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Introduction

Network science has been described by the United States National Research Coun-
cil as ‘the study of network representations of physical, biological, and social phe-
nomena leading to predictive models of these phenomena’ (Council, 2005). It ap-
peared for the first time in 1736, when the mathematician Leonhard Euler solved
the notable Königsberg Bridges problem using graph theory. However, network
science acquired the status of scientific discipline on its own in the late 1990s, when
scientists in various fields like physics, technology, sociology, biology started to use
networks for modeling different complex systems. From there on, the paradigm
‘networks are everywhere’ became routine and nowadays there are networks in
many more interdisciplinary research areas such as neuroscience, epidemics, cyber-
security and so on. Although these networks present several differences between
each subfield and they are generated with different processes, a key discovery of
network science is that the architecture of networks emerging in various domains
is similar; this is a consequence of having analogous organizing principles. Conse-
quently, a common set of mathematical tools is required to explore these systems
(Barabási & Pósfai, 2016).

Networks are graphs that represent interactions among individual elements: their
structure is given by a collection of nodes and links that describe some kind of re-
lationships between them1. This abstract representation offers a common tool to
study systems that may differ greatly in nature, appearance, or scope. Nonethe-
less, real-world data are often subject to greater complexity due to additional
information, both in the structural and compositional dimension as well as the ex-
istence of multiple interactions among nodes. This has given rise to more complex
structures, named attributed and multilayer networks.

Among all the useful concepts for network data analysis, community detection

1In this work, the terms graph and network, vertex and node, as well as edge and link are
used interchangeably.
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arose in the latest years as one of the most popular and studied problem in this
context. It consists in partitioning vertices into densely connected components,
also known as communities. These share common properties and/or play similar
roles within the graph. Real and concrete applications can be found for instance
in market segmentation, parallel computing, recommendation systems and many
more.

In this work, we propose a new approach for clustering multilayer and attributed
networks, which captures the emergent behaviour of complex systems. The goal is
to assign each network node (shared across network layers) to clusters, considering
altogether the extra information carried by nodes and the connectivity patterns
in each layer. This is a challenging task because one has to combine two types of
information (Yang et al., 2013), while leveraging the extent to which topological
and attribute information contribute to the network’s partition (Falih et al., 2018).
We present an extension of the existing MultiTensor (MT) model recently devel-
oped by De Bacco et al. (2017), which performs an overlapping community detec-
tion task on multilayer networks by taking into account the interactions among
the system’s constituents. Specifically, we describe MultiTensorCov (MTCov):
this model considers both sources of information for uncovering groups of nodes
that are structurally close but also share some common characteristics.

The thesis is structured as follows:

• Chapter 1 reviews the classical literature on community detection and sum-
marizes the main approaches on community detection analysis with node
attributes, both on single and multilayer networks.

• Chapter 2 presents the baseline MultiTensor model for multilayer commu-
nity detection, together with its extension MultiTensorCov. It defines the
main assumptions of our approach and provides the mathematical details,
as well as a description of the Expectation-Maximization algorithm used for
performing inference.

• Chapter 3 describes an application to a real case study. It presents and
summarizes the characteristics of three real social networks, as well as their
analysis and results. We provide both quantitative and qualitative results,
comparing MTCov with its restricted version equivalent to standard Multi-
Tensor, i.e. without using extra information of node attributes.

• Chapter 4 is a discussion about conclusions and future works.



1. Related Work

In this chapter, we present a brief review of the literature related to the commu-
nity detection problem. We start by describing the classical approaches following
Fortunato (2010). They encompass graph partitioning, hierarchical and partitional
clustering methods, divisive and modularity-based algorithms. Those approaches
address the community detection problem focusing only on the topology structure,
described by the set of nodes and their interactions. In general, one can find many
works of this kind in the literature. However, we only cover the broad perspec-
tives highlighting the aspects used in the implementation of our model. For the
interested reader, we refer to the reviews mentioned in section 1.1.
Section 1.2 is dedicated to the methods developed for detecting communities on
attributed networks, whose nodes are associated with covariates which explain
their features. Firstly, we explain how scientists have handled the problem of com-
bining the network structure and the node information in single networks. Then,
we present the importance of multilayer attributed networks and few algorithms
developed in this framework. We conclude by describing the main characteristics
of MultiTensorCov model.

1.1 Community Detection: Classical Approach

Many real-world networks display a community structure organization. Discover-
ing this hidden partition may offer insights on how the network is organized. This
is of great importance in many disciplines and it has been used in different ap-
plications, including identifying fraud in telecommunications networks (Hoffmann
et al., 2001), homology in genetic similarity networks (Haggerty et al., 2013) and
relationships in social networks (Bedi & Sharma, 2016). Although over the past
few years a large number of scientists have studied the community detection prob-
lem, each from a different point of view, this remains an ill-defined task. Many
approaches to community detection exist, spanning not only different algorithms
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and partitioning strategies but also fundamentally different definitions of what it
means to be a ‘community’ (Peel et al., 2017). This diversity is a strength, because
networks generated by different processes and phenomena should not necessarily
be expected to be well described by the same structural principles. However, it is
sometimes necessary to have a guide for handling the community detection prob-
lem and many reviews have been written with this aim. For instance, Fortunato
and Hric (2016) offer a guided tour through the main aspects of the problem,
where they point out strengths and weaknesses of popular methods giving direc-
tions to their use. A similar work can be found in Schaeffer (2007), where they
discuss the task of identifying a cluster for a specific seed vertex by means of local
computation. Instead, Coscia et al. (2011) provided a classification of the existing
algorithms by considering their reference definition of community.

Communities (also known as groups, blocks, modules or clusters) are subsets of ver-
tices usually densely connected which share some common properties. According
to Fortunato (2010) the traditional methods for their identification are graph par-
titioning, hierarchical and partitional clustering. The former follows a cut-based
perspective, which consists in dividing the vertices in C groups of predefined sizes,
such that the number of edges between the groups (cut) is minimal. This cate-
gory includes not only the classical Kernighan-Lin algorithm (Kernighan & Lin,
1970), but also procedures which minimize measures affine to the cut size such as
conductance, ratio cut and normalized ratio cut. Furthermore, spectral clustering
is also connected to the cut-based problem formulations, because it can be seen as
the relaxation of the original, combinatorially hard, discrete optimisation problem
(Rosvall et al., 2017). It is a technique based on using the eigenvectors of matrices;
we refer to Von Luxburg (2007) for a thorough tutorial on this topic. Hierarchical
clustering is instead used when the network has several levels of grouping of the
vertices. In this case, the algorithms take in input a similarity matrix and create
communities including the most similar vertices, either following an agglomera-
tive or a divisive way. They are closely related to the selected similarity measure
and the hierarchical structure is sometimes a strong assumption. The partitional
clustering is the last traditional method and it includes one of the most popular
and oldest algorithm: K-means clustering. In this class, a dissimilarity measure
is assigned to each pair of points and they are separated in C clusters such as
to maximize/minimize a cost function based on distances between points and/or
from points to centroids (Fortunato, 2010). However, the solution found may not
be optimal. In addition, as in graph partitioning, the number of clusters has to be
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given in input a priori.

Historically later, the divisive algorithms have been developed and the most im-
portant example is the Girvan and Newman (2002) model. Here, communities
are created by removing edges iteratively based on edge-betweenness score. The
general idea is to look for those edges which connect the communities and remove
them. The particular choice of centrality measure is the main difference between
the techniques in this family. Girvan and Newman have also made another im-
portant contribution to the literature of community detection: the introduction of
the modularity measure (Newman & Girvan, 2004). This is used both as quality
measure for the clustering and as cost function to be optimized. This is still widely
used thanks to a huge number of different methods based on this quantity. How-
ever, it has also some limits, well described by Lancichinetti and Fortunato (2011).

Although the mentioned methods are quite popular, they do not provide general
and viable tools. Indeed, they often return a local optimum and have problems
with the size of the networks, as well as with the size of the communities. More-
over, the majority of those methods depends on the choice of the similarity measure
and they are often unable to find overlapping communities, as each vertex is con-
strained to belong to a single group. Furthermore, those algorithms force the
communities to have an assortative structure, i.e. the probability of connection
between nodes of the same community is higher than the probability that nodes in
different communities are connected. However, real-world networks often present
also disassortative, multipartite and core-periphery structure (Fortunato & Hric,
2016). It is thus important that an algorithm is flexible in capturing all of them.

