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Abstract: The IT industry has faced many challenges related to software effort and cost estimation. A cost assessment is conducted after 

software effort estimation, which benefits customers as well as developers. The purpose of this paper is to discuss various methods for the 

estimation of software effort and cost in the context of software engineering, such as algorithmic methods, expert judgment methods, analogy-

based estimation methods, and machine learning methods, as well as their different aspects. In spite of this, estimation of the effort involved in 

software development are subject to uncertainty. Several methods have been developed in the literature for improving estimation accuracy, many 

of which involve the use of machine learning techniques. A machine learning framework is proposed in this paper to address this challenging 

problem. In addition to being completely independent of algorithmic models and estimation problems, this framework also features a modular 

architecture. It has high interpretability, learning capability, and robustness to imprecise and uncertain inputs. 

Keywords: Software Engineering, Software Project Estimation, Machine Learning, Effort and Cost Estimation. 

 

I.  INTRODUCTION  

Estimating software projects is a critical and challenging 

aspect of software development that can be extremely 

complicated. It is difficult to make an accurate assessment of 

software development during the early stages of a project. This 

is due to the many uncertainties associated with inputs such as 

changes in requirements, platform changes, size of the project, 

budget constraints, complexity, etc. To meet the competitive 

demands of today's industry, it is imperative to estimate 

software effort early in the development process. The 

procedure of software effort estimation consists of estimating 

the amount of effort that will be required to finish a particular 

software project based on the amount of time required. Several 

studies in the literature have used interchangeably the terms 

"software effort estimation" and "estimation of software 

costs". In contrast, the estimation of software costs is a direct 

result of software effort estimation [1].  

There is a growing need for updated, reliable, high-quality 

software that is easy to use, inexpensive, and delivered in a 

short period of time. Hence, it is the client's or developer's 

responsibility to perform a cost-benefit analysis. An analysis 

of the estimation is converted into dollars. Since the demand 

for software effort estimation has increased in the industry, it 

has become a critical task to be performed during the early 

stages of development. Successful software project 

management relies heavily on accurate effort estimations [2]. 

Overestimating and underestimating depend on the allocation 

of resources as overestimating is the allocation of excessive 

resources, and  underestimating is the allocation of insufficient 

resources. The ability to predict effort accurately allows risks 

to be reduced. 

Among the branches of AI, machine learning is significant. It 

has been widely used since 1991 to estimate the development 

effort of software using Machine Learning. Based on the 

information that we have gathered from previously completed 

projects, machine learning allows us to perform estimations 

[3]. With the implementation of this methodology, experts will 

be less involved in estimating upcoming projects. It will be 

more likely that they will spend more time on those aspects of 

the software system that are likely to satisfy the customer. The 

accuracy of these predictions has, however, only been studied 

extensively in the last decade to compare them with various 

methods (algorithmic models, expert judgment, etc). With the 

development of machine learning techniques, the use of 

algorithmic models (non-machine learning techniques) has 

decreased. 

II. RELATED WORKS 

Leonardo Villalobos, et al., investigates the impact of random 

search hyperparameter tuning on SVR accuracy and stability 

in SEE. The results were compared between the grid search-

tuned models and the ridge regression models. Random search 

is comparable to grid search based on the results of an analysis 

of four data sets from the ISBSG 2018 repository. Compared 

to tuning hyperparameters, this is an attractive solution. SVR 
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with RS-tuned hyperparameters achieved a 0.227% increase in 

standardized accuracy compared to SVR using default 

hyperparameters. In addition to SVR models, random search 

also achieved a 0.840 ratio. SVRs tuned using RS and GS 

were comparable in performance [4]. 

Passakorn Phannachitta, used Bayesian optimization technique 

to optimize software effort estimators on 13 standard 

benchmark datasets, all of which were fully optimized. The 

performance metrics and statistical tests used for comparison 

were robust. Adopting a combined effort adapter seems to be 

an effective strategy for improving analogy-dependent 

estimation accuracy. A traditional adaptation technique based 

on productivity adjustment and the Gradient Boosting 

Machine model performed best in the study when it was 

integrated with an analogy-oriented model. The model 

outperformed both state-of-the-art algorithmic-based 

techniques as well as analogy-based and machine learning-

based techniques [5]. 

