
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

223

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Controller Placement in Vehicular Networks: A

Novel Algorithm Utilizing Elite Opposition-Based

Salp Swarm and an Adaptable Approach

Sanjai Pathak1, Ashish Mani2, Mayank Sharma3, Amlan Chatterjee4

1Amity University Uttar Pradesh Noida, India

e-mail: pathak.sanjai@gmail.com
2Amity University Uttar Pradesh Noida, India

e-mail: amani@amity.edu
3Amity University Uttar Pradesh Noida, India

e-mail: msharma22@amity.edu
4California State University, Dominguez Hills, USA

e-mail: achatterjee@csudh.edu

Abstract -The rapid advancement of networking technology has enabled small devices to have communication capabilities, but the current

decentralized communication system is not ideal for heterogeneous networks like vehicular networks. The integration of routing, switching,

and decision-making capabilities in the same network device limits innovation and impedes performance in decentralized networks, especially

in vehicular networks where network topologies change frequently. To address the demands of such networks, Software-Defined Networking

(SDN) provides a promising solution that supports innovation. However, SDN's single-controller-based system may restrict the network's

operational capabilities, despite being programmable and flexible. This paper suggests two methods to tackle the complex problem of controller

placement in SDN: an adaptable approach based on OpenFlow protocol in OpenNet and an evolutionary algorithm called Elite Opposition-

Based Salp Swarm Algorithm (EO-SSA) to minimize propagation latency, load imbalance, and network resilience. Multiple controllers increase

the network's capabilities and provide fault tolerance, but their placement requires a trade-off among various objectives. The proposed methods

have been evaluated and analyzed to confirm their effectiveness. The current decentralized network system is not adequate for vehicular

networks, and SDN offers a promising solution that supports innovation and can meet the current demands of such networks.

Keywords - Salp Swarm Algorithm, Adaptive Approach, VANETs, Software Defined Network.

I. INTRODUCTION

Vehicular Networking (VANETs) refers to using wireless

communication technologies to create a network between

vehicles, infrastructure, and other devices in the transportation

system. In VANETs, each device in the network can perform

routing, decision-making, and forwarding functions, which can

help improve road safety, traffic efficiency, and driver

experience. However, this decentralized nature of VANETs

poses challenges in meeting the network requirements of

heterogeneous networks, especially in vehicular environments

where the network topology changes constantly and

communication demands are high. To address these challenges,

programmable networking, such as Software-Defined

Networking (SDN), is a promising solution providing more

flexible and efficient network management. The placement of

controllers is a crucial problem in SDN for VANETs that

involves balancing multiple objectives such as propagation

latency, network resilience, and load distribution. Swarm

intelligence algorithms, such as the Elite-opposition based Salp

Swarm Algorithm (EO-SSA), can solve this problem

effectively. Vehicular Ad-hoc Networks (VANETs) provide a

solution by relying on neighboring devices to act as forwarding

elements and maintain network connectivity, despite their

limited transmission range. However, VANETs face challenges

such as load imbalance due to their distributed nature. The

deployment of ad-hoc networks can be complex and

challenging due to their decentralization, dynamism, variability,

connectivity, reliability, and individual routing behavior. A

distributed control plane, as shown in Fig.1 [1], can be

implemented to address these challenges.

The architecture of a Software-defined network (SDN) offers

agility, flexibility, and innovation in communication technology.

It provides dynamic configurations that adapt to the changing

needs of computation networks and enables vehicular networks

to cope with their dynamic nature. SDN enhances networking

capabilities, including resource management and multiple

network applications, and extends the networking framework

http://www.ijritcc.org/
mailto:amani@amity.edu
mailto:msharma22@amity.edu
mailto:achatterjee@csudh.edu

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

224

IJRITCC | May 2023, Available @ http://www.ijritcc.org

with programmable capabilities to address the various

challenges of vehicular networks. SDN comprises three

components: application plane, data plane, and control plane, as

shown in Fig.2. The SDN controller communicates with

OpenFlow-enabled switches using the southbound interface to

make routing and switching decisions. Controller placement is a

crucial task in SDN and involves identifying controllers' optimal

number and location to achieve optimal performance. In

vehicular networks, multiple controllers are needed, and each

controller's location affects various network performance

parameters [3,8].

Figure 1. Existing Network Architecture.

Figure 2. The logical view of SDN.

