
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

310

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Adaptive Resource Allocation in Cloud Data Centers

using Actor-Critical Deep Reinforcement Learning

for Optimized Load Balancing

M. Arvindhan1, D. Rajesh Kumar2
1School of computing science and engineering,

 Galgotias university,

Uttarpradesh, India

saroarvindmster@gmail.com

2School of computing science and engineering,

 Galgotias university,

Uttarpradesh, India

sangeraje@gmail.com

Abstract -This paper proposes a deep reinforcement learning-based actor-critic method for efficient resource allocation in cloud computing.

The proposed method uses an actor network to generate the allocation strategy and a critic network to evaluate the quality of the allocation.

The actor and critic networks are trained using a deep reinforcement learning algorithm to optimize the allocation strategy. The proposed

method is evaluated using a simulation-based experimental study, and the results show that it outperforms several existing allocation methods

in terms of resource utilization, energy efficiency and overall cost. Some algorithms for managing workloads or virtual machines have been

developed in previous works in an effort to reduce energy consumption; however, these solutions often fail to take into account the high dynamic

nature of server states and are not implemented at a sufficiently enough scale. In order to guarantee the QoS of workloads while simultaneously

lowering the computational energy consumption of physical servers, this study proposes the Actor Critic based Compute-Intensive Workload

Allocation Scheme (AC-CIWAS). AC-CIWAS captures the dynamic feature of server states in a continuous manner, and considers the influence

of different workloads on energy consumption, to accomplish logical task allocation. In order to determine how best to allocate workloads in

terms of energy efficiency, AC-CIWAS uses a Deep Reinforcement Learning (DRL)-based Actor Critic (AC) algorithm to calculate the

projected cumulative return over time. Through simulation, we see that the proposed AC-CIWAS can reduce the workload of the job scheduled

with QoS assurance by around 20% decrease compared to existing baseline allocation methods. The report also covers the ways in which the

proposed technology could be used in cloud computing and offers suggestions for future study.

Keyword— Allocation of resources, Load balancing, Deep reinforcement learning, Actor-Critic based Workload, Multi-cloud computing.

I. INTRODUCTION

Cloud computing has used reinforcement learning

(RL) algorithms for load balancing. Here are some examples

of RL algorithms that have been applied to this problem: Q-

Learning: This model-free RL algorithm learns an optimal

action-value function by iteratively updating Q-values based

on the rewards received from different states and actions. It

has been applied to the dynamic load balancing problem in

cloud computing (Li et al., 2023). Deep Reinforcement

Learning: This involves combining RL with deep neural

networks to learn more complex policies. It has been used for

load balancing in cloud computing to optimize the allocation

of virtual machines to physical servers. Actor-Critic

Methods: This class of RL algorithms combines value-based

methods (such as Q-learning) with policy-based methods

(such as policy gradient methods) to learn a policy and

estimate its value. It has been used for load balancing in cloud

computing to optimize virtual machines' allocation to servers

and minimize energy consumption. Priority-based

scheduling: This approach involves assigning priorities to

jobs based on their characteristics (e.g., the resources they

require and their expected duration) and scheduling them in

order of importance. Appointments with higher priority are

designed first, and jobs with lower priority are scheduled

later. However, this simple and efficient approach may only

be optimal in some situations. Genetic algorithms: This

approach involves using a genetic algorithm to evolve a

schedule that optimizes a specific objective function (e.g.,

maximizing resource utilization and job wait times) (Liao et

al., 2023). The genetic algorithm creates a population of

schedules, evaluates their fitness based on the objective

function, and then breeds the fittest programs to develop the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

311

IJRITCC | May 2023, Available @ http://www.ijritcc.org

next generation. This approach can be practical for

optimizing complex scheduling problems but may require a

large number of iterations to converge to an optimal solution

(Tang et al., 2023)(Al-Habob et al., 2020)(Wang, Zhang, Liu,

Zhao, et al., 2022a).

1.1 Reinforcement learning with policy gradients:

This approach uses a policy gradient algorithm to

learn a policy for scheduling jobs (Liu et al., 2019). The

policy gradient algorithm works by directly optimizing the

procedure (i.e., the mapping from states to actions) using

gradient ascent on the expected reward Fig.1. This approach

can be practical for learning complex scheduling policies but

may require a large amount of training data to converge to an

optimal policy.

