
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

319

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Smart City IoT Data Management with Proactive

Middleware

Vikas K Kolekar1, Meet Oswal2, Yash Wankhade3, Gayatri Shirke4, Archana Sondur5, Prajwal Wable6

1Department of Computer Engineering

Vishwakarma Institute of Information Technology

Pune, India

vikas.kolekar@viit.ac.in
2Department of Computer Engineering

Vishwakarma Institute of Information

Technology

Pune, India

meet.21911162@viit.ac.in
3Department of Computer Engineering

Vishwakarma Institute of Information Technology

Pune, India

yash.21910843@viit.ac.in
4Department of Computer Engineering

Vishwakarma Institute of Information Technology

Pune, India

gayatri.21910322@viit.ac.in

5Department of Computer Engineering

Vishwakarma Institute of Information

Technology

Pune, India

archana.21910678@viit.ac.in

6Department of Computer Engineering

Vishwakarma Institute of Information Technology

Pune, India

prajwal.21911184@viit.ac.in

Abstract— With the increased emergence of cloud-based services, users are frequently perplexed as to which cloud service to use and

whether it will be beneficial to them. The user must compare various services, which can be a time-consuming task if the user is unsure of what

they might need for their application. This paper proposes a middleware solution for storing Internet of Things (IoT) data produced by various

sensors, such as traffic, air quality, temperature, and so on, on multiple cloud service providers depending on the type of data. Standard cloud

computing technologies become insufficient to handle the data as the volume of data generated by smart city devices grows. The middleware

was created after a comparative study of various existing middleware. The middleware uses the concept of the federal cloud for the purpose of

storing data. The middleware solution described in this paper makes it easier to distribute and classify IoT data to various cloud environments

based on its type. The middleware was evaluated using a series of tests, which revealed its ability to properly manage smart city data across

multiple cloud environments. Overall, this research contributes to the development of middleware solutions that can improve the management

of IoT data in settings such as smart cities.

Keywords- cloud computing, IoT, middleware, smart city, SLA

I. INTRODUCTION

 The emergence of the Internet of Things (IoT) has led to the

generation of large volumes of data from various sensors and devices

in smart cities. This data is crucial for providing insights into urban

infrastructure and improving city services, such as transportation,

energy consumption, and public safety. However, the challenge of

managing and storing this data has become increasingly complex due

to factors such as cost, security, and data privacy.
Because of its low cost and scalability, cloud computing has

become a popular solution for data storage and management. Cloud

storage is an important service of cloud computing, which offers

storage as a service, supports different database technologies, and

allows data owners to store their data in the cloud[8]. Cloud data

storage frees data owners from the burden of maintaining an expensive

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

320

IJRITCC | May 2023, Available @ http://www.ijritcc.org

on-premise storage infrastructure and offers economies of scale

benefits[16]. In recent years cloud computing has shown huge success

as a service-oriented computing paradigm that allows easy and on-

demand network access to a shared pool of resources[7, 24].

Despite all these benefits, traditional cloud computing

solutions, on the other hand, may not offer the flexibility and

customization required for managing data, data security, performance,

and availability[9, 10]. This is where federated cloud computing can

help. Federated clouds are composed of multiple cloud providers that

work together to provide a more comprehensive solution to data

storage challenges[25]. By combining different cloud providers,

federated clouds offer more flexibility and scalability than traditional

cloud computing solutions[18,9,19,20]. This approach allows

organizations to choose the most appropriate cloud providers based on

their specific needs and requirements. There has been significant

research in federated cloud computing in recent years. Federated cloud

computing is a new paradigm in cloud computing that aims to provide

a more comprehensive and cost-effective solution for data storage

challenges. Federated clouds are composed of multiple cloud providers

that work together to provide a more comprehensive solution to data

storage challenges. The flexibility and scalability of cloud computing

are two of its most significant advantages. Middleware, cloud

brokerage, and service-level agreements are some of the solutions

proposed by researchers for federated cloud

computing. There has been extensive research on various aspects of

IoT data storage, such as data security, data privacy, and data

management. Because of the unique characteristics of IoT data, such

as its high volume, velocity, and variety, traditional cloud computing

solutions may not be suitable for managing it. As a result, new

approaches for managing and storing IoT data generated by smart cities

are required.
Some researchers have proposed solutions for managing IoT

data using federated clouds. For example, Dimitri et al. proposed a

framework for data storage and management in federated clouds[11].

Their framework provides a data placement strategy to ensure data

availability and data access time based on the user's requirements.

Similarly, Zhang et al. proposed a solution for storing and managing

IoT data in a federated cloud environment[21]. Their solution uses a

data aggregation algorithm to compress the data and reduce storage

costs.

In this research paper, we propose a middleware for the federated cloud

to store IoT data generated by smart cities. Our middleware provides a

customized Service Level Agreement (SLA)[30] to manage data

storage based on factors such as cost, bandwidth, security, and volume

preferences. By combining different cloud providers, our middleware

provides a more comprehensive and cost-effective solution for data

storage, improving efficiency and reducing costs.

The proposed middleware leverages the strengths of different cloud

providers to address the unique challenges associated with storing and

managing IoT data generated by smart cities. By providing a

customizable SLA[29], our middleware enables users to choose the

most appropriate cloud providers based on their specific needs, thereby

enhancing the efficiency and reliability of data storage.

Our middleware leverages the strengths of different cloud providers to

provide a more comprehensive and cost-effective solution for data

storage. By combining different cloud providers, our middleware can

provide better data storage and retrieval performance, as well as better

data security and data privacy.

To evaluate the effectiveness of our proposed middleware, we

conducted experiments on a smart city testbed. We measured the

performance of the middleware in terms of data storage, retrieval, and

security. The results of our experiments demonstrate the effectiveness

of our proposed middleware in storing IoT data generated by smart

cities.

