of a
‘cluster’ of synchronized oscillators (the oscillators that correspond to the l indices that
satisfy (3.26)) and a set of individual oscillators that move around the circumference
(corresponding to the indices l for which it does not apply (3.26)).

• Consider now the particular case where we choose

(a) θ0 = 0

(b) φ(0)
j , j = 1, . . . , N are distributed symmetrically around zero in ]− π

2 ,
π
2 [.

We want to evaluate a posteriori if, in this simplified case, we obtain values of r and θ
acceptable with those we have assumed (see (3.21)).
Taking into account these hypotheses, the order parameter is determined through the
definition (3.16):

reiθ =
1

N

N∑
j=1

eiφj(t) =
1

N
ei(φ

(0)
j +Ωt) =

[ 1

N

N∑
j=1

cosφ
(0)
j + i

1

N

N∑
j=1

sinφ
(0)
j︸ ︷︷ ︸

=0 for (a)

]
eiΩt

By comparing the first and last member, we get:{
θ(t) = Ωt

r = 1
N

∑N
j=1 cosφ

(0)
j < 1 (= 1 only if φ

(0)
j ≡ 0 ∀j)

As we can see what results is perfectly consistent with the (3.21) (remembering that we
have placed θ0 = 0) and with what was expected. In this case, ψl = 0 is an equilibrium
if, placed θ0 = 0 in (3.25), we get

0 = ωl − Ω−Kr sin(φ
(0)
l ) =⇒ φ

(0)
l = arcsin

ωl − Ω

Kr
(3.29)

where it must be valid the existence condition:

|ωl − Ω| ≤ Kr (3.30)

Remark. From (3.29) we see that the phases φ(0)
l , l = 1, . . . , N are distributed according

to condition (a), if the frequencies ωl, l = 1, . . . , N , are symmetrically distributed
around Ω.

If (3.30) holds for every l = 1, . . . , N there is total synchronization, because all the
oscillators tend to their asymptotic motions:

φj → φ
(0)
j + Ωt ∀ l

We see that when the system totally synchronizes, the order parameter r is about 1.
Since the frequencies of the oscillators are distributed according to the probability
density g(ω), in order that (3.30) is satisfied for each l = 1, . . . , N , we can think that
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K → +∞, so that the interval [−Kr,Kr] can cover the whole range of frequencies.
If K → +∞, since r ≤ 1, from (3.29) we get φ(0)

l → 0 and therefore ωl ≈ Ω. Hence
r → 1: in fact, since cosφ

(0)
l → 1, one has that r = 1

N

∑N
l=1 cosφ

(0)
l → 1. The

oscillators, considered as points on the unitary circumference, tend to overlap in a
neighborhood of the same point and move in a compact block with frequency Ω.

• What remains to be understood is how r(t) keeps constant even in the presence of
errant oscillators that run disorderly on the circumference. Kuramoto required that
oscillators of this type formed a uniform distribution on the circumference. In this way
the centroid is fixed, even though the oscillator is still moving.
Denote with ρ(φ, ω, t)dφ the fraction of oscillators with angular frequency ω and angular
position between φ and φ+ dφ at time t. For the stationary hypothesis we have that
ρ(φ, ω, t) is inversely proportional to the velocity in φ

ρ =
C

v
(3.31)

that is the oscillators accumulate where they go slower and thin out when they are
faster along the circumference. Hence:

ρ =


δ
(
φ− ψ − arcsin

(ω − Ω

Kr

))
H(cos(φ)) |ω − Ω| < Kr

C

|ω − Ω +Kr sin(φ)|
otherwise

(3.32)

where H is the Heaviside function

H(x) =

{
1 x > 0

0 otherwise
(3.33)

and C is found by imposing the normalization condition of the function ρ:∫ π

−π
ρ(φ, ω, t)dφ = 1 for every ω.

This conclusion is never shown in Kuramoto’s works, since he had and worked on an
intuition. The first mathematician to deal with this gap was Strogatz, as we find in
the article “From Kuramoto to Crawford: Exploring the onset of synchronization in
populations of coupled oscillators”, [58]. The proof is shown in Appendix D.

• Now calculate the C constant using the residuals method (for a theoretical reference
see Appendix E). We want to evaluate∫ π

−π

C

ω − Ω +Kr sin(φ)
dφ 0 < Kr < ω − Ω

∫ π

−π

C

ω − Ω +Kr sin(φ)
dφ =

∫ 2π

0

C

ω − Ω +Kr sin(φ)
dφ =

=

∫
γ

C

(ω − Ω) + Kr
2i (z − 1

z )

dz

iz
= 2iC

∫
γ

dz

iz(2i(ω − Ω) +Kr(z − 1
z ))

=

= 2C

∫
γ

dz

Krz2 + 2i(ω − Ω)z −Kr
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We look for the poles of the integrand function:

z± =
−2i(ω − Ω)±

√
−4(ω − Ω)2 + 4K2r2

2Kr
=
−i(ω − Ω)± i

√
(ω − Ω)2 −K2r2

Kr

with (ω − Ω)2 −K2r2 > 0. There are two distinct poles, so they are of the first order.
Now we have to evaluate the modules, since to calculate the integral with the residuals
method we have to consider the ones that have module less than 1.
→ Surely |z−| > 1.

→→ Now consider the other pole. z± are solutions of the equation:

(z − z+)(z − z−) = z2 +
2i(ω − Ω)

Kr
z + 1

then we have z+z− = 1; then, going to the modules |z+||z−| = 1, since |z−| > 1,
we obtain |z+| < 1.

In conclusion, the pole that interests to calculate the integral is z+. Therefore we gain∫ π

−π

C

ω − Ω +Kr sin(φ)
dφ, 0 < Kr < ω − Ω

∫ π

−π

C

ω − Ω +Kr sin(φ)
dφ = (2C)(2πi)Resz+

1

Krz2 + 2i(ω − Ω)z −Kr
=

= (2C)(2πi)
1

2Krz + 2i(ω − Ω)

∣∣∣
z=z+

= 2πCi
1

i
√

(ω − Ω)2 −K2r2
=

=
2πC√

(ω − Ω)2 −K2r2

hence

C =
1∫ π

−π ρ(φ, ω, t)dφ
=

√
(ω − Ω)2 −K2r2

2π
(3.34)

If C(ω) = 0, in order that ρ is normalizable, it is necessary that ρ be a Dirac delta
function with a peak corresponding to a certain φ′:

C(ω) = ρv = δ(φ− φ′)v = δ(φ− φ′)(ω − Ω +Kr sin(φ)) = 0 (3.35)

Integrating with respect to φ we gain

ω − Ω +Kr sin(φ′) = 0 (3.36)

• We have identified two groups of oscillators: the locked oscillators and the drifting
oscillators. In the resolution with respect to the order parameter it is therefore possible
to divide the sum into two parts, each representing the contribution of one of these
groups. We obtain

〈eiφ〉 = reiθ = 〈eiφ〉lock + 〈eiφ〉drift (3.37)

where we consider the average over the entire population of oscillators. Using the
self-consistent condition in order to gain a constant value for r in agreement with the
definition (3.16) of the order parameter we have

r = e−iθ 〈eiφ〉lock + e−iθ 〈eiφ〉drift (3.38)
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The contribution of the locked oscillators is given by

e−iθ 〈eiφ〉lock =

∫ Kr+Ω

−Kr+Ω

ei(φ−θ)g(ω)dω =

∫ Kr+Ω

−Kr+Ω

ei(φ
(0)+Ωt−θ)g(ω)dω (3.39)

where it is taken into account that for these oscillators the asymptotic motions, described
by Eq. (3.23), are valid. Applying a change of variables, from (3.25) we obtain

ω = ω(φ(0)) = Ω +Kr sin(φ(0) − θ0) (3.40)

and substituting in Eq. (3.39) we obtain an integral in φ(0):

e−iθ 〈eiφ〉lock = Kr

∫ π
2

−π2
ei(φ

(0)−θ0)g(Ω +Kr sin(φ(0) − θ0)) cos(φ(0) − θ0)dφ(0) (3.41)

Set φ(0) − θ0 = x:

e−iθ 〈eiφ〉lock = Kr

∫ π
2−θ0

−π2−θ0
eixg(Ω +Kr sinx) cosx dx

For the contribution due to the errant oscillators we have

e−iθ 〈eiφ〉drift =

∫ π

−π

∫
|ω−Ω|>Kr

ei(φ−θ)ρ(φ, ω)g(ω)dωdφ (3.42)

This integral is zero, because it is valid: ρ(φ, ω) = ρ(φ+ π, 2Ω− ω).
Therefore the self-consistent equation we have reached is given by:

r = (e−iθ 〈eiφ〉lock =)Kr

∫ π
2−θ0

−π2−θ0
eixg(Ω +Kr sinx) cosx dx (3.43)

Equation (3.43) has a trivial solution for r = 0 for every value of K, that corresponds
to the state of complete incoherence with ρ(φ, ω) = 1

2π for every φ and ω.
What is surprising is that this inconsistent state is always possible, regardless of how
frequencies are distributed. Even if they are all the same, the inconsistency can last
forever, once it is established as an initial condition.
Eq. (3.43) is equivalent to the following pair of equations, obtained by equating the
imaginary and the real part of its two members:

0 =

∫ π
2−θ0

−π2−θ0
g(Ω +Kr sinx) sinx cosx dx (3.44)

1 = K

∫ π
2−θ0

−π2−θ0
g(Ω +Kr sinx) cos2 x dx (3.45)

From these last two equations we obtain the values of r and Ω. By hypothesis, g(x) is
symmetric with respect to ω0; therefore, Eq. (3.44) can be satisfied if and only if

Ω = ω0 (3.46)

Eq. (3.45) gives a family of solutions corresponding to the partially synchronized state.
These solutions bifurcate continuously starting from r = 0, when the coupling constant
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is Kc. To calculate it, take the limit of Eq. (3.45) for r → 0+; we want to see under
which conditions we begin to come out of the completely incoherent state.

1 = lim
r→0+

Kc

∫ π
2−θ0

−π2−θ0
g(ω0 +Kr sinx) cos2 x dx =

= Kcg(ω0)

∫ π
2−θ0

−π2−θ0
cos2 x dx = Kcg(ω0)

π

2

(3.47)

Hence:
Kc =

2

πg(ω0)
(3.48)

which is exactly the critical value needed to have states in which synchronization
phenomena start to manifest. Unlike what happens for the inconsistency, this state is
not always possible. It exists only above a certain Kc threshold.

3.2.6 Initial Growth of Kc

After calculating the value of Kc, we want to study the initial growth of that value, as
presented by Strogatz in [58].
Assume for simplicity that Ω = ω0 = 0. To understand how r behaves near the critical
point Kc, expands g(Kr sin(x)) around 0 with Taylor:

g(Kr sin(x)) ≈ g(0) + g′(0)(Kr sin(x)) +
1

2
g′′(0)(Kr sin(φ))2 (3.49)

Since for hypothesis g(ω) has a maximum in 0, we have g′(0) = 0 and thus Eq. (3.49)
becomes

g(Kr sin(x)) ≈ g(0) +
1

2
g′′(0)(Kr sin(φ))2 (3.50)

If we substitute this relation in Eq. (3.45) we gain

1 = K

∫ π
2−θ0

−π2−θ0
cos2(x)[g(0) +

1

2
g′′(0)(Kr sin(φ))2] dx (3.51)

Solving the integral and using Eq. (3.48) we obtain

1 = K
[
g(0)

π

2
+
K3r2g′′(0)

2

π

8

]
=

K

Kc
+
πK3r2g′′(0)

16
(3.52)

Now multiply both members by Kc and assume that K ≈ Kc since we are working near the
critical point. We get

Kc = K +Kc
πK3r2g′′(0)

16
(3.53)

If we set µ ≡ K−Kc
Kc

= −πK
3r2g′′(0)

16 the distance from the critical point, solving Eq. (3.53)
for the order parameter we obtain

r =

√
−16µ

πg′′(0)K3
c

(3.54)
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or equivalently

r =

√
−16

πg′′(0)K4
c

(K −Kc)
1/2 (3.55)

For K ↘ Kc, then r is proportional to the square root of the distance from Kc as exemplified
by Figure 3.4. In particular, for g unimodal and sufficiently smooth around ω = 0 (implying
g′′(0) < 0), the partially synchronized state bifurcates super-critically from the incoherent
state for K > Kc indicating a so-called second-order phase transition.
In the absence of a well defined and known distribution function g(ω), it is not possible to
go beyond Eq. (3.55), expliciting r(K). As an example, we consider the particular case that
g is Lorentzian (or Cauchy):

g(ω) =
∆

π(∆2 + ω2)
(3.56)

where ∆ > 0 is the scale parameter, that define the amplitude of the distribution. The
integral in (3.45) can then be evaluated explicitly, resulting in

r =

√
1− 2∆

K
(3.57)

or equivalently, considering that Kc = 2
πg(0) = 2

π 1
π∆

= 2∆,

r =

√
1− Kc

K
(3.58)

for K ≥ Kc, with Kc = 2∆. According to Figure 3.4, this result for the continuous limit
model (D.1)-(D.11) coincides quite well with simulations carried out for the original model
(3.15) with large but finite N .