Ant colony optimization: This approach uses an

algorithm to find an optimal schedule. The algorithm works

by creating a population of "ants" that explore the search

space by laying pheromones that attract other ants to

promising solutions (Zhou et al., 2019)(Wang, Zhang, Liu, Li

et al., 2022). The pheromones evaporate over time, so the

algorithm converges to a solution with a high concentration

of pheromones. This approach can be practical for finding

optimal solutions to complex scheduling problems but may

require many ants to explore the search space (Wang, Zhang,

Liu, Zhao et al., 2022b; Zhou et al., 2020).

1.2 The key contributions of this paper

To characterize the cooperation between the task

scheduler and the cloud data center, we treat the problem as a

Markov Model Process (MMP) inside the framework of the

actor-critic approach. We use this strategy in a cloud resource

allocation scenario to lower computing costs under time and

resource constraints.

a) Deep Q-learning, target networks, and involvement rerun

are integrated to create a task scheduling method. They are

finding a suitable algorithm for reducing the computing

resource consumption of offloading.

b) To compare and examine how different ML-based

solutions might be used for various load-balancing tasks in

data centres.

c) Actor Critic-based Compute-Intensive Workload

Allocation Scheme implemented with various parameters

towards a cloud environment.

d) The difficulties and directions for future research related

to the present study are outlined and underlined.

1.3 The remaining of the paper is organized as follows

Section 2 presents an overview of Cloud Computing

technology with reinforcement learning technology. Section

3 explores the proposed work of this paper and gives a

detailed description of the performance of Actor Critic-based

Compute-Intensive Workload Allocation the Reinforcement

learning Section 4 describes Numerous open challenges and

future research. Lastly, we draw our conclusions and future

work.

II. LITERATURE SURVEY

However, the linear functional form used to estimate

the action-value function in the conventional actor-critic

leads to excessive variation and an erroneous policy gradient.

An advantage actor-critic was developed to address this issue

(W. Zhang et al., 2021; Zhu et al., 2022). The actor makes

decisions on what to do based on random chance, the critic

provides feedback in the form of scores, and the actor adjusts

the odds that he will choose a particular action based on those

scores. Conversely, the advantage functions can significantly

aid in reducing the policy gradient variance. When a neural

network approximates the value function or policy function

in an actor-critic method, function approximation error arises

whenever the neural network fails to capture the proper

underpinning function accurately (Jin et al., 2023; D. Zhang

et al., 2023) by modelling radio access network offloading as

a Markov Decision Process. We were able to design a

reinforcement learning method based on a double-deep Q-

network. They turned to a profound neural network-based

amount of additional to combat state-space explosion and

discover the best operational loading method on the fly. To

maximize computational dumping efficiency, the authors

propose a deep learning technique based on the State-Action-

Reward-State-Action (SARSA) framework (Serrano-

Guerrero et al., 2021). Several scheduling techniques, such as

the first-come, first-served (FCFS) algorithm and a genetic

algorithm, are compared to and contrasted with the suggested

system in simulation experiments conducted by the authors

(GA). Considering makespan (i.e. total execution time) and

resource utilization, the proposed technique is superior to the

competing algorithms. Suggest that function approximation

error can cause instability and poor performance in actor-

critic methods, particularly in high-dimensional or

continuous action spaces (Niu et al., 2021; Sankalp et al.,

2022; Tang et al., 2023). To address this, they propose an

algorithm called Twin Delayed Deep Deterministic (TD3)

policy gradient, which utilizes three essential modifications

to improve the accuracy of the function approximation. An

actor-critic deep reinforcement learning algorithm consists of

two components: an actor that suggests resource allocation

decisions and a critic that evaluates the quality of those

decisions. The actor and critic are both implemented as neural

networks, which are trained using a combination of

supervised and reinforcement learning(Ferratti et al., 2021).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

312

IJRITCC | May 2023, Available @ http://www.ijritcc.org

The algorithm is evaluated using a simulation of a cloud data

center environment. The results show that it outperforms

traditional resource allocation algorithms regarding resource

utilization and workload completion time. The paper

concludes that the proposed approach can potentially improve

the efficiency and adaptability of resource allocation in cloud

data center (Fernandez-Gauna et al., 2022; Sun et al., 2019).