The rest of the paper is organized as follows. In Section III, we provide

a detailed review of related work in federated cloud computing and IoT

data storage. In Section IV, we describe the proposed middleware and

its components. In Section V, we present the experimental setup and

results. In Section VI, we discuss the implications of our research and

future work. Finally, in Section VII, we conclude the paper with a

summary of our contributions and their significance.

II. MOTIVATION

 The rise of smart cities[27] has revolutionized urban living, making

it more efficient, sustainable, and convenient for inhabitants. Smart

cities leverage the Internet of Things (IoT) technology to collect and

transfer data from various sensors, devices, and systems, generating

vast amounts of data[26]. This data can be used to optimize city

services, such as traffic management, waste disposal, energy

distribution, public safety, and more. However, managing and

storing this data can be a challenging task due to its volume, velocity,

variety, and veracity.

One of the key challenges of managing IoT data in smart cities is

finding an efficient and cost-effective way to store and process it.

Traditional data storage solutions such as on-premise servers,

relational databases, and file systems are often inadequate for handling

the scale and complexity of IoT data. Cloud computing has emerged as

a popular solution for storing and managing IoT data, as it offers

scalability, flexibility, and pay-as-you-go pricing. However, manually

selecting cloud platforms for data storage can be a daunting task, as

each provider has its strengths and weaknesses in terms of storage

capacity, bandwidth, security, and cost.

To address these challenges, a middleware for smart city IoT data

management can be developed, which can act as a bridge between the

IoT devices and cloud storage platforms. The middleware can provide

a unified and flexible interface for IoT devices to send data to multiple

cloud providers simultaneously. This can significantly enhance the

efficiency and cost-effectiveness of data storage, as the middleware

can intelligently select the best cloud provider based on the user's

requirements and the characteristics of the data.

The motivation to create a middleware for smart city IoT data

management lies in the need for an efficient and cost-effective solution

to handle the vast amounts of data generated by IoT devices. This is

based on the frequent interaction and experience with industry-level

Software-as-a-service providers[23] With multiple sensors collecting

data at high frequency, smart cities generate enormous amounts of data

that require efficient storage and management.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

321

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Manually selecting cloud platforms for data storage can be challenging

as each provider has its strengths and weaknesses regarding storage

capacity, bandwidth, security, and cost. Therefore, a middleware that

provides different storage resources and combines different cloud

providers based on the user's requirements can significantly enhance

the efficiency and cost-effectiveness of data storage.

Furthermore, the middleware can enable users to customize Service

Level Agreements (SLAs) for different cloud providers, based on their

specific needs and preferences. SLAs can include parameters such as

cost, bandwidth, security, and volume preferences, which can be

tailored to different types of data and applications. The middleware can

manage storage on the cloud based on these customized SLAs,

ensuring that data is stored securely and efficiently while also reducing

costs.

Another advantage of using middleware for smart city IoT data

management is that it can provide a unified view of the data, regardless

of the underlying cloud storage platforms[28]. This can enable users to

access and analyze the data seamlessly, without worrying about the

technical details of the storage infrastructure. The middleware can also

provide data quality and integrity checks, ensuring that the data is

consistent and accurate.

The middleware can be designed to be modular and extensible,

allowing for easy integration with different IoT devices and cloud

providers. It can also support various data formats, protocols, and

APIs, making it compatible with different IoT applications and

platforms. The middleware can be deployed on-premises or on the

cloud, depending on the user's requirements and preferences.

In conclusion, the motivation to create a middleware for smart city IoT

data management lies in the need for an efficient, cost-effective, and

reliable solution to handle the vast amounts of data generated by IoT

devices in smart cities. The middleware can provide a unified and

flexible interface for IoT devices to send data to multiple cloud

providers simultaneously, intelligently selecting the best provider

based on customized SLAs. The middleware can also provide a unified

view of the data, data quality and integrity checks, and modular and

extensible design. Such a middleware can enable smart cities to

leverage the full potential of IoT data, making them more sustainable,

efficient, and livable.

III. RELATED WORK

 Creating a middleware for self-adaptive IoT service is difficult as

it involves many issues which need to be addressed while creating it.

The main obstacles are the domain-specific and device-specific

components required for various different applications, and it becomes

complex to handle them all for a hybrid application that uses various

kinds of devices, components, etc. A self-adaptive IoT solution is one

that can adjust its behavior and configuration automatically in response

to changes in the environment or system. This type of solution can

provide several benefits such as improved reliability, security,

scalability, and efficiency. There have been several self-adaptive

middleware frameworks introduced. The three frameworks that stand

out among them the most are TOGAF, Rainbow, and OSGi (Open

System Gateway infrastructure). The paper has proposed a solution by

Cloudization of MAPE cycle for IoT collaboration service: the domain

and device-specific components have been separated from the

implementation and they provide APIs for users to easily interact with

the system, Development of a convenient web-based interface: they

have created an interface where a user can select some implementation

from an existing list of solutions or they can even upload their own

solution, Implementation, and evaluation on a real testbed. Their study

[1] shows the proposed architecture can mitigate four different kinds

of attacks of three different layers: machine-to-machine, network, and

cloud. The paper mentions four components that can be used to extend

the performance of self-adaptive IoT solutions which are: monitoring,

analyzing, planning, and execution.

 Fogbow [2] is a middleware that works on private IaaS clouds and

is based on a membership model and plugin architecture. For any client

using private IaaS the individual utilization of resources is very

minimal and this can be increased by server consolidation because not

all the applications (clients) will peak demand for the resources at the

same time. When there is a peak load in one member then the requests

can be served by another member who has lesser utilization. The

federation of private IaaS will increase the utilization of resources by

aggregating the resources. The utilization rate by the federation will be

higher than that of using IaaS individually. A federation is created with

different private IaaS as its members. Plugins here are used for

interaction between the middleware and the cloud. Here the federation

can be created by using the same type of private IaaS or a different one.