A more general framework can be found in methods based on statistical inference,
which offers tools such as generative models. They provide a probabilistic approach
for modeling how the network might have been generated, and some of the model
parameters, also called community membership vectors, reflect the communities
in the network. The community memberships of each node are inferred by fitting
the model to the network data (Wang et al., 2013) by using maximum likelihood
optimization. This approach is one of the most powerful among those for com-
munity detection, since it does not impose any constraint about the structure, it
allows to perform inference tasks as link prediction and gives the possibility to
assign nodes to more than one cluster, i.e. overlapping communities. They are
increasingly present in real-networks and look for them is much more computa-
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tionally demanding. Indeed, looking for overlapping communities means assign to
each node a membership value for each cluster, and this increases the number of
parameters. Algorithms for performing this task have been developed and they
have contributed to the expansion of the literature on community detection. A
popular review focused on this task has been published by Xie et al. (2013), which
described also some generative models. Another feature that may not be handled
well by traditional methods is the presence of directed links. In fact, different ex-
tensions to the above mentioned models have been developed to incorporate this
characteristic. They are well explained by Malliaros and Vazirgiannis (2013). Also
in this case, generative models are effective and widely used. The complexity of
real-world networks is also expressed by the presence of different type of inter-
actions among nodes; such networks are named multilayer networks. Nowadays,
they are everywhere and applications can be found in social sciences, biology and
engineering to name a few (Boccaletti et al., 2014). It is then important to take
multiple types of edges into account if one wants to improve the understanding of
complex systems (Kivelä et al., 2014). In order to find communities in these par-
ticular graphs, algorithms based on quality functions such as modularity (Mucha
et al., 2010) have been considered, as well as those belonging to the hierarchical
clustering class (Liu et al., 2018). However, also in this case, the most recent
methods are based on fitting generative models as the one developed by De Bacco
et al. (2017). This model is flexible as it does not assume a priori any particular
network structure and it handles overlapping communities, directed and weighted
networks in a unified way. Since these properties capture the complexity of real-
world networks, we adopt as a starting point the MultiTensor algorithm presented
in De Bacco et al. (2017).

1.2 Community Detection on Attributed Networks

The methods presented in the previous section handle the community detection
task using only the topological structure, i.e. the set of edges connecting the nodes.
However, most real-networks data are often associated with additional informa-
tion, i.e. vertices of a graph are linked with a number of attributes that describe
the vertex (Falih et al., 2018). We call these networks attributed networks. The
community partition can in principle be influenced by both the network topology
and the node attributes, thus it is important to consider both sources of infor-
mation simultaneously and consider network communities as sets of nodes that
are densely connected while sharing some common attributes (Yang et al., 2013).
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Recently, several studies have combined the structural and compositional dimen-
sions addressing the problem of clustering in attributed networks. The structural
dimension refers to the interactions between the nodes; the compositional one con-
cerns the features of the nodes. A comprehensive survey about the main existing
clustering methods highlighting their conceptual differences has been provided by
Bothorel et al. (2015).

1.2.1 Single Layer Attributed Networks

The majority of the existing algorithms for detecting communities in an attributed
network considers only the single layer case, i.e. graphs where at most one type of
edge is allowed between two nodes. Through this section we present some exam-
ples, underlying different approaches used to handle this problem.

Yang et al. (2013) proposed the Communities from Edge Structure and Node
Attribute (CESNA) algorithm, where communities and their attributes are simul-
taneously detected in an efficient manner. It is a probabilistic generative model
which models the links of the network and the node attributes with two inde-
pendent Bernoulli distributions. They are combined with a unique log-likelihood
including a regularization parameter and it is optimized by block-coordinate as-
cent method. They assumed that communities generate both the network as well
as attributes, allowing a dependence between these two sources of information.
CESNA algorithm is designed for detecting overlapping communities and it has
been proved to be more accurate, more robust, faster and able to work with larger
networks than the previous models developed in this field. Moreover, they proved
the importance of including the node covariates especially in noisy and not-fully
observed networks. In addition, a better interpretability of the detected commu-
nities is achieved by finding relevant attributes for each group.

Newman and Clauset (2016) presented a mathematically principled approach to
combine the two sources of information. Their method does not assume that the
covariates are correlated with the communities. Instead, the algorithm detects
and quantifies the agreement between attributes and clusters, if one exists. Other-
wise, the node information is ignored. The correlation between the compositional
and the structural dimension is a helpful measure both for classifying nodes with
missing data and for improving the accuracy. They used a Bayesian statistical
inference technique for developing a generative model which modifies the stochas-
tic block model (Holland et al., 1983), that includes a degree-correction term and
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a dependence on node attributes through a set of prior probabilities. Moreover,
they implemented a belief propagation scheme to perform inference tasks faster
and scalable to large networks. In contrast to CESNA, which considers only bi-
nary attributes, their algorithm can take in input both numerical and categorical
values. Moreover, this method does not assume a priori any particular structure
for the communities, i.e. assortative/disassortative, and allows to select between
competing divisions of a network.

An approach in line with the previous ones is the joint model for data and at-
tributes developed by Hric et al. (2016). They described the network structure
and the attributes as a single graph with two layers and developed a non para-
metric Bayesian inference method that requires no prior information, such as the
number of communities. This algorithm is able to quantify the extent to which the
covariates are related to the network structure, and vice versa. However, in addi-
tion they assessed the attributes in their power to predict the network structure,
instead of simply measuring correlation with latent partitions. Furthermore, they
showed how the connection between network structure and annotations can be
used to predict missing nodes in networks where only the annotations are known,
as well as predicting covariates.

Similar works can be found in Xu et al. (2012) and He et al. (2017), where other
Bayesian generative models are presented. The former proposed a model-based
approach and formulated the community detection as a probabilistic inference
problem solved by devising a variational approach and designing an efficient ap-
proximate algorithm. The latter described a method for jointly identifying commu-
nities and deriving also their semantic description. In this case the model is trained
using a method which combines a nested expectation-maximization algorithm and
a belief propagation process (NEMBP). Furthermore, Bayesian generative models
for attributed graph clustering have been also developed in topic modeling appli-
cations; an example is given by Zhu et al. (2013).

Up to this point we only mentioned methods based on statistical inference, how-
ever, we can find other approaches in the literature. For instance, Zhang et al.
(2016) proposed a joint criterion for community detection (JCDC) with node at-
tributes, which could be seen as a covariate-reweighted modularity. Binkiewicz et
al. (2017) used node covariates to help uncover latent communities in a graph using
a modification of spectral clustering; whereas Tang and Ding (2019) showed that
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the joint clustering problem can be formulated as a spectral relaxation problem.

In summary, although the mentioned works belong to different classes of meth-
ods (graph partitioning, hierarchical clustering, generative models via Bayesian
inference or likelihood based) and they use different methodologies, they all show
that using attributes to detect communities improves the performances of the algo-
rithms with respect to the classical approaches. In addition, they are more scalable
and more robust in the presence of noise in the network structure and/or in the
attributes. In addition, they provide better results’ interpretability. However, we
remark that they all consider only single layer networks.

1.2.2 Multilayer Attributed Networks

A more flexible representation of real-world networks is given by multilayer at-
tributed networks. These are networks where nodes have attributes and are shared
across layers, each one describing a different interaction between them. Here, we
focus on the community detection problem on this kind of networks since the ma-
jority of the methods developed for detecting communities in annotated networks,
so far only uses a single layer. Given that all of them show prediction performance
improvement compared to the methods which consider only one of the two modal-
ities, we expect that using both information would help also in the multilayer case.
Despite the extension to multilayer networks has been mentioned as ‘future work’
in more than one paper, the actual implementation of this extension is still miss-
ing. In fact, the literature covering this problem is quite limited.