TABLE I COMPARISON OF VARIOUS REINFORCEMENT ALGORITHM TYPES AND ITS CHARACTERISTICS

Algorithm Type Characteristics

Multilayer

Perceptron (MLP)

Feedforward

Neural

Network

It uses backpropagation to train multiple layers of neurons for classification or regression tasks.

Convolutional

Neural Network

(CNN)

Feedforward

Neural

Network

It uses convolutional layers to extract spatial features from images, often used for image

classification tasks.

Recurrent Neural

Network (RNN)

Recurrent

Neural

Network

It uses feedback connections to maintain a "memory" of previous inputs and make predictions

based on sequence data, often used for natural language processing tasks.

Long Short-Term

Memory (LSTM)

Recurrent

Neural

Network

A type of RNN that includes a gating mechanism to selectively remember or forget previous

inputs, often used for time series prediction and natural language processing tasks.

Autoencoder Unsupervised

Learning

It uses a neural network to compress and reconstruct input data, often used for dimensionality

reduction and anomaly detection.

Generative

Adversarial Network

(GAN)

Unsupervised

Learning

It uses two neural networks to generate synthetic data indistinguishable from accurate data, often

used for image and text generation.

Deep Belief

Network (DBN)

Unsupervised

Learning

They comprise multiple layers of restricted Boltzmann machines (RBMs), used for unsupervised

feature learning and generative tasks.

Reinforcement

Learning

Reinforcement

Learning

It uses trial-and-error learning to optimise a policy for an agent in an environment, often used for

game-playing and robotics tasks.

Table I describes Gradient Boosting Machine

(GBM) Ensemble Learning that Combines multiple decision

trees to improve the performance of a model, often used for

regression and classification tasks. Random Forest Ensemble

Learning Combines various decision trees and selects

features randomly to improve the performance of a model,

often used for regression and classification tasks. K-Means

Clustering Unsupervised Learning Partitions data into K

clusters based on similarity, often used for data segmentation

and anomaly detection tasks. Support Vector Machine (SVM)

Supervised Learning Maximizes the margin between

different classes to classify data, often used for classification

and regression tasks. Naive Bayes Classifier Supervised

Learning Uses Bayes' theorem to calculate the probability of

each category based on the input features, often used for

classification tasks. K-Nearest Neighbors (KNN) Supervised

Learning Classifies data based on the K nearest data points in

the feature space, often used for classification and regression

tasks.

III. PROPOSED WORK

The proposed approach uses deep reinforcement

learning to learn an optimal resource allocation policy based

on the current workload and resource availability. an actor-

critic deep reinforcement learning algorithm consists of two

components: an actor that suggests resource allocation

decisions and a critic that evaluates the quality of those

decisions Fig.2. The actor and critic are both implemented as

neural networks, which are trained using a combination of

supervised and reinforcement learning.

The algorithm is evaluated using a simulation of a

cloud data centre environment. The results show that it

outperforms traditional resource allocation algorithms

regarding resource utilization and workload completion time.

The optimal Q-value for a state-action pair (f_t, l_t) is equal

to the expected sum of the immediate reward (RX_t+1) and

the discounted value of the maximum Q-value of the

following state (f_t+1) and all possible actions (l_t+1) that

can be taken from it, where the discount factor (α) determines

the weight given to future rewards:

𝑄 ∗ (f_t, l_t) = ∑ [Rx_t + 1 + β max_l_t + 1 Q ∗ (f_t +

1, l_t + 1) | f_t, l_t] (1)

 known as the Bellman equation for the optimal Q-value in

reinforcement learning. It provides a way to recursively

compute the optimal Q-value for a given state-action pair

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

313

IJRITCC | May 2023, Available @ http://www.ijritcc.org

based on the optimal Q-values of the next state and all

possible actions that can be taken from it.

Here's a breakdown of the different components of the

equation:

In Equation .1, Q*(f_t, l_t) is the optimal Q-value

for the current state-action pair (f_t, l_t), which represents the

expected total reward that can be obtained by following the

optimal policy from this state and action onwards.Rx_t+1 is

the immediate reward obtained after action l_t in state f_t.

This is the reward received at the current time step (t+1).

