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Abstract— City flood control is a significant concern everywhere due to the constantly changing environment. The modern world needs 

smart cities with smart infrastructure to manage or control floodwaters. The research objective of this study is to design real time urban flood 

control methodology, develop the working model and testing the model with result analysis in controlled environment. This research paper 

proposes a smart water control model based on fuzzy inference system. The research is advancement in the Water Sensitive Storm Water 

Management System by creating a prototype model and then evaluating it in real-world scenarios using input parameters as rainfall intensity, 

water flow rate, and water level. The method relies on water catchment flooding data that was collected in real-time using sensors and an 

autonomous smart controller. The system considers the real-time sensor data from all catchments to make collective decision, which also 

optimize the use of actuators by conserving the power used by the actuators. In terms of early floodwater control, the recommended approach 

optimizes the use of actuators with utilizing the existing drainage system. The average water reduction rate at the medium level is 34.8%. At 

high levels, the average water reduction rate is 61.43%, and at extremely high levels, it 73.63%. A significant reduction of water level achieved 

in the most inundated area by 73.9 % in high and extreme input parameter value. 

Keywords- Smart City, Fuzzy logic, Internet of Things, Urban Flood, Storm Water Control Network. 

 

I.  INTRODUCTION  

Cities all around the world are employing smart 

technologies enabled by the Internet of Things (IoT) to 

streamline local operations, spur economic growth, and 

enhance citizen quality of life. Key services including public 

transportation, communications, water and electricity 

distribution, hospitals, and schools will continue to be provided 

without interruption to residents of safe and resilient cities with 

smart city critical infrastructure [1]. Smart cities should have 

basic infrastructure, a good standard of living for its residents, a 

healthy environment, and the use of "smart" solutions. 

Urbanization and climate change are mutually dependent, 

although in different ways. Climate change is primarily 

characterized by variations in temperature and precipitation. 

With regard to industrial output, societal infrastructure, and 

public services, these variances have an impact on the 

metropolitan city's economic index. The planning of a smart 

city might be complicated by climate change. With the 

development of technology, a smart city must be developed as 

a safe and environmentally friendly place to live. Mitigating 

natural calamities like urban floods should be required in the 

planning [3]. 

One of the most frequent and destructive natural 

catastrophes, floods cause massive property, infrastructural, 

and agricultural damage while displacing millions of people 

worldwide. Floods are typically caused by lengthy, intense rain, 

high snowmelt, tropical storms, tsunamis in coastal areas etc. 

Urban flooding occurs whenever rainfall exceeds the ability of 

drainage systems, such as storm sewers, and floods lands or 

property inside a built environment, especially in areas that are 

more densely inhabited. Urban planners and local governments 

have a significant issue as urban flooding occurs increasingly 

often across the world. 

Floods in metropolitan areas are caused on by the rapid, 

unforeseen release of water from dams and lakes, which 

happen without giving the public the time to react. The 

majority of urban drainage systems were designed to manage 

lower runoff volumes than those found today, making them 

vulnerable to collapse during storms with high rainfall 

intensities. Natural and man-made factors can contribute to 

urban flooding. Natural causes like global warming, changing 

weather patterns, heavy rains, etc., as well as artificial ones like 

the loss of natural drains and ongoing urban expansion due to 

population increase. 

According to a report from the United Nations 

Development Program (UNDP), urbanization is still one of the 

major trends of the twenty-first century. By 2050, 68 percent of 

the world's population will live in urban areas. However, many 
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cities all across the world are struggling with issues including 

rising inequality and the ongoing problems of creating 

sustainable and habitable environments [2]. 

As storm water runoff increases due to cementitious 

infrastructure, Urban engineers are integrating green 

infrastructure, such as avenue trees to lessen flood-related 

landslides, permeable-paved roads, retention and detention 

ponds, green roofs, and rain gardens to absorb rainwater to 

improve flood protection, as storm water runoff increases due 

to cementitious infrastructure. The Internet of Things (IoT) and 

computational models like hybrid models,, fuzzy models, 

artificial neural networks (ANNs) have opened up new avenues 

for the creation of new hardware and software for flood 

monitoring and forecasting [4].  

