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Abstract --- Data mining and machine learning have been heavily studied in recent years with the purpose of detecting sophisticated 

malware. The majority of these approaches rely on architectures that do not involve deeply enough into the learning process, despite the fact 

that they have yielded excellent results. This is because deep learning is finding increasing application in both business and academia thanks 

due to its skills in feature learning. In this paper, we develop a Deep Auto Encoder (DAE) based detection mechanism to detect the 

malwares crawling in the large scale networks. The DAE act as an unsupervised deep learning model that helps in detecting the malwares. 

The simulation is conducted on two different datasets to test the robustness of the model. The results show that the proposed method has 

higher rate of accuracy in detecting the attacks than other methods. 

Keywords: feature learning, Deep Auto Encoder, large scale networks, malwares. 

 
I. INTRODUCTION 

Due to the pervasive nature of computers and the Internet, it 

is crucial that sensitive data be safeguarded online. Viruses, 

worms, trojans, backdoors, spyware, and botnets are all 

examples of malicious software [1] that are designed to 

further an attacker illicit goals. Online thieves rely on this 

method as their primary method of attack for a wide variety 

of security breaches, putting users at risk of catastrophic 

injury and financial loss [2]. 

Internet Security Threat Report (ISTR) data shows that 

malware infections led to the loss or theft of 500 million 

personal records [3] and that up to $1 billion was stolen 

from financial institutions throughout the world in just over 

two years [4]. Consequently, both the anti-malware market 

and academics place a premium on effective malware 

identification [5]. 

Anti-malware software is the first and last line of defence 

against malicious programs. There was an early emphasis on 

signature-based detection techniques [6]. Signature is a 

strategy developed by researchers with the intention of 

accurately classifying future instances of known malware 

while minimizing the number of false positives. Each piece 

of malicious software has its own short string of bytes, or 

signature. The virus is classified according to this string. 

However, malware attackers can easily circumvent this 

procedure by using techniques like as encryption, 

polymorphism, and obfuscation [7]. 

Most anti-malware software addresses this challenge by 

keeping tabs on what malicious code is up to in the system 

kernel. This prevents harmful software from modifying user 

data. Compared to static detection, dynamic detection is 

more robust, but it also has a higher initial cost and does not 

scale well. As a result of financial incentives, hundreds of 

malicious files are created and distributed daily [8], making 

it challenging for detection systems to be effective. These 

systems make use of a variety of methods, including data 

mining and machine learning. 

Models for identifying malware are constructed in these 

systems with the help of classification techniques [9]. Most 

of these approaches are grounded in relatively simple 

instructional frameworks. Even though shallow learning 

architectures showed some promise when used to virus 

detection, they ultimately fell short. This evolution in 

malware writing techniques has resulted in an ever-

increasing influx of newly discovered file samples that 

require constant analysis. This is essential work that has to 

be completed [10]. 

However, these unlabeled files are rarely discarded during 

the machine learning process because they always reflect the 

trend of malware development and fresh releases of 
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innocuous apps. This is because sensitive data may be 

hiding in plain sight in files that have not been properly 

named. Therefore, there is a lot of potential for development 

in this sector [11]. 

Deep learning is at the forefront of machine learning and is 

already being used in several fields [12-15]. The optimal 

architecture for feature learning incorporates several layers 

of deep learning and gives the system access to both labelled 

and unlabelled data samples. When building a deep learning 

architecture, it is common practice to train multiple layers of 

feature detectors from scratch before building the final 

classification model [16]. This allows the architecture to 

overcome the learning difficulties. Due to this, we decided 

to develop a malware detection system based on deep 

learning. In this paper, we develop a Deep Auto Encoder 

(DAE) is used detect the malwares in a large-scale network.  

1. Background 

Kolosnjaji et al. [17] developed one-hot encoding to 

transform the API request sequence into a series of binary 

vectors. Machine learning benefits from one-hot encoding. 

This model scores very highly in accuracy (89.4%) and 

precision (85.6%). Its recall rate of 89.4% is also very high. 