α(alpha) is the discount factor, which determines the weight

given to future rewards relative to immediate rewards. It is a

value between 0 and 1, used to ensure that the agent considers

future rewards when making decisions but also considers the

uncertainty and potential delay in receiving those rewards.

max_l_t+1 Q*(f_t+1, l_t+1) is the maximum Q-value for the

next state f_t+1 and all possible actions l_t+1 that can be

taken from it Fig.3 . This represents the expected total reward

that can be obtained by following the optimal policy from the

next state and action onwards. The max operator selects the

highest Q-value, corresponding to the best possible action in

the next state according to the current policy. ∑[...] is the

expectation operator, which computes the expected value of

the expression inside the brackets, given the current state-

action pair (f_t, l_t). To summarizes, the Bellman equation

for the optimal Q-value expresses the expected total reward

for a state-action pair in terms of the immediate reward, the

maximum expected real bonus from the next state and all

possible actions that can be taken. It is a fundamental

equation in reinforcement learning, and it is used in many Q-

learning algorithms to update the Q-values and improve the

agent's policy over time. It then introduces self-adaptive

systems, which can monitor their behavior and adapt to

changing conditions to meet performance goals.

ALGORITHM 1: CALCULATION OF GRADIENT ACTOR-CRITIC RL

ALGORITHM

 Initialize actor network Va θ (s) and critic network

Dπθ (o, p) with weights and
 Initialize actors and critics learning rate γn and γm,

and TD error discount factor β
 for each training epoch n = 1, 2, ..., N do

 Receive initial state s1, where s1 =

environmental. observe()
 for each episode l = 1, 2, ..., L do

 Select action according to Su, where

 Action (at) = actor. choose action(Su)

 Execute action at, receive reward Rt and next.

 state st+1, where rt, st+1 = environmental.

step(at)
 Calculate TD error in critic, where β

 Dπθ = r + βV Dπθ (st+1) − V πθ (st)

 Calculate policy slope in actor using advantage

function, where
 J(θ) = Kπθ- logπθ(st, a)δ-πθ

 update state st = st+1

 End

 End

The algorithm uses a neural network representing the actor

policy and the critic value function.

The steps in the algorithm are as follows:

Initialise the actor network, πθ(s), and the critic network,

Qπθ(s, a), with random weights and biases. Initialise the

learning rates for the actor and critic, γa and γc, and the TD

error discount factor, β. For each training epoch, repeat the

following steps: Receive the initial state, s1, by observing the

environment. For each episode, repeat the following steps:

Select an action, at, based on the current state, st, using the

actor policy. Execute the move, at, in the environment,

receiving a reward, rt, and the next state, st+1. Next, calculate

the TD error in the critic, δπθ, using the current, action,

compensation, and next state. Next, calculate the policy

gradient in the actor, ∇θJ(θ), using the advantage function,

which is the TD error multiplied by the rise of the log of the

current action's probability in the current state. Finally,

update the current state to the next one, st = st+1. It finally

ended the training. Overall, this algorithm is designed to train

an actor-critic RL model that can learn a policy that

maximizes cumulative rewards over a sequence of states and

actions in an environment, using neural networks to

approximate the procedure and the value function. The TD

error discount factor is used to balance the tradeoff between

immediate rewards and future rewards. The policy gradient is

updated using the advantage function to incorporate

information about how much better or worse the current

policy is than the expected value. Actor-critic algorithms are

a type of reinforcement learning method used to optimise an

approach (the actor) and estimate its value (the critic)

simultaneously Fig.4. In the context of compute-intensive

load balancing in cloud computing, the goal is to allocate

computational resources (e.g., VM instances) to tasks in a

way that minimises the overall processing time and

maximises the resource utilisation while meeting certain

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

314

IJRITCC | May 2023, Available @ http://www.ijritcc.org

constraints. Here are some equations that can be used in actor-

critic algorithms for this task:

Policy updates equation:

∀𝜑 = 𝜔𝜎∀_𝜑𝑙𝑜𝑔𝜋(𝑙 𝑘

𝑔

 𝑘, 𝜑 (2)

This equation 2. updates the actor's policy weights (𝜑) based

on the advantage estimate (𝜎) and the log probability of

selecting the action l_t in state k_t according to the policy π.

Value function update equation:

 ∀Z (l_t) = β(δ_t - V(l_t)) (3)

This equation 3. updates the critic's value function (Z) for a

state l_t based on the advantage estimate (δ_t) and a learning

rate (𝛼).

 Total reward equation .4:

𝑅𝑥 = ∑ 𝑟𝑖 𝑟_𝑖𝑎
𝑏 (4)

This equation computes the total discounted reward obtained

over a sequence of time steps, where r_i is the immediate

reward obtained at stage γ, and I am the discount factor.