The Internet of Things (IoT) is now used in a variety of 

industries, including manufacturing, disaster management, 

healthcare, smart cities, safety, and asset monitoring and 

inventory control. By using real-time data, IoT aids disaster 

management by monitoring, managing, sensing, and tracking 

the environment. The development of smart cities has relied 

heavily on Internet of Things technologies. 

Urban pluvial floods are caused by an imbalance between 

the capacity of storm water drainage systems and the intensity 

of rainfall and runoff. The fundamental elements of managing 

flood risk in urban areas are storm water drainage systems; 

different drainage facilities can be built to lower the risk. Better 

hydrological modelling has become practicable because of 

technological development and the creation of various 

significant software applications, which will help solve the 

problem.  

The objective of this research is to design an effective real-

time urban flood control algorithm, build a real-time urban 

flood control hydrological using fuzzy system and the Internet 

of Things (IoT) with result analysis. The system is the 

enhancement of real time flood control system based on Storm 

Water Control Network Model (SWCNM) and Internet of 

Things, described in section 3. 

II. RELATED WORK 

Urban drainage systems (UDSs) are often under additional 

pressure due to the combination of climate change and 

urbanization especially precipitates rainfall frequency and 

amplifies peak runoff rate. Among the storm water facilities 

that can be managed in real-time to reduce urban floods 

downstream are UDSs. Jiada Li (2020) created an enhanced 

data-driven fuzzy logic control optimization employing fuzzy 

logic control and genetic algorithms for smart decision making 

concerning flooding mitigation in terms of lowering flooding 

volume at downstream urban drainage systems. Under eight 

simulated rainfall scenarios; the cumulative flooding volume is 

decreased by up to 4.55% based on the simulation results of 

the Storm Water Management Model (SWMM). At the 

downstream site of urban drainage networks, only one storage 

unit and one fuzzy logic controlled gate (orifice) were 

conceptually built and simulated. Focusing on spreading 

numerous Fuzzy Logic Controlled gates among various 

storage sites and looking at how data-driven fuzzy logic 

control strategy may increase system-level fuzzy logic control 

strategy can improve the rate of lowering flood volume [5].  

A method for assessing flood risk those Binh Thai 

Pham et al. [2021] presented uses a deep learning algorithm in 

conjunction with Multi-Criteria Decision Analysis. Three 

primary elements comprise the flood risk assessment 

considered as hazard, exposure, and vulnerability. Data from 

the 847 previous flood locations is utilized to train and test the 

model. The methodology includes flood vulnerability 

evaluation, flood susceptibility analysis, flood exposure 

assessment and flood risk map analysis. Models for flood 

susceptibility were created using training data, and their 

effectiveness was verified using testing data. Flood 

susceptibility models includes Deep Neural Networks (DNNs) 

and Forest by Penalizing Attributes (FPA). The flood hazards 

map is produced using the best flood susceptibility map along 

with maps of flood depth and duration. The model access the 

flood susceptibility, flood depth, flood duration, distance to 

river, road density etc. [6]. The model's goal is to forecast flood 

danger based on sparse historical data, not to control floods in 

real time. 

In order to lower the risk of urban flooding, W. Shepherd et al. 

(2017) presented a sewer flow control system that is locally 

autonomous and data-driven. The system consists of a wireless 

local water level monitoring, a flow control device and control 

system. A data-driven algorithm analyses the water level data 

and gives directions to the flow control device in order to 

reduce the threat of flooding at the downstream flooding point. 

A SWMM model has been connected to a fuzzy logic control 

algorithm to permit virtual testing and to serve as the 

foundation for a genetic algorithm that will optimize the fuzzy 

logic membership functions. Additionally, techniques for 

producing the initial starting membership functions used as 

input by the genetic algorithm have been studied. In simulated 

testing, the enhanced Fuzzy Logic membership functions lead 

to an average 25% reduction in flood volume only [7].   