Resources are allocated global identifiers across the system. And for

authentication of a member, the middleware should perform

authorization with a maximum number of identification techniques

used by providers.The middleware must not interfere with the existing

policies, guidelines, and structure of the private IaaS providers. The

middleware consists of various private IaaS clouds which are the

members and will have a membership manager each and there is one

allocation manager in the federation. Any application (client) connects

with the allocation manager and based on availability the allocation

manager interacts with the private clouds. The clouds are inter-

accessible providing instances from one cloud to be accessible from

another cloud. The clients can get details about resources consumed

and resources available in the federation. Each federation member has

their own policies defined. And the communication between members

& allocation manager, authorization, and other management is carried

out by plugins by keeping the policies and security of private clouds in

mind.

 A successful cloud database management system should be able to

achieve certain goals such as availability, multi-tenancy, security, load

balancing, and fault tolerance. Bashir Alam et al. proposes a 5-layered

architecture of a Cloud Database Management [3] System typically

includes the following layers:

● Client Layer: This layer is the outermost layer with which the user

interacts. It is responsible for verifying a user. It contains the

APIs to interact with the system. This layer generates the output

a user wants for a particular issue. Security and transparency are

important at this layer of the system.

● Middleware Layer: It acts as a layer between the client layer and the

database layer. It is responsible for the authentication and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

322

IJRITCC | May 2023, Available @ http://www.ijritcc.org

authorization of the user. It can be used for scalability and

improvement of the system

● Database layer: This layer includes the database management

software and the databases themselves. This layer is responsible

for managing the data, ensuring data consistency, and providing

data access services. This layer consists of programming

techniques, query optimization, and processing, and security.

The problem with this layer is finding a suitable database

solution and query language for the application.

● Physical middleware Layer: This layer contains the operating

system and it should ensure that the application is running

smoothly and the way it is intended to work on all machines.

● Physical Layer: This layer includes the physical hardware and

network infrastructure that support the cloud database. This

layer provides the resources that are needed to run the cloud

database, such as computing power, storage, and network

connectivity. It is responsible for monitoring, scalability, and

resource allocation.

 Persist [4] is a middleware that allows multi-tenant SaaS

applications to use more than one database or storage system according

to their requirements. It combines public, private, and on-premise

cloud storage to form a single platform for federated cloud storage.

This system reduces the complexity of cloud storage by externalizing

it. The storage management is done based on the SLA files of every

tenant. Additional configuration files are provided by tenants to store

the data dynamically based on their preferences. It allows tenants to

design or reconfigure policies at runtime based on their confidentiality,

privacy, and other needs. This system gives a performance overhead

over other federated cloud storages and implements complex policies

which are cost and performance efficient. Various SaaS applications

have multiple storage needs based on the data. Configurations/policies

provided by the tenant are overridden by the one pre-defined by the

system/application. Data migration or switching between providers is

done based on availability, performance, cost, and other factors. API

abstraction is provided to hide the complexity of architecture and show

only the required information. The future scope of this system is to

support more dynamic properties at runtime and also provide static

policies based on different providers.

 The research paper [5] proposes a policy-driven data management

middleware for multi-cloud storage in multi-tenant Software-as-a-

Service (SaaS) applications. In such applications, data is distributed

and replicated over multiple cloud storage systems, which differ in

terms of supported data models, development APIs, performance,

scalability, availability, and durability. The proposed middleware

makes abstraction of multiple cloud storage technologies and providers

follow a policy-driven approach for making data placement decisions.

It also provides tenant customization support, allowing tenants to

define storage configurations and data storage policies. The prototype

implementation of the middleware is validated and evaluated in the

context of a realistic multi-cloud SaaS application, with performance

benchmark results indicating that the benefits of the proposed

middleware can be achieved with acceptable overhead. The paper

highlights the challenges of managing a multi-cloud storage

architecture in practice and explains how the proposed middleware

addresses these challenges. The paper also discusses the benefits of

using a combination of different cloud storage technologies and

providers, in contrast to relying on a single provider, which comes with

the risks of technology, provider or vendor lock-in, and concerns about

provider reliability, availability, scalability, and performance

guarantees. The proposed middleware can enable cloud providers to

leverage the benefits of a multi-cloud setup while addressing the

complexity of configuring and operating it, by making abstraction of

different cloud storage technologies and providers and allowing for

tenant customization.

 Nebula [6], a middleware can query several relational databases.

Reasons that nebula’s approach is faster and less expensive. The

creation of Nebula was inspired by the historical query decomposition

technique and work on multi-objective query optimization. Their

quoting procedure starts by decomposing a multi-cloud query Q into a

directed acyclic graph (DAG) GQ = <V, E>: each vertex v ∈ V models

a sub-query involving a maximal amount of clauses for a given

combination of providers; each directed edge e ∈ E represents

dependencies between sub-queries. The paper states that to overcome

the inherent limits of the exhaustive search, moving towards

integration of reinforcement learning techniques to solve the Join

Order Problem could be an inspiration. Transcending the relational

model to offer support for heterogeneous data sources, in order to push

the polystore systems in a multi-cloud environment, is an exciting

perspective at a time when diversity is the rule for public data.

 Densely populated cities increase energy loads, water, buildings,

public places, traffic, and more things. Smartphones, sensors, and

RFIDs are used as real-world user interfaces in smart city technologies,

which support cloud- and Internet of Things (IoT)-based applications.

The intelligence of a city describes its ability to gather all its resources,

achieve its goals, and accomplish them efficiently and smoothly. The

paper [12] addresses the convergent domain of cloud computing and

IoT for any smart city application deployment. The use of an IoT-based

framework for the healthcare system is discussed. IoT and cloud

computing together can help in digitizing patient information, which

can then be accessible to doctors or healthcare personnel anywhere in

the world. The framework helps in minimizing costs and optimize the

management process. The data transfer from one place to another will

become easy as the data will be stored on the cloud. The main challenge

lies in standardizing a large amount of data along with its management,

handling, and distribution.