Recently, Gheche et al. (2018) developed the OrthoNet model which considers to-
gether the network information (with multiple layers) and the node features. It
is a two-step algorithm: first, it aggregates the layers into a graph representation
given by the geometric mean of the network Laplacian matrices; second, it uses a
neural network trained by stochastic gradient descent to learn a feature embedding
that is consistent with the multilayer structure. Works in line with this method
are given by Dong et al. (2013), Chen and Hero (2017) and Mercado et al. (2018),
which differ from OrthoNet in the aggregation step. These novel models perform
quite well in Purity, Normalized Mutual Information, and adjusted Rand Index
measures, both on synthetic and real datasets. However, they follow a neural net-
work approach which is quite different from the one we take here, which is based
on statistical inference.
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To the best of our knowledge, MultiTensorCov is the first model which tries to
solve a community detection task joining the multilayer structure and the infor-
mation carried by the nodes within a probabilistic approach. Our model belongs
to the statistical inference methods and benefits from all their properties, from the
modeling of undirected/directed networks, to the identification of overlapping com-
munities. Moreover, it has been designed so to capture the greater complexity of
real-world data given by the simultaneous existence of different type of interactions
among nodes (multilayer networks) as well as the presence of attributes (attributed
networks). In addition, our model allows the co-existence of different community
structures for each layer, including arbitrary mixtures of assortative, disassorta-
tive and core-periphery structure. Finally, inference tasks as link prediction can be
performed. The model is explained in detail in Chapter 2.



2. The Model

In this chapter, we present the MultiTensorCov model developed for detecting
communities in multilayer annotated networks. As a starting point, we fix the
notation that will be used along this thesis and then we proceed describing the al-
gorithm. Section 2.2 is dedicated to a brief review of the MultiTensor (MT) model.
Following the approach developed by De Bacco et al. (2017), we summarize the
motivations behind such method, highlighting its properties and mentioning some
of the main results. Section 2.3 covers the core of the thesis, describing in depth
the mathematical model developed for the community detection task on multilayer
networks with node attributes. We present MultiTensorCov (MTCov), which ex-
tends theMT model incorporating the nodes’ attributes and assuming dependency
between communities and attributes. Following the formalism of maximum like-
lihood estimation, the idea underlying this approach is to combine the structural
and the node information into a global likelihood function and provide a highly
scalable Expectation-Maximization algorithm for estimating the parameters.

2.1 Notation

A multilayer network can be represented as a multilayer graph

G = {G(α)
(
V , E (α)

)
}1≤α≤L (2.1)

defined on a set V of N vertices shared across L ≥ 1 layers. For each layer α ∈
{1, . . . , L}, there is a graph G(α)(V , E (α)) and we denote by A(α) = [a

(α)
ij ] ∈ RN×N

its adjacency matrix1. In addition, for each node i ∈ {1, . . . , N} let Xi ∈ R1×K be
its features vector, where K is the total number of attributes. Here, we consider
only K = 1 and in particular, the case where the attribute is categorical with Z
different categories.

1In this work, we consider only positive discrete numbers for the entries of the adjacency
matrices.



12 CHAPTER 2. THE MODEL

A community is a subset of vertices that share some properties and the aim of
MTCov is to find C overlapping communities using the information in the adja-
cency tensor A = {A(α)}1≤α≤L and the design matrix X = {Xi}i∈{1,...,N}. In this
contest, each node can belong to more than one group. Since we are interested
in directed networks, for each node i we have two membership vectors, ui and
vi. These determine how i forms outgoing and incoming links respectively. For
undirected networks, we set ui = vi ∀i. Moreover, each layer α has an affinity
matrix W (α) = [w

(α)
kl ] ∈ RC×C which describes the density of edges between each

pair (k, l) of groups. Furthermore, each community k ∈ {1, . . . , C} is linked to a
category z ∈ {1, . . . , Z} by a parameter βkz, that explains how much information
of the z-th category is used for creating the k-th community.

2.2 MultiTensor

Recently, De Bacco et al. (2017) presented the MultiTensor (MT) approach in a
paper titled ‘Community detection, link prediction, and layer interdependence
in multilayer networks’, which extends and generalizes the mixed-membership
stochastic block model (Airoldi et al., 2009). Such approach belongs to the cate-
gory of generative models and allows to solve three inference problems taking as
input the structural dimension: community detection, link prediction and layer
interdependence. Both directed and undirected networks can be analyzed with
this model and it yields a ‘mixed-membership’ partition, where each node may
belong to more than one community. Although this partition is shared by all
layers, MT allows patterns in each of them, including arbitrarily mixtures of as-
sortative, disassortative, and core-periphery structure. An example of network
layers with different community-relationships is given in Figure 2.1. It shows the
adjacency matrices and the representative realizations of a synthetic network with
three mixed-membership layers and two communities. In addition, the MultiTen-
sor method gives a principled framework for performing link prediction, which is a
particularly relevant task when considering real-world networks, as they are often
noisy. Moreover, the authors show how to use this information for measuring layer
interdependence, a useful knowledge for discarding redundant layers as well as a
hint about causal or structural relationships between the layers.

MultiTensor generates multilayer networks (as the one described in eq. (2.1))
assuming an underlying structure that consists of C overlapping communities. It
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(a) Assortative structure.

(b) Disassortative structure.

(c) Core-periphery structure.

Figure 2.1: (Left) Adjacency matrices and (right) representative realizations for
each layer (a)-(c) of the synthetic network generated by using the stochastic block
model. The network has three layers with different structure (assortative, disas-
sortative and core-periphery) and two communities colored in blue and red.
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infers the two membership matrices U, V ∈ RN×C assuming non-negative entries
and without performing any normalization, as well as for the affinity tensor W ∈
RC×C×L. Then, it models independently each entry of the adjacency tensor A ∈
RN×N×L with a Poisson distribution, i.e.

a
(α)
ij ∼ Pois(M

(α)
ij ) , (2.2)

where

M
(α)
ij =

C∑
k,l=1

uikvjlw
(α)
kl . (2.3)

Let Θ be shorthand for all 2NC + C2L parameters (given by uik, vjl, w
α
kl) and

assume that all are equally likely a priori, then

P (Θ|A) ∝ P (A|Θ) =

N∏
i,j=1

L∏
α=1

e−M
(α)
ij

(
M

(α)
ij

)A(α)
ij

A
(α)
ij !

, (2.4)

and the log-likelihood is

L(Θ) =
∑
i,j,α

[
A

(α)
ij log

∑
k,l

uikvjlw
(α)
kl −

∑
k,l

uikvjlw
(α)
kl

]
. (2.5)

They provide an expectation-maximization algorithm in order to maximize the
log-likelihood in eq. (2.5) and find estimates for the Θ parameters. Its running
time per iteration is linear in the total size of the dataset and it converges quickly
in practice. We explain this variational approach in more details throughout the
next section.

De Bacco et al. analyzed both synthetic and real data showing the good per-
formances of the algorithm in terms of community detection and link prediction.
They used multilayer benchmarks to assess the ability of the model and it achieved
the highest cosine similarity compared to the diagonal version of MT (which re-
stricts the communities to show assortative structures) and the fully Bayesian
Poisson tensor factorization model (Schein et al., 2015). Moreover, they gener-
ated synthetic networks with different types of structure in different layers, as
the one showed in Figure 2.1. In this contest, MT achieved significantly greater
performance than the other two methods, highlighting its flexibility in modelling
mixtures of connectivity patterns. In addition, the layer interdependence task
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via link prediction has been illustrated by analyzing two real-world datasets, one
representing social relationships among Indian villagers and the other describing
sequence sharing among malaria’s virulence genes. In both cases, the MultiTen-
sor approach provided information not revealed in previous studies of the two
datasets, and proved to be useful in identifying both the presence and the absence
of a meaningful structure.

The flexibility of this model, together with its capability of well describing the
complexity of real-world networks, make MultiTensor a valid and general baseline
to start with.

2.3 MultiTensorCov

A straightforward extension of the MultiTensor model presented above is given
by considering both sources of information carried by a complex network. Here,
we present MultiTensorCov (MTCov), an algorithm for community detection in
multilayer attributed networks.

We describe separately the procedures for modelling the topology of the network
and the node attributes and then we show how to combine them in a unified
log-likelihood framework. MultiTensorCov (MTCov) generates the network and
the attribute probabilistically, assuming an underlying structure consisting of C
overlapping communities. Given an observed multilayer network with adjacency
tensor A and design matrix X, our goal is to simultaneously infer the node’s
membership vectors ui and vi ∀i ∈ {1, ..., N}; the affinity matrices W (α) ∀α ∈
{1, . . . , L}, and the β = [βkz] ∈ RC×Z parameters for the correlation between
communities and attributes.