A system for real-time flood prediction that makes 

use of IoT sensing and Artificial Neural Networks (ANN) was 

presented by Eric Samikwa et al. in 2020. On a low power 

edge device, the sensor data is processed. The system keeps 

track of rainfall and water level time series in real-time and 

uses the temporal correlation data to estimate flood water 

levels in advance utilizing long short-term memory (LSTM). 

The information is displayed as a time series of time stamps 

with associated values for rainfall and water level [8]. The 
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model is better suited for flood prediction and early warning 

than for controlling the floodwaters in real time. 

To estimate flood depth, Weijun Dai et al. (2021) suggested an 

ensemble learning method based on Bayesian model 

combination (BMC-EL). The models comprise 

backpropagation neural networks, random forests, support 

vector machines, linear regression, and BMC-EL models. The 

model was evaluated using actual flood data collected from 

Macao, China, and experimental findings demonstrate its 

ability to anticipate flood depth one hour in advance. The 

accuracy ratio of the various flood intensity levels used as a 

measure of the models' dependability. The model is 

appropriate for warning the public, not for flood control [9]. 

In order to commence rescue operations as soon as 

possible, Hafiz Suliman Munawar et al. (2021) suggest real-

time flood management technologies that could rapidly detect 

flooded locations. Unmanned aerial vehicles (UAVs) are used 

in the system to create an autonomous imaging system that can 

detect flooded regions from aerial photographs. To build an 

automated imaging system that can recognise inundated 

regions from aerial photographs, the system uses unmanned 

aerial vehicles (UAVs). The aerial images taken by UAVs 

were used to both identify flooded regions and to identify 

features like roads and houses. A deep learning system is 

trained using a training dataset that includes the extracted 

landmarks. Roads and buildings are detected from photos with 

91% and 94% accuracy, respectively, according to trial results. 

In categorizing the input into flooded and non-flooded zones, 

an overall accuracy of 91% was observed [10]. 

In order to control the urban flood water in real time 

situation, Anil Hingmire eta al. proposed the conceptual 

approach that incorporates the water-sensitive Storm Water 

Control Network Model as the foundation for the intelligent 

flood control system based on IoT and Fuzzy inference in order 

to regulate the urban flood water in real-time situations. By 

optimally activating the activators, the system will be able to 

regulate flood water utilizing time series data on water volume 

and water level in the sub-catchments [12]. 

III. EXISTING SYSTEM 

Existing authors, Anil Hingmire et al. [11] have proposed the 

real time flood control system based on Storm Water Control 

Network Model (SWCNM) and Internet of Things on primary 

storm water channel network instead of drainage network. The 

Urban Flood Resilience System uses a fuzzy logic controller to 

analyze the most impacted region and take into account the 

best usage of actuators to control the surface flood water.  The 

time series data of every 15 minutes time interval is 

considered for the controlling of the flood in the sub-

catchments by activating or deactivating the sub-catchment 

actuators (pumps). The simulation result shows that the 

reduction of water level in the most flooded sub-catchment is 

47.07 % in high and extreme input water level parameter 

value. The technique is based on real-time flood data for water 

catchments that was acquired with the use of sensors and an 

autonomous smart controller. The system is only based on 

water volume of sub-catchments and the storm water network 

model. 

IV. PROPOSED METHODOLOGY 

The proposed research is a continuation of the system 

proposed by us in [11], in which we proposed an IoT and 

fuzzy based Storm Water Control Network Model to control 

the flood water. However, the findings of the existing system 

show that the flood water reduction rate is only 47.7% and 

only takes into account the sub-catchment water level 

parameter.  The data set generated was small and number of 

sub-catchments was only three. It takes into account time 

series real-time data with a 15-minute time interval.  In case of 

heavy rainfall, the system cannot control flood water as time 

interval to get real time data is long and the system does not 

consider the intensity of rain fall. 

To improve the performance of system and able to 

work in heavy rainfall, in the proposed study the  parameters 

including rain intensity, water flow, water level for each sub-

catchment and utilizes the existing drainage network for 

controlling the flood water efficiently has been considered.  