The purpose of the malware detector developed by 

Tobiyama et al. [18] was to extract features from an API call 

log over time. Then, a convolutional neural network (CNN) 

evaluates the visual representation of these attributes to 

decide whether or not the object in question should be 

classified as malicious. While the RNN achieves its results 

with the aid of a long short-term memory (LSTM), the CNN 

makes use of four convolutional layers and four pooling 

layers to do the same thing. After that, a link is established 

between the two next levels. They managed to get an AUC 

of 0.96 despite dealing with a rather small dataset. 

For the purpose of extracting n-grams, Ding et al. [19] made 

use of the operational codes. Those who used the DBN were 

not privy to all three of its layers. There are a total of 10,000 

files in the dataset; 3,000 were safe, 3,000 were harmful, and 

3,000 were not categorized in any way. When compared to 

other DBNs, the top performer achieved a 96.7% success 

rate in accuracy. 

McLaughlin et al. [20] successfully developed a detector 

using the opcodes present in malware files without resorting 

to feature selection or engineering. A CNN that was used to 

process the raw opcode data. An embedding layer came 

first, and then each of the other layers. Precision was 

between 99% and 27%, recall was between 95% and 85%, 

and F1 scores varied from 97% to 78%, depending on the 

dataset.  

When working with software binaries, Saxe and Berlin [21] 

transformed them into 2D entropy histograms [22]. The 

software did not necessitate any form of filtering, 

unpacking, or categorizing on the user part to accomplish 

this. Common DNN was trained with these features as 

inputs so that it could classify. Incorporating these 

characteristics allows you to train a neural network with four 

layers, a sigmoid activation function. 

The likelihood that a given file includes malicious code was 

subsequently evaluated using a Bayesian calibration model 

developed by Saxe and Berlin [21]. Since it is not 

reasonable to assume that the classifier has a normal 

distribution, we utilize a prior on the ratio of dangerous 

software to benign software and the error rate of the deep 

neural network (DNN) to estimate the kernel density. They 

claim a 95% detection rate and a false positive rate (FPR) of 

0.1%; both of these numbers are within acceptable ranges. 

II. PROPOSED METHOD 

In this section, we use unsupervised autoencoders for feature 

extraction and classification of features in an unsupervised 

manner. In case of large-scale networks, the classification is 

carried out based on the network logs to classify the 

malwares.  

An autoencoder takes a vector as input, and the goal of the 

network is to produce an output that is a perfect 

representation of the vector. Both directions will work for 

this purpose. These neural networks are extremely flexible 

because of their capacity to learn unsupervised compression 

encoding. They can also be trained incrementally, layer by 

layer, which drastically reduces the computer resources 

needed to produce an accurate model.  

The network encoding example shown in Figure 3 is one 

such network. The hidden layers of this network have fewer 

dimensions than the exposed ones at the input and output 

levels. Denoising autoencoders are trained to reconstruct the 

original input from a noisy one by removing noise from the 

original input. Due to this, they are more reliable than 

standard autoencoders. This method has been shown to be 

more flexible and dependable than conventional 

autoencoders. Some have seen parallels between the two.  
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Figure 2: Deep Auto encoder 

1.1. Deep Auto Encoders 

Figure 2 illustrates that an auto-encoder is a neural network 

model that functions by making an effort to produce outputs 

that are identical to the inputs it gets. This ensures that the 

model predictions are as accurate as possible. The data that 

is fed into a basic auto-encoder and the data that is output 

from the auto-encoder both encounter some kind of change 

during the process of encoding and decoding. This is 

because encoding and decoding are both processes that 

involve transformation of data. The data that is being input 

is converted into encoded data by the encoder component. 

The encoded data can then be used. The data that has been 

encoded is then taken by the decoder component and used to 

recreate the data that is being created. Auto-encoders are 

useful tools that allow users to properly replicate input data 

using reduced-dimensional features in a way that is both 

efficient and quick. 

An auto-encoder has a two constituent parts, which are 

known respectively as an encoder and a decoder. The Figure 

1 makes it clear that the variable x stands for the data source, 

y for the encoded data, and x’ for the decoded data. This 

information may be found by looking at the graphic. In 

order to carry out their respective mapping processes, the 

encoder function (g) and the decoder function (h) both make 

the assumption that the gap between the data that was input 

and the data that was output is suitably narrow.  