P.Suresh Kumar, et al., examine how ANN algorithms such as 

higher-order neural networks, basic neural networks, and deep 

learning networks could be applied to estimate software effort. 

The purpose of this paper was to compare qualitative and 

quantitative analyses of software effort estimation papers. A 

survey was also conducted on the following topics: the most 

widely used datasets for prediction, the most frequently used 

hybrid algorithms for prediction, and the most commonly used 

evaluation measures, namely the MMRE, MdMRE, and MRE 

[6]. 

Israr ur Rehman, et al., examined five different machine 

learning techniques in this paper. The study examines how 

machine learning methods perform when estimating software 

effort using seven standard data sets. In addition to MMRE 

and PRED (25), the R2-score is used to rate the effectiveness 

of the different approaches [7]. Based on all three metrics, 

decision tree-based techniques produce more accurate results 

for Desharnais, COCOMO, China, and Kitchenham. A ridge 

regression method performed better than other methods on 

both the Albrecht and NASA datasets, with decision trees 

beating ridge regression for pred (25). 

P.Suresh Kumar, et al., proposed a robust method for 

analyzing regression data based on gradient-boosting 

regressors. Using COCOMO’81 and CHINA data sets, the 

performance of the regression models is compared. Various 

evaluation metrics are applied to evaluate regression models, 

like MAE, MSE, RMSE, and R2. Gradient boosting regressors 

performed well based on the results obtained from the two 

datasets, yielding accuracy of 98% and 93%, respectively. 

Compared to all regression models used for these datasets, the 

proposed method performs significantly better [8]. 

Amir Karimi, et al., presented a novel approach to fuzzy 

inference utilizing a hybrid approach combining a fuzzy 

inference system based on applied neural networks (ANFIS) 

and a methodology known as differential evolution (DE). As 

part of this investigation and development process, the 

assessment criteria for testing and comparing the ANFIS-DE 

algorithm with other well-known algorithms were thoroughly 

investigated and applied, such as GAs, SBOs, and neuro-

adaptive systems. Using MMRE and PRED (0.25) criteria, the 

proposed method improved accuracy by up to 7% when 

compared to other algorithms in this study [9]. 

Robert Marco, et al., determined the hyperparameters of the 

model using Bayesian optimization, which employs the 

AdaBoost ensemble learning method and random forest. To 

build the SEE model, they used the PROMISE repository as 

well as the ISBSG dataset. An extensive comparison of the 

developed model was conducted under three-fold cross-

validation with four machine-learning algorithms. This 

comparison shows that the RF approach based on AdaBoost 

ensemble learning and Bayesian optimization performs better 

than the previous one. It also assigns a value to feature 

importance, making it a promising tool for predicting software 

effort [10]. 

K Nitalaksheswaro Rao, et al., proposed a novel learning-

based model called Optimized Learning-based Cost 

Estimation (OLCE) which can provide accurate cost 

predictions for both global projects and large-scale ones. 

Based on the benchmarked COCOMO NASA 2 dataset, the 

proposed system optimizes the learning method by integrating 

artificial neural networks with new search methodologies. As a 

result of the research, OLCE demonstrated approximately 73% 

accuracy and 50% faster response time than existing models 

that are said to be adopted for SCE. It can therefore be 

concluded that OLCE is a cost-effective and accurate method 

for SCE [11]. 

Maedeh Dashti, et al., proposed a novel method for optimizing 

feature weighting based on the LEM algorithm. This paper 

presents an approach to optimizing the weights of analogy-

based estimation that relies on a learnable evolution model. To 

investigate this algorithm's effectiveness, two datasets were 

used in this study, Desharnais and Maxwell. In addition to 

MMRE and PRED (0.25), MdMRE criteria were used to 

compare the proposed method with others [12]. 