The number of sub-catchments has also been increased to four 

and implementation of the actual prototype of the system has 

been done. Instead of every 15 minutes, real-time flood data 

from each catchment is retrieved every 1 minute. In case of 

heavy rainfall and extreme water level, the system reduced the 

overload of Storm Water Control Network by using the 

existing drainage system. 

A. System Block Diagram 

As shown in figure 1, the abstract view of the system 

includes four Internet of Things (IoT) nodes which transmit the 

real-time series data of sensors after every 1 minute to the 

Storm Water Control system. The Storm Water Control System 

calculates the Water Volume (Wv) of each sub-catchment and 

decides which sub-catchment is on higher risk and need to 

control the flood water immediately. Based on Water Volume 

(Wv), Water level (Wl), Rain Intensity (Ri), and Water Flow 

(Wf) in the sub-catchment area the fuzzy based controller 

algorithms utilizes the fuzzy inference rules and sends 

command to the respective IoT node for controlling of flood 

water. 
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Figure 1: System Block Diagram 

 

B. IoT Node Diagram 

Figure 2 shows the Internet of Things (IoT) node 

components, Arduino UNO microcontroller and the six sensors 

and the three actuators. In this prototype model we used Water 

level sensor, 1/2 inch Water flow sensor YSF201, Rain Drop 

Sensor Module (EC-0569) and three Submersible Mini Water 

Pumps as actuators which controls the flood by reducing the 

water level in the sub-catchments. A set of parallel exposed 

traces on the water level sensor module are used to measure the 

volume of the water in order to calculate the water level. The 

output to analogue signal is precisely proportional to the water 

level, making water level monitoring very simple. The Analog 

to Digital Converter (ADC) may read the output analogue 

values directly, and the analogue input pins of the 

microcontroller can also be directly linked to the output 

analogue values. A NodeMCU ESP 8266 wi-fi equipped 

microcontroller communicates the real-time sensor readings 

obtained from the Aurdino Uno microcontroller to the Storm 

Water Control System server. As instructed by the Storm Water 

Control System Server, the ATmega32 sends commands 

through NodeMCU to the actuator pump. The capacity of 

submersible pump is 120 liter per hour and operates on 3-6 

volts and maximum water lift is 40 ~ 110 mm. the flow rate of 

YF-S201 Water Flow Sensor is 1 to 30 Liters/Minute with 

maximum water pressure 2.0 MPa. 

 

 
Figure 2: IoT Node Architecture 

C. Experimental Setup 

The four sub-catchment regions with storm water pipeline 

networks built parallel to drainage networks were taken into 

account for this research study. Four water level sensors are 

positioned at predetermined distances for each sub-catchment. 

Distance between water level sensors in the sub-catchment 

used to calculate the area of sub-catchment. The submersible 

pumps are installed on storm water channel and the drainage 

network. Each sub-catchment has one pump put on the 

drainage network line and two pumps installed on the network 

of storm water channels. To measure the water flow rate and 

detect rain in real time, one rain drop and one water flow 

sensor are employed for each catchment. 

Figure 3 shows the experimental setup and the prototype 

model of the system, which includes the four sub-catchments 

named C1, C2, C3 and C4. The water level sensors installed in 

sub-catchment C1 is C1_Wl1, C1_Wl2, C1_Wl3 and C1_Wl4. For 

sub-catchment C2, the water level sensors used namely is 

C2_Wl1, C2_Wl2, C2_Wl3 and C2_Wl4. For sub-catchment C3, the 

water level sensors used namely is C3_Wl1, C3_Wl2, C3_Wl3 

and C3_Wl4.  And for C4, the water level sensors used namely 

is C4_Wl1, C4_Wl2, C4_Wl3 and C4_Wl4. 
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Figure 3: Experimental Setup of prototype model 

D. System Working 

The Storm Water Control System reads water level values of 

each sub-catchment and calculates the water volume of each 

sub-catchment. For determining the water volume, the system 

averages the values of all water level sensors and predefined 

area of present sub-catchment. The system selects the sub-

catchment/s which has highest water volume value and applies 

fuzzy logic inference rules to control the flood water in the 

respective sub-catchment. Figure 4 shows the system flow to 

select the sub-catchments and activates the actuators. 

