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1 Network science: historical remark

Network science is nowadays an important part of the big family of complex
systems, and finds the main reason of its popularity in its versatility: from
biology to economy, from social to computer sciences, it can be applied to
a very heterogeneous number of problems. The main ingredients are very
simple, just points linked together by lines or arrows.
Even though it is now so widely used, network science does not have a very
long history: its development as an independent branch of probabilistic anal-
ysis is relatively recent.
What was probably the first problem formulated in terms of nodes and edges
was the so called ’Seven Bridges of Konigsberg’, by Euler in 1736: the Prus-
sian city of Konigsberg, now in Russia, is built around two islands that
emerge from the waters of a river called Pregel. These islands are linked
together and to the rest of the city by seven bridges: the problem proposed
by Euler was to devise a walk around the city that would cross each bridge
once and only once. The difficulty was to prove if such a path existed with
mathematical rigor (Fig 1).
Since the path within an island or the land is totally irrelevant, Euler simpli-

Figure 1: Image of the city of Konigsberg at the time of Euler

fied the analysis considering only dots for each of the places he had to reach
(each land connected by the bridges), and indicated the connections between
them only with lines. Next, Euler observed that (except at the endpoints
of the walk), whenever one enters a vertex, one has also to leave it using a
bridge. In other words, during any walk in the graph, the number of times
one enters a non-terminal vertex equals the number of times one leaves it.
In modern terms, Euler demonstrated that the existence of a solution de-

3



pends on the degrees of the vertices, i.e. on the number of lines touching the
point.

After this first and rudimentary usage of nodes and edges, not much was
done in order to develop these ideas for almost two centuries.
In 1930 we find another pioneristic application of graphs, this time to rep-
resent the social structure of a group of elementary school students (fig 2).

Figure 2: Sociogram of a group of student as represented by Jacob Moreno
(Ref [1])

Some interesting features of this network were, for example, that boys
tended to be friends with boys and girls with girls, with only some rare ex-
ceptions, but, again, this analysis was not done with rigor or introducing any
specific mathematical tool.
It is only with the works of the Hungarian mathematicians Paul Erdos and
Alfred Renyi that graph theory starts to be properly analyzed as a branch
of probabilistic theory, introducing the concept of random graphs (Ref [2]).
Consider a set of n isolated vertices. A first random model could be the one
in which we start adding successive edges between these nodes at random
until a certain total number of edges m is achieved.
In another very important random model, initially proposed by Edgar Gilbert
and denoted G(n, p), every possible edge occurs independently with proba-
bility 0 < p < 1. In this framework, obviously, the probability of obtaining
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any specific configuration is:

pm (1− p)(N−m)

where

N =

(
n

2

)
Modifying this prescriptions, Erdos-Renyi proposed a new model (called
G(n,m)), in which all the networks that have the same number of edges
(m)are equiprobable.
More precisely,

(
N
m

)
are all the possible configurations of the network, and

each of these occurs with probability

1/

(
N

m

)
However, what is probably the best known random network is the exponential
random graph (Ref [3]).
Its basic assumption is that the observed structure of the network can be
explained using only some nodal attributes, together with some parameters
and a normalization function:

P (y) =
eθs(y)

N(θ)
(1)

where s(y) can be any function of the nodes of the network (e.g. the sum
of the number of links that arrive at each of them), N is a normalization
function and θ a parameter.
It is immediate to note that this probability distributions resemble the canon-
ical distribution in statistical mechanics.
A very interesting and useful tool that was introduced in those years is the
adjacency matrix Φ: every index represents a node, and each single entrance
Φij = 1 if there is a link from node i to node j, otherwise Φij = 0.
Almost all the interesting cases in which network science is used are systems
that are changing with time, and in which we are trying to predict some
future characteristics: recently a lot of effort has been put on trying to un-
derstand evolving networks. Not without surprise, it has been found that
many apparently unrelated systems manifest a lot of similarities.
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2 Definition and coefficients in network anal-

ysis

Generally speaking, a network is a collection of points (nodes) that are linked
together by lines(edges). These edges can be of different forms and types: in
particular, we say that a network is

• direct if its edges have a defined direction, i.e. the relation involving
the extremes goes from one node to the other. Normally, the edges are
represented as arrows

• indirect if in the relation among nodes there is no specified direction
(edges are simple lines between them)

Obviously, using one or another depends on the system and the applica-
tion we are dealing with.
In order to be more quantitative we also need to introduce coefficients:

• Density D: ratio of the number of edges E to the number of possible
edges of the network:

D =
2 E

N(N − 1)

• degree of a node ki: If i is a node in an indirect network, its degree is
the number of arriving edges.
If the network is direct, we will separate the in degree kini , i.e. the
number of edges that arrive in i, from the out degree kouti .

• Average path length: calculated by finding the shortest path between all
pairs of nodes, adding them up, and then dividing by the total number
of pairs

• Diameter of the network : the longest of all the calculated shortest
paths in a network, i.e. the longest distance between two pair of nodes
in the network, calculated in number of nodes one has to cross.

• Clustering coefficient Ci: the clustering coefficient measures how many
of the neighbors of a node are linked together. More precisely, the
clustering coefficient of node i is calculated as:

Ci =
2ei

ki(ki − 1)

where ki is the degree of the node and ei the total number of edges
in the sub graph made keeping only the neighbors of i (its maximum
value is, of course

(
k
2

)
).
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• Connectedness: there are various ways to analyze how connected a
network is, and all deal with the average number of paths between
nodes. For example, a very common problem on network is to find
when the giant component arises, i.e. when the system reaches the
percolative threshold and almost all the nodes are connected to each
other by links.

• node centrality : Since ’centrality’ is a concept that depends on the
type of network, obviously there is no general definition of this index.
However, some quantities are more used than others. For example,
Betweenness centrality is a measure of a node’s topological centrality
inside the network. If i is the node, it is defined as:

gi =
∑
i 6=j 6=k

σjk(i)

σjk

where σjk is the total number of paths between nodes j and k, and
σjk(i) is the number of these that pass through i.
Another coefficient is eigenvalue centrality, that measures the impor-
tance of a node in the network: assigning relative scores to all the
nodes, connections to high-scoring nodes contribute more to the score
of a node than low-scoring nodes. So, if i is the node and Φ is the
adjacency matrix, we have that the centrality coefficient for i, xi, is
calculated as: ∑

j∈G

Φijxj = λxj

where j ∈ G means that we are considering all the nodes of the graph,
and λ is a constant. There may be a lot of values for λ that admit
eigenvectors for the matrix Φ, but only one of these has all the xi non
negative numbers (it is a consequence of Perron-Frobenius theorem).

There are many other coefficients with which one can classify nodes and
networks, but in the rest of the thesis we will only use very few of them, so
I’m not going to include any other definition.
In the following section I’m giving some examples of real systems that can
be represented as networks, and I’m going to mention some of the most
important results achieved through this analysis.
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2.1 Examples of real networks

• The world wide web: the nodes of this network are web pages,
i.e. data that may contain images, video and words. The edges are
hyperlinks that point from one page to another (the www is a direct
network).
In 1999 it was discovered that both the distribution of in degree and
out degree of edges follow a power law over several orders of magnitude
(Albert, Barabasi, [5]):

P (k) ∼ k−γ

with γout ∼ 2.4 and γin ∼ 2.1. Moreover, using finite size scaling, it
was also demonstrated that it displays the ’small world’ property: the
average distance between two nodes is ∼ 19, a surprising property if
one considers that the total number of pages is of order 500 millions!

• Internet: Internet is a network of physical links between computers
and other telecommunication devices. Its topology can be studied at
two different levels: in the first level, each node is a router, and edges
are physical connections between them. In the second, hundreds of
computers and routers are represented together, by a single node, and
a link exists if there is at least one route that connects them.
Studies conducted on it have revealed that the degree distribution fol-
lows a power law in both cases.

• Science collaboration graph: the nodes are scientists and two are
connected if they appear as co author in at least one article.
In 2001 Mark Newman in the work in ref [6] analyzed papers in databases
of physics, bio medicine, high-energy physics and computer science pub-
lished in a five-year window, from 1995 to 1999.
What he found was a small average path length but a high clustering
coefficient. Moreover, the degree distributions were not simply power
law, but experienced an exponential cutoff at a certain point:

P (k) ∼ k−τe−k/zc

where τ and zc are constant that depend on the specific field of research,
but the functional form is the same for all the subjects that were studied
(fig 3).

• Cellular networks: The nodes of this network are the substrates
(such as ATP, ADP, H2O) and the edges represent the predominantly
directed chemical reactions in which these substrates can participate.
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Figure 3: Distributions of the number of collaborations, divided for sub-
ject. each of these can be described using a power law distribution with an
exponential cutoff.

The average path length was found to be approximately the same in
all organisms, with a value of 3.3, and again the degree distribution
follows a power law.
Another similar network describes protein-protein interactions, where
the nodes are proteins and they are connected if it has been exper-
imentally demonstrated that they bind together. Again, the degree
distribution follows a power law with an exponential cutoff:

P (k) ∼ (k + k0)−γe−(k+k0)/kc

• Ecological networks: Food webs are used regularly by ecologists to
quantify the interactions between species: in this type of systems, nodes
are species and the edges represent predator-prey relationships between
them. In the analysis one discovers that even though species may differ
from one ecosystem to another, they all are three or fewer edges from
each other, and, again, degree distribution is consistent with a power
law.
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3 Citation network: definition and models

The subject of the following analysis will be the network of scientific citations.
Every time an author starts a research work, he searches for information on
what has already been discovered on that specific topic, and from those ideas
he adds his ones in order to find something new.
When it comes the time of writing the paper the names of this previous
works, that have been useful in the new research, are put in a reference
list that somehow takes into account the credit every paper owes to previous
papers. Moreover these lists are useful also to put the reader in the condition
of understanding what is being expressed in the paper: single concepts that
may be hard to understand can be found treated in more detail in previous
works.
So reference lists’ aim is to provide both credit to colleagues and to put a
paper in a specific research scenario, giving the reader information on how
to deepen into it in case he is interested.
In the network of scientific citations every paper is represented by a node,
and one draws a direct edge between A and B if A cites B, i.e. if B is in the
reference list of A.
One obvious property of this system is that it is mostly acyclic, since papers
are published with a precise time ordering.
During the last 50 years a lot of effort has been put to better understand
this system. It represents a unique opportunity to analyze the spreading of
information and innovation between people.
The first thing one notices analyzing publications is that the yearly amount
of papers grows exponentially (Fig 4), together with the average number of
papers in reference lists (Fig 5) .

A large number of models of citation dynamics have been built, and in
the next section I’m going to analyze some of the most significant.
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Figure 4: Distributions of publications per year: apart in the period of the
war, the number of publication has never decreased, and, apart in two specific
periods in which APS had decided to limit its number of publications, when
it is left free this number grows exponentially

Figure 5: Distributions of the mean number of references per year. The
growth is clear (the only exception was in 1980, due to a precise publication
choice by APS), and normally is described via an exponential
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3.1 Cumulative advantage

In 1965 professor Derek de Solla Price published what is probably the first
quantitative study on citation dynamic [7].
In his work he noted some striking features: the distribution of papers’ cita-
tions appeared to be very skewed on small numbers, but on the other hand
it had also a very ’long tail’ consisting of few very popular works. If Pk is
the fraction of papers cited exactly k times, this value decreased with the
increasing of k as Pk ∼ k−α, with α a constant (a distribution known as
Pareto Tail or power law).
In another paper, Price proposed a mechanism on how this type of distribu-
tion can arise, called cumulative advantage: papers that have gained more
citations in the past are more likely to get new ones in the future.
In 1999 Barabasi and Albert [5], studying the distribution of links between
pages in the world wide web, independently proposed a similar process of link
gaining by web pages, now calling it preferential attachment.
We start considering that each paper that is published on average cites m
other articles (i.e. the reference list has m papers), chosen in proportion to
the number of citation k they already have plus a positive constant r (neces-
sary to ensure that new publications can still receive citations). So we take
all the indegrees of papers, sum them up and consider as a probability for
each paper the ratio between its actual in degree and this total number of
citations.
This mathematical problem can be solved exactly in the limit of large num-
ber of papers using a master-equation method introduced by Simon [4].
What is found is that, if pk is the fraction of papers with exactly k citations,

pk =
B(k + r, α)

B(r, α− 1)
(2)

where

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
,

Γ is the standard gamma function

Γ(n+ 1) = n!

and
α = 2 +

r

m
. (3)

Since for large values of its first argument B(a, b) ∼ a−b, the tail of the
distribution of k (since we are considering r � k in this limit) is

pk ∼ k−α
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3.2 The first mover advantage

This is how preferential attachment is explained by means of Price’s argu-
ment, but using the same ideas we can go a little bit further, and calculate
the full distribution of citations as a function of its date of publication.
As pointed out by M. E. J. Newman in his work ’The first-mover advantage
in scientific publication’ [8], preferential attachment also implies a variety
of other features, such as a strong first mover advantage: the first papers
published in a certain topic should experience far higher rates of citations
than those that come after them.
To prove this, he started from defining a ’time’ variable t such that the ith

paper published has t = i/n (t has no relationship with actual time, but
gives a specific order of appearance of papers), and n is the total number of
papers.
We define the density function πk(t, n) such that πk(t, n)dt is the fraction of
papers that have been cited k times and that were published in the interval
from t to t+ dt.
In the limit of a large number of papers, if we define πk(t) = πk(t,∞), after
some tedious calculations we get:

(k + r) πk(t)− (α− 1)
dπk
dt

t = (k − 1 + r) πk−1(t)

with the convention π−1(t) = 0 and πk(0) = δk,0, and α defined in eq 3.
The solution of this equation is:

πk(t) =
Γ(k + r)

Γ(k + 1)Γ(r)
tr/(α−1)(1− t1/(α−1))k; (4)

and from this we can calculate the average number of citations γ(t) a paper
receives as a function of its time of publication:

γ(t) = Σ∞k=0k πk(t) = r (t−1/(α−1) − 1) (5)

We can notice how for t → 0 this value becomes arbitrarily large, meaning
that early published papers are expected to receive more citations than the
ones published later on (note that α is always bigger than 2 by definition).
This is what is called First mover advantage

To test this hypothesis, Newman considers papers within a single specific
research field, searching for data that describe it from its earliest foundation.
This can be a very hard task for the majority of topics, so Newman limits
his analysis to few specific subjects, such as network theory.
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Starting from the first five early (and very well cited) papers in this field,
he builds the network with all the papers that cite them (excluding review
articles), adding the ones that cite these ones and so forth. The resulting
data set contains 2407 papers spanning a ten years period from June 1998
to June 2008.