III. TECHNIQUES USED FOR ESTIMATION 

The practice of estimation is considered one of the most 

challenging tasks in the software industry. The following 

sections summarize some methods for estimating software 

effort. There are three main categories of these approaches. In 

this section, we will discuss algorithmic approaches, non-
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algorithmic approaches, and machine learning approaches 

[13]. 

3.1 An Algorithmic approach 

Cost estimation for software projects is based on mathematical 

equations. Cost estimates for software projects are determined 

by project type, size, attributes, procedures, and team 

members. The use of algorithmic techniques has allowed the 

development of various models, including the FPBA, Putnam's 

model, and the COCOMO model [14]. 

3.1.1  Function Point Based Analysis (FPBA) 

By analysing the functions that a software system provides to 

the user, Function Point Analysis (FPBA) calculates its 

complexity and size. Tools or languages used to develop the 

software project are used to define its functionality. As a 

measure of the size of a system, FPBA overrides some of the 

major problems associated with Lines of Code (LOC) 

measurements. Function points are independent of the tools, 

languages, or procedures that are used during processing; in 

other words, they do not depend on processor hardware, 

database management systems, programming languages, or 

any other technology used during processing [15]. It is also 

possible to estimate function points based on the specifications 

of the design or the requirements. This makes it possible to 

estimate the development effort at the beginning of the project. 

3.1.2  Putnam’s Model 

The model is derived from Rayleigh/Norden's allocation of 

manpower and analysis of a number of completed projects 

[13].The software equation defines Putnam's model as follows: 

𝑆=𝐸∗𝐸𝑓𝑓𝑜𝑟𝑡1/3∗ 𝑡𝑑4/3    (1) 

Software delivery time is td, and E is the external factor that 

reproduces the competence of a developer, which can be taken 

from historical data using software equations. The effort is 

measured in person-years and the size of S is in lines of code. 

Putnam also established an essential relation. 

𝐸𝑓𝑓𝑜𝑟𝑡= 𝐷0∗ 𝑡𝑑3          (2) 

Manpower build-up parameter D0 is set to 8 for newly 

developed software and 27 for remodelled software. 

Preparation and SLIM (Software Living Management) often 

utilize Putnam's model. Manpower planning and estimation 

are handled by SLIM using Putnam's model. 

3.1.3  COCOMO (Constructive Cost Model) 

Barry Boehm introduced the CONSTRUCTIVE COST 

MODEL. The model estimates project development efforts 

based on a group of models. Cost and time are estimated in 

COCOMO based on lines of code and system complexity. 

COCOMO also considers project attributes, hardware, 

assessments of the production process, and other factors. The 

quality of software products is defined by two parameters of 

the COCOMO model, such as effort calculation and 

development time. In order to estimate the effort required to 

complete a task, the number of people involved must be taken 

into consideration. The unit of measurement is person-month. 

Development time is the amount of time needed to complete a 

task. It is expressed in months, weeks, and days. Cost 

estimations at the different levels of software products can be 

calculated using COCOMO models of various types [16]. 

3.2 Non-Algorithmic Approach 

This approach is used to estimate initial design experience and 

design requirements. Non-algorithmic models are able to 

estimate using previous experience and projects, similar to 

underestimation projects. The following are some examples of 

non-algorithmic approaches. 

3.2.1 Expert Judgement 

Cost estimation for software projects is frequently generated 

using expert judgment (EJ) techniques. Predicting the cost of 

upcoming products requires estimations based on a variety of 

assumptions and judgments [17]. Estimating software project 

costs is actually done by tapping into groups, characters, or 

groups of people with expert knowledge using EJ. Expert 

judgement relies on knowledge, experience, and motivation 

from experts, as well as on a discussion between analysts and 

experts within the area of expertise. EJ estimates the cost of 

software projects based on past experience. The expert utilizes 

his or her experience from previous projects to assist in the 

planned project using the EJ method. Methods based on EJ 

may be used to measure variances between past and upcoming 

programs. These methods are especially useful in the case of 

new programs without any previous examples. 