2.3.1 Modeling the links of the network

Following the MultiTensor approach and equations (2.2)-(2.5), for each i, j, α we
choose a(α)ij independently from the Poisson distribution with mean M (α)

ij , where

M
(α)
ij =

C∑
k,l=1

uikvjlw
(α)
kl . (2.6)

This means that the tensor M ∈ RN×N×L contains the λ parameters of the NNL
Poisson distributions, which are the generative models for the entries of the adja-
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cency tensor A. Due to their independence, we can write

P(A|U, V,W ) =

N∏
i,j=1

L∏
α=1

e−M
(α)
ij

(
M

(α)
ij

)A(α)
ij

A
(α)
ij !

. (2.7)

The log-likelihood for the structural dimension (LG) is then

LG =
∑
i,j,α

[
A

(α)
ij log

∑
k,l

M
(α)
ij −

∑
k,l

M
(α)
ij

]
=
∑
i,j,α

[
A

(α)
ij log

∑
k,l

uikvjlw
(α)
kl −

∑
k,l

uikvjlw
(α)
kl

]
. (2.8)

2.3.2 Modeling the node attribute

In this work, we consider only one categorical attribute, and for each node the
value of the attribute Xi is described by a Multinomial distribution. When the
number of categories is given by Z, the response of the i-th node can be codified
by using a one hot encoding technique as

xi = (xi1, . . . , xiZ), (2.9)

where xiz = 1 if it is observed the z-th category and 0 otherwise. In this way, the
original design matrix XN×1 is translated into a binary matrix XN×Z . Moreover,
for each node,

∑Z
z=1 xiz = 1 and xi can be taken as realization of the random

variable

Xi = (Xi1, . . . , XiZ) ∼Multi(1, πi). (2.10)

The probability function is written as

P(Xi = xi) = P(Xi1 = xi1, . . . , XiZ = xiZ) = πxi1i1 . . . πxiZiZ , (2.11)

where the parameter πi is given by

πi = (πi1 . . . , πiZ) (2.12)

s.t. πiz ∈ [0, 1] and
Z∑
z=1

πiz = 1, ∀i. (2.13)
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Furthermore, the z-th component πiz represents the probability that, for the i-th
node, it is observed the category z. A hypothesis we made is that, based on a
node’s community membership, one should be able to predict the value of each
node’s attribute. Thus, we write

πiz =
1

2

C∑
k=1

βkz(uik + vik) , (2.14)

where βkz is the probability of observing a particular category z together with a
community k. In order to satisfy the sum constraint in eq. (2.13), we impose the
following normalisation:

∀k :
Z∑
z=1

βkz = 1 (2.15)

∀i :
C∑
k=1

uik = 1 (2.16)

∀i :
C∑
k=1

vik = 1. (2.17)

Such restrictions (2.15)-(2.17) are a particular case for which the general constraint
for the multinomial parameter is satisfied. Although they are not the only choices,
they allow us to give a probabilistic meaning to the components of β, U and V .
Since the attribute has independent components, we write the log-likelihood for
the compositional dimension (LX ) as

LX =
N∑
i=1

Z∑
z=1

xiz log(πiz)

=
∑
i,z

xiz log
(

1

2

∑
k

βkz(uik + vik)

)
. (2.18)

2.3.3 The log-likelihood and the EM algorithm

In order to put together the two log-likelihoods (2.8) and (2.18), we introduce a
scaling parameter γ ∈ [0, 1] that controls the scaling between the two contribu-
tions. We are aware that it is a hyperparameter that must be estimated, but its
optimal value obtained via tuning techniques (for instance cross-validation) pro-
vides a measure for the dependence between the communities and the two sources
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of information. Thus, the optimization problem we aim to solve is:

Û , V̂ , Ŵ , β̂ = argmax
U,V,W,β

L

= argmax
U,V,W,β

[γLX + (1− γ)LG]

= argmax
U,V,W,β

γ

(∑
i,z

xizlog
(

1

2

∑
k

βkz(uik + vik)

))
+

+ (1− γ)

(∑
i,j,α

[
A

(α)
ij log

∑
k,l

uikvjlw
(α)
kl −

∑
k,l

uikvjlw
(α)
kl

])
. (2.19)

We maximize L as a function of Θ = (U, V,W, β) parameters using an Expectation-
Maximization (EM) algorithm. Following this variational approach, we introduce
two probability distributions: hikz and ρ

(α)
ijkl. For each i, z with Xiz = 1, hizk

represents our estimate of the probability that the i-th node has the z-th category,
given that it belongs to the community k. On the other hand, for each i, j, α

with A(α)
ij = 1, ρ(α)ijkl is the probability distribution over pairs of groups k, l. Thus,

the EM algorithm consists of randomly initializing the parameters Θ and then by
alternatively updating h, ρ and Θ until L reaches a fixed point.
Using the Jensen’s inequality, we write

LX ≥
∑
i,z

xiz
∑
k

hizklog
βkz(uik + vik)

2hizk

=
∑
i,z,k

xiz(hizklog(βkz(uik + vik))− hizklog(2hizk)) (2.20)

LG ≥
∑
i,j,α

[
A

(α)
ij

∑
k,l

ρ
(α)
ijkllog

uikvjlw
(α)
kl

ρ
(α)
ijkl

−
∑
k,l

uikvjlw
(α)
kl

]
=
∑

i,j,k,l,α

[
A

(α)
ij

(
ρ
(α)
ijkllog(uikvjlw

(α)
kl )− ρ(α)ijkllog(ρ

(α)
ijkl)

)
− uikvjlw(α)

kl

]
. (2.21)

These lower bounds hold with equality when

hizk =
βkz(uik + vik)∑
k′ βk′z(uik′ + vik′)

, ρ
(α)
ijkl =

uikvjlw
(α)
kl∑

k′,l′ uik′vjl′w
(α)
k′l′

, (2.22)

giving us the E step of the algorithm. For the M step, we derive update equations
for the parameters U, V,W, β by taking the derivatives of the log-likelihood and
setting them equal to zero.

The partial derivative with respect to the elements of the affinity matrices W (α) is
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given by

∂L
∂w

(α)
kl

= (1− γ)
∂LG
∂w

(α)
kl

= (1− γ)

(∑
i,j

[
A

(α)
ij ρ

(α)
ijkl

w
(α)
kl

− uikvjl
])
. (2.23)

The valid update when γ is different from 1, is given by setting eq. (2.23) to zero
and we obtain

w
(α)
kl =

∑
i,j A

(α)
ij ρ

(α)
ijkl∑

i uik
∑

j vjl
. (2.24)

In order to take the derivative with respect to βkz we need to consider the Lagrange
multiplier λk because of the constraint in eq. (2.15). Then,

∂L
∂βkz

= γ

(
1

βkz

∑
i

xizhizk

)
− λk (2.25)

and the equality with zero implies

βkz =
γ

λk

∑
i

xizhizk. (2.26)

Using the eq. (2.15), we have∑
z

γ

λk

∑
i

xizhizk = 1 , (2.27)

and so

λk = γ
∑
i,z

xizhizk. (2.28)

Plugging (2.28) into (2.26), we obtain the update

βkz =

∑
i xizhizk∑
i,z xizhizk

. (2.29)

Focusing the attention on the elements of the matrix U , we first consider that
plugging the update for w(α)

kl given in eq. (2.24) into the log-likelihood of the
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structural dimension in eq. (2.21), the last term becomes a constant. Indeed,

−
∑
i,j

∑
k,l

uikvjl

∑
i,j A

(α)
ij ρ

(α)
ijkl∑

i uik
∑

j vjl
= −

∑
k,l

(∑
i,j A

(α)
ij ρ

(α)
ijkl∑

i uik
∑

j vjl

∑
i,j

uikvjl

)
= −

∑
k,l

(∑
i,j

A
(α)
ij ρ

(α)
ijkl

)
= −

∑
i,j

A
(α)
ij

∑
k,l

ρ
(α)
ijkl

= −
∑
i,j

A
(α)
ij

= −T (α) (2.30)

since
∑

k,l ρ
(α)
ijkl = 1 and

∑
i,j A

(α)
ij is the number of links in layer α when the network

is directed (or twice this value in the undirected case). Thus, we can ignore this
term when estimating uik. Using the same strategy for computing the update of
β, we compute the Lagrange multiplier δi for the constraint in eq. (2.16). Then,