Heller et al. first introduced the controller placement

problem (CPP) in Wide Area Networks (WANs) to mitigate the

transmission delay between SDN controllers and their

associated switches [2]. Their research focused on optimizing

propagation latency using an evolutionary algorithm. The

placement of SDN controllers is akin to the facility location

problem, known as NP-hard. The process of developing an

algorithm that can produce all possible solutions for controller

placement is arduous and time-consuming. It is because the

search space is extensive, and multiple search agents must be

considered when optimizing the algorithm under the

constraints. In the case of CPP, to place 𝑘 SDN controllers for

𝑛 network switches, all the feasible combinations could be

𝐶(𝑟, 𝑘) where 𝑘 < 𝑟. For example, to locate the position of 7

controllers in a 70 nodes network topology, a total of

1.19877472 E+9 feasible controller placements to obtain an

optimal placement. An evolutionary algorithm can be a viable

solution for efficiently tackling these types of cases. By

traversing a smaller subspace of the entire search space, this

algorithm can produce solutions close to the optimal solution

[4].

Based on a comprehensive literature review and an

evaluation of performance and resilience metrics, it has been

established that there is no one-size-fits-all solution for

controller placement that would be ideal for all network

requirements. However, based on the Topology and conditions

of the network, a trade-off between these metrics could be

deemed acceptable [5]. Due to the dynamic nature of vehicular

networking, an effective system must be able to manage the

addition and removal of controllers from the network.

Researchers must consider various issues during the controller

placement process, such as the limited number of controllers,

flow request distributions, and placement locations, to ensure

optimal network performance. This paper introduces a flexible

method for placing controllers in vehicular networks, where the

positioning of controllers is continuously reassessed to meet the

communication requirements of the network and ensure low

latency. The proposed method was practically implemented on

OpenNet with a POX controller, using a comprehensive

approach to controller placement. However, given the rapid

pace of change in the vehicular networking environment, there

is a need for a faster process. As mentioned, an evolutionary

algorithm is a more efficient alternative for handling such cases.

Further research into the frequency and severity of changes in

the vehicular networking environment could be interesting,

formulating the controller placement problem as a dynamic

optimization problem and solving it using an evolutionary

method with an analysis of the resulting outcomes.

 Salp Swarm Algorithm (SSA) is a meta-heuristic optimization

algorithm introduced by Mirjalili et al. in 2017. It is inspired by

the swarming behaviour of Salp in the ocean. The algorithm is

based on the idea of emulating the social behaviour of Salp to

find the optimal solution for a given problem. The algorithm has

been used for solving various optimization problems and has

shown promising results. The algorithm mimics the behaviour

of Salp swarms in which each Salp follows a set of rules for

searching food and reproducing. The algorithm uses these rules

to find the optimal solution for a given problem [6]. Like any

other meta-heuristic algorithm, in many ways, SSA works

intelligently to avoid entrapment into local optima for several

real-world applications due to the tendency to create a Salp

chain during the optimization process [4]. The complexity of

real-world applications, such as controller placement, can make

it challenging to find the global optimum using standard meta-

heuristic algorithms like SSA. Optimization must account for

multiple framework elements, including latency, load

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

225

IJRITCC | May 2023, Available @ http://www.ijritcc.org

balancing, resilience, and deployment cost, which can further

limit SSA's optimization capability. This issue is mainly due to

the actual entrapment behavior of SSA in local optima and its

poor searchability. To overcome these limitations, we introduce

EO-SSA, a new optimizer incorporating an EOL technique to

enhance SSA's optimization capability for controller placement.

This paper employs an Elite-opposition-based Learning (EOL)

technique to improve SSA's exploration and exploitation

propensity for the controller placement problem, known as a

new optimizer EO-SSA [15]. The EOL technique is a recently

developed method in computational intelligence that has

demonstrated superior performance in solving optimization

problems with a practical and cost-effective implementation.

The EOL technique generates an initial solution by utilizing the

current solution for the next generation, along with the initial

control parameters of standard SSA such as the number of

search agents and maximum generation [7]. The paper presents

several significant contributions, which are outlined below:

• The paper reviews the challenges traditional vehicular

networks face and provides a comprehensive literature

review on integrating Software-Defined Networking

(SDN) in vehicular networks. The study mainly focuses

on how SDN manages the dynamic nature of Vehicular

Ad hoc Networks (VANETs) and provides solutions to

the associated challenges.

• The paper proposes an adaptable approach for

controller placement in vehicular networking,

considering the dynamic nature of VANETs and their

varying traffic demands. Unlike fixed placement

approaches, this alterable approach aims to

continuously evaluate and adjust the placement of the

controller to ensure optimal network performance

based on current traffic conditions.

• The paper presents a sample network topology

implemented in OpenNet using OpenFlow-enabled

switches to demonstrate how the network's behavior

changes by integrating an SDN-enabled controller. The

paper considers different scenarios, such as the

dynamic addition or deletion of OpenFlow-enabled

switches or SDN controllers and the impact on the SDN

controller's performance due to network expansion.

