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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes

and genomic evidence suggesting that it probably emerged from a natural reservoir, we

know nothing about the environmental phase of its life cycle and the transmission pathways

associated with it. The thermotolerant characteristics of C. auris have been hypothesised to

be an environmental adaptation to increasing temperatures due to global warming (which

may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a

protective strategy for humans against colonisation by environmental fungi with pathogenic

potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a

result of climate change. In addition, the release of antifungal chemicals, such as azoles,

into the environment (from both pharmaceutical and agricultural sources) is likely to be

responsible for the environmental enrichment of resistant strains of C. auris; however, the

survival and dissemination of C. auris in the natural environment is poorly understood. In

this paper, we critically review the possible pathways through which C. auris can be intro-

duced into the environment and evaluate the environmental characteristics that can influ-

ence its persistence and transmission in natural environments. Identifying potential

environmental niches and reservoirs of C. auris and understanding its emergence against a

backdrop of climate change and environmental pollution will be crucial for the development

of effective epidemiological and environmental management responses.

Author summary

The natural environment can play a significant role in the epidemiology of infectious dis-

eases as pathogens persist and evolve in environmental niches from where they can be

transferred to new hosts. Therefore, understanding the interaction of pathogens with

potential environmental reservoirs is crucial to the control of pathogenic diseases. Patho-

genic Candida species have been widely isolated from nonclinical environmental sources
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such as soil, freshwater, seawater, and animals such as birds. The persistence and dissemi-

nation of C. auris, a recently emerged human pathogenic yeast, in the environment is still

poorly understood. Here, we identify the potential pathways through which C. auris can

be introduced into the natural environment and the characteristics that can influence its

survival in various environmental matrices. In conclusion, we review the current knowl-

edge gaps and identify the future research needed to understand the epidemiological

implications of C. auris in the natural environment.

Introduction

Candia auris is a human pathogenic yeast commonly resistant to multiple antifungal drugs.

The first report of C. auris being isolated was in 2009 from the ear of a 70-year-old patient in

Tokyo, Japan [1]; however, retroactive detection of C. auris has subsequently been reported

from samples collected in South Korea, Japan, and Pakistan [2–4]. Since 2014, there has been a

sharp rise in the number of countries reporting C. auris detection for the first time (Fig 1) and

it has now been detected in more than 45 countries [5–8]. This global spread of C. auris has

prompted the Centres for Disease Control and Prevention (CDC) to discontinue updating

data on first case detection in new countries [8]. Increasing global temperatures have been

implicated for the almost simultaneous emergence of this pathogen on 3 continents [9]. Thus,

it has been hypothesised that C. auris is the first human pathogenic fungus to have emerged as

a result of climate change [9,10].

Pathogenic Candida species cause candidiasis, which can range from superficial conditions

such as oral thrush to life-threatening invasive diseases. Globally, candidiasis is the third most

common healthcare-associated infection with invasive candidiasis responsible for about 20%

of infections in intensive care units worldwide [11,12]. While there are millions of new cases of

candidiasis of the mucosa each year, the annual global incidence of life-threatening invasive

Fig 1. Cumulative number of countries with reported detection of Candida auris.

https://doi.org/10.1371/journal.ppat.1011268.g001
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candidiasis is approximately 750,000 and is associated with a high mortality rate, particularly

in critically ill patients and those with compromised immunity [11,13]. Although Candida
albicans is the most common aetiological agent of candidiasis, there has been an increase in

cases of candidiasis caused by a range of other Candida species such as C. glabrata, C. parapsi-
losis, and more recently C. auris [11,12,14].

C. auris infections, like many other Candida infections, are opportunistic [15]. Underlining

health conditions such as diabetes, kidney disease, and HIV/AIDS can be risk factors for C.

auris infections [5,16,17], as can long-term use of antimicrobial drugs, extended hospital stays,

surgery, and the use of a central venous catheter [5,16]. Recently, Coronavirus Disease 2019

(COVID-19) has also been suggested as a risk factor for severe C. auris infection based on the

high mortality rate recorded in COVID-19 patients with C. auris infection [6,18]. Although a

meta-analysis of available data on COVID-19–associated C. auris infections indicated that

COVID-19 has no significant impact on the prevalence of C. auris infection [19,20].