∂L
∂uik

=
1

uik

(
γ
∑
z

xizhizk + (1− γ)
∑
j,l,α

A
(α)
ij ρ

(α)
ijkl

)
− δi (2.31)

and

uik =
1

δi

(
γ
∑
z

xizhizk + (1− γ)
∑
j,l,α

A
(α)
ij ρ

(α)
ijkl

)
. (2.32)

Using (2.16), we have

∑
k

1

δi

(
γ
∑
z

xizhizk + (1− γ)
∑
j,l,α

A
(α)
ij ρ

(α)
ijkl

)
= 1 (2.33)

which implies

δi =
∑
k

(
γ
∑
z

xizhizk + (1− γ)
∑
j,l,α

A
(α)
ij ρ

(α)
ijkl

)
= γ + (1− γ)

∑
j,α

A
(α)
ij , (2.34)

since
∑

k hizk = 1,
∑

k,l ρ
(α)
ijkl = 1 and

∑
z xiz = 1. Plugging the result of eq. (2.34)
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into the equality (2.32) we obtain

uik =
γ
∑

z xizhizk + (1− γ)
∑

j,l,αA
(α)
ij ρ

(α)
ijkl

γ + (1− γ)
∑

j,αA
(α)
ij

. (2.35)

In order to compute the update for V , we fix j and l, rewriting the equation (2.20)
as

LX =
∑
j,z,l

xjz(hjzl log(βlz(ujl + vjl))− hjzl log(hjzl)). (2.36)

Analogous to before, we consider the Lagrange multiplier to satisfy the restriction
given in eq. (2.17), and we obtain

vjl =
γ
∑

z xjzhjzl + (1− γ)
∑

i,k,αA
(α)
ij ρ

(α)
ijkl

γ + (1− γ)
∑

i,αA
(α)
ij

. (2.37)

In each iteration of the EM algorithm, the parameters U, V,W, β are updated
thanks to equations (2.24), (2.29), (2.35) and (2.37), until the log-likelihood L
reaches a fixed point. An application of our model to some real-networks is pre-
sented in the next chapter, where we highlight both strengths and weakness of this
approach.





3. A Case Study

In this chapter, we present some applications to real-networks, in order to demon-
strate the strengths of our model. We show improvements in terms of the evalua-
tion measures compared to the version of the algorithm that does not consider the
attributes, and highlight the interpretability of the results. In section 3.1, we start
by describing the network data and summarizing their descriptive characteristics.
Then, we present the analysis, the main issues and the results. In the last section
of this chapter, we provide both quantitative and qualitative conclusions.

3.1 Data

We analyzed three real-networks that describe the social support interactions
between residents of two South Indian villages, that are named by pseudonyms
‘Tenpat.t.i’ (TEN) and ‘Alakāpuram’ (ALA), for privacy reasons. The data have
been collected by the anthropologist E. A. Power with help from Madurai Kama-
raj University and Chella Meenakshi Centre for Education Research and Services,
into two rounds: one in 2013 and the other in 2017. The surveys have been
approved by Human Subjects Institutional Review Board of Stanford University
and of the University of Cincinnati, respectively. More details about datasets and
background of the data research can be found in Power (2015) and Power (2017).
The social support surveys were conducted with virtually all adult residents of
the two villages and they were asked to name those individuals who are their close
friends or relatives, who provided them with different types of support (e.g. money
loan, advice) and who plays a particular role within the village. Each question
about social support and reputation endorsement has been translated in a layer in
the respective network. In addition, some metadata were collected, which include
features like age, religion, caste, education and so on.

In previous works, Power (2015) and Power (2017) considered the hypothesis that
there is a relationship between religion and prosociality, as well as De Bacco et al.
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(2017) suggested an interdependence between the attribute caste and the mecha-
nisms driving edge formation, which means the community structure. We based
our analysis on the last hypothesis, assuming an underlying dependence between
the communities, the multilayer structure and the compositional dimension given
by the attribute caste. Raw data have been pre-processed first. We kept only
residents and survey respondents who had at least one edge among the layers.
Moreover, we considered the networks without self-loops. Then, the resulting di-
rected networks present the characteristics showed in the Table 3.1, and we refer
to them as TEN 2013, TEN 2017 and ALA 2017, respectively.

Village Year Nodes Layers Average Edges Average Density

Tenpat.t.i 2013 362 12 302.65 0.232
Tenpat.t.i 2017 346 11 283.15 0.237

Alakāpuram 2017 441 11 435.95 0.225

Table 3.1: Network summary statistics for the three adult resident village networks.

The distribution of the attribute caste inside each network is shown in Figure 3.1.
It displays some differences between ‘Tenpat.t.i’ and ‘Alakāpuram’ networks, but
also a common unbalanced partition of the categories. This covariate is present
with 10 categories in TEN 2013, 9 in TEN 2017 and 13 in ALA 2017.

3.2 Analysis

In order to find the communities and measure their interdependence with the co-
variate, we analyzed the three networks using the MTCov model already presented
in chapter 2 and implemented in Python and R. We started by investigating the
behaviour of the global log-likelihood L, as well as the two parts of which it is com-
posed. Figure 3.2 shows an example for the network ALA 2017 and the attribute
caste. The different scaling between LX and LG graphs is notable, which results in
a different contribution on the final log-likelihood. For this reason, we first looked
for a normalization procedure, in order to give a reasonable interpretation for the
estimated scaling parameter γ̂.

3.2.1 Normalization

Since the preliminary analysis highlighted a relation between the log-likelihoods,
network structures and attributes, we estimated two linear regression models in
order to obtain the normalization constants for the two sources of information. We
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(a) TEN 2013.

(b) TEN 2017.

(c) ALA 2017.

Figure 3.1: Distribution of the attribute caste inside each network.
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Figure 3.2: Behaviours of the log-likelihood LX (compositional dimension), the
log-likelihood LG (structural dimension) and the global log-likelihood L. Here, we
report results for the ALA 2017 network and the attribute caste, using γ = 0.6.

collected log-likelihood values with respect to the number of nodes (N), edges (E)
of the observed network and the number of categories of the categorical attribute
(Z). Quantitatively, this means normalizing as:

L = γ
LX

cXNN + cXEE + cXZZ
+ (1− γ)

LG
cGNN + cGEE + cGZZ

. (3.1)

The super and the subscripts of the c parameters indicate the dependent variable
(LX or LG) and the input regressor they refer to, respectively. In particular, we
collected the data by running the model for each pair of network and categorical
attribute, arbitrarily fixing the number of communities C = 3 and the scaling
parameter γ = 0.5. Table 3.2 states the values of the coefficients which resulted
statistically significant for the estimation of the log-likelihood terms1.

LX LG
cN −0.486∗∗∗ −1.778∗∗

cE −6.158∗∗∗

cZ −33.862∗∗∗

Table 3.2: Coefficient estimates cXN , cXE , cXZ , c
G
N , c

G
E and cGZ for the two linear

regression models.

On one side, this procedure presented coefficient estimates useful for analyzing all
three networks as automatically as possible, used in the algorithm for normalizing
the respective log-likelihood terms before joining them. On the other side, we
are aware that these coefficients are strictly related to the type of network we
are working with. In this sense, future works should investigate an automatic
normalization procedure for any network.

1Only the statistically significant coefficients have been used in the normalized eq. (3.1).
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3.2.2 Evaluation measures

Given that we are considering attributed networks without ground-truth about
community assignments, model evaluation is inherently challenging. Moreover, in
this case we have an additional aspect to consider: the co-existence of multiple
objective functions. In fact, we want to identify sets of nodes making a good clus-
ter with respect to all these aspects (Bothorel et al., 2015). For this reason, we
decided to define two different evaluation measures, one for the structure and the
other for the attribute.