• The paper presents an enhanced version of the standard

SSA algorithm, called EO-SSA, for solving a single-

objective controller placement problem in vehicular

networks. The objective is to minimize the latency

between the SDN controller and associated nodes, a

critical metric for ensuring efficient network

performance. EO-SSA integrates the Elite-opposition-

based Learning (EOL) technique to improve the

algorithm's exploration and exploitation capabilities

and achieve better global optimization. The proposed

approach is evaluated using a set of experiments,

demonstrating its effectiveness in optimizing the

controller placement in vehicular networks.

The paper is structured as follows: Section 2 presents a

review of related work. Section 3 proposes an alternative

approach for solving the controller placement problem in

vehicular networks using EO-SSA. Section 4 discusses the

simulation results and computational analysis conducted in a

network environment that was set up with OpenNet and the

POX controller. Then, Section 5 concludes the paper.

II. RELATED WORK

In software-defined networks (SDN), the SDN controller

plays a crucial role in managing and controlling the network by

performing low-level operations. The placement of SDN

controllers in the network is challenging, and researchers have

proposed different models to address the SDN scalability

problem. These models consider various network metrics such

as propagation latency, inter-controller latency, load imbalance,

and network resiliency to optimize controller placement and

improve network performance. Heller et al. [2] identified the

controller placement problem that includes finding the location

of controllers and the required number of controllers in respect

of network topology. Wang et al. [9] proposed a novel

architecture, i.e., software-defined internet-of vehicles (SDIV),

by adopting the SDN approach to address the limitations of

traditional networks and leveraging the separation mechanism of

control and data plane.

Hock et al. [5] introduced a framework to evaluate the

possible placements of controllers in a given network topology,

known as Pareto-based Optimal Controller-Placement (POCO).

After assessing multiple performance and resilience metrics, it

has been discovered that no single optimal controller placement

solution is suitable for all types of networks. Instead, a

compromise between these metrics is required to achieve an

optimal controller placement solution for a particular network.

Lange et al. [10] proposed an extended version of the POCO

framework to address the requirement for large-scale network

infrastructures. They employed a heuristic approach for

evaluating the framework, which is less accurate but requires

less computation time. Bari et al. [11] experimented with large-

scale WAN network deployment, where centralized network

architecture reported many network performance and scalability

issues. The study's primary goal was to dynamically select the

controller's location and configuration in the network based on

the changing network conditions. This objective aimed to

minimize the communication overhead and flow setup time.

Müller et al. [12] introduced a controller placement strategy

called the "Survivor" technique, which aims to tackle network

challenges by explicitly considering paths from different

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

226

IJRITCC | May 2023, Available @ http://www.ijritcc.org

network ranges and fault tolerance mechanisms during network

design.

Wang et al. [13] proposed a concept to partition the network

to decrease the whole latency of the network, including queuing

latency. The Clustering-based Network Partition Algorithm

(CNPA) is a method introduced in the paper to partition the

network into clusters, where a designated SDN controller

manages each cluster. The algorithm aims to reduce the

maximum end-to-end latency between the SDN controller, and

OpenFlow switches in the network. By partitioning the network

into clusters, the CNPA ensures that each cluster is optimized for

its specific traffic and load characteristics, improving network

performance.

TABLE I. SOFTWARE-DEFINED NETWORK VS. EXISTING NETWORK ARCHITECTURE

Sr. no. Parameters Software-Defined Network Existing Network

1 Monitoring and controlling the

network

More accessible due to the

decoupled control plane

Complex due tightly coupled

control plane and data plane

2 The global view of the network Centralized view due to the

controller

Distributed view

3 Network maintenance cost Lessor Higher

4 Required time to update/error or

resolve issues

Relatively easy due to centralized

network controller

implementation

Difficult and time-consuming

5 Optimal utilization of the

controller

Important It's not relevant

6 Integrity and consistency Important Not important

7 State of network and forwarding

tables

Important Important

8 Accessibility of Controller Important It's not relevant

9 Optimal utilization of resources High Less

III. FOLLOWING APPROACHES PROPOSED FOR THE

CONTROLLER PLACEMENT PROBLEM IN VANET'S

Designing a network for controller placement involves

addressing the challenge of scalability, particularly in large-

sized networks where a single controller may not be sufficient

to perform optimally. The solution to this challenge often

involves placing multiple controllers. To achieve this, designers

typically seek answers to the following questions.

• What is the estimated number of controllers required for

the network?

• Where should the controllers be placed?