Figure 6: Figure a compares real cumulative distribution of papers on net-
work science with the predicted one. Figure b shows the mean number of
citations received by papers as a function of time from beginning (t = 0) to
end (t = 1) of the covered period. Figures (c), (d) and (e) show the proba-
bility that a paper with a given number of citations is published at time t for
papers with (c) 1 or 2 citations, (d) 3 to 5 citations, and (e) 6 to 10 citations.

.

Figure 6 a shows the distribution of citations of these papers, and as you
can see the exponential fit is remarkably good. From it, we can extract values
of r and a as seen in Eq 2.
Figure 6 b shows the average number of citations received by papers, where
time is intended to be, as already mentioned, in terms of publication order.
The solid line shows these values as predicted by eq 5: the agreement is quite
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good, and shows a strong first mover advantage.

However, preferential attachment alone is far from describing all the fea-
tures of citation dynamics. Figures 6 c-e report the distribution of citations
at different times. Theoretical and actual values are quite different: there are
much more papers published at early times in each degree range and fewer
around the peak, meaning that not all the papers in the early period are
benefiting from the first mover advantage.
Moreover, from a more accurate analysis of the data set one can notice the
appearance of well cited papers also relatively late. In order to quantify this
phenomenon, suppose we are interested in papers published after a certain
t0. Their distribution in the preferential attachment model, denoted pk(t0)
can be calculated simply integrating 4:

pk(t0) =
1

1− t0

∫ 1

t0

πk(t)dt

This way, what we find is that pk(t0) follows a truncated exponential be-
havior, but comparing these results to real data we find poor quantitative
agreement (Fig 7).

Figure 7: cumulative distribution function for subsets of papers in the data
set. The top curve represents the whole data set, while the others represent
the most recent 90%, 75% and 50%

Many other problems also arise as soon as we start considering other
research topics. For example, if we take all the papers that deal with strange
matter, we can see that the exponential behavior is lost even considering all
the data (Fig8 ).
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Figure 8: total distribution of citations for papers on Strange matter. Around
t ∼ 0.6 we find a new smaller peak, and the exponential fit does not describe
the behavior of data

.

This is probably due to the fact that the interdisciplinary nature of physics
makes it very difficult to understand where a subject ends and where another
starts.
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3.3 Random graphs for directed acyclic networks

In 2009 a new model was proposed by Karrer and Newman (Ref [9]) who
provides a basic theory for directed acyclic networks, i.e. exactly the type of
systems that best represents citation dynamics.
We can start by considering graphs with a fixed nodes degree sequence: if N
are the vertices, with i = 1, ..., N an index on them, let be kini and kouti their
fixed degree sequence.
Since the network is time ordered, edges are allowed to run only from vertices
with higher to vertices with lower i value, and this constraint enforces the
acyclic nature of the network: we can have an edge running to vertex i from
vertex j only if i < j.
This way not all the realizations of the network are possible since there are
precise conditions one has to satisfy. For example the sum of the in-degrees
of all vertices must be equal to the sum of the out-degrees, because every
edge that starts somewhere ends somewhere.
If m is the total number of edges in the network, we must have that:∑

i

kini =
∑
i

kouti = m

Other conditions are, for example, that the first node (i = 1) must not have
edges departing from it, ( there is no node to which it can point).
We can consider the number of edges that pass over a specific node i and the
ones that do not match any other stub before i:

µi =
i−1∑
j=1

kinj −
i−1∑
j=1

koutj

i.e. the number of in going stubs below vertex i that are available to attach
to outgoing stubs at i and above. One obvious requirement is that

kouti < µi

For convenience, we will define also:

λi =
i−1∑
j=1

kinj −
i∑

j=1

koutj

and our condition that kout1 = 0 can be written as λ1 = 0, and kinN = 0 as
λN = 0 (there is no node after N).
It can be demonstrated that these two conditions, together with λi > 0,
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are necessary and sufficient for our degree sequence to properly represent
a direct acyclic graph. The quantities µi and λi have a simple geometric
interpretations: if we make a cut in our graph between vertices i and i− 1,
the quantity µi is the number of edges that cross the cut, or the number
flowing from higher to lower vertices. For this reason, we call µi the flux at
vertex i.
The quantity λi is equal to the number of edges that flow ’around’ vertex i,
meaning the number that run from vertices above i to vertices below. We
call this quantity the excess flux at vertex i.
Considered all these quantities, Karrer-Newman’s model takes the in stubs
and out stubs at each vertex and tries to match it with all the other stubs
of the network. The ensemble of all such matchings appearing with equal
probability, constitutes the model.
There are some subtleties to this operation: matchings of stubs are not in
one-to-one correspondence with network topologies. If we take a matching
and simply permute the labels of the out-stubs at a single vertex i, we produce
a new matching corresponding to the same topology.
The number of distinct permutations to arriving edges is kouti !, and the total
number of permutations will consequently be:∏

i

kini ! kouti !

there is another complication: if multiedges are present in the graph, then
some configurations are over counted, and in order to avoid this mistake we
must reduce our number by a factor:∏

i<j

Aij!

where Aij are the elements of the generalized adjacency matrix(instead of
only being 0 or 1, the elements of the matrix indicate the number of edges
that run from vertex i to j).
One of the most fundamental properties of our model is the expected number
of directed edges between any two vertices i and j. If Pij is such a quantity,
we find that:

Pij =
kini k

out
j

m
fij

where

fij = m
Πj−1
l=i+1λl

Πj
l=i+1µl
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Another very interesting quantity is assortativity, i.e. vertex correlation on
some variable.
Consider a quantity x defined on all vertices i. The network is said to be
assortative with respect to x if edges tend to connect vertices with similar
values of x, high with high and low with low, and can be calculated with a
standard Pearson correlation coefficient r.
In a direct network we can consider more complicated forms of correlation,
even involving two quantities x and y: a possible definition by means of the
adjacency matrix could be

r =
1

σXσY

[
1

m

∑
ij

Aijxiyj − µinµout

]

where

µini =
1

m

∑
i

kini xi µouti =
1

m

∑
i

kouti xi

and

σ2
X =

1

m

∑
i

kini x
2
i − µ2

in σ2
Y =

1

m

∑
i

kouti y2
i − µ2

out

Conventional random models show no assortativity, but in the random acyclic
case we can have non zero assortativity with respect to some quantity x, e.g.
vertex degree xi = kini and yj = koutj .

A slight modification of what has just been defined is the random directed
acyclic graph with independent edge probabilities, in which, rather than fixing
the degree of each vertex, we fix only their expected values.
Starting with an empty graph of N vertices we generate for each pair of
vertices i and j, with i < j, a Poisson distributed number with mean Pij
and place that number of edges between i and j, pointing from j to i. The
resulting network trivially has the same expected number of edges between
every vertex pair as the network generated by our first model with the same
degree sequence, but the edges are now, by construction, independent.

3.3.1 Wu Holme model

In 2009 another paper was published (Ref [10]) by Wu and Holme that, try-
ing to use these models, highlighted some problem in dealing with triangles,
i.e. edges that connect three papers so that a→ b, b→ c and a→ c.
In fig 9 I have reported the results of Wu and Holme analysis of triangles in
Karrer Newman’s model (KN model in the following).
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Together with the simple KN model, they also used an extended version
of it in which ’when a new vertex enters the network, rather than randomly
matching all its out-degrees with those in-degrees among the existing vertices,
after first matching one out-degree randomly with an in-degree belonging to
an older vertex w (like the KN model), we let as many of the remaining arcs
as possible to come from neighbors of w (and after that, also the neighbors
of its new neighbor).
Note that, by definition of the KN model, network size N and degree se-
quences (in and out degrees) are identical to empirical data.’

Figure 9: The graph shows the distribution of the total number of triangles
in the network of 27 700 high energy physics papers comparing it with the
simulation of KN model and the extended KN model. On the x axis it
is reported the order of appearance, while Ti are all the triangles present
in the network at the time of publication of paper i. Both models highly
underestimate the real distribution

.

Both the KN model and the extension underestimate the number of di-
rected triangles in the real network (fig 9).
So Wu and Holme propose a new model, very similar to the KN one, but
more versatile in describing triangle formation.
’We start by ordering the vertices temporally as in the real data, and their
out-degrees (the number of papers in the ref list) are kept the same as the
original.
We do not restrict the number of in-degrees, that will be an emergent prop-
erty we will use for validation.
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A common assumption is that the relevance of a paper decays with its age:
for this reason, we let the first arc from a new vertex i go to an old vertex
with a probability proportional to its age tj = i − j to a power α (where a
negative α reflects an attachment probability decaying with age).
To fill up the remaining out-degrees of i, we attach arcs with probability β
to random (in- or out-) neighbors of j, and otherwise (i.e. with probability
1− β) attach arcs to older vertices with probability as above.
If there is no available neighbor to attach to (we assume one vertex cannot
link to another vertex twice, or to itself), we make an attachment of the first
type.In sum, our model has two input parameters α and β (in addition to the
degrees), governing the two key ingredients, aging and triangle formation’.
In their analysis Wu and Holme keep as quantity of interest Ti, the number
of triangles at the time of publication of i, and λi as defined above, the sum
of in-degrees of the vertices that have been added in the network before i
minus the sum of all in-degrees.
Modifying the values of α and β they obtain different distribution, that more
or less resemble the real one (fig 10) .
From the comparison it is clear that the best results are given by the choice
α = −1 and β = 0.99, meaning that in the network the 99% of citations in
the ref list of papers belong to the same cluster, while aging is described by
an exponential with α = −1.
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Figure 10: Solid lines correspond to real data, dashed lines to simulated
networks with parameters specified in the box. As can be easily seen, the
best results are given by the choice α = −1 and β = 0.99
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3.4 Redirection/Copying models

As we have seen in the previous sections, while preferential attachment ac-
counts for the ubiquity of networks that are scale-free or have heavy-tailed
degree distribution, it is too general and does not specifically address evolv-
ing network structures.
On the other hand, a more realistic scenario is provided by the two-step
growth models that have been developed in the context of social networks
and epidemic-like propagation of ideas.
All these models start considering that in writing a paper, an author reads
research journals, searches the databases and finds some relevant papers, cit-
ing some of them in his reference list.
Then he studies the reference lists of these preselected papers, picks up rel-
evant references, reads them, cites some of them, and continues this process
recursively.
We will distinguish these two types of citation calling the first direct and
the second indirect. Note that there is no a priori topological property that
distinguish the first from the second ones.
This two steps process is constructed to account for the high number of tri-
angles that is found in the data set of scientific citations: papers on the same
topic very often have a lot of common citing papers.
A lot of models can be built with this mechanism, each one preserving dif-
ferent features: in the following I am reporting some of them.

3.4.1 Branching processes in citation dynamics

In 2003 paper [11] was published in which was stated that apparently, when
an author forms the reference list for a paper, many of the articles he cites
are simply copied from the ref lists of other papers: in an average reference
list, only few papers are actually read.
Inspired by this discovery, in 2005 a first model was made by Simkin and
Roychowdhury that took into account this copying mechanism, but on the
other hand it did not take into account aging and preferential attachment.
Later on the idea was developed, and in 2007 the work ’A mathematical
theory of citing’ was published by the same authors [12].
In this model, referenced papers can be of two sorts

• Fresh papers the author has just read and uses in his work

• Older papers that have been cited by some recent paper
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In the work Simkin and Roychowdhury consider as recent only papers pub-
lished the preceding year, and in order to make the model mathematically
tractable they use a time discretization with a unit of 1 year.
There are, on average, Nref references in a published paper, and a fraction
α goes to randomly selected preceding year works.
Obviously, if the number N of papers is large, the model leads to the first year
citations being Poisson-distributed, and so the probability to get n citations
is:

P (n) =
λn0
n!

e−λ0 (6)

where λ0 = αNref , and in this context, citation dynamic becomes a branching
process. To see in detail a bit more of this formalism, see appendix.
Using equation 6, we get the generating function for first year citations:

f0(z) = e(z−1)λ0

and in general, if λ = (1− α),

f(z) = e(z−1)λ

As pointed out in the appendix, the process is much easier to analyze when
λ = λ0 or

λ

λ0

=
α

1− α
Nref = 2

because this way all the generations of the branching process are governed
by the same offspring probabilities.
If P (n) is the probability distribution of the total number of citations a paper
receives before being forgotten, we get

P (n) =
1

n!