Figure 3.4: Phase diagram for the Kuramoto model (3.15) in the case of the Lorentzian frequency distri-
bution (3.56) with ∆ = 1. Figures (a) and (b) show the simulation results obtained with N = 100 and
N = 1000 oscillators respectively, having natural frequencies that are the same for each evaluated K.
In both figures, the blue plot corresponds to (3.58). For each investigated K, the corresponding r is the
result from averaging over a time period after the system has settled into a stationary state, with error
bars representing standard deviations. Figure taken from the bachelor’s thesis of Zeegers [68], where all
the details about the numerical scheme used and the Matlab code are provided.
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3.2.7 The bimodal case
So far we have extensively discussed the phenomenology of the mean-field Kuramoto

model when g is symmetric and unimodal. A natural question is to what extent these results
still apply when g is shaped differently. An obvious choice is to consider a g that consists of
two peaks. This bimodal frequency distribution has been investigated in the literature (see
for instance [34] and [36]), but the model proved to be considerably more difficult to analyze
than in the unimodal setting.
We will restrict ourselves to the results presented in [36]. In this study, exact results have
been obtained for the case that g is equal to the sum of two identical Lorentzian densities:

g(ω) =
∆

2π

( 1

∆2 + (ω − ω0)2
+

1

∆2 + (ω + ω0)2

)
(3.59)

In (3.59), ∆ is again the scale parameter of the two Lorentzians and these are centered at
±ω0 (see Figure 3.5). The analytical and numerical results of [36] are summarized in Fig. 3.6
and show new phenomena compared to the unimodal case.

Figure 3.5: The bimodal distribution given by (3.59), being the sum of two identical Lorentzians.
Adapted from [36].

• For ω0/∆ < 1/
√

3, we simply get the previously considered phase transition between
incoherence and partial synchronization. Indeed, this is precisely the region for which
the distribution (3.59) is unimodal, since the peaks are not far enough from each other,
in relation to their widths, to break unimodality.

• In the region 1/
√

3 < ω0/∆ < 1, the distribution still is hardly bimodal. However, what
is new is that close to the phase transition boundary both the incoherent state and
the partially synchronized state are stable. In this so-called bistable region, it depends
on the initial distribution of the oscillators whether incoherence or synchronization
prevails.

• For ω0/∆ > 1, the peaks of g are sufficiently separated such that stable standing waves
emerge in the phase diagram. In these states, the population is split into two counter-
rotating clusters of oscillators. This happens in the intermediate region where the
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coupling is strong enough to lock oscillators with frequencies around the same peak of
g, but too weak to lock the two clusters. As we see from Figure 3.6, the standing waves
coexist with partially synchronized states for 1 < ω0/∆ < 1.18 and this bistability has
fully disappeared for ω0/∆ > 1.81.

Figure 3.6: Phase diagram for the mean-field Kuramoto model with g given by (3.59). It consists of
regions of incoherence (white), partial synchronization (dark gray), standing waves (light gray) and bista-
bility, where in the last case partially synchronized states coexist either with incoherent states (vertical
lines) or with standing waves (horizontal lines). Figure taken from [36].

The question on how the states in Figure 3.6 bifurcate from each other is more delicate
than in the unimodal setting. A detailed bifurcation analysis can be found in [36], where
in addition similar results have been obtained for the case that g is a sum of two identical
Gaussians.

3.2.8 Summary of the Kuramoto Model
We now summarize what we have seen up to now about the Kuramoto model.

Kuramoto proposed a model that can be solved precisely for the synchronization of weakly
coupled oscillators and this is governed by

φ̇i = ωi +
K

N

N∑
j=1

sin(φj − φi) i = 1, 2, . . . , N

where φi(t) is the phase of the i-th oscillator and ωi the natural frequency, chosen randomly
from the following Lorentzian probability distribution

g(ω) =
∆

π(∆2 + ω2)
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Using the self-consistent hypothesis, the model is solved for N →∞ and t→∞ with the
order parameter expressed by

r(t) =

∣∣∣∣ 1

N

N∑
j=1,j 6=i

eiφj
∣∣∣∣

Then the following relation

r =

0 K < Kc√
1− Kc

K
K ≥ Kc

where Kc = 2∆, expresses the condition for which a synchronized state is verified or not.
We have then seen in section 3.2.5 that the conditions to have an asymptotically stable point
are:

1. |ωl − Ω| ≤ Kr

2. θ0 − φ(0)
l ∈]− π

2 ,
π
2 [

Oscillators whose frequency satisfies condition 1 tend to the asymptotic synchronization
motion (3.23), therefore they are said to be locked, since their phase φ coincides with
the frequency Ω. Oscillators not respecting the equilibrium condition move along the
circumference unevenly. Condition 1 is, thus, fundamental to understand which oscillators
form the synchronized group and which are not.
What has been done so far is a mere investigation of the validity and plausibility of the model,
which highlights the conditions of existence for the asymptotic stability of weakly interacting
oscillator systems. To verify the stability of the equilibrium of the system, we used the
Lyapunov Spectral Method, where a uniformly rotating reference system was introduced with
the synchronous asymptotic angular velocity (Ω). The value that it assumes is therefore of
fundamental importance: for excessively high or reduced values, the model does not work.
However, a fundamental condition for the occurrence of synchronism is that there must not
be too much difference in the oscillator population.

3.3 Structural stability of the Kuramoto model

The following section analyzes the robustness of the model treated, focusing attention on
the properties of the system’s equilibrium points which are preserved, completely or partially,
in the presence of a weak perturbation. The perturbation will concern both the vector field,
with a C0 function close to the original, and the initial condition of the Cauchy Problem.
Intuitively, the behavior of a system is stable if, subject to perturbation, the resulting
movement is “quite” similar to the original one. In order to define quantitatively the concept
of “close enough” it is necessary to fix a distance, and therefore a norm, in the space of the
states. In this case it is possible to give the following topological definitions:

Definition 3.3.1 (Absolute Stability and Total Stability of Dubovin). Given the vector
field X(x, t) related to the differential equation ẋ = X(x, t), let x∗ be an equilibrium point:
X(x∗, t) = 0 and let x(x0, t) be a solution for the equation with initial data x0.
x∗ is said to be absolutely stable for ẋ = X(x, t) if, for every ε > 0, exists δ > 0 such that,
for every x0 ∈ B(x∗, δ), we have that:

• x(x0, t) ∈ B(x∗, ε) for every t > 0, i.e. x∗ is stable;
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• limt→+∞ x(x0, t) = x∗.

x∗ is said to be totally stable for ẋ = X(x, t) if, for every ε > 0, exists δ > 0 such that

• for every initial data x0: |x0 − x∗| < δ

• for every perturbation Y (x, t) of the vector field characterized by the condition

sup
t∈R

sup
x∈RN

|Y (x, t)| < δ

then the solutions of {
ẋ = X(x, t) + Y (x, t)

x(0) = x0

are ε-limited near x∗, that is |x(x0, t)− x∗| < ε for every t ≥ 0.

Remark. Note tha X(x∗, t) = 0 does not imply necessarily that X(x∗, t) + Y (x∗, t) = 0.

Malkin theorem aims to provide a characterization of the structural stability of a dynamic
system: in the presence of perturbations, in particular, it ensures at least the total stability
around the asymptotically stable equilibria of the unperturbed system. The proof of the
theorem follows from the Gronwall’s Lemma or from the Lyapunov function of asymptotic
stability. The first alternative is developed below.

3.3.1 Malkin Theorem
In this section we present the proof of Malkin’s Theorem as it guarantees us the sufficient

condition to obtain the total stability of the equilibrium model. This theorem is exploited
since the asymptotic stability has been verified previously by means of the Spectral Method48.
To develop the proof of this theorem, Gronwall’s Lemma is used, that is so defined.

Lemma 3.3.2 (Gronwall’s Lemma). Considering the particular case in which parameters
a and b are not time-dependent, then take the parameters a, b > 0 and φ(t) ≥ 0 for every
t ∈ [0,+∞). If by hypothesis the following differential inequality holds

φ̇(t) ≤ aφ(t) + b (3.60)

then we have:
φ(t) ≤ eat

(
φ(0) +

b

a

)
− b
a

(3.61)

Proof. Consider the following Cauchy problem{
ψ̇ = aψ + b

ψ(0) = φ(0)

whose solution is

ψ(t) = eatφ(0) +

∫ t

0

ea(t−s)bds = eat
(
φ(0) +

b

a
e−as|s=0

)
− b
a

= eat
(
φ(0) +

b

a

)
− b
a

48Malkin’s Theorem guarantees the total stability around the asymptotically stable equilibrium points.
Therefore, if the asymptotically stable equilibrium points have been identified with the Spectral Method, the
total stability of the model will occur around those points.
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For hypothesis we have

φ̇(t) ≤ ψ̇(t), ∀ t > 0, and φ(0) = ψ(0)

thus the thesis is verified
φ(t) ≤ eat

(
φ(0) +

b

a

)
− b
a

Remark. If we take a, b > 0 for every t ∈ [0,∞) we have

|φ̇(t)| ≤ a|φ(t)|+ b (3.62)

then
|φ(t)| ≤ eat

(
|φ(0)|+ b

a

)
− b
a

(3.63)

Proof. The thesis follows immediately from49

d

dt
|φ(t)| ≤ |φ̇(t)| ≤ a|φ|+ b (3.64)

thus we use the previous Lemma 3.3.2 for φ(t)→ |φ(t)|.

We now state and prove Malkin theorem using relation (3.63).

Theorem 3.3.3 (Malkin Theorem). Given the differential equation for the vector field
X : RN → RN {

ẋX = X(x, t)

xX(0) = x0

with x∗ an equilibrium point asymptotically stable, then x∗ is totally stable, i.e. ∀ ε > 0 exist
a η(ε) > 0 and δ(ε) > 0 such that

• for every vector field of perturbation Z = X + Y , where this field is C0-close to X, with

‖X(·)− Z(·)‖C0 := sup
x∈RN

|X(x)− Z(x)| < η(ε) (3.65)

• and for every initial data x0

|x0 − x∗| < δ(ε)

we have that xZ(x0, t) is a solution for the differential equation of the perturbed field{
ẋZ = Z(xZ , t)

xZ(0) = x0

such that
|xZ(x0, t)− x∗| < ε for every t ≥ 0.

Remark. We can state Malkin theorem also referring to a unique δ̂(ε): it is sufficient to
consider, instead of η(ε) and δ(ε), δ̂(ε) = min{η(ε), δ(ε)}.