• What is the maximum number of devices that can be

efficiently connected to a controller?

In addition to the considerations mentioned above, the

capacity of the controller is another crucial parameter to

consider. The issue of capacity arises in two scenarios: (1) when

the capacity of a controller is unlimited and, therefore, no

constraint, which is known as the incapacitated controller

placement problem (ICPP), and (2) when every controller has a

limited capacity due to finite resources, which is known as the

capacitated controller placement problem (CCPP). To ensure

optimal performance of SDN, it is important to use an effective

method to determine the best placement for the controller [20].

Table 1 provides a comparison between software-defined

networks and traditional networks, highlighting relevant

network parameters that should be considered when placing

controllers. It is essential to conduct a thorough network

analysis when performing controller placement. In 2012, Heller

formulated the controller placement problem as an

incapacitated CPP. It was an objective to minimize the latency

between the OpenFlow switch and the SDN controller in both

the average and worst cases as 𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛 and 𝑘 − 𝑐𝑒𝑛𝑡𝑟𝑒,

respectively. It highlights the importance of considering

network metrics when designing the controller placement

strategy.

The primary objective of solving the controller placement

problem is to determine the appropriate number of controllers,

denoted by k, needed to be placed in the network to meet the

desired network performance parameters. The average latency

between forwarding elements (S) and controller (C) can be

measured and represented as 𝜋𝑎𝑣𝑔−𝑙𝑎𝑡𝑒𝑛𝑐𝑦 in equation (1),

which is known as the optimization problem of minimum 𝑘 −

𝑚𝑒𝑑𝑖𝑎𝑛 [2].

𝜋𝑎𝑣𝑔−𝑙𝑎𝑡𝑒𝑛𝑐𝑦(C) = 1 |𝑆|⁄ ∑ min 𝑑(𝑠, 𝑐)𝑠 𝜖 𝑆 … (1)

Where 𝑑(𝑠, c) represents the shortest path from switches 𝑠 to

the associated controller 𝑐𝜖𝐶𝑖. The objective is to solve a single-

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

227

IJRITCC | May 2023, Available @ http://www.ijritcc.org

objective controller placement problem using EO-SSA to

realize the lowest latency mean.

A. An Alterable Method for The Controller Placement

Problem

SDN controllers can be used to execute routing

applications or broadcasting commands that can alter the

behavior of the network. However, relying on a single controller

to handle all network traffic can negatively impact performance.

Determining the optimal placement of a single SDN controller

within a network can be challenging as performance metrics

must be considered alongside the network topology. This can

be particularly difficult if the network topology contains

multiple areas with varying traffic levels at different times of

the day. For example, network traffic during the daytime may

primarily consist of browsing for information, while at night, it

may be used for backups and installations.

In a scenario where controllers are already implemented,

if the network experiences growth, there is currently no way to

expand it without changing the network architecture, which can

be costly and time-consuming. While some research has

focused on minimizing the cost of network expansion, other

essential concerns remain unaddressed. These include the

bandwidth of the connection between OpenFlow switches and

controllers, the processing time for flow requests at the

controller, and the latency between controllers. Addressing

these concerns is crucial for effectively planning and deploying

high-performing networks.

A reliability problem exists between the controller and

OpenFlow switch in a network domain [14]. OpenFlow

switches serve as terminal nodes in a network, while the

controller acts as a source node. Both links and nodes in the

network can be in either an active or inactive state. An active

form signifies that the node or link is functioning correctly and

is dependable, while a dormant state indicates that the node or

link is not reliable and has failed. With the given setup, the

problem involves determining the placement of 𝑘 controllers in

a network of 𝑛 OpenFlow enabled switches, where 𝑘 is less

than or equal to 𝑛. The problem is formulated based on the

graph 𝐺 (𝑉, 𝐸) of the network, where 𝑉 represents the set of

nodes, 𝑘 is the number of controllers to be placed, and 𝐸 is the

set of edges representing the connection link between nodes.

Further, we consider that there may be multiple paths

between nodes 𝑢𝜖𝑉 and 𝑣𝜖𝑉 , and we need to determine the

shortest path, denoted as 𝑑(𝑢, 𝑣) . The physical link between

node 𝑢 and node 𝑣 can be represented as (𝑢, 𝑣) . We can

represent the physical link between node 𝑢 and node 𝑣 as (𝑢, 𝑣).

To minimize network latency at the SDN controller, we opted

for connecting each switch to its closest controller through the

shortest path mechanism of the graph. Suppose there are 𝑚 paths

in a given network, and for each physical element 𝑒𝜖(𝑉 ∪ 𝐸),

the failure probability of element 𝑒 is defined as 𝑃𝑒. Without loss

of generality, we assume that a failure probability of element 𝑒

breaks the control path 𝐷𝑒 . The path loss (𝛿), which represents

the reduction in available paths due to failures, can be calculated

as a percentage equation (2).