[
dn−1

dωn−1
en(ω−1)λ

]
ω=0

Using Stirling’s formula, we get that for large n the distribution of citations
is:

P (n) ∝ e

λ
√

2π

1

n3/2
e−(λ−1−ln λ)n (7)

When 1− λ� 1, the factor in the exponent can be approximated as:

λ− 1− ln λ ∼ (1− λ)2

2

This way, for n � 2/(1 − λ)2 the exponent in equation 7 is approximately
equal to 1, and P (n) is dominated by the 1/n3/2 factor, while, when n �
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2/(1− λ)2, the behavior is dominated by the exponential.
Thus, we have a change in the behavior of the distribution for

nc =
1

λ− 1− ln λ
However, if we try to analyze the real data, we get λ ∼ 0.1, and this way
we would obtain a cutoff at 200, too soon as the actual citation distribution
obeys a power law well into thousands of citations.
This unwanted result can easily be solved including in our analysis the effects
of literature growth and of Darwinian fitness.
Papers are not created equal, but each has a specific fitness, which is a
measure of the scientific ability of the paper to ’fight’ for citations with other
competitors.
There can be different ways of defining such a property. In the paper in Ref
[12] the authors consider a fitness bounded between 0 and 1, in such a way
that a paper with fitness φ on average has

λ0(φ) = αNref
φ

〈φ〉p
first year citations, where 〈φ〉p is the average fitness of published papers.
It is important to note that fitness distribution of references is different from
the fitness distribution of published papers, as papers with higher fitness are
cited more often. This distribution assumes an asymptotic form Pr(φ), which
depends on the distribution of the fitness of published papers, Pp(φ).
With this conventions, during later years there will be on average

λ(φ) = (1− α)
φ

〈φ〉r
next year citations per one current year citation for a paper with fitness φ,
and 〈φ〉r is the average fitness of a reference.
Now that we have introduced these concepts, calculating the average number
of citations a paper with fitness φ acquires during its cited lifetime is relatively
simple:

N(φ) = λ0(φ)
∞∑
n=0

(λ(φ))n =
λ0(φ)

1− λ(φ)

and so

N(φ) = αNref
φ

〈φ〉p
1

1− (1− α)φ/〈φ〉r
and obviously 〈φ〉r is obtained self consistently by averaging φN(φ) over φ:

〈φ〉r =

∫
Pp(φ)φN(φ)dφ∫
Pp(φ)N(φ)dφ
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If we consider as fitness distribution Pp(φ) a uniform distribution, the above
equation becomes:

〈φ〉r =

∫ 1

0
φ2dφ

1−γφ/〈φ〉r∫ 1

0
φdφ

1−γφ/〈φ〉r

where
γ = 1− α

After some transformations this calculus reduces to

γ − 1 =
(γ/〈φ〉r)2/2

ln(1− γ/〈φ〉r) + γ/〈φ〉r

When γ is close to 1 〈φ〉r is very close to γ, and replacing it in the latter we
get:

γ

〈φ〉r
= 1− e−1/(2(1−γ))−1

Replacing this result in the equations above,considering λ as a function of φ
and α = 0.1, we get that the exponential cutoff for the fittest papers starts
at about 300 000 citations. Moreover if we want to compute the overall
probability distribution we need to average P (n, φ) over the (uniform) fitness
distribution. After some tedious calculations we get

P (n) ∝ e〈φ〉r
2γ

1

n2

in the limit of n� nc. In the opposite case, i.e. when n� nc we get:

P (n) ∝ e〈φ〉r
2γ

√
nc

n2.5
e−n/nc

So, compared to the model without fitness, we have a modified power law
exponent (2 instead of 2.5 for n� nc) and a very much relaxed cutoff of this
power law.
The major results obtained for the uniform distribution of fitness also hold
for a non uniform distribution which approaches some finite value at its upper
extreme pp(φ = 1) = a > 0. A wide class of fitness distributions produces
results very similar to the ones just described.
Finally, we would like to include also the effect of literature growth: it is very
well known and documented that the number of scientific publications grows
every year exponentially, with an yearly percentage increase β that between
1970 and 2000 was ∼ 0.045.Taking this effect into account, we get that

λ0 = α(1 + β)Nrefφ/〈φ〉p
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and
λ(φ) = (1 + α)(1 + β)φ/〈φ〉r

Obviously, 〈φ〉p does not change with the introduction of β, since its only
result is to increase the number of citations to all papers by a factor 1 + β,
but while λ(φ) is always less than unity in the case with no literature growth,
this is no longer true when we take this growth into account: when β is large
enough, some papers can become super critical. The critical threshold at
which this papers start to appear can be easily calculated as:

βc =
〈φ〉r

1− α
− 1

Note that being in the super critical regime only means having extinction
probability less than 1. With the uniform distribution of fitness we get that
1 in 400 papers become forever cited, but changing the distribution this frac-
tion can be made much smaller.

3.4.2 Mean field approach

The model described above is a very good null model for redirection/copying
models.
However it can not be considered as complete, since many of its basic as-
sumptions are way too strong, e.g. direct citations only to precedent year
papers.
Recently a new publication (Ref [13]) has appeared that, using the idea of
separating citation dynamics as in Simkin’s model, tries to be a bit more
phenomenological.
First of all, for every paper it considers the function

R0(t0) =

∫ ∞
0

R(t0, t0 − t)dt

that describes how the number of papers in reference lists varies with time.
Let t0 be the publication year of the paper and R(t0, t0 − t) the number of
papers in the ref list published in the year t0 − t .
In the two step model we can separate direct and indirect references, Rdir(t0, t0−
t) and Rindir(t0, t0 − t), and the approximation that the authors consider is
that once someone cites some paper, he can cite any of its references with
equal probability. This way, an average reference list comprises R(t0, t0 − τ)
preselected papers published in year t0 − τ , and the fraction of references in
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year t0 − τ directed to papers published in t0 − t (with t < τ) is:

R(t0 − τ, t0 − t)
R0(t0 − τ)

.

Since the age composition of the reference list is fairly independent of the
publication year, we have that

R(t0 − τ, t0 − t)
R0(t0 − τ)

=
R(t0, t0 − t+ τ)

R0(t0)

The mechanism starts with direct citations, and continues randomly citing
papers from their reference lists and iterating this procedure.
Anyway, even though the selection of papers follows a uniform distribution
within a ref list, the number of indirect citations from a paper depends on
time: T (τ) is the number of indirect papers that are added in the ref lists of
papers published in t0 coming from the copying of ref lists of papers published
in t0 − τ . Said so, we have

R(t0, t0−t) = Rdir(t0, t0−t)+

∫ t

0

R(t0, t0−τ)
T (τ)

R0(t0)
R(t0, t0−(t−τ))dτ (8)

and the first term comes from direct references, while the second comes from
the procedure described above, and accounts for indirect citations.
Thanks to the fact that there is an obvious duality between references and
citations, the age distribution of references R(t) is very similar to M(t), the
mean citation rate of papers published in one year.
Consider a set of all N0(t0) papers in a certain research field published in
year t0. The mean number of citations that a certain paper garners in the
t-th year after publication is M(t0, t0 + t), and this should be equal to the
mean total number of references in year t0 + t, so that

N0(t0)M(t0, t0 + t) = N0(t0 + t)R(t0 + t, t0) (9)

This equation implicitly takes into account that both the number of publi-
cations N0 and the reference list length R0 grow exponentially with time:

N0(t0) ∝ eαt0

R0(t0) ∝ eβt0

We arrive to a mathematical expression for the reference-citations duality:

M(t0, t0 + t) = e(α+β)tR(t0, t0 − t)
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Substituting into eq 8, we get a dynamic equation for the mean citation rate:

M(t) = Mdir(t) +

∫ t

0

M(t− τ)
T (t− τ)

R0

M(τ)dτ

where, since all the quantities depend on t0, I’ve kept only the t dependence,
meaning that M(t) = M(t0, t0 + t), and Mdir = Rdir(t)e

(α+β)t.
T (τ) has been replaced by T (t− τ) using the properties of the convolution,

and T (t−τ)
R0

is the probability of indirect citation at time t via another paper
published in year t− τ .
From this equation, after calculating from data Mdir(t), the authors found
an exponential kernel T (t) = T0 e

−γ(t), with T0 = 6.6 and γ = 0.64yr−1.
Said so, finding the age distribution of references is an easy task from eq 9,
knowing that the growing in number of publications has parameter α = 0.046,
while the growth in reference lists length parameter is β = 0.02.

3.5 Describing citations of single papers: lognormal
aging

Another type of models starts from considering the history of each single
paper.
If Πi(δti) is the probability that a paper i is cited by another paper at time
ti after publication, we can, for example, separate the contributions of pref-
erential attachment, of fitness and of aging, considering them independent.
This way, we get:

Πi(∆ti) ∼ ηi c
t
i P (∆ti) (10)

where ηi is the fitness of the paper, cti the number of citations it has achieved
at time t, and P (δti) the temporal relaxation function, that describes the
tendency of papers to diminish the rate of citations with the passing of time.
This last function, in principle, can be computed directly from the data set.
However, in order to do so we should group papers with the same fitness
(η) and cumulative citations (ct ), and look at the time when they are cited
again. There are technical problems in doing this: η is a very difficult value
to get, and normally aging is very dependent on the topic, i.e. fields with
higher number of researchers normally have higher number of publication
every year, and consequently a much higher citing rate.
In the paper in Ref [14] a formula is calculated for the description of cumu-
lative distribution of citations which considers P (∆ti) a log-normal distribu-
tion:

P (∆t) =
1√

2πσ∆t
exp(−(log∆t− µ)2

2σ2
)
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Lognormal aging is a very common tendency of many real systems: it pro-
vides an excellent fit in a lot of phenomena involving reaction times (RT) in
biology, economics, and other branches of population dynamics.
In the paper ’Information processing models generating lognormally dis-
tributed reaction times’, by Ulrich and Miller (Ref [15]) the authors somehow
motivate why this distribution is so common among these phenomena.
In general, a random variable T follows a lognormal distribution if log(T )
follows a normal distribution with mean µ and standard deviation σ (T must
be a positive random variable).
Two processes have been discovered to generate it. The first arises as a trans-
form of a fluctuation of a random normal noise, while the second leads to the
lognormal directly, without any other transform.
In the Logarithmic activation growth a stimulus that requires a speeded re-
sponse is presented at t = 0. Let A(t) be the response activation function
that begins to accumulate as a logarithmic function of t:

A(t) = k ln(t)

The response is triggered when A(t) reaches a certain threshold C > 0, but
C is subject to random trial to trial fluctuations. If T is the instant when
A(t) reaches the C level, we have:

A(T ) = C,

k ln(T ) = C

and so
T = exp(T/k)

T will be lognormally distributed if C follows a normal distribution.

The second is called partial output model. Starting from the late 70s many
theorists have considered models in which RTs are determined by a series
of different processes that trigger the activation from an input to an output
level.
Partial output models can be described as a composition of n successive
processes, of which the output from the (i − 1) unit serves as the input of
the i-th.
This way, the output of the n-th unit is described by the function:

On(t) = gn(...g3(g2(g1(t)))...)

where gi(t) is a monotonic increasing function denoting the output of unit i
at time t.
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The lognormal shape arises if gi(t) is a power function:

gi(t) = Ai[gi−1(t)]bi

where Ai is a positive random variable and bi a positive constant.
The first unit gets the value:

g1(t) = A1(t− t0)b1

if t > t0, otherwise for t < t0 it is zero. Finally, the response signal is trig-
gered if On(t) reaches a constant level c > 0.
When n is large enough, under the general assumption of the central limit
theorem, we get that T , the random variable that describes the phenomenon
On(t) = c, is lognormally distributed (shifted by t0).