49This relationship always occurs because the derivative of an absolute value must also take into account
the sign function.
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Proof. Consider the vector field Z η-uniformly close to X, i.e. in C0 norm where the value
of η will be tuned subsequently:

‖X(·)− Z(·)‖ < η

We define the function φ(t) as

φ(t) := xX(x0, t)− xZ(x0, t) (3.66)

and the modulus of the derivative of that function (3.66) is given by

|φ̇(t)| = |X(xX)− Z(xZ)| (3.67)

Remark. 1. In order that for the differential equation{
ẋ = X(x, t)

x(0) = x0

(3.68)

there is a theorem of existence and uniqueness, X : RN → RN has to be uniformly
Lipschitz ∀ t ∈ [0, T ]: that is, locally at x0, in a neighborhood U of x0, there must exist
a number L > 0 such that ∀ x1, x2 ∈ U and ∀ t ∈ [0, T ] the following relation holds

|X(x1)−X(x2)| ≤ L|x1 − x2|

2. It is known that if X is C1 then X is Lipschitz.

3. If X ∈ C1 in the neighborhood U , with U connected, then

L = sup
x∈U
|∇X(x)|

Therefore if X ∈ C1 then the function is Lipschitz and there exists a positive number L
such that

|φ̇(t)| = |X(xX)− Z(xZ)| = |X(xX)−X(xZ) +X(xZ)− Z(xZ)| ≤ L|xX − xZ |+ η

where
L|xX − xZ |+ η = L|φ(t)|+ η

and thus we have
|φ̇(t)| ≤ L|φ(t)|+ η

From Gronwall’s Lemma (3.63) we obtain

|φ(t)| ≤ eLt
( η
L

)
− η
L

since for t = 0, (3.66) becomes φ(0) = xX(x0, 0)− xZ(x0, 0) = 0.
From ex − 1 ≤ xex, we get

|φ(t)| ≤ η

L

(
eLt − 1

)
≤ ηteLt (3.69)

By hypothesis we have that x∗ is an asymptotically stable equilibrium and therefore primarily
stable. From the definition of simple stability of x∗ for X we have that, ∀ ε > 0, ∃ δ > 0
such that for every initial datum

|x0 − x∗| < δ(ε)
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we have
|xX(x0, t)− x∗| <

ε

2
, ∀ t ≥ 0

Furthermore, the asymptotic stability of x∗ gives for X that: ∀ ε > 0 and for δ > 0 determined
before, exists a time τ > 0 such that for t ≥ τ

|xX(x0, t)− x∗| <
δ

2

(
≤ ε

2

)
At ε, δ and τ like above and for initial data x0 such that

|x0 − x∗| < δ

we have that ∀ t ∈ [0, τ ]:

|xZ(x0, t)− x∗| ≤ |xX(x0, t)− x∗|+ |xZ(x0, t)− xX(x0, t)| ≤
ε

2
+ ηteLt︸ ︷︷ ︸
≤ δ2≤

ε
2

≤ ε

In order to make this works, it is sufficient to tune the value of η = η(ε), which measures the
perturbation of the vector field, in order that the following relation holds:

ητeLτ ≤ δ

2
(3.70)

To better understand the implications of the theorem, we focus our attention on what
happens at time t = τ . We have that

|xZ(x0, τ)− x∗| ≤ |xX(x0, τ)− x∗|︸ ︷︷ ︸
≤ δ2 for asymptotic stability

+ |xZ(x0, τ)− xX(x0, τ)|︸ ︷︷ ︸
≤ δ2

≤ δ (3.71)

As expressed by the relation (3.71) we note that the perturbed solution xZ(x0, τ) at time
t = τ is (re-)entered in the ball of radius δ centered in x∗ and this occurs cyclically for
t = mτ , for m = 1, . . . ,∞; this indicates that the simple stability behavior around x∗ has
been gained for the vector field Z, although x∗ is not necessarily an equilibrium point for it.
Thanks to the mathematical proof just presented, we reach an important result for the
existence of the model; through Malkin theorem is confirmed that although the ruling
function is disturbed, the model is still valid. This is of fundamental importance, especially
in light of a real application, where the representative function will never be the theorized
one. In conclusion we can see how the strength of this model resides precisely in the possible
practical applicability and it is not reduced only in the theoretical plane.

3.4 Improvements of the Kuramoto model

The Kuramoto model represents a famously tractable, but also fairly generic, model of mass
synchronization in biological systems. It has been applied to a plethora of phenomena and is
sometimes proposed in connection with neural network dynamics. Due to the complexity
of interactions in neural networks there have been relatively few direct applications of
the Kuramoto model to neurobiological data. To perhaps begin to remedy this situation,
following the article of Timms and English [61] we propose a combination of two extensions or
modifications to the Kuramoto model that are very important in neuroscience: the inclusion
of spatial embedding through time delays and the inclusion of variable synaptic strength
through dynamically changing coupling. These two modifications together are most likely
indispensable if this model is to be successful in describing many aspects of neural processes.
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3.4.1 Time delays

Time delays represent an essential characteristic because neuronal axons have finite signal
transmission speeds of the electric signal in the axon. In fact, it arrives at the synapses
of another neuron not instantaneously, but after the period of time τ which has served to
cover the spatial distance between one neuron and another. The fact that signals often
take physiologically significant time to reach their destinations is fundamental to the design
of neural networks and the lack of time delays in the original Kuramoto model has been
identified as a significant obstacle. The easiest way to include a time delay is to modify Eq.
(3.15) to

φ̇i(t) = ωi +
K

N

N∑
j=1

sin(φj(t− τij)− φi(t)) (3.72)

Here, τij = dij/v, where dij is the distance from oscillator i to oscillator j and v is the
velocity of the signal. Thus in this formulation the relative spatial positions of the oscillators
become important. Note that a change in τij can correspond to the modification of the
distance between components or to the variation of the velocity v of the signal.
As presented in [10], the time delay τij can be translated into a corresponding phase offset
ηij obtaining

φ̇i(t) = ωi +
K

N

N∑
j=1

sin(φj − φi − ηji) (3.73)

In terms of synchrony, an elaborate synchronization behavior is now observed. For τij = 0,
∀ i, j the original model is found; for τij 6= 0, ∀ i, j, a given K and N → ∞, we have
multiple stable solutions for Eq. (3.72) with the presence of several clusters, each of which
consists of a large number of oscillating units with different frequencies and various basins of
attraction. Furthermore, in a regime of intense coupling strength and strong delay, the 2D
system has evolved towards a state characterized by the lowest possible frequency among
those that are solutions of Eq. (3.72) (Niebur et al., 1991) and the delay, depending on the
distance, induces in the solutions various spatial structures, such as spirals and traveling rolls
(Jeong et al., 2002). The more complex dynamics due to η suggests the notion of frustration,
whereby the sinusoidal interaction functions require some phase offset φj −φi 6= 0 in order to
vanish. Thus, the presence of η causes the interaction functions to pull the phases away from
absolute synchrony, even when the natural frequencies are identical. On closer inspection,
the dynamics of this new model can be approximated with that of networks in which there is
no delay, but in which the strength of the connections varies periodically with the spatial
distance. For this purpose, it is therefore crucial to order the time delay according to a
spatial metric ηij ∝ |xj − xi| either in one dimension or in higher dimensions. In this way,
we obtain the following equation50

φ̇i(t) = ωi +
K

N

N∑
j=1

cos(ηji) sin(φj − φi) (3.74)

where it can be observed that the coupling strength has a maximal amplitude for cos(ηji) = ±1.

50A detailed analysis of the dynamics of the latter system is outside our scope, therefore the interested
reader can refer to [10].



3.5. LEARNING WITH OSCILLATORS 96

3.4.2 Dynamically changing coupling strength
The brain must adapt in some way to accommodate new functions, memories and skill.

The adaptation of individual neural networks occurs through synaptic modification according
to mechanisms on the scale of single neurons. These modifications are theorized to be the
cellular basis of learning and long-term memory and may be required for the creation of
neurocomputers. We must thus allow network plasticity in order to examine the role of
learning and generally investigate the mutual interaction between oscillator dynamics and
network dynamics.
First, we relax the condition that the coupling strengths between all pairs of oscillators be
equal. To this end, define Kij to be the connection strength from oscillator i to oscillator j; in
general this matrix will not be symmetric (especially with the inclusion of time delays). Then
following [61], a version of the Hebbian learning rule, that increases connection strengths
between those oscillators whose phases are close in value, is implemented. Thus, a second set
of differential equations is introduced

K̇ij(t) = ε{γ cos(φi(t)− φj(t− τij))−Kij} (3.75)

Here, ε is a constant that allows us to arbitrarily adjust how “dynamic” the coupling is, i.e.
how fast changes in coupling strengths can occur and the cosine function forces the coupling
strengths to increase when the difference in phase approaches zero and decrease when it
approaches π(exactly out of phase). Additionally, the parameter γ in Eq. (3.75) provides the
fixed-point value, that Kij would approach if the ij pair was perfectly phase matched. Thus,
conceptually γ and −γ are the maximum and minimum values that the coupling is allowed
to attain respectively.

Remark. Note that we are using the expression “Hebbian learning” somewhat liberally here;
this is not the traditional rule but rather its Delta formulation (i.e. we are considering the
time derivative of the coupling strength). Furthermore, we are making another simplification
here by not restricting the coupling to positive or negative values. This means that the
interaction between oscillator pairs can easily switch from excitatory to inhibitory.

3.5 Learning with oscillators

From what we have described in the previous section, we can infer that Kuramoto
model can be used in order to store information. When many oscillators are coupled
together, the whole system can evolve towards different synchronized states with specific
phase relationships among them and these phase patterns can be used to store information.
In fact, oscillatory associative memory models usually consist of interacting oscillators, where
memorized patterns are stored as phase-locked oscillations.
Starting from a generic oscillatory neural network51, Hoppensteadt and Izhikevich in [30] have
proved how under some conditions, these networks can have interesting neurocomputational
properties. In particular, they can act as multiple attractor neural networks, where attractors
are limit cycle.

51An oscillatory neural network is an ensemble of neurons responsible for a wide variety of periodic behavior
patterns. It can be seen as a generalization of the Kuramoto model, where the interaction function Hij is
not said to be sinusoidal and has the property of zero average; i.e.∫ 2π

0
Hij(χ)dχ = 0
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Theorem 3.5.1 (Convergence Theorem for Oscillatory Neural Networks). Consider the
oscillatory neural network

φ̇i = ωi +

N∑
j=1

Hij(φj − φi), φi ∈ S1 (3.76)

and suppose that ω1 = · · · = ωN = ω and

Hij(−χ) = −Hji(χ), χ ∈ S1 (3.77)

for all i, j = 1, . . . , N . Then the network dynamics converges to a limit cycle attractor. On
the limit cycle, all neurons oscillate with equal frequencies and constant phase deviations.
This corresponds to synchronization of the network activity.

Proof. Let φ = ωt+ ϕ. Then

ϕ̇i =

N∑
j=1

Hij(ϕj − ϕi), ϕi ∈ S1 (3.78)

If this system always converges to an equilibrium, say ϕ∗, then Eq. (3.76) converges to a
limit cycle φ(τ) = ωτ + ϕ∗. Obviously, phase deviations (vector ϕ∗ ∈ TN ) are constant on
the limit cycle.
Let

Rij(χ) =

∫ χ

0

Hij(t)dt

be the antiderivative of Hij(χ); that is dRij/dχ = Hij . Due to the property that characterizes
Hij we have ∫ 2π

0

Hij(χ)dχ = 0 =⇒ Rij(2π) = 0

and therefore Rij(χ) is continuous. Let us check that the function E : TN → R given by

E(ϕ) =
1

2

N∑
i=1

N∑
j=1

Rij(ϕj − ϕi) (3.79)

is a global Lyapunov function for (3.76). Indeed, since it is continuous and TN is compact,
E is bounded below. Moreover, it satisfies

∂E

∂ϕl
=

1

2

( N∑
i=1

Hil(ϕl − ϕj)−
N∑
j=1

Hlj(ϕj − ϕl)
)

= −
N∑
j=1

Hlj(ϕj − ϕl) = −ϕ̇l

and hence
dE(ϕ)

dτ
=

N∑
l=1

∂E

∂ϕl
ϕ̇l = −

N∑
l=1

|ϕ̇l|2 ≤ 0

Notice that dE
dτ = 0 precisely when ϕ̇1 = · · · = ϕ̇N = 0, i.e. at an equilibrium point of (3.76).