𝛿 = 1
𝑚⁄ ∑ 𝐷𝑒𝑃𝑒 … (2)

where e ϵ (V ∪ E) and 𝑚 = 𝑛 + 𝑘 (𝑘 − 1) 2⁄ .

Figure 3. Basic Topology with 4 h, 2 s, and 1 c.

The effectiveness of the alterable approach of CPP, in which

the place of the controller is not fixed and may change based on

network dynamics, is confirmed with a sample network topology

developed in OpenNet with the POX controller, as depicted in

Fig. 3. The topology consists of four hosts and two OpenFlow

switches with an SDN controller. In the simulation, h1 pings to

the other hosts, h3, and h4, and the ping request is sent to the

network forwarding device (OpenFlow switch). As there is no

entry in the forwarding table of the switch for the 1st request on

the respective switch, it is considered a table miss request for the

controller. The controller will raise a command on receiving a

request from the switch for the switch to update the flow table

with the routing decision by the controller and the required

action to be taken by the switch. The OpenFlow switch forwards

the request to the appropriate destination, h3 and h4. Since there

is a flow entry in the forwarding table, the OpenFlow switch can

make routing decisions without contacting the SDN controller

for consecutive similar requests at the OpenFlow switch.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

228

IJRITCC | May 2023, Available @ http://www.ijritcc.org

B. An Evolutionary Algorithm (EO-SSA) Method for The

Controller Placement Problem

The SSA algorithm's ability to balance exploitation and

exploration effectively for various real-world optimization

problems makes it a compelling choice for controller placement

problems. The SSA algorithm is efficient, straightforward,

workable, easy to implement, and simple to deploy on complex

optimization problems. To further enhance the optimization

algorithm's performance in this study, an Elite-opposition-based

Learning (EOL) approach was employed. The EOL method was

applied to the EO-SSA algorithm to improve its overall

exploration ability [15] quickly. In general, Algorithm 1 shows

the execution of EO-SSA.

EO-SSA is based on the Salp Swarm Algorithm (SSA) and

includes an intelligent adjustment step to increase the algorithm's

exploration ability and decrease the likelihood of getting stuck

in local optima [15]. The fitness evaluation of the population,

which consists of the possible placements of controllers, is

performed using equation (1) to minimize the latency between

the network nodes and their associated controllers. The

intelligent adjustment in the position of Salp is performed using

equation (3) to improve the algorithm's search capabilities.

Xj+1
i = { 𝑐𝑗 ∗ ((𝑈𝑏𝑗 − 𝐿𝑏𝑗) − Xj

I) … (3)

where 𝑐𝑗 is a uniformly distributed random number in [0, 1].

Xj+1
i , an elite solution is obtained through an intelligent

adjustment with a nearby solution Xj
I in the search space. In the

first iteration, the Salp chain is built using the equation proposed

in [6]. In the subsequent iterations, the optimization process is

continued using the EO-SSA method. This intelligent

adjustment increases the exploration ability of the algorithm and

reduces the probability of being trapped in local optima.

IV. ENVIRONMENT SETUP AND RESULTS ANALYSIS

The optimal placement of an SDN controller in a network

eliminates the limitations of traditional networking, where

network operators manually support it. Controllers provide a

global view of the entire network, leading to effective resource

utilization and better network management. To implement this

approach, OpenNet, OpenFlow v.1.0, and POX as remote

controllers have been used in the proposed alterable method.

This section provides a step-by-step guide to the implementation

process, including the necessary configuration setup and

installation of required packages into the system, as outlined in

[16]. To begin with, the following standard packages need to be

installed using Linux command on Ubuntu v14.04 [17] [18]: git,

python-dev, mercurial python-setuptools git, python-pygccxml,

and python-urllib3.

A. Network Simulation Setup

The experiment's simulation was conducted on a computer

with 16 GB of RAM, an Intel® Core™ i7-3520M CPU @ 2.90

GHz, and Ubuntu v.14.04 Linux development environment. The

EO-SSA algorithm was implemented using MATLAB R2017b

in this study, with the corresponding code developed for the

alterable approach.

B. Simulation of Network Topology using OpenNet

To perform a native installation of OpenNet as a superuser

using the source code, please log in to Ubuntu v14.04, open the

terminal, and follow these steps:

• Download the OpenNet source code [18][19].

• Extract the source code and navigate to the

extracted directory.

• Run the configure script to configure the

installation.