Once we have justified the choice of the lognormal aging distribution,with
equation 10, we start considering that, if cti is the number of citations a paper
i has at time t, considering eq 10, we have:

dcti
dN

=
Πi

ΣN
i=1Πi

In considering N(t), the total number of published papers, we have that

N(t) ∝ exp(βt)

where β = (17year)−1 for the PR corpus. This way, to transform ∆ti = t− ti
in something related to the mean number of papers published since time ti
of publication of paper i, we have

∆ti = β−1ln(N/i)

so that:
dcti
dN

= m
ciηiPt(β

−1ln(N/i))

ΣN
i=1ciηiPt(β

−1ln(N/i))

and assuming ci = m(f(ηi,∆ti)− 1), after some tedious calculation we find:

cti = m

(
e
β
A
ηiΦ

(
ln(t)−µi

σi

)
− 1

)
(11)

where Φ(x) is the cumulative normal distribution

Φ(x) = (2π)−1/2

∫ x

−∞
e−y

2/2dy
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and as β and A are system parameters, we will use λi = βηi/A as the general
form of the fitness of paper i.
Particularly interesting of this formula is that the ultimate impact of a paper,
i.e. the total number of citations it gets, is achieved via a remarkably simple
formula: since in the limit t→∞ the function Φ→ 1,

c∞i = m(eλi − 1)

and so this quantity depends only on the fitness of the paper and not on any
other of the parameters we have considered.
The only true weakness in this is that for every paper in eq 11 we have three
fitting parameters, and this does not allow us to make real predictions on
the evolution of its citing life within reasonable mistakes.

Having considered these as the most representative of the models of ci-
tation dynamics, we immediately notice that in all of them the emphasis is
put on time distribution and on triangles. However, as we will see, these two
ingredients alone are not sufficient to describe many of the most important
topological features of the network.
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4 Sleeping Beauties and delayed impact pa-

pers

Normally, when a paper is published, it gets immediately a lot of attention
and reaches the peak of annual citations in the first two or three years.
But this is not always the case: sometimes it happens that a paper does not
get almost any attention for many years, even for decades, until, at a certain
time, it experiences an ’explosion’ of citations.
’Being ahead of one’s time’ is something that has always intrigued and fright-
ened scientists, but the first systematic studies on this subject started only
in 2004, with the paper ’Sleeping Beauties in Science’ by Van Raan [16].
’Some scientists claim that some of their publications have not been as suc-
cessful as they should because they are ahead of time’. We call this the
’Mendel syndrome’, named after Gregor Mendel, whose discoveries in plant
genetics were so unprecedented that it took thirty-four years for the scientific
community to catch up to it.
As the number of citations of a paper is taken by scientists as a proxy to
the importance of a paper, understanding why sometimes this reckoning is
delayed is a very important target.
We will call ’Sleeping Beauties’ (SB in the following) papers that, after pub-
lication, experience a period of ’sleep’, i.e. many years in which they do
not get as many citations as they should, and that, at a certain point, start
gaining a lot of them.
In his work, Van Raan considers three main variables as thresholds to dis-
tinguish between SB papers and non SBs:

• depth of sleep: a deep sleep has at most 1 citation per year, while a less
deep sleep has between 1 and 2 citations per year

• length of sleep: length of the period of sleep, as described above

• awake intensity : number of citations per year, for four years after
’awakening’. The rate of publications in this period has to be big,
much bigger than during the sleep.

Using a very large data system, with about 20 million articles, Van Raan
took papers with 6 different sleeping periods, s=5,6,7,8,9,10 years, all pub-
lished in 1980.
He identified the articles in deep sleep or in less deep sleep as mentioned
above, while for the awake intensity he defined 5 different classes, grouping
papers with cw = [21, 30], [31, 40], [41, 50], [51, 60]and [> 60] citations, i.e., on
average 6, 9, 12, 15, and more than 15 citations per year during the four-year
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awakening period.

What Van Raan found is summarized in the table of fig 11:

Figure 11: Table that summarizes the SBs found by Van Raan in his analysis.
With his definition, even with a very big data set, we get very few SBs

In the end, in his analysis he concludes that:

• The probability of awakening after a deep sleep is smaller for longer
sleeping periods

• long sleeping periods are less likely for less deep sleeps

• The awakening intensities is independent of both depth and length of
sleep!
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4.1 Awakening of a SB: the Prince

After this first systematic analysis of the delayed impact phenomenon a lot
of effort has been put to get as much information as possible on it.
In particular, very interesting is the mechanism that triggers the awakening:
why, all of a sudden, a paper starts getting citations at a much higher rate
than before?
A lot of hypothesis have been made on this, and many scientists have started
to think that, around the awakening year, SBs are cited by a very good pa-
per, that giving new visibility to it brings a whole new set of citations.
As a consequence of Van Raan’s appealing metaphor of ’Sleeping Beauties’,
this new paper was called ’The Prince’.
Van Raan himself introduces this idea in his work, naming the Prince (Polchin-
ski, 1995) of a Sleeping Beauty (Romans, 1986), but except for this single
example, no thoughts were given to the Prince’s role in more general terms.
In 2010 Braun et alii published a paper called ’On Sleeping Beauties, Princes
and other tales of citation distributions ...’ [17] in which they try to fill this
gap by performing a detailed citation analysis of a set of Sleeping Beauties
together with that of the corresponding Princes.
In their work it is suggested that the same mechanism ( ’induced citations’,
i.e. attention given to a paper after being cited by a later and more visible
one) may also work for ’normal’ (non-delayed) citation histories.
Braun took papers of 1980 from ’science citation index’ that were not cited
in a period of 3 to 5 years after publication. Then he searched for the prince
among the citations in their sleeping period: ’candidate Princes were sought
for among the first citing articles; they were supposed to be highly or at
least fairly cited and to have a considerable number of co-citations with the
Sleeping Beauty’.
Anyway, this idea of a ’Prince’ immediately encounters some problems: in
the example above, mentioned by Van Raan, we have that the SB got 256
citations and the prince 1225, but the number of co-citations is only 56: a
very small fraction of the total.
Braun sample covered a wide range of scientific fields. Another interesting
discovery was that almost the 40% of what he identified as princes came
from other disciplines: in the table below are summarized SBs and princes
grouped by subject (Fig 12).

Very often, princes are papers that are published in journals of higher
impact factors: the average impact factor of the journals in which the PRs
were published is more than twice as high as that of the SBs.
Another very important remark is that, after the kiss, both the prince and
the SB have a very long and successful life, and even though there is a sub-
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Figure 12: Percentage of SBs and princes by research field. In the 40% of
the cases, prince and SB do not belong to the same field

.

stantial part of common citations, their lives are independent.
So the idea of the ’Prince’ that wakes the sleeping article is very interest-
ing, but it seems to be too naive in the cases analyzed: a more systematic
approach is required.
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5 SB coefficient

The ideas introduced by Van Raan to treat delayed recognition have been
very useful.
However, as we have already mentioned, the definition he gives, together with
the strict thresholds he puts, produce a relative scarcity of SBs that does not
allow to make any significant statistical analysis.
On the other hand, some delayed impact papers (recognizable by looking at
their cumulative citation distribution) are not included in that first definition.
For example, a very clear defect is that it does not consider what happens
after the awakening in putting thresholds on what happens before: for papers
with thousands total citations experiencing a period of 10 years with only
10 or 20 citations means delayed recognition, even if they have not been
’sleeping’ in Van Raan’s definition.
The cumulative distribution of citations very often has the shape drawn in
fig 13, with no change of concavity.

Figure 13: Cumulative distribution of citations of a normal paper:the distri-
bution has no concavity change

.
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However many other distributions do not have such a simple shape: in
fig 14 there is an example of a more complicated distribution. Note that, in
Van Raan’s definition, this is not considered as a SB.

Figure 14: Cumulative distribution for a delayed impact paper: it does not
experience any period of stop, but nonetheless its citing life has a delayed
impact

In the first months my work was focused on changing this first definition
of SB.
While I was doing so, the paper Defining and identifying Sleeping Beauties
in science [18] was published, by Qing Ke, Filippo Radicchi et alii, that tries
to do, more or less, the same thing.
In their analysis, the authors propose an index, called the Beauty coefficient,
denoted as B, that can be calculated for any given paper and is based on the
comparison between its citation history and a reference line, drawn from its
publication year to the year of the peak of citations.
Let’s call t the time interval after publication and ct the citation history of
the paper, i.e. for every t ct tells how many citations the paper got in the
t-th year after publication.
If ctm is the maximum of ct, with tm ∈ [0, T ], the straight line lt that connects
the point (0, c0) and (tm, ctm) analytically is described by the equation

lt =
ctm − c0

tm
t+ c0

For each t < tm we can compute the ratio between lt − ct and max{1, ct},
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and the definition of B is achieved by summing over these values (Fig 15):

B =
tm∑
t=0

ctm−c0
tm

t+ c0 − ct
max{1, ct}

Figure 15: The blue point with the red border is (tm, ctm),i.e. the maximum.
The line lt connects it to (0, c0). For each t after publication we can calculate
the area of the bin between the point and the line: if ct > lt the area is
considered negative (red rectangles), while if lt > ct it is considered positive.
B coefficient is found summing each bin’s area divided for the number of
citations achieved in that year (max{1, ct} is to avoid division by zero)

Some features of this definition:

• for papers with tm = 0 the maximum is immediately achieved and
B = 0. This is a very common situation

• papers with ct growing linearly have B = 0

• Van Raan’s definition of delayed impact strongly depends on the choice
of thresholds, while B does not have any

• B increases both with the length of sleep and the awakening intensity

What is strange of this definition is the high importance given to the
peak: to legitimate this choice, the authors state that for most of the papers
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yearly citation count decreases very quickly after reaching it.
The advantage of this definition for SB is that it does not rely on arbitrary
thresholds. This way, we can investigate this phenomenon at a systematic
level.
What is observed is a heterogeneous but continuous distribution of B, and
most of all no clear demarcation that separates SB behavior from normal one
(fig 16).

Figure 16: Distribution of the B coefficient. Since B values can be negative,
x axis is shifted by 13 in order to put the logarithmic scale on it. The blue
and cyan curves represent the empirical results, and the ones from NR and
PA model are plotted as green and magenta lines. The red dashed line is the
best estimate of a power-law fit

.

After giving this definition, Ke et alii compare the distribution of the
beauty coefficient with the one predicted by two null models. The first one
is the citation network randomization (NR), in which, constraining both the
number of papers in the reference list and the number of citations, we swap
the links between them (very similar to the model proposed by Karrer New-
man, described in section 3.3).
The other null model is preferential attachment (PA), already explained in
section 3.1 (note that with it the definition of B is not even consistent, since
there is no drop in citation count after the peak).
The result, presented in Fig 16, is that neither of them satisfyingly describes
the real behavior.
Moreover, the occurrence of SBs is not a phenomenon that can completely
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be understood just by looking at single subject citation histories.
Fig 17 shows the contribution to the total number of SBs divided by disci-
pline: the first three are multidisciplinary subjects, and together bring about
the 23% of the total. So interdisciplinarity seems to play a huge role in what
triggers the awakening of papers.

Figure 17: This is the top chart of disciplines producing SBs as found in the
paper by Ke et alii [18]. The first three are multidisciplinary areas.

.

In order to be more quantitative and analyze the contribution of these
external citations, Ke at alii decide to separate the set of SBs into three dis-
joint subsets with high, medium and low values of B. For each paper they
compute the cumulative distribution of external citations.
From Fig 18 one can conclude that top SBs are clearly very influenced from
external subjects, with about an 80% of papers that have a 75% interdisci-
plinary citations.
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Figure 18: The graph shows how interdisciplinarity affects the behavior of
SBs. The image represents the cumulative distribution of the fraction of
external citations, grouped in 3 subsets of low, intermediate and high B
values

.

5.1 Modifying B algorithm

The algorithm just introduced has been very useful to prove that delayed
impact is not a pathological property of a separated set of papers.
However when I tried to use this definition I encountered some problems:
papers that could undoubtedly be considered SBs where not recognized as
such.
What I found to be the main weaknesses of Ke’s B coefficient are:

• it is binning dependent: if instead of taking time skip one year one
takes two years or six months, the value changes abruptly (see figures
19 and 21)

• it does not take into account that papers’ citation histories have differ-
ent time scales: for many papers it is unusual to have more than one
citation per year, but the frequency of their occurrence may determine
an actual delayed recognition

B coefficient works really well with top class SBs, that after discovery
have huge numbers of citations every year, but for lower level SBs (i.e. up to
50 total citations) it gives some unwanted results: many of the papers I had
found as SBs had very low B values.
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Fig 19 and 20 report the year citation distribution and cumulative distri-
bution of a paper: Bc is zero, because the peak of citations is achieved in
the first year, but from Fig 20 one still concludes that it is indeed a delayed
impact paper!

Figure 19: X axis are the years after publication, y axis reports the number
of citation per year. The peak is in year 2, and so Bc = 0

.

I’ve tried to modify B coefficient in order to avoid this unwanted results.
An estimate of the SB behavior should manifest some regularity properties,
such as:

• show dependence on the citation life of the paper after the awakening,
growing both with the delay and the total amount of citations

• not to decrease if the number of citations grows

• not strongly depend on just one year’s citation history
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Figure 20: Although B = 0, the paper can be easily recognized as a SB from
its cumulative distribution

.

Figure 21: Distribution of citations as in Fig 19 but with binning 2 years
instead of 1. Since the peak is now not at the beginning but around the 33rd

year after publication, B coefficient is not zero (∼ 29). This manifests some
problems in the consistency of the coefficient.