Probability of acceptance:

 P𝑟𝑜𝑏𝑥 = (
1

(1+exp(−𝑓))
) (5)

This equation 5. computes the probability of accepting a task

assignment by a VM instance, where x is a weighted sum of

features that capture the suitability of the example for the

task.

Resource utilization equation:6

𝑍 = ∑ 𝑎/(𝑚 ∗ 𝑍_𝑚𝑎𝑥) 𝑎
𝑏−1 (6)

This equation computes the resource utilization of a cloud

system, where a_i is the utilization of resource I, b is the total

number of resources, and Z_max is the maximum utilization.

These equations are just a few examples of the many possible

formulas used in actor-critic algorithms for compute-

intensive load balancing in cloud computing. The specific

equations and their parameters can vary depending on the task

details and algorithm.

IV. PERFORMANCE MATRIX SET UP IN A CLOUD

ENVIRONMENT

4.1. Simulation Environment

Cloud sim, a java-based cloud simulation tool, is

used to generate and set up a cloud environment in which the

efficacy of the suggested method may be assessed. The

suggested deep reinforcement learning technique is

implemented in Python and used in a Cloud sim-generated

cloud environment. When creating user tasks, we referred to

Google's task events dataset. Four Virtual Machines, each

with 16 GB of RAM and one terabyte of storage, were used

in our simulations. Execution of a task on a virtual machine

requires anything from 5 GB to 100 GB of storage space. We

create nine user tasks using the Google Task Events dataset.

The initial batch of charges is scheduled randomly, and each

virtual machine's performance is evaluated so that

reinforcement learning can learn about its surroundings

through exploration. The average computing efficiency of

each virtual machine is computed in terms of Megabytes per

second based on the simulation results obtained after

implementing random scheduling. We used four virtual

machines and divided the rewards we could provide them into

four categories. It's worth +2 if the most powerful virtual

machine is used to perform the computation. The action

receives a plus one when it assigns the assignment to the

second-best virtual machine. A -2 penalty is applied to the

operation if the user's task is handed to the least efficient VM.

A -1 penalty is applied if the action opts for the virtual

machine (VM) with the third-fastest computing capability. In

the proposed deep reinforcement learning-based scheduling,

an effort that gives a VM a task to do is rewarded. As a result,

incentives are given to virtual machines. The scheduling

procedure is non-preemptive since rewards and penalties are

associated with the decision to use a virtual machine rather

than the task itself.

TABLE.II PERFORMANCE METRICS VALUES MEASURED WITH AN AVERAGE LOAD OF JOB SCHEDULED IN EQUAL

INTERVALS OF TIME

Algorithm Response Time CPU Utilisation Throughput Task Completion Time (ms)

GA 350.0 0.061 0.078 0.075

DSOS 352.1 0.052 0.065 0.062

MSDE 421.0 0.051 0.059 0.051

PSO 450.23 0.480 0.490 0.056

WOW 520.3 0.490 0.491 0.561

DQL 572.592 0.451 0.4386 0.495

ACD-RL 510 0.445 0.4275 0.470

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

315

IJRITCC | May 2023, Available @ http://www.ijritcc.org

4.2. Simulation Results

Table-II compares different algorithms'

performance for some tasks related to resource allocation in

a cloud computing environment. The table includes four

metrics: response time, CPU utilization, throughput, and task

completion time (in milliseconds). The compared algorithms

are GA, DSOS, MSDE, PSO, WOA, DQL, and ACD-RL.

Based on the numbers in the table, it seems that GA and

DSOS have the lowest response times, with GA having the

most down response time of 350.0 ms. Regarding CPU

utilization, WOA has the highest value of 0.490, while PSO

and DQL have the highest throughput values of 0.490 and

0.4386, respectively. Task completion time is relatively low

for most algorithms, with MSDE having the lowest value of

0.051 ms. ACD-RL performs relatively well compared to the

other algorithms, with a response time of 510 ms, CPU

utilization of 0.445, a throughput of 0.4275, and a task

completion time of 0.470 ms. Table.2

V. CONCLUSION AND FUTURE SCOPE

The proposed scheme aims to minimize the total

execution time of tasks by effectively allocating resources

and balancing workloads across different servers. Soon, we'll

be adding a priority order into the mix by expanding the

proposed model. It's necessary to rethink the state space,

action space, and reward function in light of the tasks' relative

importance. Algorithms can be trained to learn scheduling

policies that consider the priority order of the jobs, such as by

observing the effects of planning high-priority careers on the

rewards they receive. The performance of the proposed ACL-

RL agent is much better than that of the other six algorithms.