 The paper [13] presents the concept of using cloud-based

intelligent car parking services in smart cities as an important

application of the Internet of Things (IoT) paradigm. The various

issues faced by car drivers while parking their cars are evident as the

existing car parking systems do not provide efficient services. The

application is spread across various layers such as the sensor layer

which consists of various sensors used in the system, the

communication layer, and the application layer. The various car

parking areas are identified. A middleware is developed for university

campuses and describes various software solutions to provide the 'best'

car parking service experience to their users.

 For end-to-end cloud-fog communications involving smart

devices and cloud-hosted apps, the paper introduces flexible IoT

security middleware. The middleware [14] is made to function with

devices that have limited computational, memory, energy, and network

bandwidth as well as intermittent network access. The "Optimal

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

323

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Scheme Decider" algorithm allows the middleware to choose the best

end-to-end security scheme option that fits with a given set of device

constraints, and the "Session Resumption" algorithm is used to reuse

encrypted sessions from the recent past. By utilizing static pre-shared

keys (PSKs), the middleware implementation also offers quick and

resource-conscious security for a variety of IoT-based application

requirements that require a choice between better security and faster

data transfer rates.

 The solution [15] for Big Data management in PaaS Cloud

federation allows providers to benefit from SQL-like advantages and

develop efficient services without divesting their legacy systems. It

requires a two-layer hierarchy of storage, with each Cloud storing data

in its own local SQL-like DB and a Global XML-like NO-SQL

distributed database spread over all the Cloud providers. The proposed

two-layer architecture improves the scalability of the data access

service and reduces the amount of data available in the federation. To

enable the PaaS federation, each Cloud system must include five

components: a Middleware, a Sensor Observation Service (SOS)

Agent, a local DB, and a Global DB. The two-layer architecture for

IoT in Cloud federation enables clients to gather and deliver sensed

data according to two approaches: on-demand interaction and event-

based interactions. The event-based interaction is supported by the

SAS Agent and provides sensed data to the client according to a

publish-subscribe model. Data can be classified in Subscription

Offerings according to different features, such as type of observation,

covered area, monitoring device, and so on. The main concept of

Offering ID is introduced by the SWE specifications and the

management of such identifiers is out of the scope of this paper. The

Global DB and MOM allow federated Clouds to build up a

communication system based on message exchange.

 Cloud storage services for cloud data storage are generally priced

on two factors: how much data is to be stored and for how long. Cloud

service providers are vulnerable to various threats, such as Denial of

Service attacks and single point of failure. Availability of data is also

affected if the cloud service provider runs out of business. The three

clients (C1, C2, and C3) who saved their data on three distinct service

providers (CSP1, CSP2, and CSP3) are the most crucial information in

this article [17]. If a failure occurs at CSP1, all C1's data which was

stored on CSP1's servers will be lost and cannot be retrieved. To ensure

better availability of their data, the user will seek to store their data at

multiple service providers to ensure better availability. Colluding

cloud service providers are also a threat, as they may collude together

to reconstruct and access the user-stored data. The authors provide the

idea of distributing the data among two storage clouds such that an

adversary cannot retrieve the contents of the data without having

access to both storage clouds. This scenario is passive, as the cloud

user cannot detect that their information has been collectively retrieved

from the service providers without their consent.

 CYCLONE [22] is an open-source middleware stack that

simplifies the deployment and administration of cloud-based

applications across multiple cloud platforms. It consists of a

deployment manager, functional identity federation, and a network

manager to manage software-defined networks, application

deployment and management, and authentication and authorization

based on federated identities. The middleware aims to simplify access

for institutional users and assist DevOps teams in resolving issues in

multi-cloud environments. The bioinformatics use case demonstrates

the potential benefits of using CYCLONE from a single virtual

machine installation to a multi-cloud infrastructure for cutting-edge

genomic resources.

IV. PROPOSED MODEL

 Dynamically adapting the system behavior requires an architecture

that provides active cloud SLA processing capabilities and supports

SLA updates at run-time. Figure 1 presents the overall architecture

which consists of i) the User Layer, ii) the IoT system Layer iii)

Frontend Application Layer, iv) Middleware Layer, and v) Cloud

Layer. The User Layer represents different departments of the smart

city. The IoT system layer represents the IoT systems that are in the

Smart City. These IoT systems collect data and send it to the

middleware using API.

The Frontend Application Layer takes the User SLA configuration and

sends it to the middleware for further operations.

The Cloud Layer provides a uniform API which underneath consists of

several database-specific drivers for different backend storage systems

operating at different cloud storage providers. However, the core of the

middleware and focus of this is the Middleware Layer which is

described in detail in the rest of this section. We mainly focus on the

roles of different components of the Middleware layer and how they

efficiently manage the middleware operations.

The Middleware layer provides cloud selection and adaptation

capabilities for responding to changes at run time and meeting different

SLA requirements specified by each user. The layer comprises seven

components: i) Data Access Component, ii) User SLA Management,

iii) Cloud Management, iv) Cloud SLA Management, v) Deploy

Monitoring, vi) Update Management, and vii) Deploy Scripts. This

section further discusses the role of each component of the middleware

layer with respect to the scenarios discussed below.

The Data Access Component (DAC) is responsible for getting the

data files that are provided by the IOT system. The API through which

the data is transferred to the DAC also carries the SLA ID. Through

this ID Data Access Component can get the SLA details from the User

SLA Management Component. These details contain the Cloud ID to

which the data is to be stored. After getting the Cloud ID, the DAC gets

the Cloud details from Cloud SLA Management components like cloud

domain (e.g. AWS, IPFS) and cloud name (e.g. S3 standard). The

DAC sends the Cloud and data file information to the Upload

Monitoring Component. After the data is stored in the cloud the URL

to the data is returned to DAC. This URL is saved in user logs with the

date of data storage and the data file’s original name. This is done so

that in case the user needs to access the files at any given point, it can

be fetched and provided to the user in the minimum time possible.