Even though there have been many recent developments in the literature about
methods for evaluating graph clustering algorithms that rely on network structure,
this is still an open problem as there is no general agreement about what are the
best practices. For more details about existing methods, we refer the reader to the
following works: Fortunato (2010), Leskovec et al. (2010), Bothorel et al. (2015)
and Chakraborty et al. (2017).
Here, given the similarity of applications and contexts, we follow the approach
used by Clauset et al. (2008). In particular, we developed a generative algorithm
that allows the use of a link-prediction technique both for performing a hyperpa-
rameter tuning and for quantifying the accuracy of the predicted partitions. More
specifically, we used the AUC statistic, equivalent to the area under the receiver-
operating characteristic (ROC) curve (Hanley & McNeil, 1982). It represents the
probability that a randomly chosen missing connection (a true positive) is given a
higher score by our method than a randomly chosen pair of unconnected vertices
(a true negative). Thus, an AUC statistic equal to 0.5 indicates random chance,
while the closer it is to 1, the more our model’s predictions are better. A strong
positive correlation between the community division and the link prediction has
been confirmed also by Wu et al. (2018).

For the attribute, instead, we used the accuracy as a quality measure. For each
node, we computed the multinomial parameter πi using eq. (2.14), given the
estimated parameters β̂ and the estimated community membership matrices Û
and V̂ . We then assigned to each node the category with the highest probability,
computing the accuracy as a fraction between the corrected classified examples
and the total number of nodes. We compared this value both with the random
probability and the highest relative frequency in the training set.
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3.2.3 Hyperparameter tuning

In order to evaluate our model on the data, we designed a procedure for tuning the
hyperparameters, which are defined as parameters that cannot be directly learned
from the data, but usually fixed before the actual training process begins. Here,
they are represented by the scaling parameter γ and the number of communities
C, given the unsupervised context. The optimal values are those who present the
best performance of the model, and they have been chosen by using the 5-fold
Cross Validation technique in conjunction with the Grid Search strategy. Such
approach consists in first splitting the dataset into K folds: K − 1 of them make
the training set, the remaining fold is the test set (or held-out set). Secondly,
repeatedly training the model from scratch on the K − 1 folds of the sample and
testing on the held-out fold, and this procedure is done for all combinations of the
enumerated hyperparameters. Then, we choose the combination (Ĉ, γ̂) that re-
turns the best averaged performance over the cross-validation runs. Although this
procedure might be computationally expensive, it gives us the possibility to adapt
our choice in order to have a co-existence of good performance for both objective
functions. In fact, working with other strategies or optimization procedures would
have returned the optimal value but these may not allow to compare jointly the
two values.

We choose, as range of possible values for C, the integer numbers in [2, 15]. In order
to avoid a large number of groups, values greater than 15 have not been considered,
while the option 1 corresponds to the trivial case without communities. For γ, we
considered values in [0, 1], at intervals of equal length of 0.1. Moreover, the dataset
has been split as follows:

• For the structure, instead of removing 20% of the nodes or 20% of the links,
we hided 20% of the entries of the adjacency matrix, including both zeros
and ones, strategy used by De Bacco et al. (2017).

• For the attribute, we hided 20% of the entries of the categorical vector.

In each iteration, we first trained the model giving as input the adjacency and the
design matrices with hidden entries, then we tested on the elements of the fold
left out. At each step, we computed both AUC and accuracy on the test set. Fig-
ure 3.3 illustrates the average results for all combinations of the hyperparameters
(C, γ), for the network TEN 2013. The plots of the other networks are attached in
Appendix A. The blue and orange horizontal dashed lines represent the best cross-
validation values for the two evaluation measures independently, while the black
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line displays the pair of selected hyperparameters. We chose as best parameters
the pair that returns the closest values to the best for both objective functions.

Figure 3.3: 5-fold CV average values for AUC and accuracy for all combinations
of the hyperparameters for the network based on Tenpat.t.i village in the year 2013
and the attribute caste. The blue and orange dashed lines represent the best cross-
validation values for the two evaluation measures independently, while the black
one displays the pair of selected hyperparameters.
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In order to assess if the presence of the covariate helps the algorithm for detecting
communities, there are two straightforward models for comparison. One is given
by the restricted MTCov model with scaling parameter γ = 0, that allows to take
into account only the structural dimension. The other model is represented by
MultiTensor, which only takes as input the adjacency tensor. However, before
starting the validation phase, also the hyperparameter C of these models needed
to be set. We used the same 5-fold CV technique, obtaining equivalent final choices
for all networks with both models, as showed in Figure 3.4. This was an expected
result since the log-likelihood of the MultiTensorCov model with γ = 0 is only
composed by the component LG, which is exactly the objective function of the
MultiTensor model. Moreover, the parameters updates for the two algorithms are
almost the same, up to the normalization constants given by the fact that MTCov
put some normalization restrictions, while MT works in an unconstrained space.

Table 3.3 summarizes the results of the hyperparameter tuning for the three algo-
rithms, and these values are going to be used in the next section for validating the
model. It should be noticed that MTCov estimated fewer communities, or at most
the same number, than the comparison models. This is due to the presence of the
scaling parameter γ, that captures the complexity of the data and helps during
the formation of communities providing more information. In addition, this pa-
rameter ranges between 0.4 and 0.6, meaning that the two sources of information
contribute almost equally for detecting the communities. Also, these values show
a correlation between the structure, the attribute and the communities.

MT
Restricted

MTCov
MTCov

TEN 2013
Ĉ

γ̂

12
—

12
0

10
0.4

TEN 2017
Ĉ

γ̂

6
—

6
0

6
0.5

ALA 2017
Ĉ

γ̂

10
—

10
0

9
0.6

Table 3.3: Values of the hyperparameters after tuning, for the three models and
networks.
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Figure 3.4: 5-fold CV average values for the AUC for all possible choices of the
hyperparameter C, considering MT and the restricted MTCov with γ = 0.
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3.3 Results

Once the hyperparameters have been fixed, we assessed the performance of the
model by validating its results both in terms of evaluation measures and inter-
pretability of the communities. We analyzed the used networks considering the
attribute caste, transformed by one hot encoding technique. Subsection 3.3.1 de-
scribes the validation phase and the comparisons with the MultiTensor and the
restricted MultiTensorCov models. Finally, in the subsection 3.3.2 we show the
detected communities and present their qualitative interpretations.

3.3.1 Validation

We quantitatively validated the model by performing ten independent runs with
different training and test sets, for each network. In each experiment, the datasets
have been split as explained in subsection 3.2.3, using the 70% for the training
set and the 30% for testing, and we adopted the evaluation measures previously
introduced in subsection 3.2.2. For each trial, we estimated the Θ parameters on
the training set, used in a second step for computing the AUC and the accuracy on
the test set. For comparison, we run the MultiTensor algorithm and the restricted
version of our model, that considers only the structural part by fixing the scaling
parameter γ = 0. Moreover, we looked at other two baselines for the accuracy,
such as the random probability assigned to each category of the attribute (RP) and
the maximum relative frequency of the covariate caste in the training set (MRF).

Table 3.4 shows the average results over ten runs for the considered networks,
together with their standard deviations. In all cases, our algorithm achieves the
highest accuracy for the caste category prediction, and in two cases over three the
highest AUC for the edge prediction, indicated in boldface. Nonetheless, even in
the single case where our model is not the best, the difference in score is negligi-
ble and can be offset by the possibility of inferring the attribute, feature that is
distinctive of our method.