An emerging resistance to multiple antifungal drugs (such as fluconazole and amphotericin

B) and the ability to persist in nosocomial settings (together with poor prognoses) have made C.

auris infections a serious global health concern. The CDC and the European Centre for Disease

Control and Prevention (ECDC) have both declared C. auris an urgent health threat that needs

a prompt and vigorous response [21,22]. Likewise, the World Health Organisation (WHO)

have recently classified C. auris as a fungal pathogen of critical concern on its “fungal pathogen

priority list” compiled to guide research, development, and public health action [23]. Infection

control measures stipulate colonisation screening if a case of C. auris is detected in healthcare

facilities, and many national guidelines now require cases of C. auris infection to be reported to

central infection control agencies [21,22,24]. Although C. auris has largely been isolated in

healthcare facilities, there have also been limited cases of asymptomatic community colonisa-

tion [5]. However, the emergence of C. auris is likely to be a fairly recent event as it has not been

retroactively detected in collections of fungi isolated from humans prior to 1996 [25].

In contrast to pathogenic moulds and non-Candida human pathogenic yeast (such as Cryp-
tococcus neoformans), which are known to inhabit diverse environmental niches, pathogenic

Candida species primarily exist as human commensals or as contaminants in clinical environ-

ments from where they can cause opportunistic infections. However, several species of patho-

genic Candida have been isolated from nonhuman or nonclinical environmental samples

[26,27], which could provide novel exposure routes for human infection [26,28–30]. Candida
albicans was previously thought to exist mainly as a human commensal [30], but has now been

widely isolated from nonclinical environmental samples, e.g., soil, wetlands, and plants

(Table 1). In addition, the 5 most common pathogenic Candida species [31] as well as C. lusita-
niae and C. haemulonii, 2 human pathogenic Candida species closely related to C. auris [5],

have also been isolated from nonclinical environmental samples (Table 1). Despite the com-

mon isolation of pathogenic Candida species from environmental samples, the significance of

Table 1. Reported isolation of common pathogenic Candida species from environmental samples.

Candida species Environmental sample References

Candida albicans Soil, freshwater, seawater, plants, fruit, decaying organic matter, bird droppings [29,30,32–37]

Candida parapsilosis Soil, woody debris, fruits, bird droppings, freshwater, seawater, estuary, marine invertebrates [29,32,34–44]

Candida tropicalis Soil, fruits, wood, freshwater, seawater, marine invertebrates [28,29,34,36–39,41–45]

Candida glabrata Soil, fruit, freshwater, seawater, estuary [29,32,34,37,39,40]

Candida krusei Fruits, freshwater [34,38,39,42]

Candida lusitaniae Bird droppings, plants, insects [46–50]

Candida haemulonii Arthropods, plants, soft corals, seawater [51–54]

https://doi.org/10.1371/journal.ppat.1011268.t001
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environmental persistence and cycling on the epidemiology of candidiasis is not yet fully

understood. Therefore, identifying potential environmental niches and reservoirs of C. auris is

crucial for the development of effective epidemiological and management responses.

Recent studies have increased our understanding of the biology, genome, pathogenicity,

and phenotypic characteristics of C. auris [5,16,55], yet the role of the natural environment in

the emergence and transmission of C. auris remains largely unexplored. The environment can

provide suitable conditions for human pathogens to persist and provides a diversity of human

exposure routes (either directly or via secondary hosts or fomites). Importantly, environmental

interactions can also lead to the acquisition of both novel genes and phenotypic characteristics

that can significantly impact pathogenicity [56,57]. Therefore, the aim of this paper is to deter-

mine potential interactions of C. auris with the environment and explore those environmental

characteristics and pathways that could facilitate increased human exposure to C. auris.

Sources and input pathways of Candida auris in the environment

Clinical strains of C. auris can be introduced into the environment through shedding from col-

onised humans or animals or through the release of contaminated clinical wastes (Fig 2). C.

auris persists on the skin, nostrils, and ear cavity of colonised humans, which are widely docu-

mented routes for contamination of clinical environments by infected patients and healthcare

workers [58,59]. The detection of C. auris in indoor swimming pools demonstrates that colo-

nised individuals can shed the yeast into nonclinical environments, where the cells can persist

and be subsequently transferred to other people [60]. C. auris has been detected in human

urine and faecal samples [4,61], as well as rectal swabs from both symptomatic and asymptom-

atic individuals [62]. Thus, open defecation, which is widely practiced in rural communities in

low- and medium-income countries, could also be a significant pathway for the environmental

loading of C. auris. Likewise, C. auris in human excreta could contaminate the environment

via effluent from wastewater treatment plants. Although C. auris detection in wastewater has

not yet been reported, other pathogenic yeasts such as C. albicans are often detected in hospital

wastewater [63] and in the influent and effluent of wastewater treatment plants [64]. In all

cases, the environmental survival and subsequent persistence of C. auris will be affected by the

intrinsic characteristics of the receiving environment following wastewater discharge.