There could be many equilibria of (3.76) depending on the connection functions Hij .
Therefore, the network can remember and reproduce many previously memorized oscillatory
patterns. We now study the problem connected with Kuramoto model, where we consider
specific Hij , namely Hij(φj − φi) = (1/N)Kij sin(φj + ηij − φi) for some constants Kij and
ηij .
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3.5.1 Application to the Kuramoto model
When all the connection functions in the neural network are equal, namely, Hij(χ) =

Hji(χ) = H(χ) for some function H(χ), then condition (3.77) implies that H(χ) is an odd
function. Any odd function on S1 can be represented as a Fourier series

H(χ) =

+∞∑
l=1

al sin(lχ)

Kuramoto suggested that the first term, a1 sin(χ), is dominant, and he disregarded the rest
of the series. Thus, as just presented in Eq. (3.15), the Kuramoto’s phase model is

φ̇i = ωi +

N∑
j=1

Kij

N
sin(φj − φi)

where Kij ∈ R are the synaptic coefficients. The convergence theorem 3.5.1 is applicable to
Kuramoto’s model when ω1 = · · · = ωN and the synaptic matrix K = (Kij) is symmetric;
that is, Kij = Kji for all i and j. Indeed, condition (3.77) has to be satisfied not only
by K but by the entire function H described above. Thus, since the sine function is an
odd function, this implies that in order to satisfy that condition the matrix K need to be
symmetric.
Since, as discussed in section 3.4.1, to have a better model we have to take into account time
delays, one can adjust Kuramoto’s model to include the natural phase differences ηij , so that
the model is

φ̇i = ωi +

N∑
j=1

Kij

N
sin(φj + ηij − φi), φi ∈ S1 (3.80)

where each connection is encoded by a pair of numbers: the strength of synapse Kij and its
phase ηij . It is convenient to represent such a synapse by a complex number cij = Kije

iηij .
Theorem 3.5.1 imposes the additional requirement that ηij = −ηji, which means that the
complex-valued synaptic matrix C = (cij), is self-adjoint; i.e., cij = c̄ji, where c̄ is the
complex conjugate of c.
Following Hoppensteadt and Izhikevich, [30], using the representation cij = Kije

iηij they
derive frOm Hebb’s assumptions the synaptic modification rule presented above (3.75)

K̇ij = ε{µ cos(φi − φj − ηij)−Kij}

η̇ij =
µε

Kij
sin(φi − φj − ηij)

If, during the learning period, the i-th and j-th oscillators are synchronized, then cij memorizes
the phase difference. That is, if φi(τ)−φj(τ) = χ∗, then ηij(τ)→ χ∗ (memorization of phase
information) and Kij(τ)→ µε/ε = µ (increase of synaptic strength). On the other hand, if
the oscillators are incoherent, the sin(φi(τ)− φj(τ)− ηij) and cos(φi(τ)− φj(τ)− ηij) may
average to zero. In this case, ηij is relatively unaffected (persistence of phase memory), but
Kij → 0 (synaptic fading). The learning rule then establishes the relation cij = c̄ji, so that
the convergence theorem 3.5.1 applies.
Therefore, the property we have described is what allows the Kuramoto model to be used
as an associative memory. The result given in Theorem 3.5.1 is very important because
it implies that an energy function could be found and under some conditions the network
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will always converge to an oscillatory phase-locked pattern. The key difference between the
Hopfield and the oscillatory network is that memorized images correspond to equilibrium
points (attractors) in the former and to limit cycle attractors in the latter. In general such
memories have a lower capacity compared to the Hopfield model, but if we consider a simple
modification of the classical Kuramoto model by adding a second-order Fourier mode,

Hij(φi − φj) = Kij sin(φi − φj) +
ε̄

N
sin(2(φi − φj)) (3.81)

oscillators associative memories based on phase-locking with a Hebbian connection scheme
are capable of performing as well as the Hopfield network, as it has been shown by Nishikawa
et al. in [42].

3.6 From Hopfield to Kuramoto model

The question that may arise now is how the models of Hopfield and Kuramoto are linked
together. From the previous discussion, we have understand how these two models can be
both used for learning patterns. Thus, we need now to highlight how we can pass from the
context of spikes and action potential due to Hopfield to that characterized by phases in
Kuramoto.

3.6.1 Integrate and fire model
We have seen in chapter 2 that the neuronal dynamics can be conceived as a summation

process (sometimes also called “integration” process) combined with a mechanism that triggers
action potentials above some critical voltage. Indeed in experiments firing times are often
defined as the moment when the membrane potential reaches some threshold value from
below. In order to build a phenomenological model of neuronal dynamics, we describe the
critical voltage for spike initiation by a formal threshold U . If the voltage ui(t) (that contains
the summed effect of all inputs) reaches U from below, we say that neuron i fires a spike.
Such type of model makes use of the fact that neuronal action potentials for a given neuron
always have roughly the same form. If the shape of an action potential is always the same,
then the shape cannot be used to transmit information: rather information is contained in
the presence or absence of a spike. Therefore action potentials are reduced to “events” that
happen at a precise moment in time.
Neuron models where action potentials are described as events are called integrate-and- fire
models (IFM). They have two separate components that are both necessary to define their
dynamics: first an equation that describes the evolution of the membrane potential ui(t) and
second a mechanism to generate spikes.
Following [25] and using the same reasoning of section 2.3.1, we now introduce the simplest
form for integrate-and-fire models. Thus the action potential of neuron i, ui, obeys the
following equation

dui
dt

= −ui
τ

+ Ii + Iexti (3.82)

The first term on the r.h.s. describes relaxation of ui towards the resting potential with a
relaxation time τ . In most models, ui is normalized so that it acquires its maximum value at
1, that means

− 1 ≤ ui ≤ 1 (3.83)

Then Ii is defined as the input from other neurons, i.e. the sum of the postsynaptic potentials
(PSPs) that are triggered by pulses of afferent neurons at times t′. Iexti represents external
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Table 3.1: Correspondence between the Integrate and Fire model and the Hopfield model

IFM Hopfield model

ui ui
τ CR
Iexti (1/C)Ii
Ii (1/C)

∑
j TijVj

input stemming from sensory neurons.
It is now immediate to understand how Hopfield model represents a generalization of the
IFM with the additional assumption of a non-linear sigmoidal output Vi = g(ui). Therefore
starting from equation (3.82) and comparing with the same equation for the continuous
Hopfield model derived before (2.69), we make the correspondence between the two models,
that is summarized in Table 3.1.

3.6.2 Lighthouse model

As we have presented before, a neuron receives inputs from other neurons in the form
of their axonal spikes. At synapses these spikes are converted into dendritic currents that
lead to a potential change at the axon hillock. In response to incoming signals, the neuron
produces an output in the form of axonal pulses (spikes). The occurrence of (more or less)
regular spikes in an axon can be considered as a periodic event. Periodic or at least rhythmic
events can also be observed in electric and magnetic fields of the brain, as measured by EEG
and MEG, respectively. Thus, in order to quantitatively deal with rhythms, the concept of
phase is indispensable.
A possible mathematical translation of the dynamics just presented is the one proposed by
Haken in [24] with the model of spikes. Following are briefly outlined the guidelines that
lead to this model, which, even in the most basic version discussed here, give an anticipation
of how it is possible to read the neuronal dynamics according to the phase.
To mathematically model action potentials, we use an idealization that leads to the Dirac
function. Consider, in fact, the impulse modeled as a curve with a Gaussian form:

1√
πσ

e−
t2

σ

where the factor in front of the exponential serves for normalization. Suppose we want to
temporally shorten the impulse so as to make it biologically reliable. Analytically this is
achievable by sending σ → 0: we obtain that the domain of existence of the impulse is so
short that for t 6= 0 the spike vanishes, while for t = 0 it remains normalized:

δ(t) = 0, for t 6= 0 (3.84)∫ ε

−ε
δ(t)dt = 1 (3.85)

where ε is arbitrarily small. Note how, in fact, this is precisely the definition of δ Dirac
function, that is explicitly a time dependent function, denoted by φ(t), having the meaning
of phase in the sense that we have described in section 3.2. A special case of δ function,
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which leads to the definition of “spiking function” used later, is the following. Consider∫ T

t1

δ(φ(t))dt (3.86)

subject to the following work hypothesis:

1. for t1 ≤ t ≤ T the unique zero of φ(t) is at t = t0

2. dφ(t0)
dt ≡ φ̇(t0) 6= 0

3. φ̇(t0) > 0

The change of variable s = φ(t) and the assumption φ(t1) < φ(T ) allow to obtain

∫ T

t1

δ(φ(t))dt =


0 for T < t0

1
2φ̇(t0)

for T = t0
1

φ̇(t0)
for T > t0

(3.87)

However, it is known that the occurrence of the factor φ̇ in Eq. (3.87) causes the function
δ to depend on φ in a difficult way to treat. To overcome this difficulty it is customary to
define the following function, called precisely spiking function

f(t) = δ(φ(t))φ̇(t) (3.88)

which, replaced with the δ starting function, offers∫ t0+ε

t0−ε
f(t)dt =

∫ t0+ε

t0−ε
δ(φ(t))φ̇(t)dt = 1 (3.89)

With the introduction of φ it is possible to think of the function δ, that shapes impulses, so
as to have a peak in tn

φ(tn) = 2πn

Therefore in this case a “peaked function” is normally used

δ(φ(t)− 2πn)φ̇(t) (3.90)

that will be normalized in order to make the modeling of the spike more manageable and
explicitly dependent on φ. To now represent all the spikes over time we proceed to add the
various peaks, obtaining

Q(t) ≡ f(φ(t)) =
∑
n

δ(φ(t)− 2πn)φ̇(tn) (3.91)

where n ideally ranges between −∞ and ∞. At this point the essential question to answer
becomes how it is possible to determine mathematically the dependence of φ, and therefore
by extension of the spikes, from the time t. The answer comes, for example, from the
Naka-Rushton formula, which provides a quantitative link between the intensity of the
Q-stimulus acting at the pulse-generating site and the pulse-producing rate. The formula
offers

S(X) =
rXM

ΘM +XM
(3.92)
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where M is an approximate measure of the steepness of the curve representing the stimulus
and Θ is the value for which half of the maximum rate is obtained. Absorbing any proportional
factors by redefining the constant r, we arrive at the formulation of the following differential
equation for the phase φi connected with neuron i

φ̇i(t) = S(Xi) (3.93)

in which the vector field represents the set of external and internal stimuli, due to interaction
with other neurons and external patterns. For a complete understanding of the equation
we have to determine the input Xi which leads to the spike generation. As we know, spikes
are generated at the axon hillock at which the potentials due to the dendritic currents are
added. We may take time delays τ ′ into account as well as coefficients c that convert ψ into
potential contributions. Also external signals, pext(t), stemming from sensory neurons must
be taken into account. Thus we arrive at

Xi(t) =
∑
m

ci,mψm(t− τ ′) + pext,i(t− τ ′′) (3.94)

The explicit resolution of the dynamics between two interacting neurons follows, finally,
from the temporal evolution of ψ: this current is caused by a spike generated in the axon
of another neuron (denoted with i) at a previous time τ . The impulse can be represented
by the function Qi(t− τ), which in the simplest of cases is a Delta Dirac function, as seen
in Eq. (3.91): after its generation the current ψ decays with a decay constant γ that it is
supposed to be independent of m. Therefore we obtain the following dendritic equation

ψ̇m(t) = aQi(t− τ)− γψm(t) (3.95)

In conclusion, the system of equation that governs the interaction between two neurons in
terms of their phase is usually given byφ̇i(t) =

∑
m

cimψm(t) + pext,i(t)

ψ̇m(t) = aQi(t− τ)− γψm(t)
(3.96)

where we have assumed that τ = τ ′ = 0 and that S is a linear function, so that it can be
replaced with its argument.

3.6.3 From IFM to LM
A comparison between Eq. (3.82) and the equation of the phases as derived in (3.96)

reveals that these equations have the same structure except for the first term on the r.h.s
of (3.82). Actually, the analogy between the models is quite close. A minor difference is this:
while ui adopts its values according to (3.83), φi runs in its first segment from 0 to 2π so
that we arrive at the relationship

φi = 2π
(ui + 1

2

)
= π(ui + 1) (3.97)

that connects the phase of the axonal pulses with the action potential u of the corresponding
neuron. But in contrast to the integrate and fire models with (3.82), in the lighthouse model
φi may increase indefinitely. To overcome this problem, we generalize the lighthouse model
by taking into account a damping of the rotation speed in between two firings. This means
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we want to mimic the effect of the damping term that occurs on the r.h.s. of (3.82). We
have to take into account the fact that u is restricted to the region between −1 and 1, or
correspondingly that the relaxation dynamics of φ in the intervals [n2π, (n + 1)2π] must
be self-similar. In other words, we must reduce φ after each rotation. This is achieved by
replacing φ with φmod2π. Therefore, the connection between the phase angle φ and the
action potential u is thus given by

φ(t)mod2π = π(u(t) + 1) (3.98)

The two sets of equations (3.82) and (3.96) can then be incorporated into forming a unique
equation, as stated in [24].
Denote the dendritic current of dendrite m by ψm and the axonal pulse of axon i by Qi. The
equations for the dendritic currents read( d

dt
+ γ
)β
ψm(t) =

∑
i

amiQi(t) (3.99)

where β = 1 refers to the lighthouse model and β = 2 to the integrate and fire model. The
constants and quantities in this equation have the following meaning: γ is the damping
constant, ami represents the coupling coefficient (synaptic strength).
Then, if we take into consideration the phase φ we deduce the following equation

φ̇i(t) + γ′φi(t)mod2π = S
(∑
m

cimψm(t) + pext,i(t),Θi

)
(3.100)

where cim are the coupling constants, pext,i the external signal and Θi the threshold. De-
pending on γ′ = 0 or γ′ = 1 we are dealing with the lighthouse model in the first case and
with the integrate and fire model in the second case. The sigmoidal function S in Eq. (3.100)
is well established by physiological experiments, e.g. from the Naka-Rushton formula (3.92),
or, in a rather good approximation, in the following form

S(X,Θ) =


0 for X < Xmin

X for Xmin ≤ X ≤ Xmax

Smax for X ≥ Xmax

(3.101)

Now it is easy to understand also in this case how we can connect the lighthouse model to
that of Hopfield, as summarized in table 3.2. Note that in Hopfield model we do not have
the presence of the function S, but from Eq. (3.101) we have that if the argument is inside a
certain interval (and this is always the case for us) we can replace the function S with it.
We can think at Xmax as the threshold value U and Xmin the minimum value to start the
depolarization process.