In order to fulfill these requirements, I’ve used the cumulative distribution
of citation and not just the normal one.
The new SB coefficient can be defined as follows.
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If y(∆t) is the cumulative distribution of a paper and ∆t the time from its
publication, we consider for every ∆t the line from the origin of the graph
(the point (0, 0)) to that point, and compute the area between this line and
y(∆t). We take as ’SB coefficient’ the biggest of these areas. More precisely,

m(∆t) =
y(∆t)

∆t

is the slope of the line from (0, 0) to point (∆t, y(∆t)). For every ∆t (zero
excluded) we can calculate the area (Fig 22 and 23)

SB(∆t) =
∆t′=∆t∑
∆t′=0

[m(∆t)∆t′ − y(∆t′)]

and we will call ’SB coefficient’ the highest of these values

SBc = max∆tSB(∆t).

and ∆T the time that maximizes it.

Figure 22: Once we have chosen a point of the graph, we can draw a line from
the origin to it and consider the area (with sign) between the distribution of
citations and it. In this case, the bins in green contribute positively, while
red ones negatively. We calculate this area for every point of the graph, and
the highest value is the SBc
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Figure 23: The graph shows the configuration of the line that gives the biggest
area. The ∆t of the point with the red border (the one that maximizes the
area) is called ∆T

With the new definition for the paper with zero B value of figures 19 and
20 we get SBc = 188. As already pointed out in Van Raan’s paper, there are
a lot of different features with which one describes delayed recognition, and
SBc is far from describing alone all of these: different papers with different
citation lives might have equal SBc.
So in order to make comparisons (and put thresholds) we need to define other
coefficients.
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5.1.1 Awakening year

Once we have fount ∆T and the line from the origin to (∆T, y(∆T )), we
can consider distances of points of y(∆t) from it. Borrowing the definition
given in the paper [18] (but slightly modifying it), the awakening time (awt)is
defined as the year in which y(∆t)) is the farthest from the line (Fig 24).
Formally, if d(∆t) is the distance of point (∆t, y(∆t)) from the reference line,
we have:

d(∆t) =
y(∆T ) ∆t−∆T y(∆t)√

y(∆T )2 + ∆T 2

and so
awt = {∆t : d(∆t) is maximized}

Figure 24: For each point we calculate the distance from the reference line
(i.e. the line that maximizes the area in the SBc definition). The ∆t point
that stands at the longest distance from it is the awt of the paper. In this
graph, the farthest point is the one with the green border, and its year is the
awt (so in this case awt = 27).
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5.1.2 Depth of sleep

SBc depends both on what happens before and after the awt, but very often,
in order to compare how much attention a paper has achieved before awt,
one needs another coefficient.
The Depth of sleep of a paper (dos in the following) is the ratio between the
area between the reference line (from the origin to (∆T, y(∆T ))) and y(∆t)
(with sign) and all the area under the line, both calculated only until awt
(Fig 25).
If m(∆T ) is the slope of the reference line:

dos =

∑∆t=awt
∆t=0 (m(∆T )∆t− y(∆t))

0.5 m(∆T ) (awt)2

Note that dos has 1 as maximum value, but can also have negative values.
’Second life papers’ are the ones that were awake in the past, and that expe-
rienced a new period of sleep.

Figure 25: keeping the line that maximizes SBc, we calculate the area (with
sign, as before) between lt and yt, but now only until awt. Then we divide
this value for the area of the triangle (the one with the red lines in the
picture) of vertices (awt,m(∆T ) awt), (awt, 0), (0, 0). dos has 1 as maximum
value, when the paper has not had any citations before awt, but can also be
negative!
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6 Statistics of SB using SBc, awt, dos

Once we have defined the coefficients above, we can analyze their distribu-
tions in the APS dataset.
About the 55 % of papers have zero SBc, so the 45% experience some sort
of delayed impact. However only the 15 % have SBc > 5.
The first interesting quantity is the number of total citations SBs get com-
pared to the one of normal papers.In the graph in Fig 26 I’ve compared them.

Figure 26: Blue dots are SBs, while red ones are normal papers. There is no
SB with less than 4 citations

.

The difference between the two distributions may be a consequence of
the fact that there is no SB with less than four citations. However, even if
we consider only papers with more than ten citations, still delayed impact
papers tend to have more citations than normal ones (fig 27).

In Fig 28 there is the distribution of SBc for papers in the APS dataset
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Figure 27: Distribution of papers with more than ten citations. The two
lines are still substantially different.

.

Figure 28: x axis are SBc values, while y values are the respective number
of papers. The scale of both axes is logarithmic. The total number of papers
with non zero SBc is about 202 000 over 450 000 studied papers, so about
the 45%. The highest SBc is about 45 000

.
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Together with the SBc, another interesting distribution is the awakening
time (Fig 29).

Figure 29: Data are reported only for non zero SBc (papers with SBc = 0
have awt=0). x axis are awt values, while on the other axis there is the
respective number of papers. The scale of y is logarithmic. The distribution
could be modeled as the sum of two exponentials.

.

The distribution of the ’ depth of sleep’ is not very significant, but, on
the other hand, we can draw the dependence of the awt and dos in a two
dimensional graph (Fig 30), and as already pointed out in the paper in [18],
from it we can see that the distribution is not separated: there is no special
behavior of some papers that experience delayed impact, but a continuous
distribution that, starting from the peak SBc = 0, decreases regularly.

We might also want to compare SBc values of papers that had B = 0.
In the APS dataset, I have found 12 000 such papers, and in fig 31 I have
reported their SBc distribution. Note that there are very high SBc papers
that are completely ignored using B coefficient.
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Figure 30: Dependence of the depth of sleep from the awakening time. As
already mentioned, while dos values cannot be higher than 1, they can be
negative

.

Figure 31: Distribution of the values of SBc for papers with zero B values
.
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6.1 Closeness of SBs

Another important topological feature is that SBs very often tend to cite
each other.
If we compare the number of SBs in the reference lists of normal papers with
the one of SBs (fig 32), the two distribution are significantly different: the
fraction of SBs in a SB reference list is on average much higher than the
fraction for normal papers.

Figure 32: To draw this graph, I’ve taken all the SBs with awt > 7 and
dos > 0.7, put together the ones with the same reference list’s length (i.e.
the same out degree kout), and computed the average number of papers with
awt > 7 and dos > 0.7 in this lists. Then I’ve done the same with zero SBc
papers: for every out degree value I’ve searched for 200 papers, calculated
the number of top delayed recognition papers (awt > 7 and dos > 0.7) in
their kout and computed the average. For the SB line, statistical significance
is good for kout < 10 (average done on more than 100 papers), but for kout >
15 the average is computed on less than 30 papers. However, we can still
conclude that SB papers tend to have other SBs in their reference lists with
a probability higher than normal (zero SBc) papers.

.
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The difference between the two distributions is even more clear if we
consider only papers published before 1980: in those years, many of the
actual SBs had not yet been discovered, so the papers that cite them were,
generally, much less, and the fraction of these that are SB is higher (fig 33):

Figure 33: The difference between the two distributions is even more clear
if we consider only papers published before 1980: the reason of this is that
many SBs had not yet been discovered, and so for normal papers was even
more unlikely to randomly cite a SB

.
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7 SBs in the models of citation dynamics

In section 3 I have briefly described some of the most important models of
citation dynamics.
Here I’m going to analyze them in the context of SB behavior.
As already pointed out in fig 16, both preferential attachment and the null
random model are not able to describe B’s distribution (and with it any
other feature of SBs).
Obviously, the same can easily be said for Simkin’s branching process model:
since direct citations appear only to preceding year papers, the only SBs that
can arise are the ones that do not have years without citations, a very small
subset compared to the whole set of SBs.

7.1 SBs in the mean field approach

In section 3.4.2 we have considered the mean field approach of the redirec-
tion/copying models.
In this method, while assembling a reference list an author chooses some
papers, reads and cites them, and copies from them.
The number of copied references depends on the publication year of the pa-
pers, so a huge role is played by time distribution of citations.
Now that we have an algorithm to extensively search for SBs, we can analyze
them as a group: for example, speaking of time, it is obvious that SBs have
citation lives that are very different from the ones of normal papers.
In the graph of Fig 34 I’ve compared the two time distributions: to draw
it, I’ve taken all normal and delayed papers and calculated how many years
after publication each of them gets at 10 citations.
The two distributions are very different.
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Figure 34: Comparing between time distribution for SBs (blue line) and non
SB (red line) papers. Obviously, SBs, on average, take much more time to
get to the 10 citation level

.

Apart from this trivial observation, we could be also interested in under-
standing if the life of SBs after the awakening somehow resembles the one of
normal papers.
In the graph of Fig 35 for every SB on the x axis there is how many years
after the awakening it took to get 10 more citations ( 10 cit from the level it
had when it was awakened).
What is found in Fig 35 is that the two distributions are still very different,
so much that the blue one is not lognormal anymore (fig36 ): SB papers,
even after the awakening, need more time in order to be fully appreciated.

This observation leads to the conclusion that the kernel found in sec-
tion 3.4.2, that described time aging of citations in the context of redirec-
tion/copying models, does not work for SB papers, even changing their year
of publication with the year of the awakening.
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Figure 35: Comparison between time distribution of SBs (blue line) and non
SBs (red line). SBs, after awakening, still need more time in order to get to
the 10 citation level

.

Figure 36: If the time distribution seen above follows a lognormal, when we
put a log scale on the x axis we should have a Gaussian distribution. To test
if the distribution seen above is still lognormal, I have scaled time and fitted
data with a Gaussian function. The best fit is drawn in red: the pvalue for
this fit is very low, ∼ 3 10−19.
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7.2 SBs with Wang Song Barabasi formula

As seen in section 3.5, in the paper in ref [14] Wang et alii found a general
formula to describe the cumulative distribution of citations of a paper by
means of three different parameters: µ, σ and the fitness λ.
In the first place, it would seem reasonable to describe SBs by means of these
three values, but this is a much harder aim than it seems.
To take a look at how this formula (eq 11)behaves in general, I’ve selected a
small subset of 10000 papers and tried to fit them with it.
The 3D distribution of parameters is reported in Figures 37, 38,39 .

Figure 37: Relative distribution of the values of σ and λ in the subset of 10
000 papers. Red dots come from less than 200 iterations, blue ones from a
number of iterations between 200 and 500

.
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Figure 38: Relative distribution of the values of σ and µ in the subset of 10
000 papers. Red dots come from less than 200 iterations, blue ones from a
number of iterations between 200 and 500

.

Figure 39: Relative distribution of the values of λ and µ in the subset of 10
000 papers. Red dots come from less than 200 iterations, blue ones from a
number of iterations between 200 and 500

.
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What emerges from this analysis is that there are a lot of papers in the
SB region (high µ and relatively low σ values) for which the fit takes a lot of
time to converge (the method is Nelder Mead because it gave better results.
The required accuracy for parameters is 0.01).
This way, an algorithm based on WSB formula would take a lot of time to
get to an accurate result, and this is not what we are looking for.
The reason why the algorithm is so slow in finding the best fit is probably
due to the fact that WSB formula does not describe properly the citation
distribution of SBs: if we consider the set of top SBs (awt > 7 and dos > 0.7)
that have gotten more than 25 total citations, we have that (see fig 40 for an
example) a 90% of them has a p-value under 0.6, with a 40% under 0.1 !

Figure 40: Cumulative distribution of a top SB paper. The red line is the
best fit with the Neldel-Mead method. The p-value for this fit is very low,
∼ 5 10−8

.
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8 Studying the ’Prince Hypothesis’

Together with the definition of SBs, in its paper [16] Van Raan introduces
also the interesting idea of the prince, i.e of a paper that has the ability to
induce citations on another.
The definition of SB given there, together with the defect of being too strict,
had also the merit of finding the prince in a very straightforward way: it was
the first paper to cite the SB after the stop.
In our case this naive definition is not self consistent : a lot of papers with
non zero SBc do not experience any period of stop, so that by the time of
the change in the rate of citations we can not univocally determine who’s the
paper responsible for it.
A good idea to find this prince is to use some of its expected topological
properties based on the mechanisms of the models in section 3.4.
As we had seen there, almost all of them focus on constraining time distribu-
tion and triangles: so to have big amounts of citations one needs a relatively
new paper.
The details of this hypothesis are discussed below.

8.1 Are SBs awakened by super cited papers?

As already pointed out in the paper [18], preferential attachment does not
explain the existence of SBs: citation to older papers can happen only if a
paper is already very famous.
In the model by Simkin (Ref [12]) papers may be added in reference lists by
copying from lists of other papers: this could be the phenomenon responsi-
ble for creating triangles in the network, and even though the model can not
generate SBs (mainly because direct citing is allowed only for publication of
the year before), this idea can be easily tested.
Let’s suppose the majority of references are added simply by randomly copy-
ing other citations. If a very good paper (one that has gained a lot of citations
in its lifetime) cites a paper published many years before, there is a very high
probability that a lot of new papers copying from the first paper will also
cite the second. This lucky paper would get all of a sudden a lot of citations,
becoming a SB.
In this scenario, the reason why SBs arise would be quite futile: their delayed
life is just a matter of chance, not the demonstration of any intrinsic scientific
value.
To test this hypotheses I’ve selected all top rated SBs (awt > 7 and dos > 0.7,
they are almost 1500) and considered all the citations they gained in a time
window of 7 years around the awakening time (from awt− 2 to awt+ 5).
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Then I analyzed the in-degree of all the citing papers in this time interval
and took the highest one. Then I did the same for papers with SBc = 0: I
took a time window of five years after publication and computed the highest
in-degree of citing papers.
Values on the x axis are the total in-degree of papers, while on y there is
the average highest in-degree of papers in the time windows described above
(Fig 41)

Figure 41: Comparing distributions of in degrees of papers citing SBs. I have
grouped SBs in-degrees in bins, so that statistical significance is good for
the first eight (they are averaged on more than 80 SBs each), but quite low
for the others.