• Run the make command to build the executable

files.

• Run the make install command to install OpenNet.

To create the network topology for the experiment, use the

MiniEdit tool, which can be found in the examples folder under

the MiniNet source code repository. To launch the MiniEdit

GUI, run the appropriate command in the terminal. Once the

MiniEdit GUI appears on the screen, which is providing the

necessary tools to develop a sample topology similar to the one

depicted in Fig. 3.

sudo examples/miniedit.py

MiniEdit is a graphical user interface (GUI) tool with an

integrated set of tool buttons on the left side of the interface.

These buttons allow users to create the Topology by placing

different components, such as hosts, OpenFlow switches, legacy

switches, legacy routers, network links, and controllers, using

the selector tool to adjust these components according to their

requirements. The simulation can be started or stopped using the

buttons provided on the MiniEdit GUI screen. The GUI provides

a convenient way for SDN developers to design and configure

network topology. It also makes it easy to debug and observe the

simulated behavior of the network.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

229

IJRITCC | May 2023, Available @ http://www.ijritcc.org

In this experiment, the SDN controller is configured as a

remote controller supporting the OpenFlow v.1.0 protocol. The

configuration is done using MiniEdit, as shown in Fig.4. To

enable the command line interface (CLI), the preference window

in MiniEdit needs to be configured accordingly. The controller

(c0) must be set as a remote controller by selecting the properties

window on the right-click menu. The emulated OpenFlow

switched network in this simulation is configured to search for

the SDN controller with the loopback IP address of 127.0.0.1

and the default OpenFlow port number of 6653 since the

network hosts are set up in running mode. This allows the SDN

controller and the emulated OpenFlow switched network to run

on a single machine.

Figure 4. Preferences and Controller Configuration Basic.

To begin the simulation in MiniEdit, the user can click on the

"Run" icon in the MiniEdit toolbar, which will display

simulation data on the console window. However, if no SDN

controller is listening, no traffic can be passed between the hosts,

resulting in an "unreachable" message when using the ping

utility. The user can run a specific command in the command

window to enable POX as a remote controller and receive dump

messages on the POX window.

sudo ~/pox/pox.py forwarding.l2_pairs info. packet_dump.

C. Examination of the Alterable Method

Based on the analysis of ping requests from h1 to h2, h3, and

h4 in Fig.5, the following observations were made:

• In the absence of the POX controller, when ping requests

were sent, none of the hosts were reachable, resulting in

no communication response being observed.

• The initial packet of 64 bytes takes longer than

subsequent packets when the POX controller is active

and listening at port 6653. It is due to the installation of

flow rules. When the ping operation is initiated from h3,

the POX controller estimates the optimal path from h1 to

h3 and installs flow rules into the forwarding tables of

OpenFlow switches s2 and s1. However, subsequent

requests do not require further communication with the

POX controller.

• If the controller goes down, communication from h1 to

h3 would still work because the OpenFlow switch has the

flow entry for this request. However,

the ping request from h1 to h2 would fail because the

OpenFlow switch does not have the forwarding rule to

direct the traffic from h1 to h2. In SDN architecture, the

controller is responsible for installing the forwarding

rules into the switches. Since the controller is down, it

cannot install the necessary forwarding rule, resulting in

the failure of the ping request.

Figure 5. Controller Window

We carried out experiments to test various scenarios depicted

in Fig.6:

• Traffic generation when the controller is not started yet.

• Starting the controller and listening to traffic on port

6653.

• Conducting ping operation from h1 to h3 with the

controller up and analyzing the results.

• Running ping operation from h1 to h3 with the

controller down and analyzing the impact.

• Conducting ping operation from h1 to h2 with the

controller down and observing the results

Figure 6. Ping h1 to h3, h2, and h4

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

230

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Based on the conducted experiments in various scenarios, the

results reveal that the OpenFlow switch does not make any

routing decisions without first consulting the SDN controller,

even on the initial request. The SDN controller is responsible for

determining the optimal path and updating the flow rules on the

OpenFlow switch. In the suggested adaptable approach, the

latency of each node is computed, and the node with the lowest

latency is chosen as the ideal location for the controller. If the

calculated latency is higher than the expected latency due to

environmental changes in vehicular networking, the process is

repeated to ensure that the network's anticipated latency is

achieved.