Contaminated clinical solid waste is a proven pathway for the introduction of pathogenic

microorganisms into the environment [65], and clinical wastes contaminated with pathogenic

species of Candida, e.g., C. albicans, C. glabrata, and C. parapsilosis, have previously been

reported [66]. C. auris shows an increased ability to persist on dry inanimate surfaces compared

to C. albicans [67] and can persist in biofilms on inanimate surfaces, e.g., plastics, for significant

periods [68–70]. In developing countries where clinical wastes are often not properly managed

due to limited resources, safe disposal of contaminated wastes remains a serious challenge.

Although no animal reservoir has yet been established for C. auris, this thermotolerant

yeast can colonise warm-blooded nonhuman animals, for example, human pathogenic Can-
dida species are often isolated from birds, with subsequent faecal shedding into the environ-

ment [71,72]. The most common pathogenic Candida species (e.g., C. albicans, C. glabrata, C.

tropicalis, C. parapsilosis, and C. krusei) have been isolated from bird droppings [73], and

other pathogenic yeasts have been isolated from mammals such as bats and dogs [74,75].

Candida auris persistence and cycling in the environment

Populations of C. auris have both thermotolerant and halotolerant capacity and are commonly

resistant to one or more antifungals [68,76,77]. Based on these phenotypic attributes, it has

been suggested that C. auris probably emerged from a natural reservoir [25,70,78,79], which is
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supported by genomic evidence, and the ecology of related fungal species; however, specific

reservoirs of C. auris in the natural environment have still not been properly defined. Potential

Fig 2. Possible pathways for Candida auris introduction into the environment.

https://doi.org/10.1371/journal.ppat.1011268.g002
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environmental reservoirs for C. auris include terrestrial, freshwater, and marine ecosystems

(Table 2), with specific niches in soil, plants, and animals. C. auris can tolerate high salt con-

centrations (of up to 10% NaCl) [77], and evidence suggests that human pathogenic C. auris
evolved in niches in marine ecosystems [25,78,80]. Support for this comes from isolates of C.

auris that have recently been discovered in an area of coastal wetland in the Andaman Islands

with no known human activity and from an estuary in Colombia [80,81].

C. auris has the ability to grow at temperatures of up to 42˚C, where phylogenetically related

species, e.g., C. haemulonii, cannot grow [82]. The thermotolerant characteristics of C. auris
have been attributed to environmental adaptation to increasing temperature due to global

warming. It is hypothesised that this has facilitated its emergence as a human pathogen due to

its ability to tolerate the mammalian thermal barrier, which is considered a protective strategy

for humans against colonisation by environmental pathogens [9,83]. The ability of C. auris to

tolerate higher temperatures may also enable the colonisation of birds, which has been sug-

gested as a transmission pathway from environmental reservoirs to humans [25,84]. Although

there is currently no direct evidence of C. auris isolation from birds, the detection of other

human pathogenic Candida species in birds has been widely reported [85,86].

Phenotypic characteristics that support the hypothesis of C. auris emergence from an envi-

ronmental niche include the intrinsic resistance to antifungal drugs (most commonly flucona-

zole) by most C. auris isolates. The large-scale introduction of antifungal chemicals such as

azoles into the environment (from both pharmaceutical and agricultural sources) has likely

played a role in the environmental enrichment of fluconazole resistant strains of C. auris
[70,78]. Azole antifungal agents are widely used to control fungal crop diseases and thus inad-

vertently contaminate the environment and can persist for months in different environmental

matrices [87,88]. Similarly, it has been hypothesised that increasing the shelf life of stored fruits

with antifungal chemicals has led to the selection of antifungal resistance in environmental C.

auris strains [79]. Comparable selection pressure from antifungals in the environment has

been associated with the emergence of azole-resistant Aspergillus fumigatus [89].

Genomic evidence also supports the hypothesis that C. auris originated from, and diversi-

fied in, environmental reservoirs. For example, there is a high occurrence (i.e., tens of

Table 2. Potential reservoirs of Candida auris.