.
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From this graph, it is clear that SBs are not awakened by super cited
papers.
However, we must not forget that we are considering only APS papers: if
such a prince was published in another journal (a journal with a higher im-
pact factor, as pointed out by Braun in [17], we would only see the strange
situation in which a lot of low cited papers independently cite the SB many
years after its publication.
Again, this does not seem to be the case: until 1980 papers published in
the APS where very technical and specific of physics (quarks, radiation, etc),
so it seems reasonable to think that interdisciplinarity at the time played a
minor role.
I analyzed the behavior of SBs awakened before 1980, and, again, it is not
explainable just with the random citing hypothesis (since we have much less
SBs, statistical significance is lower but still enough to say that there is no
super cited paper) .

8.2 Do SB and prince ’marry’ after kiss?

When writing a new scientific article an author borrows ideas from previous
works and uses them in order to come up with something new.
When reading this paper, another researcher can discern articles that are
put as simple references from the ones that are fundamental. So, even if not
reading the entire articles in reference lists, some of them are more likely to
be cited than others.
Another possible explanation for SB awakening is that the prince is somehow
a paper that explains to scientific community the ideas already developed
in the SB (evidently, SBs are too hard to be understood at the time of
publication).
If so, the two papers must have a very similar citation history, but, again, this
is wrong: as pointed out by Brawn in 2010, prince and SB have completely
different citation lives after the ’kiss’.
But, if not for a long time, one still expects their lives to be very similar, at
least immediately after the awakening. To verify this hypothesis, I’ve used a
coefficient, that I called Pc1 (Sorensen-Dice coefficient in the bibliography).
It can be computed for any pair of papers and quantifies how closely related
are their lives in the 5 yeas after publication of the latest.
More precisely:

Pc1(a→ b) =
2 Na,b

Na +Nb
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where a→ b means that a is published after b, Na,b is the number of papers
that cite both a and b in the 5 years after publication of a, Na is the num-
ber of papers citing a and Nb is the one for b in the time interval between
(publication year of a) and ((publication year of a)+5).
Pc1 varies in the interval [0, 1]. In order to be statistically significant, I took
only Pc1 values for papers that have Na > 5: an average taken on just 1 or
2 papers would not give much information.
For each of the top class SBs (awt > 7 and dos > 0.7) and for every paper
that cites them in the interval of time awt− 2 < t < awt+ 5 I’ve calculated
this coefficient.
Afterwards, to every SBs I’ve associated the maximum Pc1 value from the
array. Then I’ve done the same for non SB papers, calculating the maximum
Pc1 value in the 5 years after publication. The graph of fig 42 compares the
two distributions.

Figure 42: Comparison of the maximum of Pc1. The red line is computed
on more than 75000 papers, while the blue one on SBs with awt > 7 and
dos > 0.7. The two distribution do not show any significant difference.

.

64



As is clear from it, the two distribution do not show any significant dif-
ference, and this can not be explained with the idea of a prince published
in other journals: in fact, if we compare the distribution of non SB papers
with the one of the SBs awakened before 1980 (period in which is reason-
able to think that interdisciplinarity did not play a significant role ), the 2
distributions are still very similar (fig 43).

Figure 43: Comparison of distributions of the maximum of Pc1 with SBs
awakened before 1980 (with awt > 7 and dos > 0.7). Again, the two distri-
butions appear to be very similar.

.
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I also tried to analyze the dependence of the Pc1 coefficient from the
in-degree of the SB (Fig 44):

Figure 44: Dependence of the average maximum Pc1 value for SB and non-
SB papers. I grouped papers in bins, so that averages are calculated over
more than 100 papers for the first 3 bins, over less than 30 for the last 3 (so
these ones may not be very significant). Anyway, Pc1 values for SBs are very
close to the non-SBs ones.

.
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The only significant change in the two distribution is that for SB papers
with less than 30 citations the maximal Pc1 value is on average less than
normal papers’ ones, exactly the opposite one would expect if SBs’ lives are
heavily dependent on one article.

I tried changing a little the definition of the coefficient, to see if something
changes (this coefficient is called cosine similarity in the bibliography):

Pc2(a→ b) =
N2
a,b

Na Nb

and, again, I calculated it for SBs and non SBs in the 5 yeas after publica-
tion. The graph of Fig 45 shows, again, no substantial difference.

The analysis above seems to deny that the actual scientific content of

Figure 45: Comparison of distributions of the maximum of Pc2 . Again, no
substantial difference.

.
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princes’ papers is a simple rewriting of SB’s ones: every paper citing the SB
actually adds something to scientific knowledge so that it is not automatic
to cite prince and SB together.

8.3 Are SBs citations coming from just one article?

In the previous section I’ve analyzed the idea that prince and SB are very
closely related papers, and it does not seem to be correct.
A SB is a paper that, somehow, is forgotten for many years, and that at a cer-
tain point gets a lot of attention from scientific community. It would be very
surprising and strange to find that all these citations come independently,
without citing each other: there must be a common hub in the network.
In order to understand a little bit more of what happens I’ve considered a
third coefficient:

Pc3(a→ b) =
Na,b

Nb

It can be calculated for any couple of papers a and b (b is published before
a). Na,b is the number of papers citing both a and b in the 5 years after the
publication of a, while Nb is the total number of papers citing B in the same
period.
I took Pc3 values for all the papers in the interval awt − 3 < t < awt + 5
for all the SBs with awt > 7 and dos > 0.7, calculated the maximum value
in the array of Pc3 and compared this distribution with the one of non SBs
(Fig 46).

Surprisingly the two distribution are quite different, especially around
high values. This difference appears much more clear if we separate SBs
discovered before 1985 (Fig 47 ) and after 1995 (Fig 48 )(i.e. if the sum of
the publication year and awt is less than 1985 or more than 1995):
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Figure 46: Comparison of distributions of the maximum of Pc3 .There is a
difference in the values of the distributions, especially around the peak and
for Pc3 > 0.7.

.

Figure 47: Comparison of distributions of the maximum of Pc3 .The distribu-
tion in blue comes from the analysis of more than 300 SB papers discovered
before 1985

.

From these two graphs we can conclude that in the years immediately
after their awakening SBs very often depend from the citations of just one
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Figure 48: Comparison of distributions of the maximum of Pc3 .The distri-
bution is calculated on more than 400 SB papers awakened after 1995

.

paper, that we could call the prince.
It has to be noticed, however, that a very large fraction of SBs do not have
such a paper.
Moreover, there is quite a big difference between the distributions before 1985
and after 1995: having to put much more papers in reference lists (remember
that the length of ref lists grow exponentially with a parameter ∼ 0.02yr−1

as seen in section 3) citations given after 1995 create much more triangles.
On the other hand, in the same time interval the number of zero Pc3 values
has increased: this may be the effect of interdisciplinarity: for these pa-
pers there is another paper,published in another journal, that is acting as a
catalyst of citations for the SB, and we can not see it.

Finally, the dependence of Pc3 from the in degree of SBs (Fig 49):
The graph shows how the SBs that are more dependent on just one paper

are the ones that have gotten less citations in their life
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Figure 49: Dependence of the average maximum Pc3 value for SB and non-
SB papers. I grouped papers in bins according to their in degree. Again,
averages are calculated over more than 100 papers for the first 4 bins, while
for the others we have less than 30 from in degree 80 onwards. For the first
bins average Pc3 values are quite different from the ones of non SB papers

.

9 SB grouping

In sec 6.1 we saw that SBs tend to be close to each other.
This can be reasonably explained if we consider that at the awakening of a
paper new attention is given to all the papers somehow related to it (that
share authors or keywords).
In order to study this phenomenon I’ve grouped SBs considering related the
ones that are neighbors and that were awakened more or less at the same time.
More precisely, for each SB (SB1) with dos > 0.7 and awt > 7 I’ve searched
for other SBs (SB2) in their reference lists with Y a1 − 3 < Y a2 < Y a1 + 3,
where Y a1 is the awakening year of SB1 and Y a2 the awakening year of SB2.
The clusters that are formed this way have papers with very similar citation
histories, and we can examine some of their basic properties, such as time
distributions. Fig 50 and Fig 51 show the publication year and discovery
year (i.e. publication year plus awt).
I grouped SBs into three groups based on the number of papers within the
cluster.
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Figure 50: Blue line describes SBs not in clusters, while the green and red
ones describe couple and groups of more than 2 SBs, respectively. Single
SBs are clearly the majority, and tend to grow in number with time, while
the other two from 1940 are more or less stationary. Note that around 1940
there is a peak: during the second world war it was forbidden for scientists
to give information on their research, so after it scientific community had to
put a strong effort in trying to rebuild a dialogue

.

As can be noticed from Fig 51, quite interestingly clusters of SB, even
though published regularly from 1940 onwards, were discovered only after
1980s.
One reason for this may be that with physics becoming interdisciplinary many
papers were revalued, or maybe the developing of instruments and technical
precision helped entire topics to gain new attention.
Clusters of SBs are very interesting also because they manifest the appear-
ance of a completely new branch of research. Examining them, we are inter-
ested in answering some basic questions, such as: if some SBs are awakened
in the same year, do they share the same prince?
To answer this question, and in order to be more precise, I’m going to analyze
some examples.
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Figure 51: The number of SBs discovered every year tends to grow with time,
starting from more or less 1940, while clustered SBs tend to be awakened only
after 1980s, even if many of them had been published much time before. Note
also the peak in the number of SBs discovered immediately after the war,
when the flow of information started again to be free

.

9.1 SBs group dynamics: examples

9.1.1 Spontaneous breaking of Lorentz symmetry in the Standard
Model

The first example comes from pure theoretical physics: the spontaneous
breaking of Lorentz symmetry in the Standard Model (Fig: 52): the cluster
is formed by 4 SBs, published at the end of the 80s, and thanks to the relative
scarcity of papers, the analysis is quite easy to accomplish.

In 1986 the paper ’Spontaneous breaking of Lorentz symmetry in SM’
(’PhysRevD.39.683’) presented what was an inconsistency within the for-
malism of the standard model. Despite an effort in trying to solve this issue,
manifested by the publication of other 3 related papers ( the other SBs)
immediately after the first one, no convincing advancement was made until
1998.
In the work by Colladay ’Lorentz Violating extension of standard model’, of
1998 (PhysRevD58.116002), new mathematical tools were introduced in or-
der to extend the SM: this clear and convincing work brought a large number
of new citations, and the whole set of SBs became very popular. As can be
seen from Fig 53 the 4 SBs were actually awakened by the same paper.
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Figure 52: Citation History of a the group of SB related to the breaking of
Lorentz symmetry. Published at the end of the 80s, these 4 papers did not
get almost any attention since 1997

.

Figure 53: Representation of the citation history of this group of papers. The
four papers in light blue represent the SBs, and the circles have the color used
in fig 52 to represent their citation lives. Little attention was given to them
until the publication of paper 8, in 1998

.
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However, if we use the naive definition of prince as ’the first paper to cite the
SBs after the break’, we would end up choosing one of the papers published
in 1997, while the paper responsible for the awakening was published in 1998.

9.1.2 Exchange Anisotropy

In 1956 a paper called ’New Magnetic Anisotropy’ by Meyklejohn and Bean
was published, with the aim of describing some results on the analysis of the
interaction between antiferromagnetic and ferromagnetic materials.
What was found was a new type of anisotropy that they called ’Exchange
anysotropy’. In 1957 a very similar paper (same authors, same title) was
published that introduced a new simple model for this phenomenon.
Despite an initial attention, the two works were almost completely ignored
since the late 80s, when other 2 papers were published, pointing out that the
old model was unable to completely describe the system.
From my data, that include only APS journals, after these two there is an-
other period of break, but this is incorrect: in 1997 the paper ’Calculations
of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic In-
terfaces’ by Koon reports a brief history of the topic.
It is stated that ’ in recent years exchange bias in thin films has found impor-
tant technological application in such devices as magnetoresistive sensors’,
and since the fundamental origin of the phenomenon was still unclear, a lot
of research had started since 1987, and had continued for all 1990s: analyzing
tha reference list of this paper I found other works published between 1993
and 1995, in other journals.
In the end, the interest in the topic had started after the usage of films in
technological applications. No published paper was actually responsible of
the awakening of the SBs, but an external phenomenon, not encoded in ci-
tation dynamics.
Another observation I want to mention is that some of the links from the
paper by Koon to other papers of the network were missing from the APS
data set!
This archive errors, together with the intrinsic difficulty of the phenomenon,
renders a more systematic analysis almost impossible (Fig 54, Fig 55).
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Figure 54: In APS dataset all four are SBs, while the actual number is only
two since the ones published in 1987 and 1990 had not been sleeping at all:
citations had come from other journals

.