The User SLA Management Component (USM) is responsible to

collect the user specifications. This contains the features the user

requires and the minimum quality of the features (e.g. let's say a user

requires high security for his data, but as the data quantity is little the

need for storage capacity is very low). Table 2 shows an example of

user requirements for security, storage capacity needed, and cloud

Access needed. After getting the user requirements the information is

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

324

IJRITCC | May 2023, Available @ http://www.ijritcc.org

sent to the Cloud Filtering component where users can select the cloud

which satisfies them in features as well the service cost. After selection,

the selected cloud’s cloud id and the cost the user will need to pay to

the CSP are stored in the user SLA agreement. These details are stored

in USM. Furthermore, users can change the requirements in SLA at

any point in time and also change the CSP where the data will be

stored.

Table 1. Overview of multi-cloud scenarios and their expected adaptation

actions.

Scenarios Actions

1 User Creates an SLA with

specifications of minimum

security, Access, and

storage size

Middleware should filter

out clouds that match the

minimum criteria and show

it to the user in sorted order

with respect to the cloud

service cost.

2 The user makes some

changes to the SLA

specification or changes the

cloud provider from CP1 to

CP2 for the SLA-specific

data storage

Middleware should change

the setting for the future

data storage request and

migrate the existing data

from CP1 to CP2.

3 Cloud Provider CP1

changes some features in

the storage service or

changes the cost of the

service

1. Middleware should

check if the changes made

in the cloud service are

above the user SLA

specifications. If they do

not satisfy user SLA

requirements, then

middleware should inform

the user about the changes

to the cloud.
2. If the cost of the service

of CP1 increases the user

should be provided with the

new cost of service.

The Cloud SLA Management Component (CSM) is responsible for

storing the Cloud SLAs. This contains the features and their quality the

CSP is providing with the cost for this service. Table 3 shows an

example of how a CSP can show its cloud features and the cost of the

service it provides. The Cloud has access to change the feature they

provide or the cost of its cloud during runtime. For this paper, we are

going to use 2 CSPs: AWS and IPFS. CSM is also responsible to notify

users of any change in the cloud SLAs. Any change in the Cloud SLA

which may affect the user will be notified (e.g. the CSP1 can fulfill the

user requirements at less cost than the user’s current CSP).

Table 2. Example of User Requirements.

Feature Requirement

Security High

Storage Capacity High (200 GB)

Access Medium (hourly bases)

Update Management Component is responsible to transfer the user

data from the original cloud to the new cloud the user has changed to.

It will fetch the data from the URL of the original CSP and transfer this

data with the cloud details like cloud domain (e.g. AWS) and cloud

name to the Deploy Monitoring component. After saving the data to

the cloud the new URL will be replaced with the previous URL from

the user logs.

Fig. 1. Middleware Architecture

Cloud Management Component (CM) is responsible to filter clouds

based on the user SLA provided by the User SLA management

component. The CM takes user requirements and gets all the cloud

SLA which can provide features required by the user or even better.

After getting all these cloud SLAs, they are sorted with respect to the

cost they charge and given to the user to select from. After the user

selects the cloud, they are most satisfied with it. The cloud SLA Id is

passed to the User SLA Management to store. If any updates occur (e.g.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

325

IJRITCC | May 2023, Available @ http://www.ijritcc.org

User decides to change SLA requirements or change CSP) the Cloud

Management component once again repeats the process of cloud

selection.

Table 3. Example of features provided by the cloud

Cloud

Service

Provider

Security Storage

Capacity
Access (Read

& Write)

AWS - S3

Standard
High 0.02 $/GB High (frequent

read and

write)

IPFS Content is

public
0.08 $ / GB Medium

(frequent read,

rear write)

Atlas High 0.25 $/ GB High (frequent

read and

write)

Microsoft

Azure

High 0.018 $/ GB High (frequent

read and

write)

Google Cloud

- Standard

High 0.02 $/GB High (frequent

read and

write)

Deploy Monitoring Component is responsible to get information

about the cloud and the data which will be stored in the said cloud.

With these details, the Deploy Monitoring component will fetch the

cloud keys (e.g. API_KEY for IPFS storage), and pass it to the Deploy

Scripts component with the files to store in the cloud. After saving the

file the URL will be fetched from the Deploy script and transferred to

the Data Access component or the Update Management component

depending upon which had sent the request to store the data

Deploy Scripts Component is responsible for storing the files in the

cloud. It uses the Keys provided by the Deploy Monitoring component

to access the cloud and store the files in the cloud with their respective

APIs. After uploading the files to the cloud. The URL received from

the cloud is returned to the Deploy Monitoring component.

The middleware has the following application flow for creating new

SLA: (see Table. 1 # 1)

➢ The web Frontend takes user inputs in an HTML form(name,

cloud requirements, etc) and sends them to MongoDB via

NodeJS. A new document is created in the database and the user

is provided with an API to connect to the IOT system.

➢ User selects a cloud from the recommended CSPs provided

based on the user requirements.

➢ The IOT system can use the API to upload files to the

middleware. The API contains the SLA ID, through which

middleware gets the details about the cloud to which the files

will be stored.

➢ After the cloud details are fetched, the files are provided to the

deploy script of the particular CSP with the required API /

credentials.

➢ The files are uploaded to the CSP, and the returned link is saved

in a map stored in the user database in addition to the date and

time of upload.

The middleware has the following application flow for fetching the

files from the cloud:

➢ The web frontend fetched the user details which contains a map

data structure that holds links to user files uploaded to the cloud.