Source Suggested reservoir Hypothesis/evidence Reference

Environment Soil Acquisition of virulence attributes through survival in harsh soil conditions

Adaptation to fungicide in soil

Adaptation to higher temperature in soil niches due to global warming

Reported isolation of closely related species

[25,70,78]

Marine ecosystem Halotolerant ability of C. auris
Reported isolation of closely related species

Isolation from water collected from sandy beach

[78,80]

Coastal wetlands Adaptation to higher temperature due to global warming

Isolation from salt marsh sediment and wetland sandy beach

[25,78,80]

Estuary Detection in water samples collected from estuary [81]

Animals Birds Thermotolerant ability of C. auris
Extensive isolation of other pathogenic Candida species from birds

[25,78]

Aquatic animals Reported isolation of closely related species [78]

Insects Reported isolation of closely related species [78]

Plants Plants Reported isolation of closely related species [25,78]

Fruits Detection on stored fruits [79]

Human Human population Ability to successfully colonise human skin

Reported isolation of closely related species

[78]

https://doi.org/10.1371/journal.ppat.1011268.t002
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thousands) of single nucleotide polymorphisms (SNPs) in the 5 C. auris clades that have origi-

nated in different geographical locations in South America, South Africa, South Asia, East

Asia, and most recently in Iran [16,55,90], in contrast to the low (i.e., less than 70 SNPs) intra-

clade genetic diversity [16]. The high inter-clade genomic difference has been attributed to the

selective pressure of specific environmental conditions at the different geographical locations

where each C. auris clade emerged. The C. auris genome also provides evidence for the envi-

ronmental selection of antifungal resistance genes in C. auris [91]. Recently, searches of the

Sequence Read Archive of the NCBI database detected C. auris sequences from historic envi-

ronmental samples [92] and identified 7 C. auris metabarcoding datasets, some of which were

obtained from environmental samples collected from different parts of the world. Taken

together, the available evidence strongly supports the hypothesis that C. auris emerged from

reservoirs in the natural environment under various environmental stress including selection

pressure from antifungals.

Soil can support the survival of a wide range of human pathogens, including C. albicans
that can persist in soil for more than 30 days [30]; however, the ability of C. auris to persist in

soil has not yet been examined. Lower pH and higher minerals (aluminium, manganese, and

sodium) can increase survival of C. albicans during the early stages of soil contamination,

while cation exchange capacity (CEC) and clay content, which influences the exchangeable

minerals in soil, appears to be crucial for longer-term survival in soil [30]. C. auris can thrive

between a pH range of 4 to 13, [93] and can withstand cationic stress, so could potentially per-

sist in high mineral soils. The ability of C. auris to persist in biofilms in water-limited condi-

tions [67,68] indicates that it could survive desiccation in soil; however, the persistence of C.

auris in soil under a range of environmental conditions is still unknown.

Pathogenic species of Candida have been widely isolated from freshwater sources

[39,94,95], although the only reported isolation of C. auris is from the water of an indoor

swimming pool in the Netherlands [60]. C. albicans can persist for significant periods in fil-

tered or sterile water [96,97], although these studies do not account for the influence of back-

ground microbial communities and other biotic factors that would be present in

environmental freshwaters. Microbial diversity in freshwater is influenced by biotic factors

and a wide range of abiotic components, e.g., nutrient availability, dissolved oxygen, pH, tem-

perature, all of which are subject to wide variations [98]. Yeasts are generally tolerant of envi-

ronmental stressors, although it has been demonstrated that C. auris has a poor ability to

survive in anaerobic conditions compared to other pathogenic Candida species like C. albicans
and C. glabrata [99], which may affect its ability to persist in freshwater environments with

low dissolved oxygen.

A major determinant of the ability of microbial species to persist in marine environments is

the ability to withstand cationic stress due to high salt concentration, and several species of

Candida species are frequently found in marine environments [37,41,44,45,100,101]. The halo-

tolerance of C. auris (and its hypothesised emergence from the marine environment) could

facilitate the survival of C. auris and its subsequent dissemination over large distances

[77,80,99].

Future research focus

Current knowledge of C. auris persistence has focused on clinical settings due to the potential

for infection outbreaks in healthcare settings. However, knowledge of the survival and dissemi-

nation of C. auris through the environment is now urgently needed to give a more complete

assessment of the risk of C. auris transmission from environmental reservoirs to humans. The

focus of future research on C. auris in the environment should be divided into 2 broad themes:
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(1) understanding environmental distribution and dissemination; and (2) quantifying survival

and persistence in the environment.