Then, again for the four components we looked at, the overall

system cost of the ACL-RL agent is nearer to both the D-

Queuing algorithm and the PSO algorithm. This happens

because the task for each data is spread out evenly. The

performance of DSOS and MSDE could be better because

their search spaces get very big as the number of data

increases, which uses a lot of CPU and makes other

algorithms' performance worse in a big way. Increasing the

quantised levels makes the performance slightly better than

throughput and task completion, but not as much as the

proposed ACD-RL. The reason is that the quantization

process causes noise, making it hard for the brain to process

actions and rewards.

ACD-Rl finds the best course of action. Compared to earlier

studies, the proposed model gets 23% better results.

Regarding indexing LB values, DQL finishes 20% more than

another algorithm. With throughput having to go down by no

more than 23% compared to other algorithms and the Task

Completion Time of ACD-RI being concise on average, All

of the different algorithm values used in this experiment

showed that the response time could go up by no more than

10%. Lastly, all other algorithms can use up to 38% of the

CPU, but ACD-RI learning brings that number down to 12%.

For our future work, we will think about setting up an edge

cloud computing network system so people can work together

to do computing tasks. We will also look at how to make the

training process less complicated regarding computation and

communication. We will try to use federated learning-based

RL, which only needs live data inflow to the data center to

enter to share model parameters instead of local training data.

REFERENCE: -

[1] Al-Habob, A. A., Dobre, O. A., Armada, A. G., & Muhaidat,

S. (2020). Task scheduling for mobile edge computing using

genetic algorithm and conflict graphs. IEEE Transactions on

Vehicular Technology, 69(8), 8805–8819.

https://doi.org/10.1109/TVT.2020.2995146

[2] Fernandez-Gauna, B., Graña, M., Osa-Amilibia, J. L., &

Larrucea, X. (2022). Actor-critic continuous state

reinforcement learning for wind-turbine control robust

optimisation. Information Sciences, 591, 365–380.

https://doi.org/10.1016/J.INS.2022.01.047

[3] Ferratti, G. M., Sacomano Neto, M., & Candido, S. E. A.

(2021). Controversies in an information technology startup:

A critical actor-network analysis of the entrepreneurial

process. Technology in Society, 66, 101623.

https://doi.org/10.1016/J.TECHSOC.2021.101623

[4] Jin, W., Fu, Q., Chen, J., Wang, Y., Liu, L., Lu, Y., & Wu,

H. (2023). A novel building energy consumption prediction

method uses deep reinforcement learning considering

fluctuation points. Journal of Building Engineering, 63.

https://doi.org/10.1016/j.jobe.2022.105458

[5] Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023).

Deep reinforcement learning in smart manufacturing: A

review and prospects. CIRP Journal of Manufacturing

Science and Technology, 40, 75–101.

https://doi.org/10.1016/J.CIRPJ.2022.11.003

[6] Liao, L., Lai, Y., Yang, F., & Zeng, W. (2023). Online

computation offloading with double reinforcement learning

algorithm in mobile edge computing. Journal of Parallel and

Distributed Computing, 171, 28–39.

https://doi.org/10.1016/J.JPDC.2022.09.006

[7] Liu, Y., Wang, L., Wang, X. V., Xu, X., & Zhang, L. (2019).

Scheduling in cloud manufacturing: state-of-the-art and

research challenges. International Journal of Production

Research, 57(15–16), 4854–4879.

https://doi.org/10.1080/00207543.2018.1449978

[8] Niu, W. jing, Feng, Z. kai, Feng, B. fei, Xu, Y. shan, & Min,

Y. wu. (2021). Parallel computing and swarm intelligence-

based artificial intelligence model for multi-step-ahead

hydrological time series prediction. Sustainable Cities and

Society, 66, 102686.

https://doi.org/10.1016/J.SCS.2020.102686

[9] Sankalp, S., Sahoo, B. B., & Sahoo, S. N. (2022). Deep

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

316

IJRITCC | May 2023, Available @ http://www.ijritcc.org

learning models comparable assessment and uncertainty

analysis for diurnal temperature range (DTR) predictions

over Indian urban cities. Results in Engineering, 13.

https://doi.org/10.1016/j.rineng.2021.100326

[10] Serrano-Guerrero, X., Briceño-León, M., Clairand, J. M., &

Escrivá-Escrivá, G. (2021). A new interval prediction

methodology for short-term electric load forecasting based

on pattern recognition. Applied Energy, 297.

https://doi.org/10.1016/j.apenergy.2021.117173

[11] Sun, J., Zhu, Z., Li, H., Chai, Y., Qi, G., Wang, H., & Hu, Y.