 
Figure 4: System Flow Diagram 

E. Fuzzy Logic System 

Based on the water volume Wv, the catchment is chosen to 

regulate the flood water as shown in the system block diagram 

in figure 3. The input and output parameters for the fuzzy 

controller system are provided in Table 1. The rain drop sensor 

module is used to measure the rain intensity parameter (EC-

0569). 

Table 1: Linguistic input and output parameters 

Linguistic 

Parameter 
Value Description 

Input Parameter: 

Water level (AVWl) 

Millimeter 

(mm) 

Average water level of all 

sensors in the sub-catchment at 

time instance t. 

Input Parameter: Rain 

Intensity (RI) 

Millimeter 

(mm) 

Measures the intensity of rain 

fall in the sub-catchment in 

digital at time instance t. 

Input Parameter: 

Water flow Rate 

(WFR) 

Sq.mm 

Determines the water flow rate 

in the sub-catchment at time 

instance t. 

Output Parameter: 

Water Pump (WP) 
ON / OFF 

Action of Pump in the sub-

catchment at time instance t. 

 
Table 2 shows the rain sensor value range and its respective 

rain intensity. 

Table 2: Rain Intensity range 

RI values (mm) Rain Intensity 

0 to 25 low 

25 to 50 Medium 

50 to 100 High 

100 to 150 Very High 

 

Figure 5 shows a graphical representation of membership 

function for the input parameter Rain Intensity (RI), the input 

to 4-level fuzzifier varies from 0 to 150mm. The fuzzy subset 

configuration for input parameter RI is Low, Medium, High, 

and Very High.  

 

 
 

Figure 5: Fuzzy Membership Function for input Rain Intensity (RI) 
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Figure 6 shows a graphical representation of membership 

function for the input parameter Water Flow Rate (WFR), the 

input to 4-level fuzzifier varies from 0 to 200sq.mm. The 

fuzzy subset configuration for input parameter WFR is Low, 

Medium, High, and Very High as shown in table 3. 

Table 3: Water Flow Rate range 

WFR values (Sq.mm) Water Flow Rate 

0 to 50 low 

50 to 100 Medium 

100 to 150 High 

150 to 200 Very High 

 

 
Figure 6: Fuzzy Membership Function for input Water Flow Rate (WFR) 

 

Figure 7 shows a graphical representation of membership 

function for the input parameter Average Water level (AWl), 

the input to 4-level fuzzifier varies from 0 to 350mm. The 

fuzzy subset configuration for input parameter WFR is Low, 

Medium, High, and Very High as shown in table 4. 

 

Table 4: Average Water level range 

AWl  values (mm) Average Water level 

0 to 50 low 

50 to 150 Medium 

150 to 250 High 

250 to 350 Very High 

 

 

Figure 7: Fuzzy Membership Function for input Average Water level (AWl) 

Table 5 shows fuzzy inference rules for the fuzzy 

system with input parameters as Average Water level at sub-

catchment (AWl_Ci), Water Flor Rate at sub-catchment 

(WFR_Ci), Rain Intensity (RI) and output controllers Storm 

Water Pipe Network Pump (SWPN_P), Drainage Water Pipe 

Network (DWPN_P1). The system uses two water pumps 

namely SWPN_P1, SWPN_P2  on storm water pipe network in 

each sub-catchment, so that the more rain water can be 

preserved and one water pump (DWPN_P1) on drainage water 

pipe network of each sub-catchment for early reduction of 

flood water. 