3.6.4 Neurons as oscillators
The last step now consists in reporting the description of Haken within the context of

Kuramoto, characterized by oscillators coupled with a sinusoidal function. We have moved
from a description in terms of action potentials in Hopfield to one in the phase space with the
lighthouse model of Haken. We now want to create a link within the context of Kuramoto.
The model of Kuramoto, as we have seen in 3.2, involves N identical oscillators interacting
with each other, therefore the possibility to apply profitably the theory exposed to the
dynamic system represented by the brain is based on the ability to bring the single neurons,
or moreover agglomerates of them, back to oscillating elements and to interpret every element
of the Eq. (3.15) in a biological key.
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Table 3.2: Correspondence between the Lighthouse model and the Hopfield model.

LM Hopfield model

φi π(ui + 1)
ψ V
pext,i Iexti

Θi Ui
cim Tim

(a) Diagram time-voltage (b) Relation phase-spike

Figure 3.7: Figure (a) shows the different phases of the action potential. The time course of the spike is
shown with depolarization and repolarization phases, refractory period and resting state labeled. There
are also indicated the levels of the membrane potential and in particular the value at rest. Note that the
transmembrane voltage is indicated on the ordinate and the time is indicated on the abscissa. Figure (b)
represents the relation between phase and membrane voltage. In the figure above the diagram shows
the action potential, highlighting the value of the associated phase. In the figure below, it is stressed the
correspondence between the emission of a spike and phase equal to more or less 2π or its integer multiple.

• Neuron-Oscillators : from neuronal functioning it is understandable how the occurrence
of more or less regular spikes can be considered as a rhythmic event. As we have
discussed for the lighthouse model, in order to quantitatively and qualitatively treat
this rhythm, the concept of phase φ(t) is indispensable. The rotation period T of
the neuron-oscillator can be interpreted as the time interval that elapses between the
instantaneous and regular discharges of two consecutive spikes, modeled as functions:
whenever the phase is equal to 2π, or to an integer multiple, one spike is generated. In
fact, at each value of the phase φ corresponds both the temporal description of the
spike and, above all, a specific electrical state of the neuronal membrane. Considering
that the trend of the electrical potential is not symmetrical, but follows the curve in
Fig. 3.7, and that the process is instantaneous, we have that for φ = 2π the voltage of
the membrane is such that the neuron is in the phase of depolarization, for φ = 2π+ ∆
with small ∆ it reaches the phase of hyperpolarization. The intermediate values of φ
correspond to the decrease of the voltage inversion φ ∈ [2π, 2π + ∆] due to the opening
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of specific ionic channels by the sodium-potassium pump and to the stable return to
the resting value and its maintenance until φ = 4π.
The frequency ω of the neuron-oscillator corresponds, as can be guessed, to the
production rate of the spikes themselves: the greater the speed of rotation, and
therefore by extension the frequency, the greater the production of nerve impulses
in the same period of time. This frequency is variable and is influenced by the level
of electrical excitation of the nerve fiber following the reception of different external
patterns.

• Interaction between oscillators: more delicate to treat is the question of the coupling
force K, which could in fact refer both to the number of connections between neurons,
i.e. trivially to the cardinality of synaptic strands, and to the electrical strength of such
connections, that is the conductivity of the nerve fiber based on external inputs. This
last possible interpretation, in particular, logically derives from the same mechanism
of phase transition: from the direct link between the increase of K in relation to Kc

and the increasing level of synchronization between the neurons-oscillators we can
suppose the correspondence of K with the degree of electrical conductivity of the
neuron and therefore with a greater probability of propagation. One of the most
complete formulation of the coupling strength on a physiological level is that proposed
by Grannan et al. (1993): here the actual coupling between the neurons-oscillators
is given by Kij(r, r0) = L(r)W (r, r0) where L denotes the average level of pre- and
post-synaptic cell activity, related to the electrical properties and permeability of
the membrane, and W the specific architecture of the connections, whose geometry
influences the propagation of the spikes in terms of longitudinal resistance and distance.
Then for the interaction function Hij it has been proved in section 3.5 that the
sine function is a good approximation of the neural interaction and a function that
guarantees the validity of theorem 3.5.1. Therefore, thanks to Malkin’s theorem 3.3.3
we know that if we include a perturbation in our model, its properties are still valid
and thus the stability is preserved.

• Synchronization level : in light of what we have briefly explained on the neuronal
synchronization mechanism in section 3.2 it is possible to understand the biological
meaning to be attributed to the incoherent state and to the synchronization state of the
theoretical model. Considering the interaction between neurons stimulated by the same
pattern, i.e. related to a common brain function, the incoherent state, characterized by
the absence of synchrony, is substantially expressed in two cases. The first is the trivial
one in which the interested nerve fibers are not electrically excited by external stimuli,
i.e. when there is no transmission of information: in this case, in fact, the oscillators
do not rotate because they cannot generate spikes and their phases φ remain fixed on
the angular values corresponding to a stable condition of resting potential. The second
occurs when the neurons emit electrical discharges, and therefore oscillate in the sense
described above, with an intrinsic frequency such that the generated chains are in a
non-negligible phase delay (≈ 180◦ → anti-phase), probably due to a failure of correct
electrical functioning of the excitation process of the single neurons or of a significant
delay in the transmission of the signal.
On the other hand, there is a synchronization state when a configuration of frequencies
is implemented such that the electrical impulses sent by each starting neuron i arrive at
the target neuron j when its phase φj is close to 2π. Bearing in mind the correspondence
between the phase and the electrical potential presented above, this means that the
voltage of the membrane of each neuron i reaches the state of maximum depolarization
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only a fraction of a second earlier than neuron j: consequently the spike discharged
by each neuron i reaches neuron j exactly when the latter is in its state of maximum
depolarization so as to increase the chances of triggering an action potential in neuron
j. In fact, as K increases and therefore the signal conduction capacity, this situation
occurs when the frequencies of the start and arrival neurons are out of phase by an
arbitrary small factor ε̃, which takes into account the delay due to the finite propagation
speed in an electrical resistance environment.

3.6.5 From Hopfield to Kuramoto model
From section 3.6.3, we have understood how neurons can be treated as oscillators, since

we can describe the spike process with a phase model. Following the contributions52 of
Hoppensteadt and Izhikevich in [30] and in [35], we will prove that Hopfield continuous model
(2.69) can be transformed into Kuramoto model (3.15) using the assumptions of weakly
connections and quasi-periodic oscillators.

• Brain units, i.e. neurons, are weakly connected. A reasonable way to characterize
weakness of synaptic connections between single neurons is to consider amplitudes of
postsynaptic potentials (PSPs). The PSP amplitudes may differ substantially along
dendrites due to the electronic attenuation; see the illustration in Figure 3.8. A somatic
PSP is the weakest, but it best characterizes the magnitude of the postsynaptic neuron
response because the soma is near the axon hillock, that is the place of initiation of the
action potential. In fact, the average soma PSP is smaller than 1 mV, while the action
potential emanating from the hillock region is approximately 100 mV in amplitude.
This assumption is thus saying that there must be many (a few hundred) presynaptic
neurons firing simultaneously to make a given cell fire.
Now we can add this hypothesis into Eq. (2.69) by multiplying the first term on

Figure 3.8: EPSP(Exitatory Post-Synaptic Potential) in three different locations. The EPSP size at the
soma is much smaller than the one in the vicinity of the synapse due to electrotonic attenuation. Figure
taken from [35].

the right hand side by a certain ε, small enough, that describes the (dimensionless)
52In the first work [30] of Hoppensteadt and Izhikevich they have discussed the case of weakly connected

neural networks for limit cycle oscillators, whereas Izhikevich have then generalized it for quasi-periodic
oscillators in [35].
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strength of synaptic connections:

dui
dt

= ε
∑
j

TijVj − ui + Ii = Fi(ui) + εGi(u1, . . . , uN , ε), ε� 1 (3.102)

where we assume Ci = 1 and Ri = 1 for all i = 1, . . . , N and we define the function F
and G as

Fi(ui) = −ui + Ii, i = 1, . . . , N

Gi(u1, . . . , uN , ε) =
∑
j

TijVj , i = 1, . . . , N

• The second assumption we made is that the rhythmic signal that characterizes the
emission of spikes is quasi-periodic. EEG recordings of brain rhythmic activity rarely
show periodic oscillations, even during epileptic seizures. Fourier and power spectrum
analysis reveal that rhythmic activity of a local field potential is “random” with a few
pronounced frequencies. The most prominent are gamma (30− 100 Hz) oscillations
in the cortex and theta (4 − 8 Hz) oscillations in the hippocampus. Thus, the next
natural step in modeling the brain using the oscillatory network approach is to assume
that each oscillator can exhibit multifrequency oscillations, which in the simplest case
may be just a collection of periodic oscillators with different frequencies (as can be
seen in Fig. 3.9).

Figure 3.9: Top: An example of a quasi-periodic signal X(t) with three different frequencies ω1, ω2 and
ω3. Bottom: its discrete power spectrum. Figure taken from [35].

When the number of incommensurable frequencies is finite, the oscillator is said to
be quasi periodic. The signals might look chaotic or noisy, but they are not. Their
power spectra are discrete with peaks corresponding to the composed frequencies and
their linear combinations, as illustrated in Fig. 3.9. Let now define this concept
mathematically following Izhikevich in [35].

Definition 3.6.1 (Quasi-periodic signal). A continuous rhythmic signal u(t) is quasi-
periodic if there is a continuous function q(θ1, . . . , θN ), which is 2π-periodic in each
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argument, such that

u(t) = q(Ω1t, . . . ,ΩN t) for all t ≥ 0 (3.103)

where Ω = (Ω1, . . . ,ΩN )T ∈ RN is a frequency vector.

Let now TN denote the N -torus and let θ = (θ1, . . . , θN ) ∈ TN be the phase variable
on the torus. Then we may rewrite the equation above in the form

u(t) = q(θ(t)), θ̇ = Ω (3.104)

which is a convenient way to represent quasi-periodic oscillators.

Therefore, Hopfield model can be seen as a weakly connected neural network that describes
the dynamics of a quasi-periodic signal u(t).

Definition 3.6.2. We introduce the following notions, which we will need later on, as
presented in [30], pp. 126-128.
Consider a dynamical system u̇ = F (u) with u ∈ RN .

1. A set D ⊂ RN is said to be an invariant set of a dynamical system if each trajectory
starting in D will remain in D for every t > 0, i.e. D is invariant if

u(0) ∈ D =⇒ u(t) ∈ D for all t > 0

We will consider the case in which D is an invariant manifold, i.e. D is not only a set
but also a differentiable manifold.
For example, a single equilibrium point is an invariant manifold: it is clearly invariant
and is a trivial (zero-dimensional) manifold.

2. Let D be a manifold and consider its tangent space TuD and the normal space NuD.
Let

Π : TuD → NuD

be the orthogonal projection to the normal space NuD. We define the contractions of
vectors at D as

v(t) = DuΦ(u, t)v(0), v(0) ∈ TuD
w(t) = ΠDuΦ(u, t)w(0), w(0) ∈ NuD

where Du is the differential operator and Φ(u, t) the flux associated to the dynamical
system.