TABLE II. FEASIBLE PLACEMENTS OF CONTROLLERS (K=4)

D. An Evolutionary Algorithm (EO-SSA) Method for The

Controller Placement Problem

To solve the controller placement problem, a combinatorial

optimization approach is proposed in this paper, which utilizes

an evolutionary algorithm called EO-SSA. The proposed

approach is tested on the Internet2 OS3E network topology with

34 forwarding elements and 4 controllers that need to be

positioned. The primary aim of the study is to determine the most

efficient placement of controllers in the network, with the goal

of minimizing latency between the nodes and their respective

controllers. This objective is expressed mathematically in

equation (1). This paper suggests that when designing network

software, it is crucial to consider recommendations and research

in the literature on controller placement strategies. Factors such

as the controller's ability to handle real-time events and push

actions in advance on connected switches should also be

considered [2]. To address the optimal placement of 𝑘

controllers in a network of 𝑛 − 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 elements, this

paper proposes using EO-SSA to solve this combinatorial

optimization problem. Finding all possible placements of SDN

controllers is an exhaustive and time-consuming process when

considering the objective function.

Finding all possible placements of SDN controllers given a

certain number of controllers to be positioned in the network can

become computationally intensive. It can even exceed the

available RAM capacity. This is due to the search space, which

includes all possible combinations of placements subject to

constraints. The number of search agents required for

optimization algorithms can also become large, depending on

the number of nodes n and the number of controllers k to be

placed. A combinatorial relationship that can be used to find all

possible numbers of placements is represented by Equation (4).

(
 n
k

) =
n!

k! (n - k)!
 …. (4)

Performing an exhaustive search for all possible placements

becomes increasingly time-consuming and computationally

demanding with an increase in the number of controllers (k),

even for relatively small network sizes (n). Therefore, in a

dynamic and flexible network, where adaptability to changes in

the network environment is crucial, time becomes a limiting

factor for such an approach.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

231

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Figure 7. Internet2 OS3E Topology with Controller (k=4) Positioned [21]

The average latency of 30 independent runs was evaluated

using the EO-SSA algorithm to analyze all possible placements

of controllers in the Internet2 OS3E Topology, which has 34

network nodes and four controllers. Table 2 presents the results.

The optimal placement of controllers, which was discovered in

the 21st iteration, is shown as a green node in Fig. 7 and is

underlined. This placement, which involves placing the

controllers in Salt-Lake City, El-Paso, Baton-Rouge, and

Washington, was determined through an exhaustive evaluation

of all possible placements, which can be a time-consuming and

computationally expensive task. However, the EO-SSA

algorithm was able to efficiently search the space of controller

placements and identify the optimal solution.

V. CONCLUSION

Finding the optimal number and placement of SDN

controllers is crucial for the efficient functioning of software-

defined networking. The algorithm used in this work, EO-SSA,

provides a promising method for evaluating the possible

placements of controllers in SDN. The primary goal of this study

was to enhance fault tolerance in software-defined networks

(SDNs) by taking into account network performance metrics

such as flow setup latency, network latency between the

OpenFlow switch and SDN controller, link bandwidth,

connectivity between controllers, and path loss reduction. The

experimental results obtained from the OpenNet sample network

topology, implemented with the OpenFlow protocol and POX

controller, demonstrated the SDN controller's adaptive

behaviour. The OpenFlow switch first requested the installation

of flow setup rules when the controller was ON. The network

remained operational even if the controller was OFF for

subsequent requests.

Overall, this work provides an alternative approach for

controller placement in SDN and demonstrates the effectiveness

of EO-SSA for evaluating all possible placements of controllers

in a network topology.

That sounds like an excellent idea for future studies.

Dynamic optimization would benefit a dynamic network

environment such as vehicular networking, where network

conditions and topologies can change rapidly. Additionally,

other performance metrics besides latency could be optimized,

such as network throughput or energy efficiency. The proposed

EO-SSA algorithm could be adapted to consider multiple

objectives, leading to a more comprehensive optimization

solution. Overall, there is much potential for future research in

this area. It will be interesting to see how the proposed approach

evolves to address new challenges and performance metrics in

SDN controller placement.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6609

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 18 April 2023

232

IJRITCC | May 2023, Available @ http://www.ijritcc.org

REFERENCES

[1] P. Ghosekar, G. Katkar, Dr P. Ghorpade, "Mobile Ad hoc

Networking: Imperatives and Challenges," in International

Journal of Computer Applications IJCA, vol. 1, pp. 153-158,

2010.

[2] Heller B, Sherwood R, McKeown N. "The controller

placement problem, "in Pro-ceedings of the First Workshop

on Hot Topics in Software Defined Networks, ACM,

Jul.2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow:

enabling innovation in campus networks," in SIGCOMM

Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[4] Abdelhamied A. Ateya, Ammar Muthanna, Anastasia

Vybornova, Abeer D. Algarni, Abdelrahman Abuarqoub, Y.