Figure 55: Representation of the history of the papers. Again, the ones in
light blue are the SBs, and the colors of the borders are the same used in
fig 54. No one of the papers published after 1987 is alone responsible of the
awakening of the SBs, and the black lines are citations reported in the ref
list but mysteriously missing from APS dataset.
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9.1.3 Ferromagnetic Compounds of Manganese with Perovskite
Structure

In 1951 a paper called ’Interaction between the d-Shells in the Transition
Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Struc-
ture’ was published. In that period an empirical relationship between electri-
cal conduction and ferromagnetism in Perovskite lattices of manganese had
been discovered, and in this paper the authors try to explain the phenomenon
using a ’double exchange process’.
Papers published the years after are results of experiments that confirm for-
mulas and hypothesis of that first paper. Very little attention was given to
the topic for almost 30 years, until the end of 1980s. However, it is only with
the paper ’Double exchange alone does not explain resistivity of LaMnO3’,
that substantially says that the model proposed in 1951 was not complete,
that SBs started to become very popular.
Even though not citing them directly,this last mentioned paper is without
doubt the prince of all the six SBs. This is a clear sign that papers can influ-
ence lives of other papers even without citing them directly:this way models
that consider only triangles and time difference to describe citation dynamics
cannot take into account some fundamental characteristics of SBs (such as
the tendency of being awakened together) (Fig 56 and Fig 57).

Figure 56: Another group of linked SBs. They were all published around
1950, and waken up around 1995.

.
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Figure 57: Representation of the history of the topic. Light blue nodes are
the SB and the color of the border is the same as the color used in 56. The
true prince for all these SBs is the paper represented in green, but it only
cites 2 of the 6 SBs.
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10 Simulation of citation dynamics with Markov

Chain Monte Carlo method

In section 3 we have seen some of the most important models of citation
dynamics. Redirection/copying ones focus on trying to recreate the triangles
distribution, while the other models tend to put more emphasis on time dis-
tribution.
However, some of the most common and basic characteristics of SBs can not
be taken into account by simple model like these.
The presence of an actual prince (responsible for the second life of a SB)
would justify the idea of focusing only on triangles in citation dynamics. But
in sec 8 we have seen that the great majority of papers do not have it.
In sec 9 we have also seen that a paper (that may be considered the prince
of a SB) is able to influence the life of another even not citing it directly, but
this mechanism is completely beyond the scenarios of the model considered
till now.
In this section we would like to test the hypothesis that the total number of
triangles alone is sufficient to describe all the topological features of SBs.
To do so, we will simulate the network using MCMC methods (see Appendix).

The first step to create this new fake citation network is to take only
papers published before 1936, together with all the ones that cited them
(even if published after 1936), and all the citations among these. The choice
of picking only a subset of all the data is due to simulation time restrictions:
if we wanted to use all the papers the process would take literally years.
Secondly, we have to decide what to preserve of the real network in the new
one.
We will constrain:

• time difference between the extremes of each edge, i.e. the years of
citing and cited articles

• for each paper, in and out degree

• the total number of triangles

Note that the first two points together do not mean we are constraining also
time distribution of citations: for every paper we will keep the total number
of citations but change when they are achieved.
Among all the types of MCMC methods, we will use the one called Simulated
annealing: the name comes from metallurgy, where it is seen that a metal
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produced with a slow cooling (annealing) is much stronger than metals pro-
duced with a fast decrease of temperature. The idea is to start looking for
states on a large scale by using a high ’temperature’: doing so we allow the
system to freely search within the state space S (all allowed states can be
sampled).
At each temperature, the system will change according to MCMC rules and
to a function that has to be minimized (the energy E). Then T is slowly
lowered (annealing) until we reach T=0.
The advantage of using MCMC simulations is that we get a new ’fake’ state
just by modifying the real one, and this is much faster than creating a brand
new one.
In more detail, the algorithm:

1. starts considering a first edge in our network.

2. This edge, that goes from paper 1 to paper 2, begins in year Y1 and
ends in year Y2. Since we want to preserve time distribution of edges,
we will search for a third paper within the ones published in year Y2

that are not cited by paper 1 (we will call this third paper 3).

3. Once we have found 3, we randomly choose within its citing papers a
fourth one (4), paying attention that 4 does not already cite 2

4. The proposed move is to break the links 1 → 2 and 4 → 3 and to
substitute them with 1 → 3 and 4 → 2. This way we preserve time
distribution, total number of papers and of edges.

5. We will accept this move with the rules of Metropolis-Hastings algo-
rithm, using as energy the total number of triangles. If we consider the
adjacency matrix of the network ( σij), we have that the Hamiltonian
will be

H =
1

T

(∑
i,j,k

σijσjkσik −Ntr(0)

)2

where Ntr(0) is the number of triangles in the real network, and i, j
and k run over all the possible nodes of the system.

6. At each passage it will not be necessary to calculate the total number
of triangles: we can simply consider the difference between the one of
1→ 2 and 4→ 3 and of 1→ 3 and 4→ 2 with respect to the passage
before.
More precisely, let Ntr(1 → 2, 4 → 3) be the sum of triangles around
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edges 1→ 2 and 4→ 3, and Ntr(1→ 3, 4→ 2) the sum of triangles of
the trial move. If Ntr(N − 1) is the number of triangles at time N − 1,
in order to accept or reject the trial move we will consider:

a = exp

(
− 1

T

[
Ntr(trial move)

2 −Ntr(before)
2)
])

where

Ntr(trial move) = Ntr(1→ 3, 4→ 2)−Ntr(1→ 2, 4→ 3)+Ntr(N−1)−Ntr(0)

and
Ntr(before) = Ntr(N − 1)−Ntr(0)

and if the number of triangles of the trial move is closer to Ntr(0)
than Ntr(N − 1) the move is accepted, otherwise one considers a ran-
dom number (as in Metropolis Hastings method), and if this number
is higher than a, the move is rejected, and the system stays in the
configuration of time N − 1 also at time N .

7. We will firstly consider very high temperatures (T → ∞) so that we
will accept all possible moves. In the end, we will have a completely
uncorrelated configuration with respect to the initial one. Then we will
slowly decrease T as Ntr gets closer to Ntr(0)

The problem of this algorithm as is that it is very slow (it takes really a
lot to get to a reasonable configuration).
We don’t have to forget that, as already pointed out in section 3.3.1, the
network of citations has a lot of triangles and papers related to common
topics tend to cite each other in the 99% of the cases. So the difference in
the number of triangles for the random case and the real one is very big
(∼ 80000 triangles).
In order to make the algorithm a little bit faster, at point 2, instead of
considering as possible paper 3 all the papers published in Y2, we will consider
a more sophisticated mechanism: of all the papers in the reference list of
paper 1, we will take all the papers that cite and are cited by them and put
them in an array of possible choices. Then we take all these papers we have
written in the array and, again, add (to the same array) all the papers that
cite and are cited by them.
This procedure does not violate MCMC requests: the matrix of the trial
moves Φ can be arbitrary as long as the Markov chain is regular and satisfies
detailed balance.
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10.1 MCMC simulation: results

I have run the above algorithm until I found more or less the same total
number of triangles as the real network (the difference between the two is
∼ 700 triangles, while for the random case the real one had nearly ∼ 80000
triangles more).It took me a total of almost 300 hours
Then I have compared the results for the two systems, recalculating many of
the distributions already shown in the other sections.
The first comparison is between the distribution of triangles around edges:
every edge in the network is normally part of 1 or more triangles, and for
every link I’ve calculated it in the real and simulated case (fig 58).

Figure 58: Distribution of number of triangles around edges of the networks.
Red dots stand for the real distribution, blue ones for the simulated. On the
x axis are the number of triangles, on y the number of edges that have that
specific Ntr(a→ b) around them

.

As can be easily seen, the two distributions are very different, and this
is mostly due to the choice of the matrix of trial moves: in our system we
have considered all the states with the same number of total triangles (Ntr)
equally probable, but obviously this does not mean we are constraining also
the other quantities of the network.
What we have in the simulated case is a clustered network in which papers
tend to be very close to each other, much closer than the real case.
Said so, it is obvious that also all the other simulated distributions are very
different from real ones (fig 59 and 60):

82



Figure 59: Distribution of SBc in the Simulated and real case. The two lines
are very separated: in the simulated case, on average, we have much higher
values of SBc. The scale on the y axis is logarithmic

.

Figure 60: Distribution of awt in the Simulated and real case. Again, the
two lines are very separated: even for the awakening time, our null model
preserving time and triangles gives on average much higher values than real
one. The scale on the y axis is again logarithmic

.
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Even the number of top class SBs (awt > 7 and dos > 0.7) increases in
the simulated network, passing from 453 of the real case to 971 (remember
that we are considering only papers published before 1936).
The distribution of the publication year of top class SBs is reported in fig 61:

Figure 61: Comparison between the publication years of top class SBs in the
real and simulated network. As already mentioned, in the simulated case,
the total number of SBs is much higher, so the areas under the lines are not
equal.

.

Another distribution of interest may be the dependence of triangles from
time difference of the starting and ending nodes of edges: the graph in fig 62
is created considering all the edges in the system, grouping them for the time
difference between their extremes and, for each of these bins, calculating the
average number of triangles Ntr around each.
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Figure 62: Comparison of the number of triangles Ntr around edges and
time difference between their extremes. As can be seen, especially for small
x values, Ntr in the simulated case is on average much higher than the real
one.

.

However, if we consider the closeness of SBs and their tendency of being
clustered, we have (Fig 63) that there is no clear difference between normal
and SB paper: in our simulation SB do not tend to be close to each other,
while in the real case, as can be seen in fig 64, the difference is big.
This is due to the fact that we have focused only on preserving triangles,
while in the awakening of SBs the attention goes beyond its neighbors and
it can not be described only by simple redirection/copying methods.
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Figure 63: Comparison between closeness with top SB papers (awt > 7 and
dos > 0.7) for SB (blue dots) and normal papers (green dots) in the simulated
network. Considering that for out degree more than 8 in the blue line the
average is computed only on 1 or 2 data, we can conclude that there is no
significant difference between the two distributions

.

Figure 64: Comparison between closeness with top SB papers (awt > 7 and
dos > 0.7) for SB (blue dots) and normal papers (green dots) in the real
network. The difference is much more clear, meaning, as we said, that SBs
tend to be close to each other
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In considering triangles we have to remember that in direct networks the
position of edges in triangles is of fundamental importance to understand
their role. For example, taking a look at fig 65, the edge is in position
B → C was published before both the others. and so this first citation
to C is independent of the other two. To understand a little bit more what

Figure 65: Schematization of a triangle

happens to triangles in our simulation, for each edge in the real and simulated
network I have calculated the number of triangles in which it is in position
A→ B, B → C, A→ C, and compared the distributions in figures 66 68 67.
In fig 69 are the three distributions of the three positions only in the simulated
case.

Figure 66: Distribution of triangles in position AB. y scale is logarithmic
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Figure 67: Distribution of triangles in position AC. y scale is logarithmic

Figure 68: Distribution of triangles in position BC. y scale is logarithmic
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Figure 69: Comparison of the three distributions. y scale is logarithmic. As
one can easily notice, distribution of B → C is slightly different from the
other two, with on average a higher number of triangles

11 Conclusion

The main aim of this thesis has been to describe the behavior of Sleeping
Beauties in the context of citation dynamics.
First of all, I’ve described some of the most important models that have
been developed recently, putting an emphasis on the common features be-
tween them: the attention for time distributions and triangles, cumulative
advantage and aging of papers.
Then I have introduced the concept of ’delayed recognition’, starting from
the definition of Sleeping Beauty given by Van Raan in 2004. Since these
phenomena, from a first and superficial point of view, seem to be rare and
exceptional, particularly interesting is to understand how they are generated.
But in order to do so, first we have to find a good and fast definition to use
in large data sets: I’ve focused on trying to find this algorithm, introducing
the SBc and other coefficients as awt and dos, necessary to have a deeper
insight in a paper’s history without visualizing its history.
Then I’ve also tried to formulate some hypothesis on the mechanism that
may trigger their appearance. One of the post popular involves, for each
SB, the existence of a paper, called the prince, that gives visibility to others,
inducing citations to them to the point of being alone responsible for their
new life.
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This ’prince’ article is supposed to have some specific topological properties
that involve its relationship with the SB: for example,the citing lives of these
two articles have to be very similar immediately after the awakening. How-
ever, this is only rarely true: in a lot of cases it seems that independently a
lot of authors suddenly decided to cite the SB.
Analyzing the network, we have also found that SBs tend to be significantly
close to each other, and this does not seem to be explainable just by means
of actual models since they focus only on time and triangles. Trying to be
more precise on explaining why in our opinion actual fail in doing so, I’ve
analyzed three clusters of delayed impact papers (as found by an algorithm).
The presence of a prince would justify the effort of focusing only on triangles,
but only in one case I could recognize such a paper for all of them. In one
only two of six papers had a common prince, and in the third case there was
no prince at all!
Trying to have a more systematic insight on the system, I have simulated
a network preserving time and the total number of triangles: what is found
is that, even with very clustered networks (by choice of the matrix of trial
moves), SBs do not tend to be closer to each other than normal papers, and
all the most important topological distribution of the real network appear
very different in the simulated one.
This leads to the conclusion that triangles and time distribution alone can
not be taken as unique ingredients for a model that aims to describe SBs and
their behavior.