3. An invariant manifold D is normally hyperbolic when

lim
t→∞
|w(t)| = 0 exponential stability

and

lim
t→∞

|w(t)|
|v(t)|

= 0 normal hyperbolicity

for all u ∈ D and all nonzero vectors w ∈ NuD and v ∈ TuD.
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Remark. When the manifold is an equilibrium, the definition of normally hyperbolic coincides
with the usual definition of hyperbolicity: the Jacobian matrix does not have eigenvalues
with zero real part. So for our uncoupled system

u̇i = Fi(ui) = −ui + Ii

with the initial condition that the action potential at t = 0 is equal at the value at rest
u0 = urest, the solution is known to be

ui(t) = e−t(u0 − Ii) + Ii

that when t → ∞, it tends to Di = Ii, which represents an equilibrium point for our
dynamical system (3.106). The Jacobian matrix is then represented by J(ui) = −1 and thus
the property is satisfied.

Following Izhikevich in [35], p. 2198, we now introduce the following theorem, that will
lead us to transform such system in a phase model. Furthermore, we implicitly assume that
all manifolds and functions here are as smooth as necessary for our manipulations.

Theorem 3.6.3 (Phase model for weakly connected quasi-periodic oscillators). Consider a
weakly connected system of the form

u̇i = Fi(ui) + εGi(u1, . . . , uN , ε), ui ∈ R, i = 1, . . . , N, ε� 1 (3.105)

such that each uncoupled system
u̇i = Fi(ui) (3.106)

has an exponentially stable quasi-periodic equilibrium Di. Then there is an ε0 > 0 such that
for all ε ≤ ε0 there is an open neighborhood W of D = D1 × · · · × DN and a continuous
mapping S :W → TN that transforms all local solutions of (3.105) to those of

θ̇i = Ωi + εGi(θ1, . . . , θN , ε), θi ∈ T, i = 1, . . . , N (3.107)

where each Ωi ∈ R is a frequency vector with Ωi 6= 0 and Gi is some function. Therefore,
(3.107) is a local system for (3.105).

Proof. See Appendix F.

We now made the assumption that the connection function G = (G1, . . . ,GN ) has a special
form; namely we suppose that

Gi(θ, ε) =

N∑
j=1

Gij(θi, θj) +O(ε) for all i = 1 . . . , N (3.108)

In analogy with Hopfield model it seems to be reasonable to have this pairwise coupled form.
In order to do not have additional constants and to simplify the discussion, we then require
that Gij has zero average. To gain this result we can start from the averaging theory developed
by Hoppensteadt and Izhikevich in [30], pp. 262-273.
First of all, write θ(t) in the form

θ = Ωt+ φ

where φ = (φ1, · · · , φN )T ∈ TN is a vector of phase deviations. Now, we highlight that
Gij(θi, θj) is a 2π-periodic function in θi and θj , whereas Gij(Ωit+ φi,Ωjt+ φj) is a quasi-
periodic function of t. It is not periodic unless the vector of frequencies Ω is proportional to
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a vector of integers.
Thus following [30], the average of Gij is defined as

Ḡij(φi, φj) = lim
t→∞

1

T

∫ T

0

Gij(Ωit+ φi,Ωjt+ φj)dt (3.109)

From ergodic theory it follows that this integral converges to the constant

G0
ij =

1

(2π)2

∫ 2π

0

Gij(s)ds (3.110)

Thus, we can rewrite our model

θ̇i = Ωi + ε

N∑
j=1

Gij(θi, θj) +O(ε2) (3.111)

using the realtions
G̃ij(θi, θj) = Gij(θi, θj)− G0

ij (3.112)

and

ωi =

N∑
j=1

G0
ij (3.113)

Thus, G̃ij has zero average, as we want, and we will use this function instead of the previous
one Gij . Hence, Eq. (3.111) is rewritten as

θ̇i = Ωi + εωi + ε

N∑
j=1

G̃ij(θi, θj) +O(ε2) (3.114)

We now have the following Theorem ([30], pp. 275-276), that will transform Eq. (3.114) into
an equation close to that of Kuramoto.

Theorem 3.6.4. Consider a weakly connected quasi-periodic oscillatory system

θ̇i = Ωi + εωi + ε

N∑
j=1

G̃ij(θi, θj) +O(ε2), θi ∈ S1 (3.115)

where the functions G̃ij have zero average (the average is taken into account by ωi). There is
a change of variables of the form

θ = Ωt+ φ+ εg(φ, t)

that transforms Eq. (3.115) to

φ̇i = εωi + ε

N∑
j=1

sij(φi, φj) +O(ε2), φi ∈ S1 (3.116)

where each function sij satisfies

sij(φi, φj) =

{
0 if Ωi 6∼ Ωj ,

Hij(kijφj −mijφi) if Ωi ∼ Ωj ,
(3.117)



111 CHAPTER 3. KURAMOTO MODEL

where kij and mij are positive relatively prime integers for which kijΩj −mijΩi = 0 and the
function Hij has zero average, i.e. ∫ 2π

0

Hij(χ)dχ = 0 (3.118)

In particular, if Ωi 6∼ Ωj , then φi and φj do not depend on each other (up to order ε2).

Proof. See [30], pp. 275-276.

Furthermore, in Theorem 3.6.4 we have used an equivalence relation ∼, that in [30], p. 275,
is defined as follows.

Definition 3.6.5 (Commensurable). Nonzero real numbers a and b are said to be commen-
surable, denoted by a ∼ b, when there are positive integers k and m such that

ka−mb = 0

that is the vector (a, b)T ∈ R2 is resonant53.

Remark. To be commensurable is an equivalence relation, since it satisfies the following
conditions, which are easy to verify:

• Reflixity : a ∼ a for any a ∈ R.

• Symmetry : if a ∼ b, then b ∼ a.

• Transitivity : if a ∼ b and b ∼ c, then a ∼ c.

As a consequence of this, any set of real numbers, e.g. the set {Ω1, . . . ,ΩN}, can be
partitioned into disjoint equivalence classes. Accordingly, a weakly connected network having
natural frequencies Ω1, . . . ,ΩN can also be partitioned into noninteracting subnetworks,
which follows from theorem 3.6.4 and is stated in the following corollary ([30], p. 277).

Corollary 3.6.6. All oscillators can be divided into pools, or ensembles, according to their
frequencies Ωi. Oscillators from different pools have incommensurable frequencies and
interactions between them are negligible.

Notice that the corollary contains two statements:

1. The network is partitioned into pools of oscillators.

2. Interactions between oscillators from different pools are negligible.

The first statement agrees with the well-known fact from statistical mechanics ([34]) that a
network of oscillators can be decomposed into coherent pools if the strength of connections
is strong enough in comparison with the distribution of frequencies. The second statement is
novel and was first pointed out in [30]. It claims that oscillators having incommensurable
frequencies work independently from each other even when they have synaptic contacts
between them. Although physiologically present and active, those synaptic connections

53We recall that a vector v = (v1, . . . , vN )T ∈ RN is said to have a resonant relation if

c · v = c1v1 + · · ·+ cNvN = 0

for some nonzero integer row vector c = (c1, . . . , cN ) ∈ ZN .
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average to zero. Therefore, they are functionally insignificant and do not play any role in the
dynamics of the network.
From corollary 3.6.6 it follows that a weakly connected network of quasi-periodic oscillators
can be partitioned into pools of oscillators according to their natural frequencies Ωi. Since
interactions between oscillators from different pools are negligible, we study only interactions
between oscillators from the same pool, as done by Hoppensteadt and Izhikevich in [30].
Thus, without loss of generality we may assume that the entire network is one such pool.
For sake of simplicity we assume that these oscillators have equal natural frequencies
Ω1 = · · · = ΩN . If we use slow time t̃ = εt and discard high-order terms in ε, then using the
following change of variables:

φi = εφ̃i
ωi = εω̃i
t̃ = εt

the model (3.116) can be written in the form

˙̃
φi = ω̃i +

N∑
j=1

Hij(φ̃j − φ̃i) (3.119)

Now we have already discussed in section 3.5.1 how we can recover the Kuramoto model
(3.15) using Fourier series and considering only the first term. Hence, starting from Hopfield
model we have managed to get to Kuramoto’s equation

φ̇i = ωi +

N∑
j=1

Kij

N
sin(φj − φi) (3.120)

In conclusion, we have linked Hopfield’s description to Kuramoto model. This is important
because it highlights how these descriptions are not separated but interconnected with each
other and how we can move from one to another. We have thus succeeded in integrating and
unifying the two models, which describe two important and different features visible in the
brain, such as the emission of spikes and oscillations. This relationship is then useful since it
allows us to move from the description of single neurons, experimentally not feasible, to one
that takes into account groups of neurons with the same frequencies, as seen with Kuramoto.



APPENDIX A Proof of Eq. 2.48

Statement.
∆E = −

∑
i

∑
j

TijVj∆Vi

Proof. We prove this statement by steps:

1. First, we consider the case when only one component k changes Vk(t+ 1) = −Vk(t),
whereas the others remain the same Vj(t+ 1) = Vj(t), ∀ j 6= k.

∆E = E(t+ 1)− E(t) = − 1

2

∑
i

∑
j 6=i

TijVi(t+ 1)Vj(t+ 1)+

+
1

2

∑
i

∑
j 6=i

TijVi(t)Vj(t) =

(case i 6= k, j 6= k) = − 1

2

∑
i 6=k

∑
j 6=i
j 6=k

TijVi(t)Vj(t) +
1

2

∑
i 6=k

∑
j 6=i
j 6=k

TijVi(t)Vj(t)+

(case i = k, j 6= k) − 1

2

∑
j 6=k

TkjVk(t+ 1)Vj(t) +
1

2

∑
j 6=k

TkjVk(t)Vj(t)+

(case i 6= k, j = k) − 1

2

∑
i 6=k

TikVi(t)Vk(t+ 1) +
1

2

∑
i 6=k

TikVi(t)Vk(t)+

(case i = k, j = k) − 1

2
TkkVk(t)Vk(t) +

1

2
TkkVk(t)Vk(t) =

= − Vk(t+ 1)− Vk(t)

2

∑
j 6=k

TjkVj(t)+

− Vk(t+ 1)− Vk(t)

2

∑
j 6=k

TkjVj(t) =

(T symmetric) = − (Vk(t+ 1)− Vk(t))
∑
j 6=k

TkjVj(t)

2. If we change two components k and l, the passages are the same, but in this case we
have to take into account the case when the indexes of the summation are equal or
different from l. At the end we gain

∆E = −
∑
ind∈I

(Vind(t+ 1)− Vind(t))
∑
j 6=ind

TkjVj(t)

with I = {k, l}.

3. When we extend the change to all the components i with i ∈ I = {1, . . . , N}, we obtain
the desired result

∆E = −
∑
i

∑
j

TijVj∆Vi
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where we have consider in the summation also the case j = i, i.e. terms that are equal
zero, since Tii = 0, ∀i.



APPENDIX B Discretization of Eq.2.69

In section 2.2.1 and in section 2.3 we have presented the discrete and continuous Hopfield
model. We want to establish a link between these two models by proving that the discretization
of Eq. (2.69) corresponds to the discrete dynamics equation (2.6), as done in [40].
We recall the equations for the dynamics in the two cases:

• Discrete case

hi(t+ 1) =

N∑
j=1

TijVj(t) + Ii (B.1)

Vi(t+ 1) = sgn(hi(t+ 1)) (B.2)

• Continuous case

u̇i =

N∑
j=1

TijVj(t) + Ii − ui (B.3)

Vi = g(ui) (B.4)

where we have supposed that in Eq. (2.69) Ri and Ci are equal 1.

Remark. We note that ui = hi in the two models and in the continuous model the sign
function is replaced with a generic sigmoid function g.