To emphasize the importance of the covariate in the community detection task,
we implemented experiments with non-random test and training sets. We used
sampling bias techniques for assigning higher or lower sampling probability to the
entries of the adjacency tensor, which correspond to edges than the non-edges
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TEN 2013 TEN 2017 ALA 2017

ACCURACY

for the

covariate

caste

on the

test sets

RP 0.1 0.11 0.08

MRF 0.318 ± 0.014 0.327 ± 0.016 0.555 ± 0.009

MT C = 12 — C = 6 — C = 10 —
Restricted
MTCov

C = 12

γ = 0
0.317 ± 0.037

C = 6

γ = 0
0.381 ± 0.028

C = 10

γ = 0
0.597 ± 0.028

MTCov
C = 10

γ = 0.4
0.342 ± 0.050

C = 6

γ = 0.5
0.407 ± 0.033

C = 9

γ = 0.6
0.611 ± 0.030

AUC for the

link prediction

on the

test sets

MT C = 12 0.830 ± 0.004 C = 6 0.819 ± 0.008 C = 10 0.849 ± 0.005
Restricted
MTCov

C = 12

γ = 0
0.809 ± 0.010

C = 6

γ = 0
0.832 ± 0.002

C = 10

γ = 0
0.867 ± 0.006

MTCov
C = 10

γ = 0.4
0.825 ± 0.012

C = 6

γ = 0.5
0.840 ± 0.005

C = 9

γ = 0.6
0.886 ± 0.005

Table 3.4: Performance of methods MT , restricted MTCov and MTCov on three
social networks. RP is the random probability baseline for the accuracy of the
category of caste attribute prediction. MRF indicates the maximum relative fre-
quency linked to the covariate caste in the training set. The results are averaged
over ten independent runs and the best outcomes are bolded.

ones. In particular, we assigned to the entries aαij = 1 the probability given by

p1 =
total probability of picking up one edge (tpe)

number of edges in the network (E)
, (3.2)

and for 0 entries

p2 =
1− total probability of picking up one edge (tpe)

N − E
, (3.3)

where N is the number of the nodes of the network. The tpe was used to select
entries for the test set; in case of selecting entries uniformly at random, this value
would be around 0.003. This low value is due to the common case in real networks
of having sparse matrices, where the number of 1 is much lower than the number of
0. The aim was to assess the importance of having another source of information
in situations where the number of positive examples in the training sets is not
equally likely as the negative ones.
We created three different situations:

• tpe = 0.002: the probability of selecting one edge is lower than the proba-
bility of choosing one non edge, and the number of edges in the training set
is much higher than the number in the test set.

• tpe = 0.01: the probability of selecting one edge is higher than the probability
of choosing one non edge, and the number of edges in the training set is a
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bit smaller than the number in the test set.

• tpe = 0.015: the probability of selecting one edge in the test set is higher
than the probability of choosing one non edge, and the test set has a bigger
number of positive examples.

The presented frameworks follow an increasing order of complexity, starting from
an over-represented case, where tpe = 0.002, and ending with a difficult task where
the number of edges in the training set is under-represented, tpe = 0.015. We run
10 independent trials for each setting and model. The performances are shown
in Figure 3.5, where the opacity controls the complexity of the frameworks: the
lower the value of tpe (less complex), the more transparent the opacity. Moreover,
Tables 3.5, 3.6 and 3.7 present the results averaged over the independent runs,
obtained in the three settings, respectively.

Figure 3.5: Probabilistic link prediction accuracy AUC of MTCov and MT. The
values of AUC for MTCov and MT are shown on the vertical axis and the hor-
izontal axis respectively. The opacity controls the complexity of the frameworks:
on the left tpe = 0.015 (high opacity and complexity), on the center tpe = 0.01
(medium opacity), on the right tpe = 0.002 (low opacity). Points above the diag-
onal, shown in orange, are trials where MTCov is more accurate than MT. The
fractions for which each method is superior are shown in the plot legend.



CHAPTER 3. A CASE STUDY 35

TEN 2013 TEN 2017 ALA 2017

ACCURACY

for the

covariate

caste

on the

test sets

RP 0.1 0.11 0.08

MRF 0.314 ± 0.017 0.316 ± 0.010 0.556 ± 0.017

MT C = 12 — C = 6 — C = 10 —
Restricted
MTCov

C = 12

γ = 0
0.337 ± 0.035

C = 6

γ = 0
0.376 ± 0.023

C = 10

γ = 0
0.598 ± 0.036

MTCov
C = 10

γ = 0.4
0.364 ± 0.048

C = 6

γ = 0.5
0.371 ± 0.031

C = 9

γ = 0.6
0.625 ± 0.034

AUC for the

link prediction

on the

test sets

MT C = 12 0.851 ± 0.007 C = 6 0.857 ± 0.008 C = 10 0.866 ± 0.006
Restricted
MTCov

C = 12

γ = 0
0.830 ± 0.008

C = 6

γ = 0
0.851 ± 0.007

C = 10

γ = 0
0.879 ± 0.008

MTCov
C = 10

γ = 0.4
0.843 ± 0.005

C = 6

γ = 0.5
0.859 ± 0.005

C = 9

γ = 0.6
0.889 ± 0.005

Table 3.5: Setting tpe = 0.002. Performance of methods MT , restricted MTCov
and MTCov on three social networks and in a sampling bias framework, where the
number of edges in the training set is much higher than the number in the test set.
RP is the random probability baseline for the accuracy of the category of caste
attribute prediction. MRF indicates the maximum relative frequency linked to the
covariate caste in the training set. The results are averaged over ten independent
runs and the best outcomes are bolded.

TEN 2013 TEN 2017 ALA 2017

ACCURACY

for the

covariate

caste

on the

test sets

RP 0.1 0.11 0.08

MRF 0.317 ± 0.010 0.317 ± 0.012 0.566 ± 0.014

MT C = 12 — C = 6 — C = 10 —
Restricted
MTCov

C = 12

γ = 0
0.312 ± 0.019

C = 6

γ = 0
0.363 ± 0.036

C = 10

γ = 0
0.564 ± 0.034

MTCov
C = 10

γ = 0.4
0.326 ± 0.025

C = 6

γ = 0.5
0.335 ± 0.037

C = 9

γ = 0.6
0.613 ± 0.030

AUC for the

link prediction

on the

test sets

MT C = 12 0.711 ± 0.011 C = 6 0.741 ± 0.010 C = 10 0.752 ± 0.008
Restricted
MTCov

C = 12

γ = 0
0.698 ± 0.009

C = 6

γ = 0
0.745 ± 0.001

C = 10

γ = 0
0.777 ± 0.009

MTCov
C = 10

γ = 0.4
0.737 ± 0.008

C = 6

γ = 0.5
0.766 ± 0.012

C = 9

γ = 0.6
0.834 ± 0.010

Table 3.6: Setting tpe = 0.01. Performance of methods MT , restricted MTCov
and MTCov on three social networks and in a sampling bias framework, where the
number of edges in the training set is a bit smaller than the number in the test set.
RP is the random probability baseline for the accuracy of the category of caste
attribute prediction. MRF indicates the maximum relative frequency linked to the
covariate caste in the training set. The results are averaged over ten independent
runs and the best outcomes are bolded.
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TEN 2013 TEN 2017 ALA 2017

ACCURACY

for the

covariate

caste

on the

test sets

RP 0.1 0.11 0.08

MRF 0.311 ± 0.012 0.321 ± 0.017 0.562 ± 0.017

MT C = 12 — C = 6 — C = 10 —
Restricted
MTCov

C = 12

γ = 0
0.303 ± 0.033

C = 6

γ = 0
0.332 ± 0.044

C = 10

γ = 0
0.545 ± 0.032

MTCov
C = 10

γ = 0.4
0.274 ± 0.045

C = 6

γ = 0.5
0.279 ± 0.045

C = 9

γ = 0.6
0.571 ± 0.044

AUC for the

link prediction

on the

test sets

MT C = 12 0.589 ± 0.007 C = 6 0.669 ± 0.014 C = 10 0.645 ± 0.008
Restricted
MTCov

C = 12

γ = 0
0.592 ± 0.017

C = 6

γ = 0
0.656 ± 0.012

C = 10

γ = 0
0.675 ± 0.012

MTCov
C = 10

γ = 0.4
0.637 ± 0.014

C = 6

γ = 0.5
0.687 ± 0.016

C = 9

γ = 0.6
0.759 ± 0.009

Table 3.7: Setting tpe = 0.015. Performance of methods MT , restricted MTCov
and MTCov on three social networks and in a sampling bias framework, where the
number of edges in the test set is much higher than the number in the training set.
RP is the random probability baseline for the accuracy of the category of caste
attribute prediction. MRF indicates the maximum relative frequency linked to the
covariate caste in the training set. The results are averaged over ten independent
runs and the best outcomes are bolded.

Overall, MTCov achieves the highest AUC and the performances of our model in
the complex settings are significantly better with respect to the comparison models.
This confirms how the presence of another source of information helps in situations
that lack positive examples, which in principle would guide the predictions of the
test set to the over-represented ‘population’ in the training set. Instead, MTCov
performed reasonably well without falling below 63%, value well above the baseline
of 50% given by the purely random choice. Furthermore, our model achieves
better accuracy in the majority of cases, and when MTCov is not the best, it
is outperformed by its restriction version. Nonetheless, in the single case where
our method poorly performs in the caste prediction (Table 3.7), the loss in the
accuracy measure is offset by a good performance in the link prediction.