➢ Users can filter out the files based on the file name, or upload

date.

➢ The backend fetches the files from the cloud using CSP

credentials(in case the file is protected) and passes it to the web

frontend.

➢ Users can download/view the file directly using the web

frontend.

The middleware has the following application flow in case there are

updates in the CSP features.(see Table. 1 # 3)

➢ The web frontend gets the update and passes it to the database.

The database(CSP SLA) is updated with the new information.

➢ The updates are compared with the user SLA requirements

connected to the CSP.

➢ In case a user's SLA requirements are compromised after the

update. The user is notified to change their CSP through email.

Otherwise, the user is just notified of the CSP updates.

➢ After the user changes the CSP. The data is fetched from the

original CSP and uploaded to the new CSP. The old cloud link

is replaced with the new one in the database. This process is

carried out by the middleware without any human intervention.

The middleware has the following application flow in case the user

wants to change the CSP or update the SLA. (see Table. 1 # 2)

➢ The web frontend gets the update and passes it to the database.

The database(user SLA) is updated with the new information.

➢ In case of an SLA update. The updates are compared with the

user CSP SLA. In case a user's SLA requirements are

compromised after the update. The user is notified to change

their CSP through email.

➢ If the user changes the CSP, The data is fetched from the original

CSP and uploaded to the new CSP. The old cloud link is replaced

with the new one in the database.

V. IMPLEMENTATION AND RESULTS

 The machine used in running the middleware had a processor of

Intel i3 10th gen with 3.60GHz. We implemented the above model

using the NodeJS framework. We used MongoDB to store user details,

and details of user SLAs and cloud SLAs, and to connect NodeJS and

MongoDB servers we used the Mongoose package. Other than that,

sending notifications to users about any change in cloud SLAs was

done using mail. We used the node js package nodemailer to send

automatic emails to users. This middleware was specifically designed

to take input from IoT systems, especially from IOT clusters like Smart

City, hence it can be used by multiple users of different city

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

326

IJRITCC | May 2023, Available @ http://www.ijritcc.org

departments to input their data to the cloud using a single system (e.g.

traffic data, AQI data, and Weather report data.)

Cloud SLA Schema

cloudName: String, => CSP Name

security : Number, => Feature provided by CSP

storageCapacity: Number, => Feature provided by CSP

bandwidth: Number, => Feature provided by CSP

price: Number, => Cost of Storage

cloud_id: String => Unique Id of Cloud SLA

We created four database schemas for storing user details, user SLAs,

cloud SLAs, and user logs respectively. We made it so that a single

user can create multiple SLAs. User details contained their login and

password details. When a user creates an SLA, it needs to be connected

to a cloud so that the middleware can take data files as input. When the

clouds are filtered out based on user requirements the final provisional

cost is given to the user based on how much storage he needs and at

what rate the CSP provides that much storage capacity (e.g. S3

Standard can give 200 GB of storage space for 4$). After the user

selects a cloud from the recommended clouds, it will generate an API

for that specific SLA. Users can use this API in their IOT system to

directly send files generated by the IOT system to the middleware

without any human interaction. The middleware can take multiple files

with a single API call in the format of form data and these files can be

of the same type or different (e.g., 5 CSV files uploaded together or 4

CSV and 1 JSON file together). After processing by the Data Access

component, the files will be saved to the cloud one after the other. As

a result, we will get the same number of URLs as the files uploaded.

These URLs will be saved to the user log database with the file’s

original name and the date and time at which they were uploaded for

easy access and retrieval.

User SLA Schema

dataDescription: String, => For user

security : Number, => User Requirement

storageCapacity: Number, => User Requirement

bandwidth: Number, => User Requirement

itemsStored : Number, => details of data stored on cloud

user_id : String, => Unique Id for user SLA

cloudSLA: String => unique Id of cloud the user

selected

cloudPrice: Number => Cost of storage

The whole process of accessing files from IOT to upload to the cloud

is very quick as it does not require any complex computation which

may increase the final time. We created a fronted application so that

users can access their accounts, deploy SLA, and upload Logs. If

required, users can make changes to their SLAs using the fronted

application. In case of a change in CSP, the update manager gets all the

URLs from the user Log which are related to the SLA for which the

CSP was changed. After which the update manager will fetch these

files and send them to deploy scripts via deploy monitoring to be

uploaded to the new CSP. The URLs of the new CSP will be replaced

in the user logs without any change in date or the file name so as to

maintain the user record. When a new cloud is connected to the

middleware, first its API to upload docs to the cloud is added to the

deploy scripts then the Deploy monitoring component is updated with

the cloud domain and cloud name (e.g., the domain can be AWS and

the cloud name can be the S3 Standard / S3 Glacier of the AWS S3

instance). After which the SLA provided by the CSP is added to the

database. In case the newly added SLA can give better cost for

performance to some users, these users are notified via mail with the

new SLA details. If the user decides to shift to the new CSP, he/she

can update the user SLA’s settings using the frontend application.

User Logs Schema

Log Id: String, => Unique Id of Log

User Id: String, => User Id of Log Owner

Entries: Array => All entries of file uploads to cloud

 {

 file name: String, => File Name

 URL: String, => URL of uploaded file

 date: Date, => Date to upload

 SLA Id: String => SLA id through which file was

 uploaded

}

For this paper, we used mainly 5 types of clouds: Amazon Web

Service, IPFS decentralized Storage, Atlas Cloud, Microsoft Azure,

and Google Cloud. For testing the middleware, we uploaded 5 CSV

documents to each cloud and tested the time taken by each cloud to

store the data on the cloud.

Figure 2 shows an example of CSV upload to the AWS S3 bucket,

Figure 3 shows the average time to fetch URL from the cloud. Fetching

files from IoT System API took approx. 20ms and storing cloud URLs

to the database and some database write operations took approx. 38ms.