Table 5: Fuzzy inference rules 

N

o 

AWl_Ci WFR_C

i  

Rain 

Intensit

y (RI) 

SWPN_P

1 

SWPN 

_P2 

DWPN_P

1 

1 Low Low Low Off Off Off 

2 Low Medium Low Off Off Off 

3 Low High Low Off Off Off 

4 Low V. High Low Off Off Off 

5 Low Low Medium Off Off Off 

6 Low Low High Off Off Off 

7 Low Low V. High Off Off Off 

8 Low Medium Medium Off Off Off 

9 Low High High Off Off Off 

10 Low V. High V. High Off Off Off 

11 Mediu

m 

Low Low Off Off Off 

12 Mediu

m 

Medium Low Off Off Off 

13 Mediu

m 

High Low Off Off Off 

14 Mediu

m 

V. High Low Off Off Off 

15 Mediu

m 

Low Medium Off Off Off 

16 Mediu Low High On Off Off 
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m 

17 Mediu

m 

Low V. High On Off Off 

18 Mediu

m 

Medium Medium Off Off Off 

19 Mediu

m 

High High Off Off Off 

20 Mediu

m 

V. High V. High Off Off Off 

21 High Low Low On On Off 

22 High Medium Low On On Off 

23 High High Low On Off Off 

24 High V. High Low On Off Off 

25 High Low Medium On On Off 

26 High Low High On On Off 

27 High Low V. High On On Off 

28 High Medium Medium On On Off 

29 High High High On On Off 

30 High V. High V. High On On Off 

31 V. High Low Low On On On 

32 V. High Medium Low On On On 

33 V. High High Low On On On 

34 V. High V. High Low On On On 

35 V. High Low Medium On On On 

36 V. High Low High On On On 

37 V. High Low V. High On On On 

38 V. High Medium Medium On On On 

39 V. High High High On On On 

40 V. High V. High V. High On On On 

 

V. RESULT ANALYSIS AND DISCUSSION 

This section presents the system testing findings, 

including an analysis based on time series data collected from 

sensor nodes and actions taken by actuators in response to 

server commands. 

 
Figure 8: Real time Server display for Sub catchments 

 

Figure 8 depicts real-time sensor values received on 

the server from an IoT node through NodeMCU, as well as the 

activation or deactivation of water pumps in all four sub-

catchments by the controller system. 

 

Figure 9: Graph of Rain Intensity and Water Flow Rate of Sub catchments C1 

Based on real-time data values, Figure 9 illustrates a graph 

of rain intensity and water flow rate. Water flow rate increases as rain 

intensity increases, as indicated in the graph, at low, medium, high, 

and extremely high levels.  

 

 
Figure 10: Graph of Rain Intensity and Water level of Sub catchments C1 

 

The graph in figure 10 clearly shows the relationship between 

the intensity of the rain and the water level. As the intensity of 

the rain increases, we can observe that there is a corresponding 

increase in the water level. This indicates that higher levels of 

precipitation can lead to higher water levels in areas where 

there are no other factors influencing it. 
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Figure 11: Average Water Level Reduction of C1 

 

As shown in figure 11 of sub-catchment C1, the 

average water level in the sub-catchment is significantly 

reduced from high to medium and very high to low as the 

result of pumps activation from pump 1 to 3. When the rain 

intensity, water level, and water flow rate are all at medium 

levels and only one storm water network pump is started, the 

water level drops from 37% to 13% on average. When both 

storm water network pumps are active, the water level drops 

from 61% to 37% on average. At extremely high levels, two 

pumps on the storm water network and a drainage pump are 

operated, the water level in the sub-catchment is gradually 

decreased from an average of 73% to 62%, and two pumps are 

triggered again when the water level rises. 

Similarly the average water level reduction for the 

sub-catchments C2, C3 and C4 is shown in figure 13, 14, 15 

and 16 respectively. 

 

 
Figure 12: Average Water Level Reduction of C2 

 

As shown in Figure 12, when the rain intensity, water level, 

and water flow rate are all at medium levels and only one 

storm water network pump is started, the water level drops 

from 34% to 15% on average. When both storm water network 

pumps are active, the water level drops from 62% to 37% on 

average. At extremely high levels, two pumps on the storm 

water network and a drainage pump are operated, and the 

water level in the sub-catchment is gradually lowered from an 

average of 74% to 62%, and two pumps are triggered again 

when the water level rises. 

 

 
Figure 13: Average Water Level Reduction of C3 

 

Figure 13 shows that when the rain intensity, water level, and water 

flow rate are all at medium levels and only one storm water network 

pump is active, the water level drops from 34% to 13% on average. 