3.3.2 Interpretability

Until now, we presented a quantitative analysis, which lead to prove the robust-
ness of our model and the importance of including the compositional dimensional
when detecting communities. Now, we present a qualitative interpretation of the
groups detected by MTCov and MT . Due to the lack of ground truth and to the
presence of overlapping communities, there are not objective rules for analyzing
or assigning labels to the communities. However, since the scaling parameter has
been estimated between 0.4 and 0.6, it highlights a correlation between communi-
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Figure 3.6: Partition of the attribute caste inside each community detected by
MTCov algorithm in ALA 2017 network.

ties and attribute caste, which can be used as a guide for giving an interpretation
of the detected groups. We investigate also if the extra groups detected by MT
are reallocated by MTCov or if there is an overall topological change between the
two methods. Figures 3.6 and 3.7 refer to the network ALA 2017, while the plots
for the ‘Tenpat.t.i’ networks are attached in Appendix B. They show the partition
of the attribute caste inside each community, detected by MTCov and MT respec-
tively. They display a notable difference in the composition of the groups with
respect to the covariate: while MT keeps the same proportions of the categories
inside each group, MTCov discriminates better, especially between the most rep-
resentative categories, that have the maximum relative frequency in at least one
community.
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Figure 3.7: Partition of the attribute caste inside each community detected by MT
algorithm in ALA 2017 network.

This is also confirmed by the number of communities in which each category is
present, shown in Table 3.8. Although MTCov favors a smaller number of commu-
nities than MT, the differences between the two models are considerable. A clear
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TEN 2013 TEN 2017 ALA 2017
MT

(C = 12)
MTCov
(C = 10)

MT
(C = 6)

MTCov
(C = 6)

MT
(C = 10)

MTCov
(C = 9)

Aasaari 12 9 6 5 6 2
Agamudaiyaan 12 10 6 6 - -
Arundhathiyar 7 7 6 5 9 6
Hindu Vellalar 1 3 3 1 5 1

Hindu Yaathavar 12 10 6 6 10 8
Ilavaa - - - - 4 2

Jaanaan - - - - 5 2
Kallar 11 9 5 2 - -

Kulaalar 9 2 6 3 10 6
Maravar - - - - 10 9

Naayakkar 5 3 - - - -
Pallar 12 10 6 6 10 9

Pandaaram - - - - 5 5
Paraiyar - - - - 10 8
Pillamaar - - - - 3 2

RC Vellalar - - - - 8 5
RC Yaathavar 12 10 6 6 - -

Table 3.8: Number of communities in which each category is present, for each
network and method.

example is given by the network TEN 2017, where a fair comparison is possible
due to the same estimate of the hyperparameter C. In this framework, MTCov
never allocates the categories in a greater number of communities than MT, and it
keeps each of them in as few communities as possible. For this reason, the groups
detected by our model seem to respect both influence of the network topology and
the node attribute, creating communities that are not only structurally close but
also share common characteristics. On the other hand, instead, the compositional
structure of the MT communities is quite random and doesn’t show any correla-
tion between the communities and the covariate. However, this is at the expense
of the size of the groups, which in the MTCov case are unbalanced. One might
argue that, given that MTCov incorporates the covariate in the model, it should
be expected to observe a correlation with the inferred communities. However, the
estimate for the hyperparameter γ has been done in a range which involved also
0 (the closest situation to the MT case), but in all three cases the final estimate
is different from the null value, underlying an interdependence between covariate,
communities and structure. On the other hand, since we have never estimated
γ = 1, we did not expect that the communities would fit completely the caste
resulting in a clustering problem. A more complete and explanatory representa-
tion can be found in Figure 3.8. It represents the TEN 2017 network with the
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(a) Caste partition.

(b) Community 1, Community 2, Community 3.

(c) Community 4, Community 5, Community 6.

Figure 3.8: TEN 2017 community partition. On top, the division by caste mem-
bership. Subplots (b) and (c) show the membership in each of the 6 communities
for each node, with color ranging from white if the out-going membership uik = 0
to black if uik = 1. Values in between denote overlapping membership (grey).
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grouped links of the layers, together with its predicted community assignment and
the division of individuals into castes (image (a)). Subplots (b) and (c) display
the membership in each of the 6 communities for each node, with a grey scale
color. The black corresponds to values 1 in the membership matrix Û , while the
white is linked with 0. The greys denote the overlapping membership. Overall, the
predicted communities show a relationship with the caste partition, more evident
in communities 2 and 4, and weak in community 1. Notice also the different sizes
of the groups. Finally, these results suggest that there may be other attributes
related to the communities.





4. Conclusion

In this thesis we presentMultiTensorCov, a generative algorithm for community de-
tection in multilayer networks with node attributes. It looks for overlapping com-
munities shared between the layers, and allows different community-relationships
among them, such as assortative, disassortative and core-periphery. Moreover, it
can be applied both to directed and undirected networks.
Following the formalism of maximum log-likelihood estimation, this approach com-
bines the structural and the node information into a unified log-likelihood function
and provides an EM algorithm for estimating the parameters. MTCov combines
the two sources of information through a scaling parameter γ, which measures the
dependence between communities, multilayer structure and attribute.
The starting point of this thesis is the MultiTensor model, recently developed
by De Bacco et al. (2017). Our approach extends and generalizes this work by
including the compositional part given by the node features. Due to the lack of
probabilistic models for community detection in annotated multilayer networks,
we compare our algorithm with methods for multilayer community detection only
based on the structural dimension. Thus, we used MT and the restricted version
of MTCov with γ = 0 for validating our model.

We analyze three real social networks, which describe the social support flows be-
tween residents of two South Indian villages. Overall, MTCov exhibits improved
performance with respect to the benchmarks both in terms of accuracy for the
caste category predictions and AUC for the link predictions. Moreover, the es-
timated scaling parameters relies between 0.4 and 0.6, underlying a dependence
between the communities and both sources of information. We show that including
the compositional part, helps in providing more robust results in complex scenar-
ios, where the positive examples in the training set have a small probability to be
selected. Also, including an attribute supports the interpretation of the detected
communities which are both structurally close but also share some common char-
acteristics.
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For time reasons we did not test our model against the single layer state-of-the-art,
and this would be an additional step for providing robust results.

In addition, the model considers only one categorical covariate so far. A future
direction is to extend MTCov by including more heterogeneous features. In this
way, we could also exploit this formalism in terms of variables selection techniques
as, ideally, the algorithm would be capable of quantifying the importance of each
of them in the underlying process of community detection. Similarly, one can use
link prediction for measuring the interdependence between layers and discard the
redundant ones while keeping those providing independent information.

Other directions for future works include the application to other networks from
different fields, which requires an automatization of the normalization procedure,
as well as for the hyperparameter tuning that in this work was in part subjective
and tedious. A further idea is to devise synthetic multilayer probabilistic bench-
marks which incorporate also node information.



A. Appendix

A Additional Figures for Subsection 3.2.3

Figure A.1: 5-fold CV average values for AUC and accuracy for all combinations
of the hyperparameters for the network based on Tenpat.t.i village in the year 2017
and the attribute caste. The blue and orange dashed lines represent the best cross-
validation values for the two evaluation measures independently, while the black
one displays the pair of selected hyperparameters.

45
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Figure A.2: 5-fold CV average values for AUC and accuracy for all combinations
of the hyperparameters for the network based on Alakāpuram village in the year
2017 and the attribute caste. The blue and orange dashed lines represent the best
cross-validation values for the two evaluation measures independently, while the
black one displays the pair of selected hyperparameters.
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B Additional Figures for Subsection 3.3.2

Figure A.3: Partition of the attribute caste inside each community detected by
MTCov algorithm in TEN 2013 network.
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Figure A.4: Partition of the attribute caste inside each community detected by
MT algorithm in TEN 2013 network.
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Figure A.5: Partition of the attribute caste inside each community detected by
MTCov algorithm in TEN 2017 network.

Figure A.6: Partition of the attribute caste inside each community detected by
MT algorithm in TEN 2017 network.
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