Consider the continuous dynamic equation (B.3). By Euler’s method, it can be approximated
in discrete time by replacing

u̇i(t) '
ui(t+ 1)− ui(t)

s
(B.5)

In the above equation, s is the sampling period and as s→ 0 the accuracy of the approximation
increases. The substitution of (B.5) into (B.3) yields

ui(t+ 1)− ui(t) = s(

N∑
j=1

TijVj(t) + Ii − ui(t)) (B.6)

Hence,if consider a unitary interval dimension s = 1, we obtain

ui(t+ 1) =

N∑
j=1

TijVj(t) + Ii (B.7)

that corresponds to the discrete dynamics equation (B.1).
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APPENDIX C Spectral method

Consider a vector field X : RN → RN with related differential equation:

ẋ = X(x) (C.1)

Let t 7→ x̄(t) be a T -periodic solution of (C.1); i.e. for every t we have

˙̄x(t) = X(x̄(t)) and x̄(t+ T ) = x̄(t) (C.2)

We search for solutions of (C.1) of the form:

x(t) := x̄(t) + ∆x(t) (C.3)

Impose now that (C.3) solve (C.1). We obtain

˙̄x(t) + ∆̇x(t) = X(x̄+ ∆x(t)) (C.4)

Expanding in Taylor series the vector field X in the second member of (C.4) we have

˙̄x(t) + ∆̇x(t) = X(x̄(t))︸ ︷︷ ︸
˙̄x(t)

+X ′(x̄(t))∆x(t) +R(t,∆x(t))

where R(t,∆x(t)) is O(|∆x|2) and T -periodic in t, hence is uniformly limited in t ∈ R. (This
condition is very important, because it will allow us to use the first method of Lyapunov,
that we will present later.) In conclusion:

∆̇x(t) = X ′(x̄(t))∆x(t) +R(t,∆x(t)) (C.5)

Then, the linearized system of (C.1) around the T -periodic solution t 7→ x̄(t) is represented
by the following linear equation with T -periodic coefficient:

∆̇x(t) = X ′(x̄(t))∆x(t) (C.6)

To solve this equation (C.6) we expose a classical result following, for instance, the notes “Sis-
temi dinamici meccanici” of Franco Cardin, [12], about linear systems with periodic coefficient.

Consider a homogeneous linear differential equation with T -periodic coefficient in RN :

ẋ = A(t)x, A(t+ T ) = A(t) (C.7)

An important result for this type of system consists in being able to represent the resolving
matrix as a product of a periodic matrix and a solution of a constant coherent system. We
now see how to achieve this.
Suppose that Φ(t) is the resolving matrix of (C.7) and that it satisfies the condition Φ(0) = I.
Any other resolving matrix will be of the type Ψ(t) = Φ(t)Q, with Q an arbitrary non-singular
matrix (detQ 6= 0), in fact:

Ψ′(t) = Φ′(t)Q = A(t)Φ(t)Q = A(t)Ψ(t)
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From the existence and uniqueness theorem we gain that detΦ(t) 6= 0 and in particular that
detΦ(T ) 6= 0.
Furthermore, Φ̄(t) = Φ(t+ T ) is a resolving matrix of (C.7):

˙̄Φ(t) = Φ̇(t+ T ) = A(t+ T )Φ(t+ T ) = A(t)Φ(t+ T )

and hence it will be obtained from Φ(t) through the right product with an appropriate
constant matrix Q

Φ(t+ T ) = Φ(t)Q

Statement.
Q = Φ(T )

Proof. To obtain the value of Q, we consider S(t) = Φ(t+ T )Φ(T )−1. We have that:

d

dt
S(t) = Φ′(t+ T )Φ(T )−1 = A(t+ T )Φ(t+ T )Φ(T )−1 = A(t)S(t)

So S(t) is a fundamental matrix and S(0) = I, then S(t) = Φ(t) which it means that

Φ(t+ T ) = Φ(t)Φ(T )

Therefore Q in this case is equal to Φ(T ).

Now since Φ(T ) is non-singular, from the theorem of existence of the logarithmic matrix
it follows that exists a logarithmic matrix B, i.e. such that

eB = Φ(T )

Now we can state the Floquet theorem:

Theorem C.0.1 (Floquet).
Φ(t) = P(t)e

B
T t (C.8)

where P(t) is a periodic matrix function.

Proof. Define P(t) as P(t) = Φ(t)e−
B
T t, we obtain.

P(t+ T ) = Φ(t+ T )e−
B
T (t+T ) = Φ(t)Φ(T )e−Be−

B
T t = Φ(t)e−

B
T t = P(t)

Hence, P is T -periodic and Φ(t) = P(t)e
B
T t.

Going back to (C.5), we set:

A(t) := X ′(x̄(t)), T -periodic matrix

and
z := ∆x

then (C.5) becomes
ż = A(t)z +R(t, z) (C.9)

Then, the linearized system
ż = A(t)z (C.10)

can be solved using Floquet C.0.1: the resolving matrix is given by Φ(t) = P(t)e
B
T t, where{

eB = Φ(T )

P(t+ T ) = P(t)
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Remark. Note that since Φ(t) is an isomorphism and det(e
B
T t) 6= 0, then also P(t) is an

isomorphism.

The solution of (C.10) is therefore

z(t) = P(t)e
B
T tz(0)

In order to combine (C.9) with a linear differential equation with constant coefficients, we
introduce the time-dependent and T -periodic transformation in t:

y = P−1(t)z (C.11)

A vector field Z(t, z), to which is associated a differential equation

ż = Z(t, z), (C.12)

is conjugated through (C.11) in the vector field

ẏ = Y (t, y)

whose solutions are correlated with the solution of (C.12) through (C.11)54. We now want to
study the vector field Y to understand it better:

ẏ(t) = ˙P−1z(t) = P−1(Az +R(t, z))

∣∣∣∣
z=Py

+ Ṗ−1Py =

= P−1(AP − Ṗ)y + P−1R(t,Py)

since Ṗ−1P + P−1Ṗ = 0.
On the other side

Φ̇ =
(
Ṗ +

PB
T

)
e
B
T t = AΦ = APeBT t

from which
Ṗ +

PB
T

= AP, =⇒ AP − Ṗ =
PB
T

Hence:
ẏ(t) = P−1(

PB
T

)y + P−1(t)R(t,P(t)y)

and in conclusion the vector field Y is given by:

Y (t, y) :=
B

T
y + P−1(t)R(t,P(t)y) (C.13)

where in the second factor of the right-hand side member the dependence on t is T -periodic.

Theorem C.0.2. If <(SpectB) < 0 then y = 0 is asymptotically stable for (C.13).

Proof. Starting from the transformation (C.11), we have to prove that y = 0 is asymptotically
stable for

ẏ =
B

T
y +R(t, y) (C.14)

54This means that all the solutions of an equation are all and only the solutions of the other, less than
transformations of the type (C.11).
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where R(t, y) is T -periodic in t (so uniformly limited in t) and R(t, y) = O(|y|2).
Let W (y) be a Lyapunov function for the asymptotic stability of

ẏ =
B

T
y

For example: W (y) = 〈y, Ly〉, where

L :=

∫ +∞

0

e
BT

T te
B
T tdt

We have that:

BT

T
L+ L

B

T
=

∫ +∞

0

(BT
T
e
BT

T te
B
T t + e

BT

T te
B
T t
B

T

)
dt =

=

∫ +∞

0

d

dt

(
e
BT

T te
B
T t
)
dt = −I

Hence
BT

T
L+ L

B

T
= −I

Now we verify that W (y) is a Lyapunov function for the asymptotic stability of (C.14).

1. W (y) is positive definite:

〈y, Ly〉 =

∫ +∞

0

〈y, eB
T

T te
B
T ty〉 dt =

∫ +∞

0

|eBT ty|2dt ≥ 0

and we have the equality 〈y, Ly〉 = 0 if and only if y = 0.

2. We have to prove that LYW (y) < 0 uniformly in t in a neighborhood of y = 0.

Ẇ (y) =

〈
B

T
y +R(t, y), Ly

〉
+

〈
y, L

(B
T
y +R(t, y)

)〉
=

=

〈
y,
(BT
T
L+ L

B

T

)
y

〉
+ 〈R(t, y), Ly〉+ 〈y, LR(t, y)〉 =

= −|y|2 +O(t, |y|3) < 0, ∀ y 6= 0

where O(t, |y|3) is uniformly limited in t for what we have seen for R(t,∆x(t)).

Remark. If, instead of using the hypothesis of the theorem C.0.2, we consider the more weakly
hypthoesis <(SpectB) ≤ 0, then we speak of “linear stability”. In this case, the equilibrium
solution is not asymptotically stable, and sometimes not even stable, for the original system.

Theorem C.0.3. If <(SpectX ′(x̄(t))) < 0, then the solution t 7→ x̄(t) is asymptotically
stable for (C.1).

Proof. Using the transformation (C.11), the result follows directly from what has been proved
in theorem C.0.2.

We can now summarize all the results seen in the following theorem:



121 APPENDIX C. SPECTRAL METHOD

Theorem C.0.4 (Spectral method or First Lyapunov Method). Given the following differ-
ential equation ẋ = X(x) with x∗ an equilibrium point, such that X(x∗) = 0, if

Spect
∂X(x∗)

∂x
= {λ1, . . . , λN} ∈ C (C.15)

then the equilibrium point x∗ is:

• asymptotically stable if all the eigenvalues λl are such that <(λl) < 0;

• unstable if exists at least a λl such that <(λl) > 0;

• undefined if for <(λl) ≥ 0 exists at least a λl such that <(λl) = 0.





APPENDIX D Proof of ρv = constant

In the limit case of N →∞ it is convenient to formulate the system (3.19) in terms of
density, rather than keeping track of each individual oscillator. Thus, if we focus on the
dynamics of the system in this limit, we can consider the continuous case, in which for each
frequency ω we imagine the oscillators distributed continuously on the circumference.
Define ρ(φ, ω, t)dφ the fraction of oscillators with angular frequency ω and angular position
between φ and φ + dφ at time t. This function is 2π-periodic with respect to the first
component and satisfies the normalization condition∫ π

−π
ρ(φ, ω, t)dφ = 1 (D.1)

Applying the Law of large numbers55 to Eq. (3.19) we gain that the dynamics of the system
is governed, in the continuous case, by

∂φ̃

∂t
(φ(0), ω, t) = ω +Kr sin(ψ − φ̃(φ(0), ω, t)) (D.2)

with the initial condition
φ̃(φ(0), ω, 0) = φ(0) ∈ S1. (D.3)

Equation (D.2) is analogous to Eq. (3.19) for the discrete case.
Set ρ∗(φ(0), ω, tin) the distribution of the frequencies between φ(0) and φ(0) + dφ(0) at the
initial instant tin. Note how, despite being the analogue of the discrete function i→ ωi, it
provides more information about the latter. In particular, it highlights that for different
initial phases there are distributions of different frequencies and therefore different evolutions
of the system.
Fixed ω, we want to impose the conservation of the density of the oscillators:
for every ∆S1 measurable in S1 it is valid∫

φ(0)∈∆S1

ρ∗(φ(0), ω, tin)dφ(0) =

∫
φ∈φ̃(∆S1,ω,t)

ρ(φ, ω, t)dφ (D.4)

A change of variable in the second member gives∫
φ(0)∈∆S1

ρ∗(φ(0), ω, tin)dφ(0) =

∫
φ∈φ̃(∆S1,ω,t)

ρ(φ, ω, t)dφ

=

∫
φ(0)∈∆S1

ρ(φ̃(φ(0), ω, t), ω, t)︸ ︷︷ ︸
ρ̂(φ(0),ω,t)

∣∣∣∣det ∂φ̃

∂φ(0)

∣∣∣∣dφ(0)
(D.5)

55There exists two different versions of the law of large numbers; they are called the strong law of large
numbers and the weak law of large numbers. Stated for the case where X1, X2, . . . is an infinite sequence of
i.i.d. Lebesgue integrable random variables with expected value E(X1) = E(X2) = · · · = µ, both versions of
the law state that (with virtual certainty) the sample average

X̄N =
1

N
(X1 + · · ·+XN )

converges to the expected value X̄N → µ for N →∞.
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For the arbitrariness of ∆S1 we gain that

ρ∗(φ(0), ω, tin) = ρ̂(φ(0), ω, t)

∣∣∣∣det ∂φ̃

∂φ(0)

∣∣∣∣ for every φ(0) ∈ S1 (D.6)

We have then that ρ∗(φ(0), ω, tin) is correlated with g(ω); the density of presence of ω on S1

at t = 0 is obtained integrating ρ∗(φ(0), ω, tin) on all φ(0):

g(ω) =

∫
φ(0)∈S1

ρ∗(φ(0), ω, tin)dφ(0)

Defined ρ̂(φ(0), ω, t) := ρ(φ̃(φ(0), ω, t), ω, t) the density of the oscillators in Lagrangian form
and ρ∗(φ, ω, t) that in Eulerian form, from Eq. (D.6) we obtain the equation of continuity
for ρ

∂ρ

∂t
+

∂

∂φ
(ρ(φ, ω, t)v(φ, ω, t)) =

∂ρ

∂t
+

∂

∂φ
[ω +Kr sin(ψ − φ)ρ] = 0 (D.7)

where

v(φ, ω, t) =
∂φ̃

∂t
(φ(0), ω, t)

∣∣∣∣
φ(0)=φ(0)(φ,ω,t)

= ω +Kr sin(ψ − φ) (D.8)

is the instantaneous velocity of an oscillator in position φ and having an initial frequency ω
and φ(0)(φ, ω, t) is the inverse motion.
To conclude the evolution of ρ is governed by the continuity equation:

∂ρ

∂t
= −∂ρv

∂φ
(D.9)

that expresses the conservation of the oscillators with frequency ω.
Now we want to prove the following result:

Lemma D.0.1. The density ρ(φ, ω, t) of oscillators in (φ, φ+ dφ) in the stationary case

∂ρ

∂t
= 0,

∂v

∂t
= 0

is inversely proportional to the velocity v(φ, ω, t) in φ, i.e.:

ρ =
C

v
(D.10)

Proof. To verify the statement, we start from Eq. (D.9). If ρ is stationary, then ∂ρ
∂t = 0. So,

for (D.9)
∂ρv

∂φ
= 0 =⇒ ρv ≡ constant

and ρ must be inversely proportional to the velocity in φ.