When both storm water network pumps are active, the water level 

drops from 61% to 38% on average. At extremely high levels, two 

pumps on the storm water network and a drainage pump are operated, 

the water level in the sub-catchment is gradually decreased from an 

average of 74% to 64%, and two pumps are triggered again when the 

water level rises. 

 
Figure 14: Average Water Level Reduction of C4 

 

Figure 14 shows that when the rain intensity, water level, and 

water flow rate are all at medium levels and only one storm 

water network pump is active, the water level drops from 35% 

to 13% on average. When both storm water network pumps 

are active, the water level drops from 62% to 39% on average. 

At extremely high levels, two pumps on the storm water 

network and a drainage pump are operated, the water level in 

the sub-catchment is gradually decreased from an average of 
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74% to 62%, and two pumps are triggered again when the 

water level rises. 

Table 6: Average Water level Reduction analysis for C1 to C4 sub-catchments 

Sub-

Catchment 

Medium 

(P1=On, 

P2=Off, 

P3=Off) 

High 

(P1=On, 

P2=On, 

P3=Off) 

Very High 

(P1=On, 

P2=On, 

P3=On) 

Average 

Water level 

Reduction in 

Sub-

catchment 

C1 
13.1% to 

36.7% 

37.0 % 

to 61.1% 

61.9 % to 

73.2% 

11.3 % to 

54.4 % 

C2 
15.0% to 

34.0% 

37.0 % 

to 61.6% 

61.6 % to 

73.5% 

16.1 % to 

50.0 % 

C3 
13.1% to 

33.5% 

37.5 % 

to 61.4% 

63.8 % to 

73.9% 

11.1 % to 

64.8 % 

C4 
12.8% to 

35.0% 

38.7 % 

to 61.6% 

61.9 % to 

73.9% 

19.4 % to 

65.3 % 

Average 
13.5% to 

34.8 % 

37.55 % 

to 

61.43% 

62.3 % to 

73.63% 

14.48 % to 

58.63% 

 

Table 6 depicts the average reduction in water level in sub-

catchments C1, C2, C3, and C4. As can be seen, the average 

water reduction rate at the medium level ranges from 13.5% to 

34.8%. At high levels, the average water reduction rate ranges 

from 37.55% to 61.43%, and at extremely high levels, it 

ranges from 62.3 to 73.63%. In all four sub-catchments, the 

overall flood water decrease ranges from 14.8% to 58.63%. 

The most significant decrease in water level is 73.9%. 

VI. CONCLUSION 

City flood control refers to the many steps taken by a 

city or urban region to avoid or minimize the damage caused 

by floods. Cities are especially sensitive to flooding owing to 

the large population of buildings, infrastructure, and people in 

a limited area, which increases the danger of damage and loss 

of life. To manage or control flooding, the contemporary 

world requires smart cities with smart infrastructure. 

We present an enhanced smart urban flood control 

technique in this study that is based on the water-sensitive 

Storm Water Control Network Model (SWCNM) and takes 

use of IoT infrastructure. The urban flood control approach is 

based on fuzzy logic and takes into consideration factors such 

as rainfall intensity, water level, and water flow rate in the 

sub-catchment region. In terms of effective flood water 

control, the system makes collaborative decisions by taking 

into account real-time conditions in all sub-catchments.  

The results of the prototype model of approach 

implemented demonstrate a large reduction of water in the sub-

catchments through the optimal use of actuators to control the 

flood. At the medium level, the average water level reduction 

rate ranges from 13.5% to 34.8%. The average water reduction 

rate at high levels ranges from 37.55% to 61.43%, and at 

extremely high levels, it ranges from 62.3 to 73.63%. The 

overall percentage of flood water drop ranges from 14.8% to 

58.63% in all four sub-catchments. The greatest reduction in 

water level is 73.9%. However, the rate of water reduction in 

the sub-catchments depends on the capacity of the drainage, 

storm water pipeline network, and water pump capacity. A 

method for developing an autonomous flood management 

system that avoids surface flood water has been described and 

can be implemented in a smart city. 
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