When trying to upload to AWS the total time from accessing data to

storing it on the cloud took approx. 2.5 seconds (Figure 4 shows the

time needed to upload 5 CSV to Different Clouds). For AWS we used

aws-sdk[31] npm package to access the cloud. Fetching the file from

the AWS cloud URL took an average of 1 second.

Fig. 2. Upload CSV to AWS S3 Standard

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

327

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Fig. 3. Average time to fetch a file from the cloud

Fig. 4. Time needed to upload CSV

IPFS took pprox.. 38 seconds total time to upload 5 files to IPFS

storage. For IPFS we used nft.storage gateway[32] to access the

decentralized cloud. Fetching the file from the IPFS cloud URL took

an average of 9 seconds.

Atlas Cloud took pprox.. 7 seconds total time to upload 5 files to

Atlas. For Atlas, we used MongoDB GridFS[33] to store files to the

cloud. Fetching the file from the Atlas cloud URL took an average of

2.5 seconds.

Microsoft Azure Cloud took pprox.. 3 seconds total time to upload 5

files to Atlas. For Azure, we used the azure -storage-blob[34] npm

package to store files in the cloud. Fetching the file from the Azure

cloud URL took an average of 1 second.

Google Cloud took pprox.. 3 seconds total time to upload 5 files to

GC. For Google, we used the @google-cloud/storage[35] npm package

to store files in the cloud. Fetching the file from the Google Cloud URL

took an average of 1 second.

Table 4 compares the time needed to store 5 CSV in the cloud. The

retrieval time for clouds was pprox.. same which was in milliseconds.

For security, AWS has options to allow reading or writing on the file.

But on the IPFS cloud anybody who has the CID of the file can access

the file without any permissions, but writing to the file is impossible.

Table 4: Comparison of storage time on Different Clouds

Cloud Service

Provider
Data Access time

from Cloud
Upload To Cloud

(5 CSVs)

AWS S3 Standard ~ 1 sec ~2.5 sec

IPFS (nft.storage) ~ 9 sec ~37 sec

Atlas ~ 2.5 sec ~6 sec

Microsoft Azure ~ 1 sec ~ 3 sec

Google Cloud -

Standard

~ 1 sec ~ 3 sec

VI. CONCLUSION

 This study looked at how the IoT industry might use government

clouds, with a focus on the smart city sector. The study shed light on

the capabilities of this technology by investigating the benefits of using

federal clouds and how they can be used to improve operational

efficiency and decision-making procedures. The proposed middleware

architecture has been discussed along with its seven components: Data

Access Component, User SLA Management, Cloud Management,

Cloud SLA Management, Deploy Monitoring, Update Management,

and Deploy Scripts. A comparative study of the capabilities of various

cloud service providers has been undertaken which determines the

right CSP for the user. We have analyzed the cloud service providers

based on data access time and upload time of files. The cloud service

providers used were AWS S3 standard, IPFS, MongoDB Atlas,

Microsoft Azure, and Google Cloud. As per our observations, IPFS

takes the longest time both for upload and retrieval of files whereas

AWS S3 takes the shortest time for upload and AWS S3, Azure and

Google Cloud take nearly the same amount of time for retrieval of files.

Furthermore, the proposed application eliminates the need

for technical expertise, making it accessible to a broader range of

stakeholders and simplifying the cloud decision process for non-

technical users. The results have shown the potential for a symbiotic

system that improves the capabilities of both technologies by

connecting federal clouds and IoT technology.

VII. FUTURE SCOPE

The current system uses only a specific number of cloud providers. In

the future, more cloud service providers can be considered to provide

more versatile services to the user. Though now it only targets IoT

devices, in the future other kinds of applications can be also

considered, and the system can be expanded to include other systems.

Security is one of the most critical concerns for organizations that use

cloud computing. Federal Cloud Middleware has the potential to

improve security by providing a unified interface for managing

multiple cloud providers. Federal Cloud Middleware can help

organizations to scale their data storage requirements based on

demand. It can dynamically allocate resources to different clouds based

on the user's SLA, ensuring that data is always available and accessible.

AI can be used to analyze data stored in different clouds and provide

insights that can help organizations make better decisions. Federal

Cloud Middleware can enable multi-cloud analytics, allowing

organizations to analyze data stored in different clouds using a single

interface.

REFERENCES

[1] Soojin Park, Sungyong Park, (2019). ‘A cloud-based

middleware for self-adaptive IoT-collaboration services’.

Sensors 2019, 19(20), Published: 20 October 2019

[2] Abmar Barros, Francisco Brasileiro, Giovanni Farias,

Francisco Germano, Marcos Rios Nobrega, Ana C. Ribeiro,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

328

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Igor Silva, Leticia Teixeira, ‘Using Fogbow to federate private

clouds.’, January 2015.

[3] Bashir Alam, M.N. Doja, Mansaf Alam, Shweta Mongia, '5-

Layered architecture of cloud database management system',

2013 AASRI Conference

[4] Ansar Rafique, Dimitri Van Landuyt, Wouter Joosen,

'PERSIST: Policy-Based data management middleware for

multi-tenant SaaS leveraging federated cloud storage', 6

February 2018

[5] Ansar Rafique, Dimitri Van Landuyt, Bert Lagaisse, and

Wouter Joosen, 'Policy-Driven data management middleware

for multi-cloud storage in multi-tenant SaaS', 2015 IEEE/ACM

2nd International Symposium on Big Data Computing

[6] Damien T. Wojtowicz; Shaoyi Yin; Franck Morvan et al.