It is possible to use the backpropagation method in an 

unsupervised learning scenario with a neural network if the 

desired outputs of an auto-encoder neural network with 

equal inputs. Setting the desired outputs of an auto-encoder 

neural network to be equal to the network inputs. As can be 

seen in Figure 1, an auto-encoder is able to be disassembled 

into its primary components, which can be considered its 

building blocks. There are three main components that make 

up the structure: the input, the hidden, and the output layer. 

In order to find a representation of the inputs that is shared 

by the networks, AE are employed extensively in DNN. 

Encoder and decoder are the two distinct components of the 

system that may be distinguished from one another. 

The model only contains a single input layer, a single hidden 

layer, and a single output layer. There are a total of eight 

nodes in the network, with four located in the input layer, 

two located in the hidden layer, and four located in the 

output layer. It is essential to remember that the +1 nodes 

represent the bias of each individual node in the network. 

Encoder  

In the event that an input of the form x∈Rn is provided, the 

value h(x) will be used to represent the hidden layer (x). 

h(x)=f(W(1)x+b(1)) 

where  

f(⋅) - activation function.  

The study uses logistic sigmoid function as the activation 

function and it is represented as: 

f(x)=1/(1+exp(−x))  

Decoder  

The reconstructed value x’ corresponds exactly to the 

representation h(x) of the topmost layer, which is. 

X’=f(W(2)h(x)+b(2)) 

where  

W(2)∈Rn×m - output weight matrix,  

b(2)∈Rn - output bias vector. 

The reconstruction error, denoted by the symbol D(x,x’), is 

defined as follows for any given set x of input data: 

D(x,x’)=∑∥x−x’∥2.  

A model of auto-encoding that is capable of deep learning 

and has the capability to do so. The notation h1, h2, etc., 

hm1, and hm represent the characteristics that are recovered 

by each auto-encoder. hm stands for high-order mode. The 

raw data is what is fed into the first DAE while the extracted 

feature by the AE came before it is what is fed into the auto-

encoders that follow it in succession. 

The network is typically trained using the batch gradient 

descent method, which is an approach that we have 

encountered in the past and which helps limit the number of 

mistakes that can occur during reconstruction. 

If the dimension of the input is more than the size of the 

hidden layers, then this is the result. The name spatial auto-

encoders is the one that is most commonly used to refer to 
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this specific category of AE. Following that, the cost 

function can be finished as follows: 

L(W,b) = 0.5λ∑∥W(l)∥2+βKL(ρ∥ρ’) + 2n-1∥hW,b(x)−y∥2 

where  

third term - sparsity regularization term and  

β - sparsity penalty parameter.  

KL(ρ∥ρ’) - relative entropy  

ρ - sparsity parameter and  

ρ’ - mean hidden node activation using parameters b and W.  

Deep auto-encoders 

Once upon a time, it was thought that neural networks 

consisting of only three layers were examples of shallow 

learning networks. The levels in question were input, 

hidden, and output respectively. The information that 

possesses obvious input characteristics lends itself 

particularly well to the operation of these networks. When 

dealing with intricate input data, however, it is reasonable to 

predict the requirement of a network that contains more 

hidden layers. Hidden layers in neural networks can, in 

practice, be understood as nonlinear changes of the layers 

that come before them. Because of this, the network is able 

to learn a more intricate structure based on the data that it is 

provided with. As a direct result of this, it is possible for us 

to end up constructing a deep auto-encoder network by 

training a very large number of auto-encoders in conjunction 

with one another.  

As can be seen in Figure 4, each consecutive auto-encoder 

uses as its input the features that were previously extracted 

by the auto-encoder that came before it. This is because each 

succeeding auto-encoder builds on the work of the auto-

encoder that came before it. Another name for this kind of 

network is stacked auto-encoders, but it also goes by a few 

other names as well. 

DAE, on the other hand, have the capability of recognizing 

characteristics that shallow structures are unable to 

recognize. Their research is focused mostly on the following 

two ideas: 

• Pre-training:  At this point, an unsupervised greedy 

training strategy is being utilized to train the deep 

neural network one layer at a time, independently. 