The continuity equation (D.9) can be solved using Eq. (D.1) together with the continuous
counterpart of Eq. (3.16), that is given by

reiθ =

∫ π

−π

∫ ∞
−∞

eiφρ(φ, ω, t)dφdω (D.11)
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Figure D.1: Typical evolution of r(t) for the model of Kuramoto. In the simulation, N = 1000 and
g Gaussian were taken as initial data, which provided a critical value of Kc ≈ 1.16. The blue curve
corresponds to K = 1, the green curve to K = 2. Figure taken from the bachelor’s thesis of Zeegers [68].

Therefore, the system of equations (D.1) - (D.7) - (D.11) admits as a trivial stationary
solution

ρ =
1

2π
, r = 0 (D.12)

independently of the choice we make for K and g, corresponding to an angular distribution
of oscillators having an equal probability in the interval [−π, π]. In this case the oscillators
have a chaotic motion and the solution is therefore called incoherent as for istance shown in
Figure D.1.
In the extreme case of very strong coupling strength, K →∞, there is a global synchronization
in which the oscillators all have the same phase and r → 1. For finite values of K it is
observed a lower degree of synchronization with amplitude of the order parameter between 0
and 1, as can be seen in Figure D.1.





APPENDIX E Residual method

The standard method to solve the integral∫ π

−π

C

ω − Ω +Kr sin(φ)
dφ, 0 < Kr < ω − Ω

is the residual method. Referring to the book “Analisi Due” by Giuseppe De Marco, [15], we
recall how to use the residual method in the calculation of integrals of rational functions.

Definition E.0.1 (Residue). Let U ⊆ C be an open set and f : U → C an holomorphic
function having a singularity in z0 ∈ ∂U . The residue of f in z0 is the coefficient a−1 of the
Taylor expansion of f in the point z0, that is f(z) =

∑∞
n=−∞ an(z − z0)n.

Theorem E.0.2 (Residual Theorem). Let U ⊆ C be an open simply connected set and be
z1, . . . , zp̄ ⊂ U . Let it also f : U \ {z1, ..., zp̄} → C an holomorphic function. For each closed
path γ ⊂ U \ {z1, . . . , zp̄} it is true that:

∫
γ

f(z)dz = 2πi

p̄∑
j=1

indγ(zj)Res(f ; zj)

where indγ(·) is the winding number of the closed curve γ in the plane around a given point,
that is an integer representing the total number of times that the curve travels counterclockwise
around the point. The winding number depends on the orientation of the curve and is negative
if the curve travels around the point clockwise.

Firstly, the following result is proved:

Lemma E.0.3. Suppose that the power series

∞∑
n=1

bn
(z − z0)n

(E.1)

is convergent everywhere in C \ {z0}. For every closed path γ ⊂ C \ {z0} we have then∫
γ

( ∞∑
n=1

bn
(z − z0)n

)
dz = 2πib1indγ(z0)

Proof. Note that the series (E.1) is uniformly convergent on the compact sets of C \ {z0}
and therefore it is possible to integrate it term to term. Thus we obtain∫

γ

dz

(z − z0)n
=

{
0 n ≥ 2

2πi indγ(z0) n = 1
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Proof. (Residual Theorem). Indicate with

∞∑
n=−∞

a(k)
n (z − zk)n, k = 1, . . . , p̄

the Taylor expansion of f in zk and set

pk(z) :=

∞∑
n=1

a
(k)
−n(z − zk)−n, k = 1, . . . , p̄

This last series converges in C \ {zk} and hence its sum is an holomorphic function. Set
g(z) := f −

∑p̄
k=1 pk(z), we have that g is an holomorphic function in U \ {z1, . . . , zp̄} with a

singularity that can be eliminated in each point zk, k = 1, . . . , p̄. Note that it is possible to
extend g in each of them, obtaining thus a holomorphic function in all U . Therefore it is
valid that

∫
γ
g(z)dz = 0, ∀γ closed path in U . This last relation, together with the previous

lemma, allows to obtain∫
γ

f(z)dz =

p̄∑
k=1

∫
γ

pk(z)d(z) = 2πi

p̄∑
k=1

a
(k)
−1indγ(zk)

= 2πi

p̄∑
k=1

Res(f ; zk)indγ(zk)

(E.2)

Now we summarize the strategy for calculating the integrals used for the explicit calculation
of the constant C. Assume that we want to calculate the following integral

I =

∫ 2π

0

R(cos θ, sin θ)dθ

where R is a real rational function in two variables defined in S1 = {(x, y) ∈ R2 : x2+y2 = 1}.
Set z = eiθ = cos θ + i sin θ we have

cos θ =
1

2

(
z +

1

z

)
sin θ =

1

2i

(
z − 1

z

)
dz = d(eiθ) = ieiθdθ = izdθ =⇒ dθ =

dz

iz

Thus substituting these relations in the integral I we gain

I =

∫ 2π

0

R(cos θ, sin θ)dθ =

∫
γ

R
(1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))dz
iz

where the argument of the integral is now a function that has no poles on γ.
Using the previous theorem E.0.2, the value of the integral is the sum of the residuals of
the function on the poles with modulus strictly less than 1 multiplied by 2πi. Therefore we
obtain that I is equal to the sum of the residuals of the function

1

iz
R
(1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
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corresponding to the poles contained in B(0, 1). It follows that

I = 2π
∑

Res
(1

z
R
(1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

)))
with the sum extended on the poles in B(0, 1) ∈ C.





APPENDIX F Proof of Theorem 3.6.3

We now prove Theorem 3.6.3, as done in [35], pp. 2217-2219.
The following theorem and lemmas are needed for the proof.

Theorem F.0.1 (Invariant Manifold Reduction for Weakly Connected Systems, Hoppen-
steadt and Izhikevich, [30]). Suppose that a dynamical system

u̇ = F (u), u ∈ RN

has an attractive normally hyperbolic compact invariant manifold D ∈ RN . Then there is an
ε0 > 0 such that for all ε ≤ ε0 the dynamical system

u̇ = F (u) + εG(u, ε), u ∈ RN (F.1)

has a local model, which is defined on the unperturbed invariant manifold D:
˙̃u = F (ũ) + εg(ũ, ε), ũ ∈ D (F.2)

where
g(ũ, 0) = G(ũ, 0) + adFP (ũ), where adFP = DFP −DPF

is the Poisson bracket of the vector field F and the vector-valued function P can be determined
from the condition

G(ũ, 0) + adFP (ũ) ∈ TũD for all ũ ∈ D
That is, there is an open neighborhood W of D and a continuous transformation pW :W → D
that maps solutions of (F.1) to those of (F.2).

Proof. For the proof see [30], p. 138.

Lemma F.0.2 (Samoilenko, [53]). Consider a dynamical system of the form

u̇ = F (u), u ∈ RN (F.3)

having a quasi-periodic attractor D with the dimension N > 1. Let Ω ∈ RN be the frequency
vector. Then (F.3) is conjugate to

θ̇ = Ω, θ ∈ TN (F.4)

on the attractor. That is, there is a homeomorphism q : TN → D such that u(t) = q(θ(t))
whenever u(0) ∈ D.

We implicitly assume that all manifolds and functions are as smooth as necessary for our
manipulations. In particular, we assume that the homeomorphism q above is a diffeomorphism
(differentiable with differentiable inverse).

Lemma F.0.3 (Izhikevich, [35], p. 2218). Suppose that each uncoupled system (ε = 0)

u̇i = Fi(ui), (F.5)

has a hyperbolic quasi-periodic equilibrium Di. Then, (F.5) considered as a system, i.e. an
uncoupled dynamical system of the form (F.3), has a normally hyperbolic stable compact
invariant manifold D, which is the direct product of all Di.
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Proof. Obviously, D is compact, invariant and stable. Let us prove its normal hyperbolicity.
Since D = D1 × · · · × DN , we have TD = TD1 × · · · × TDN and ND = ND1 × · · · ×NDN .
Therefore, v ∈ TD can be represented as v = v1 + · · · + vN , where vi ∈ TDi. Similarly,
w = w1 + · · ·+ wN for wi ∈ NDi, i = 1, . . . , N .
From the exponential stability of each Di it follows that

lim
t→∞
|wi(t)| = 0 =⇒ lim

t→∞
|w(t)| = 0

i.e. we gain the exponential stability of D.
To determine the dynamics of vi(t) we need to find the flow Φi(ui, t) on Di. Using Lemma
F.0.2 we see that

Φi(Xi, t) = qi(Ωit+ q−1
i (ui))

for some vector Ωi and some diffeomorphism qi : TN → Di. Therefore

DuiΦ(ui, t) = Dqi(Ωit+ q−1
i (ui))Dq

−1
i (ui) = Dqi(Ωit+ θi))Dqi(θi)

−1

where θi = q−1
i (ui). Hence,

|vi(t)| = |DuiΦi(ui, t)vi(0)| = |Dqi(Ωit+ θi)Dqi(θi)
−1vi(0)|

≤ min
ϑi,θi∈T

|Dqi(ϑi))Dqi(θi)−1vi(0)| ≤ λmin(Dqi)

λmax(Dqi)
vi(0)

where λmin(Dqi) and λmax(Dqi) are the minimal and the maximal (in absolute value) eigen-
values of Dqi on T, respectively. They exist since T is compact. Moreover, λmin(Dqi) 6= 0,
since qi is nonsingular on T.
It follows that each |vi(t)| is uniformly bounded from 0 and hence |v(t)| is too. Therefore,

lim
t→∞

|w(t)|
|v(t)|

= 0

which completes the proof.

Proof of Theorem 3.6.3. First, we apply Lemma F.0.3 to conclude that the system (3.105)
for ε = 0 has a normally hyperbolic stable compact invariant manifold D. Then, we use
Theorem F.0.1 to determine the existence of an open neighborhood W of D and a mapping
pW :W → D that projects all local solutions of (3.105) to those of the system

˙̃ui = Fi(ũi) + εgi(ũ1, . . . , ũN , ε), ũi ∈ Di, i = 1, . . . , N, (F.6)

where each Fi is the same as in (3.105) and gi are some functions.
Notice that the inverse of qi, which we denote by Si = q−1

i : Di → T, transforms each
subsystem ˙̃ui = Fi(ũi) into the form θ̇i = Ωi thanks to Lemma F.0.2. Differentiating
θi(t) = Si(ũi(t)) with respect to t yields

Ωi = DSi(ũi)Fi(ũi)

for all ũi ∈ Di. Now we apply the diffeomorphism to the weakly connected system (F.6) to
obtain

θ̇i = DSi(ũi)[Fi(ũi) + εgi(ũ1, . . . , ũN , ε)] = Ωi + εGi(θ1, . . . , θN , ε),

where
Gi(θ1, . . . , θN , ε) = DSi(ũi)gi(q1(θ1), . . . , qN (θN ), ε)

The mapping p that transforms solutions of (3.105) to those of (3.107) is the superposition
of pW :W → D and (S1, . . . ,SN ) : D → TN .
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