Koucheryavy, Andrey Koucheryavy, "Chaotic salp swarm

algorithm for SDN multi-controller networks," in

Engineering Science and Technology, an International

Journal, Volume 22, Issue 4, Pages 1001-1012, Aug. 2019.

[5] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and

P. TranGia, "Pare-to-Optimal Resilient Controller Placement

in SDN-based Core Networks," in ITC, Shanghai, China,

Sep.2013.

[6] Seyedali Mirjalili, Amir H. Gandomi, Seyedeh Zahra

Mirjalili, Shahrzad Saremi, Hossam Faris, Seyed Mohammad

Mirjalili, "Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems," in Advances in

Engineering Software, Volume 114, Pages 163-191, Dec.

2017.

[7] Andersen V , Nival P . A model of the population dynamics

of salps in coastal waters of the Ligurian Sea. J Plankton Res

1986;8:1091–110.

[8] N. B. Truong, G. M. Lee, Y. Ghamri-Doudane, "Software-

defined networking-based vehicular Adhoc Network with

Fog Computing," in IFIP/IEEE International Sym-posium on

Integrated Network Management (IM), pp. 1202-1207, May

2015.

[9] X. Wang, C. Wang, J. Zhang, M. Zhou, C. Jiang, "Improved

Rule Installation for Real-Time Query Service in Software-

Defined Internet of Vehicles," in IEEE Trans-actions on

Intelligent Transportation Systems, vol. 18, no. 2, pp. 225-

235, Feb. 2017.

[10] Lange S., Gebert S., Zinner T., Tran-Gia P., Hock D.,

Jarschel M., Hoffmann M., "Heuristic approaches to the

controller placement problem in large scale SDN net-works,"

in, IEEE Transactions on Network and Service Management,

12(1), 4-17, Feb.2015.

[11] M. F. Bari et al., "Dynamic Controller Provisioning in

Software Defined Net-works," in Proceedings of the 9th

International Conference on Network and Service

Management (CNSM 2013), Zurich, pp. 18-25, Oct.2013.

[12] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary and

M. P. Barcellos, "Survivor: An enhanced controller

placement strategy for improving SDN surviva-bility," in

IEEE Global Communications Conference, Austin, TX, pp.

1909-1915, Dec.2014.

[13] G. Wang, Y. Zhao, J. Huang and Y. Wu, "An Effective

Approach to Controller Placement in Software-Defined Wide

Area Networks," in IEEE Transactions on Network and

Service Management, vol. 15, no. 1, pp. 344-355, Mar. 2018.

[14] Liu, Jiang and Xie, Renchao, Reliability-based controller

placement algorithm in software-defined networking," in

Computer Science and Information Systems, pp. 547-560,

Jun. 2016.

[15] S. Pathak, A. Mani, M. Sharma and A. Chatterjee, "A New

Salp Swarm Algorithm for the Numerical Optimization

Problems Based on An Elite Opposition-based Learning," in

2021 Asian Conference on Innovation in Technology

(ASIANCON), 2021, pp. 1-6, doi:

10.1109/ASIANCON51346.2021.9544105.

[16] S. Pathak, A. Mani, A. Chatterjee and M. Sharma, "Software

Defined Network Simulation Using OpenNet for Vehicular

Network," in 3rd International Conference on

Communication and Electronics Systems (ICCES),

Coimbatore, India, pp. 170-175, Oct.2018.

[17] MiniNet Walkthrough for Linux (Ubuntu, Mint) [Online]

http://mininet.org/walkthrough/

[18] OpenNet Source Code and Installation Information for Linux

Ubuntu 14.04.5 [Online] Available:

https://github.com/dlinknctu/OpenNet.

[19] M. C. Chan, C. Chen, J. X. Huang, T. Kuo, L. H. Yen and C.

C. Tseng, "OpenNet: A simulator for software-defined

wireless local area network," in IEEE Wireless

Communications and Networking Conference (WCNC),

Istanbul, pp. 3332-3336, Apr.2014.

[20] AK Singh, S Srivastava," A survey and classification of

controller placement problem in SDN," in International

Journal of Network Management, vol. 28, Mar.2018.

[21] L. Mamushiane, J. Mwangama and A. A. Lysko, "Given a

SDN Topology, How Many Controllers are Needed and

Where Should They Go?," 2018 IEEE Conference on

Network Function Virtualization and Software Defined

Networks (NFV-SDN), Ve-rona, Italy, 2018, pp. 1-6, doi:

10.1109/NFV-SDN.2018.8725710.

http://www.ijritcc.org/
http://mininet.org/walkthrough/
https://github.com/dlinknctu/OpenNet