‘Cost-Effective dynamic optimization for multi-cloud queries’

2021

[7] Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A., ‘A review

of auto-scaling techniques for elastic applications in cloud

environments.’ J. Grid Comput. 12(4), 559–592 (2014)

[8] K. Yang and X. Jia. An efficient and secure dynamic auditing

protocol for data storage in cloud computing. IEEE

Transactions on Parallel and Distributed Systems, 24(9):1717–

1726, Sept 2013

[9] Dan Dobre, Paolo Viotti, and Marko Vukolic. Hybris: Robust

´ hybrid cloud storage. In Proceedings of the ACM Symposium

[10] Y. Singh, F. Kandah, and Weiyi Zhang. A secured costeffective

multi-cloud storage in cloud computing. In 2011 IEEE

Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pages 619–624, April 2011.

[11] “Towards an Adaptive Middleware for Efficient Multi-Cloud

Data Storage”, Ansar Rafique, Dimitri Van Landuyt, Vincent

Reniers, Wouter Joosen.

[12] Maninder Jeet Kaur and Piyush Maheshwari, 'Building smart

cities applications using IoT and cloud-based architectures',

Department of Engineering, Amity University Dubai.

[13] Zhanlin Ji, Ivan Ganchev, Máirtín O’Droma, Li Zhao and Xueji

Zhang, 'A cloud-based car parking middleware for IoT-based

smart cities: design and implementation', 25 November 2014

[14] Bidyut Mukherjeea, Songjie Wangb, Wenyi Lua, Roshan Lal

Neupanea, Daniel Dunna, Yijie Rena, Qi Sua, Prasad Calyamb,

‘Flexible IoT security middleware for end-to-end cloud-fog

communication’, Department of Electrical Engineering and

Computer Science, University of Missouri-Columbia, MO,

USA

[15] Maria Fazio, Antonio Celesti, Massimo Villari and Antonio

Puliafito, ‘The need of a hybrid storage approach for IoT in

PaaS cloud federation’ 2014

[16] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage.

In Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, CCS ’13, pages 247–

258, New York, NY, USA, 2013. ACM.

[17] Yashaswi Singh, Farah Kandah, Weiyi Zhang, ‘A secured cost-

effective multi-cloud storage in cloud computing’ IEEE

INFOCOM 2011

[18] lysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

Andre, and Paulo Sousa. Depsky: Dependable and secure ´

storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33,

November.

[19] Thanasis G. Papaioannou, Nicolas Bonvin, and Karl Aberer.

Scalia: An adaptive scheme for efficient multi-cloud storage.

In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis,

SC ’12, pages 20:1–20:10, Los Alamitos, CA, USA, 2012.

IEEE Computer Society Press.

[20] Ansar Rafique, Dimitri Van Landuyt, Bert Lagaisse, and

Wouter Joosen. Policy-driven data management middleware

for multi-cloud storage in multi-tenant saas. In 2015

IEEE/ACM 2nd International Symposium on Big Data

Computing (BDC), pages 78–84. IEEE, 2015.

[21] “Data Quality Management in the Internet of Things”, by Lina

Zhang ,Dongwon Jeong, and Sukhoon Lee

[22] Mathias Slawik, Yuri Demchenko, Fatih Turkmen, Alexy

Ilyushkin, Cees de Laat, Christophe Blanchet, Charles Loomis,

‘CYCLONE: The multi-cloud middleware stack for

application deployment and management’, 2017 IEEE 9th

International Conference on Cloud Computing Technology and

Science

[23] SeClosed. Secure, cloud-based storage and processing of

sensitive documents.

http://www.iminds.be/en/projects/SeClosed, 2016. [Last

visited on November 23, 2016].

[24] Mell, P., Grance, T., “The NIST Definition of Cloud

Computing”. February 18, 2016

[25] Bermbach, D., Klems, M., Tai, S., Michael, M. “Meta Storage:

A federated cloud storage system to manage consistency-

latency tradeoffs”. In: IEEE International Conference on Cloud

Computing (CLOUD), 2011, pp. 452– 459. IEEE (2011)

[26] M. Fazio, M. Paone, A. Puliafito, and M. Villari, “Huge

amount of heterogeneous sensed data needs the cloud,” in

International MultiConference on Systems, Signals and

Devices (SSD 2012), (Chemnitz, Germany), March, 20-23

2012.

[27] S. Dey, A. Chakraborty, S. Naskar, and P. Misra, “Smart city

surveillance: Leveraging benefits of cloud data stores,” in IEEE

37th Conference on Local Computer Networks Workshops

(LCN Workshops), pp. 868–876, 2012.

[28] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M.

Llorente, “Cloud brokering mechanisms for optimized

placement of virtual machines across multiple providers,”

Future Gener. Comput. Syst., vol. 28, no. 2, pp. 358–367, Feb.

2012. [Online]. Available:

http://dx.doi.org/10.1016/j.future.2011.07.003

[29] A. Amato and S. Venticinque, “Multi-objective decision

support for brokering of cloud sla,” in The 27th IEEE

International Conference on Advanced Information

Networking and Applications (AINA-2013). Barcelona, Spain:

IEEE Computer Society, March 25-28 2013

[30] A. Amato, B. D. Martino, and S. Venticinque, “Evaluation and

brokering of service level agreements for negotiation of cloud

infrastructures,” in ICITST, 2012, pp. 144–149

[31] “AWS SDK for JavaScript”, Available :

https://www.npmjs.com/package/aws-sdk

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6754

Article Received: 05 March 2023 Revised: 24 April 2023 Accepted: 08 May 2023

329

IJRITCC | May 2023, Available @ http://www.ijritcc.org

[32] “nft.storage”, Available

:https://www.npmjs.com/package/nft.storage

[33] “MongoDB GirdFS”, Available:

https://www.mongodb.com/docs/manual/core/gridfs/

[34] “Azure Storage Blob client library for JavaScript”, Available:

https://www.npmjs.com/package/@azure/storage-blob

[35] “Google Cloud Storage Node JS Client”, Available :

https://www.npmjs.com/package/@google-cloud/storage

http://www.ijritcc.org/