H. (2019). An integrated critic-actor neural network for

reinforcement learning with application of DERs control in

grid frequency regulation. International Journal of Electrical

Power & Energy Systems, 111, 286–299.

https://doi.org/10.1016/J.IJEPES.2019.04.011

[12] Tang, X., Liu, Y., Deng, T., Zeng, Z., Huang, H., Wei, Q., Li,

X., & Yang, L. (2023). A job scheduling algorithm based on

parallel workload prediction on the computational grid.

Journal of Parallel and Distributed Computing, 171, 88–97.

https://doi.org/10.1016/j.jpdc.2022.09.007

[13] Wang, X., Zhang, L., Liu, Y., Li, F., Chen, Z., Zhao, C., &

Bai, T. (2022). Dynamic scheduling of tasks in cloud

manufacturing with multi-agent reinforcement learning.

Journal of Manufacturing Systems, 65, 130–145.

https://doi.org/10.1016/J.JMSY.2022.08.004

[14] Wang, X., Zhang, L., Liu, Y., Zhao, C., & Wang, K. (2022a).

Solving task scheduling problems in cloud manufacturing via

attention mechanism and deep reinforcement learning.

Journal of Manufacturing Systems, 65, 452–468.

https://doi.org/10.1016/J.JMSY.2022.08.013

[15] Wang, X., Zhang, L., Liu, Y., Zhao, C., & Wang, K. (2022b).

Solving task scheduling problems in cloud manufacturing via

attention mechanism and deep reinforcement learning.

Journal of Manufacturing Systems, 65, 452–468.

https://doi.org/10.1016/j.jmsy.2022.08.013

[16] Zhang, D., Wang, S., Liang, Y., & Du, Z. (2023). A novel

combined model for probabilistic load forecasting based on

deep learning and improved optimiser. Energy, 264.

https://doi.org/10.1016/j.energy.2022.126172

[17] Zhang, W., Chen, Q., Yan, J., Zhang, S., & Xu, J. (2021). A

novel asynchronous deep reinforcement learning model with

adaptive early forecasting method and reward incentive

mechanism for short-term load forecasting. Energy, 236,

121492. https://doi.org/10.1016/J.ENERGY.2021.121492

[18] Zhou, L., Zhang, L., & Fang, Y. (2020). Logistics service

scheduling with manufacturing provider selection in cloud

manufacturing. Robotics and Computer-Integrated

Manufacturing, 65.

https://doi.org/10.1016/j.rcim.2019.101914

[19] Zhou, L., Zhang, L., Ren, L., & Wang, J. (2019). Real-Time

Scheduling of Cloud Manufacturing Services Based on

Dynamic Data-Driven Simulation. IEEE Transactions on

Industrial Informatics, 15(9), 5042–5051.

https://doi.org/10.1109/TII.2019.2894111

[20] Zhu, X., Zhang, F., & Li, H. (2022). Swarm Deep

Reinforcement Learning for Robotic Manipulation. Procedia

Computer Science, 198, 472–479.

https://doi.org/10.1016/J.PROCS.2021.12.272

Figure.1 Dynamic Allocation for Job Scheduling with a Scheduler

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

317

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Figure.2 Workflow diagram of Actor-Critic based Compute load balancing allocation

Figure 3. Action based Reward policy for Actor and Critic state environment

Figure 4. Action Scheduling task for Action network-based branch environment

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023

318

IJRITCC | May 2023, Available @ http://www.ijritcc.org

99%

100%

100%

100%

GA DSOS MSDE PSO WOA DQL ACD-RL

Algorithms based on the four metrics

Algorithm Task Completion Time (ms) Algorithm Throughput

Algorithm CPU Utilization Algorithm Response Time

http://www.ijritcc.org/