90



12 Appendices

12.1 The Theory of branching processes

The theory of branching processes was conceived in th 19th century in Eng-
land: at the time, some gentlemen had noticed how some of the most powerful
and influential families of the past had become extinct.
These men had concluded that an increase in intellectual capacity is ac-
companied by a decrease in fertility, but with the development of branching
processes it was demonstrated that a large fraction of families (more specifi-
cally surnames) can become extinct just by chance.
We start from considering that in each generation an individual has a p(0)
probability to have no sons, p(1) to have one and so on. We will use the
method of generating function in order to easily get to analytic results:

f(z) =
∞∑
n=0

p(n)zn

The most interesting property of it is that we can easily get the generating
function of the grandsons simply by combination:

f2(z) = f(f(z))

This can be proved if we consider two individuals instead of one: since the
two offspring are independent, starting from (f(z)2), the n-th term of this
expansion is obviously

∞∑
m=0

p(n−m)p(m)

which is indeed the probability that the combined (independent) offspring of
two people is n.
The same argument is true for the combined offspring of n generic people.
So the generating function for the number of grandsons is:

f2(z) =
∞∑
n=0

p(n)(f(z))n = f(f(z))

and more generally
fk(z) = f(fk−1(z))

The probability of extinction of a family can be found using the self-consistency
equation:

pext =
∞∑
n=0

p(n)pnext = f(pext) (12)
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A very important value that determines the fate of a family is the average
number of sons:

λ =
∑
n

np(n) = [f ′(z)]z=1

When λ < 1, equation 12 has only the solution pext = 1, i.e. every family
becomes extinct.
When λ > 1, however, there is a solution where pext < 1, and only some of
the families become extinct.
In the intermediate case of λ = 1 all the families become extinct, but some
only after a very long time.

In the sub critical branching process, although the probability of extinc-
tion is still one, we can consider the probability of extinction after k genera-
tions, pext(k).
Obviously:

pext(k) = fk(0)

Considering that pext = 1 for large k, pext(k) must be close to 1. Therefore:

fk(0) = f(1) + f ′(1)(fk−1(0)− 1) +
f ′′(1)

2
(fk−1(0)− 1)2

Considering that f(1) = 1 and f ′(1) = λ, if we define the survival probability
as ps(k) = 1− pext(k), we get the equation:

ps(k)

ps(k − 1)
= λ− f ′′(1)

2
ps(k − 1) (13)

First, we consider the case with λ = 1.
We can rewrite the equation as:

dps(k)

dk
= −f

′′(1)

2
(ps(k))2

that leads to the solution:

ps(k) =
2

f ′′(1) k

When λ is substantially less than 1, the second term in eq 13 is negligible in
the approximation of large k, and we get:

ps(n) ∼ λk

Another very important estimate is the average size s(k) of the families still
surviving after k generations.
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The expectation value of the offspring after k generations is obviously λk,
and so we have:

s(k) =
λk

ps(k)

Again, in the case of λ = 1, we have, substituting ps into the above equation:

s(k) ∼ f ′′(1)

2
k

In the other case we have analyzed (λ much less than 1), the average size of
a surviving family approaches the fixed value:

s(∞) ∼ f ′′(1)

2(1− λ)

For sub critical processes, we are also interested in the probability distribu-
tion of the total offspring, i.e. the sum of sons, grandsons, great grand sons,
etc.
We introduce another generating function:

g(z) =
∞∑
n=1

P (n)zn

We can add a new self consistency condition of the form:

zf(g) = g

and using Lagrange expansion on the left term, we get to the result:

P (n) =
1

n!

[
dn−1

dωn−1
(f(ω))n

]
ω=0

Let us now consider the case in which the probability of the first genera-
tion is different from the one of the others, i.e. λ0 6= λ.
It is possible to show that the generating function for the total offspring is:

g̃(z) = zf0(g(z)) (14)

From the equation seen above, we have that:

f0(z) = (f(z))λ0/λ

and substituting into eq 14 we get to:

g̃(z) = z

(
g(z)

z

)λ0/λ
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This formula can be of some use in the cases in which λ0/λ is an integer. In
our case, since

λ0

λ
=

α

1− α
Nref

with α ∼ 0.1 and Nref ∼ 20, we have λ0/λ ∼ 2.
This way, we have:

g̃(z) =

(
g(z)

z

)2

= z

(
∞∑
n=1

P (n)zn−1

)2

and so, the citation probability distribution becomes

P̃ (n) =
n∑
l=1

P (l)P (n− l + 1)

From this formula, we can easily get the large n-asymptotic of P̃ (n):

P̃ (n) ∝ 2P (n)
∞∑
l=1

P (l) = 2 P (n)

So the result is that having a different first generation offspring mean does
not change the shape of the probability, but only modifies the numerical
prefactor
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12.2 Markov Chain Monte Carlo Methods

In broad terms, Markov chains are stochastic processes that satisfy the
Markov property: the future is independent of the past given the present.
With more specificity, a Markov chain is a process of the form X1, X2, X3,...
with each Xi taking an arbitrary value on a given state space S, and having
the property that the conditional probability:

P (Xn+1|Xn, ..., X0) = P (Xn+1|Xn)

is independent of the past once we have conditioned on the present.
Markov chains have a lot of properties regarding their development in time,
and this can be used for sampling states according to specific probability
distributions.
Consider the space S and a function depending on a variable in S.
Let’s suppose we want to find the points (it could be a whole manifold) that
correspond to minimums of this function, but, due to some intrinsic com-
plexity of the calculation, we are unable do it analytically. A way to get
an approximate solution is to use Markov Chains, and the method is called
Markov Chain Monte Carlo (MCMC in the following).
The idea is to sample the random configurations (i.e. of the minimums of
the function) by performing a stochastic path on the configuration space S.
The underlined stochastic dynamics will be a Markov chain that, after a tran-
sient, reaches a steady state in which the random configurations are sampled
according to a desired probability distribution π.
Instead of building them anew, this procedure speeds up the generation of
configurations, since the one at time i is a deformation of the one at time
i− 1, but has also the defect that the states will be correlated. Anyway, this
correlation can be made negligible just by making enough MCMC iterations.
So, the problem of sampling states from a given distribution has now reduced
to finding an efficient Markov chain that has a satisfying stationary state.
In order to have a better control on what happens, we have to take a closer
look to the properties of Markov Chains.

12.2.1 Properties of Markov Chains

In order to treat MC analytically, it is very convenient to introduce a tran-
sition matrix.
Let’s consider a discrete state space S, and be i and j two generic states.
Be P (Xn+1 = j|Xn = i) the probability that if the system is in configuration
i at time n, at time n + 1 the system is in j. Then, if we consider only
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Chains whose jump probabilities do not depend on time, we will define the
transition matrix (independent of time) as:

Π(i, j) = P (Xn+1 = j|Xn = i)

Then, the theory of Markov chains tell us that if we want to generate con-
figurations Xi in a space S distributed with a given probability distribution
π, we have to build up a transition matrix(TM) Π(i, j) that satisfies:

• irreducibility and aperiodicity : A TM is said to be irreducible if for
any given couple of states i, j there is a possible (with non zero total
probability) path that starts in i and arrives in j. For periodicity, we
define the period of a state i as:

gcd{n > 0 : P (Xn = i|X0 = i) > 0}

where gcd is the greatest common divisor. If k = 1, then i is said to be
aperiodic. If all the states in S are aperiodic, the chain (and the TM)
is said to be aperiodic.
It can be demonstrated that a state i is aperiodic if there exists n such
that for every n′ > n we have:

P (Xn′ = i|X0 = i) > 0

• Stationarity of π: for each i ∈ S we must have that:∑
j∈S

πjΠji = πi

• Detailed Balance: for each pair of states i, j ∈ S we must have

πjΠji = πiΠij

A MC that satisfies this condition is said to be reversible since P (Xt =
i,Xt+1 = j) = P (Xt = j,Xt+1 = i) at equilibrium

If all these requests are satisfied, the ergodic theorem applies, who says that
the chain will reach the stationary distribution (in our case π) independently
of the starting point.
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Metropolis Algorithm

While the first condition must be proved for each single case, the second and
the third are easily satisfied if we consider the Metropolis filter (note that
the second condition is automatically verified if the third is).
In order to see how this filter works, we consider the matrix Φ, called the
matrix of trial moves. Its role is to generate the set of proposed moves i→ j,
that will be accepted or rejected according to a probability matrix aij. Note
that the matrix Π can be easily calculated from Φ and a:

i 6= j Πij = Φij aij

i = j Πij = Πii = 1−
∑
j 6=i

Πij = Φij +
∑
i 6=j

Φij(1− aij)

and so the condition πjΠji = πiΠij becomes:

πiΦijaij = πjΦjiaji

that we can also write, if i 6= j, as:

aij
aji

=
πjΦji

πiΦij

and in order to fulfill this request, it is sufficient that

aij = F

(
πjΦji

πiΦij

)
where F is a function that takes values only in the interval [0, 1], and that
satisfies the condition:

F (z)

F (1/z)
= z

There are two very popular choices for F

• Metropolis : F (z) = min(z, 1)

• Heat Bath: F (z) = z
1+z

In the case of statistical mechanics, each state in S is distributed according
to the canonical probability distribution:

πi =
1

Z
e−βH(i)
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and if we want to use the Metropolis choice for F , we have that:

F (e−β(E(j)−E(i)))

and
aij = min(e−β∆E, 1)

To conclude, a possible algorithm to generate states according to the
probability π in the state space S is:

• from a state i at time t search for a state j using the probability dis-
tribution Φij

• if Ei and Ej are the energies of the old and new configurations, if
Ej < Ei the move is accepted and j becomes the new state of the
system

• if Ej > Ei, consider a number taken from a uniform distribution in
[0, 1]. If this number is less than e−β∆E, the move is still accepted,
otherwise it is rejected and the system stays in i at time t+ 1

Example: MC for Ising Model

If we consider N spins on a lattice, the energy associated to a given configu-
ration σ = {σ1, ..., σN} is given by the Hamiltonian:

H =
∑
〈i,j〉

σiσj

where σi = ±1 and 〈i, j〉 means that i and j are nearest neighbors.
Obviously, the presence of an external magnetic field that couples to all the
spins linearly would break the rotational symmetry. However, when the tem-
perature of the system is cooled under a certain Tc, the symmetry is again
broken (spontaneously).
Ising solved the model in one dimension analytically and showed that there
is no phase transition for any values of T different from 0, but the situation
is completely different when we add dimensions to the system. On the other
hand, in d = 2 calculation get easily very complicated, and one needs to use
approximate computational methods.
In order to use MCMC method, first we need to choose the matrix of trial
moves Φ. A simple choice could be the one that has as single option the flip of
the spin: from configuration i = {σ1, ..., σk, ..., σN} to j = {σ1, ...,−σk, ..., σN}.
This means to use:

Φij(k) = 1
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if i and j are the ones above,

Φij(k) = 0

for any other choice. Moreover, Φ(k) is irreducible and aperiodic, and we
can use Metropolis filter:

aij(k) = min(e−β∆E, 1)

with
∆E = H(i)−H(j) = 2σ(k)

∑
l

σl

where we have put J = 1 for simplicity.
k can be chosen with any specific spanning: we will simply pick it out by
random from the locations in the lattice. After creating a 2 dimensional
array, and having initialized it (for every location, picked a random number
between 0 and 1. If more than 0.5 spin up, otherwise spin down), we can start
with the algorithm as described in the previous section. Before sampling, we
have to wait some time until the system gets to the stationary situation in
which we get states from the canonical distribution (Fig 70)

Figure 70: This graph shows how M and E develop during the iteration
of MCMC algorithm with a lattice of 400 sites, J=1 and T=2 (H=0). It
takes almost 40 000 iterations before starting to sample properly from the
canonical distribution.

.

Another non trivial problem is that if the systems finds a stationary state,
it stays in that situation for a long time as if it was actually in equilibrium.
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A way to notice this unlucky and unwanted situation is to let the system work
for enough time even after reaching any stationary situation before starting
to sample from it.
Finally, as already anticipated, we know that with this method the states
that we sample are correlated with one another, but we also know that this
correlation (for the properties of Markov chains) decreases exponentially with
the iterations. What we expect is that:

χ(t) ∼ et/τint

in order to have a good independence of the states, normally one has to wait
for a time interval of 2τ .
We will calculate χ(t) (i.e. the correlation function for M) with the approxi-
mate formula:

χ(t) =
1

tmax − t

tmax−t∑
t′=0

m(t′)m(t′+t)− 1

tmax − t

(
tmax−t∑
t′=0

m(t′)

)
1

tmax − t

(
tmax−t∑
t′=0

m(t′ + t)

)

Figure 71: Correlation for M in the states sampled using the MCMC al-
gorithm. As it’s easily seen, only after 3000 iterations two states can be
considered independent. Before that, values of M are very dependent one
from the other.

.

Using this formula, one can calculate the correlation of M in the states
sampled using MCMC, and the result is shown in Fig 71
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