There is a need to develop environmental surveillance tools to rapidly detect and quantify

C. auris, but importantly, these must be developed in tandem with tools for community-scale

surveillance. Tools such as wastewater-based epidemiology, which has been so effective for sur-

veillance of diseases like COVID-19 [102] allows an understanding of community levels of

infection (including asymptomatic carriage). C. auris contaminated wastewater from health-

care facilities may be discharged into the environment if C. auris is able to survive wastewater

treatment processes. Although there are no reports of C. auris detection in wastewater, it is

often detected in clinical faecal samples and other pathogenic Candida species, including C.

albicans, C. glabrata, C. krusei, C. tropicalis, and C. dubliniensis, have been detected at different

wastewater treatment stages [103]. However, effective surveillance is not possible without spe-

cific detection methods. Most of the currently available methods have primarily focused on the

detection of C. auris in clinical samples rather than complex environmental samples [104].

Therefore, before surveillance methods can be widely applied, there is an urgent need to opti-

mise the specificity of both culture-dependent and culture-independent methods to detect C.

auris in samples that may contain relatively high levels of other Candida species. This is espe-

cially important as the difficulty of distinguishing C. auris from other closely related Candida
species has previously led to the misidentification of C. auris [2,16].

While C. auris can tolerate stresses associated with the infection process (physiological

stress such as oxidative stress and cationic stress) and from colonising clinical surfaces (disin-

fection, temperature, and cell wall stress), the ability of C. auris to tolerate environmental

stresses such as solar radiation, salinity, temperature extremes, competition, and predation

have not yet been examined under natural environmental conditions. The ability of C. auris to

tolerate environmental stressors will determine its fate when released into the environment

and its potential for subsequent dissemination pathways and human exposure. A common

strategy used by microorganisms to resist environment stress is to form biofilms. C. auris are

known for their ability to form persistent biofilms [69,105] and as such could form multispe-

cies biofilms with other environmental fungi and bacteria species, e.g., Staphylococcus spp.

[106]. It has recently been demonstrated that free-living protozoans commonly found in hos-

pital water pipes can enhance the persistence of C. auris [107]. Clearly, the impact of such

close interactions with microbial species in multispecies biofilms on the persistence and patho-

genicity of C. auris in the environment is an area that needs urgent investigation.

Although the environmental reservoirs for C. auris are not yet well known, the release of

antifungals into the environment from activities such as agricultural usage and industrial

waste disposal could be facilitating novel reservoirs in the environment. Importantly, drug

resistance could theoretically be transferred between compatible mating types of C. auris, or

even with other species of Candida, leading to the potential for novel antifungal and pathoge-

nicity genotypes with increased virulence. A recently recognised phenomenon for the trans-

port of human pathogens in the environment (and the exchange of antimicrobial resistance

genes) is their ability to attach and persist on plastic wastes in terrestrial and aquatic ecosys-

tems [108,109]. Plastic wastes are increasingly being introduced into the environment and can

be dispersed over long distances. C. auris can colonise and persist on plastic surfaces in health-

care settings for more than 28 days [68]; therefore, the ability of C. auris to persist on environ-

mental plastic pollutants (e.g., from clinical waste) and be disseminated within the

environment could be a novel transport mechanism for spreading the pathogen.

The natural environment is an important component of the infection cycle for a wide vari-

ety of pathogenic diseases, and C. auris has various potential pathways of introduction into the

environment. Understanding the environmental interactions of C. auris will provide the

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011268 April 13, 2023 8 / 14

https://doi.org/10.1371/journal.ppat.1011268


insight required to understand the role that the natural environment played in the emergence

of these pathogenic fungi and provide a better understanding of the factors that can influence

the persistence and dissemination of C. auris in the environment.
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22. Plachouras D, Lötsch F, Kohlenberg A, Monnet DL, Candida auris survey collaborative group. Can-

dida auris: epidemiological situation, laboratory capacity and preparedness in the European Union

and European Economic Area*, January 2018 to May 2019. Euro Surveill. 2020; 25:2000240. https://

doi.org/10.2807/1560-7917.ES.2020.25.12.2000240 PMID: 32234118

23. World Health Organization. WHO fungal priority pathogens list to guide research, development and

public health action. 2022.

24. Bishop L, Cummins M, Guy R, Hoffman P, Jeffery K, Jeffery-Smith A, et al. Guidance for the laboratory

investigation, management and infection prevention and control for cases of Candida auris. Public

Health England. Updated. 2017;11.

25. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change,

azoles, swamps, and birds. MBio. 2019; 10:1397. https://doi.org/10.1128/mBio.01397-19 PMID:

31337723
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