It is vital to bear in mind that each layer is trained 

individually, and the representation that was 

acquired by the layer that came before it is utilized 

as the input for the layer that comes after it. This is 

something that should be kept in mind at all times. 

To obtain a set of weight parameter values that are 

relatively near to what would be optimal, pre-

training is a method that can be utilized. 

• Fine-tuning: At this point, the complete deep network will 

be trained using supervised methods. The training will take 

place. The unprocessed data serves as the input for the deep 

neural network, which then generates, as its output, a 

representation that is based on what it has learned at the 

very highest level. After then, classification problems 

might be solved using this representation. There is a 

possibility that the information that was obtained from the 

input will also be found in the output. As the restored data 

corresponds to our anticipated outcome, we decided to use 

the reconstruction error as the assessment indicator for this 

particular research. 

III. RESULTS AND DISCUSSIONS 

In a binary classification competition, a model success can 

be measured in a variety of ways. There is often more than 

one name for a particular metric. Four values from the 

confusion matrix, a comparison of the computed predicted 

class to the ground truth, will serve as the basis for all of the 

assessment metrics that will be presented here. 

Accuracy: 

One way to evaluate how well an analysis performed is by 

calculating the proportion correct, often known as accuracy. 

Accuracy has less of an impact when there is a disparity 

between socioeconomic groups. 

acc=(TP+TN)/(TP+TN+FP+FN) 

Sensitivity:  

It is the fraction of items properly identified as belonging to 

class x relative to the total items in a class x, which is 

defined as the sensitivity, true positive rate, chance of 

detection, or recall. 

TPR=(TP)/(TP+FN). 

Specificity:  

The proportion of objects that could be confidently 

categorized as not X is frequently referred to as the True 

Negative Rate (TNR), 

TNR=(TN)/(TN+FP). 

 

F1 Score (F1):  

The F1 Score is the harmonic mean of the accuracy (p) and 

the false-positive rate (r). 

F1=2(p∗r)/(p+r). 
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In this specific scenario, the F-function was designed to give 

top priority to the genuine positive rate. 

To test our theory, we looked at the CTU-13 and MalRec 

datasets, which contain information about malware-induced 

network behavior. Two separate experiments were 

conducted. The next step of the study will be to utilize the 

most successful malware datasets to develop a method for 

detecting network activity. 

Table 1: Dataset Specifications 

Dataset Parameter Value 

Malrec Malware 

Recorded 

66,301 

Hashing MD5 

Network Activity PCAP form 

CTU-13 Total Recordings 13 captures or 

scenarios 

 

Our investigation made use of the C# and Python 

programming languages, as well as the Scikit-Learn module 

for Python. To conduct our research, we used a server that 

boasted 512 GB of RAM and 32 CPU cores. 

Several publicly available datasets were used during the 

preliminary testing phase. These included MalRec and CTU-

13. All MalRec reports, including the one responsible for the 

traffic spike, have been copied and added to the dataset. 

AVClass [14] and other malware labeling tools, we can 

organize samples in accordance with the families to which 

they belong. We tallied up how many samples each 

household sent in and ranked them from most to least 

prolific in order to find out which 25 families had sent in the 

most total samples.  

In the second set, there are 24,197 malware samples 

representing many different malware families. To keep it 

from being further classified, it is decided to give it its own 

distinct category. Since our objective is to discover the top 

five types of dangerous software, we have opted to analyze 

the most frequent malware families individually. This list 

was compiled through the analysis of botnet traffic and is 

based on the CTU-13 dataset. 

 

Figure 2: Accuracy 

 

Figure 3: Precision 

 

Figure 4: Recall 
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Figure 5: F-Measure 

 From the results it is seen that the proposed method has 

higher rate of accuracy, precision, recall and f-measure as in 

Figure 2-5. 

IV. CONCLUSIONS 

To identify malicious programs in massive networks, we 

create a detection approach based on deep auto encoders. 

The use of deep auto encoders as an unsupervised deep 

learning model can aid in the detection of malicious 

programs. To ensure the consistency of the model, the 

simulation is run on two independent data sets. The results 

show that the proposed strategy outperforms competing 

methods in its ability to reliably detect attacks. 
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