3.2.2  Analogy Based Estimation 

There are many forms of Case-Based Reasoning (CBR), and 

one of them is Analogy-based cost estimation (ABE). A case 

is defined as a partial event in both space and time, a notion of 

a specific set of events [18]. It is evident that the ABE method 

of cost estimation for software projects can be applied in most 

cases. This is because it relies on past information provided by 

comparable projects, and that comparisons are made by 

comparing the significant attributes and features of the 

projects. ABE can be used for estimation by following these 

steps: 

1. Projects are categorized as planned. 

2. An historic database is used to choose the exact comparable 

finalized project which has the same attributes. 
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It is better to use ABE in the early phases of projects when 

there is limited information available. It is a simple and easy 

method that takes less time. Due to the method's reliance on 

historical project records, the success rates of an organization 

are likely to be high. 

3.2.3 Bottom Up and Top-Down Approach 

A top-down or bottom-up approach may be used in EJ 

software development. An effort estimate could be based on 

the project's possessions, divided into activities, or estimated 

as the sum of the estimates for each activity (bottom-up) [19]. 

Top-down estimation is used for the entire SCE, which is 

distributed into various subsidiary sections of the project. Cost 

estimation of software projects is generally faster and easier 

with this method since it requires the least amount of 

information. Documentation, integration, configuration, and 

other system-level activities are considered in this method. 

3.3 Machine Learning 

In software development, machine learning (ML) techniques 

are becoming more popular. Mathematical models are a part of 

artificial intelligence (AI) that identify patterns in data and 

arrive at conclusions based on the data [20]. By using such 

algorithms, some information can be derived from the input 

(training data) that can be used to examine newly generated 

data (test data). Several techniques for machine learning exist, 

such as supervised learning, in which input-output mappings 

for a set of training data have prior knowledge; algorithm 

learning that occurs without labelled data is unsupervised 

learning, and reinforcement learning (reward learning 

approach). 

3.3.1 Approaches of Machine Learning 

Machine Learning technologies are used in software industry 

to give an effective prediction or decision support. The various 

Machine Learning methods are illustrated in figure 1. 

 

Figure 1 Different methods of Machine Learning 

3.3.1.1 Supervised Learning 

This type of learning requires the assistance of a supervisor or 

teacher. The supervisor provides the labeled data necessary to 

construct the model and generate test results. Learning occurs 

in two stages when using supervised learning algorithms. 

Student masters the information presented by the teacher at the 

beginning of the first stage. Information is received and 

understood by the student. At this stage, the teacher is unaware 

of whether a student is able to comprehend the information. 

A second phase of learning occurs during this stage. In order 

to determine how much information has been absorbed by a 

student, the teacher asks a series of questions. Students are 

assessed based on these questions, and they are informed 

about their results by their teachers. Typically, this type of 

learning is referred to as supervised learning [21]. 

There are two approaches to supervised learning: 

1. Classification 

2. Regression 

Classification 

In the field of artificial intelligence, classification is a method 

of supervised learning. Classification algorithms use 

independent variables to determine input attributes. A label or 

dependent variable represents the target attributes. A 

classification model describes how input variables are related 

to target variables through a structure. There are two stages 

involved in classification learning. In the initial stage of 

learning, the learning algorithm takes the labelled datasets and 

begins to learn, and then the model is generated after the 

samples have been processed. A model constructed in the first 

stage is tested with a test or unknown sample in the second 

stage and an appropriate label is assigned to it. This is the 

process of classification. 

Regression 

A regression model predicts a continuous variable, such as 

price, unlike a classification algorithm. To put it simply, it is a 

numerical value. In a regression model, input x is transformed 

into a fitted line of the form y=f(x). There is an independent 

variable Y which controls the outcome of the study while a 

dependent variable is X. 

3.3.1.2 Unsupervised learning 

It is also possible to learn by self-instruction, which is one of 

the two types of learning. There is no supervisory or teaching 

component, as implied by the name. Learning is most often 

accomplished by self-instruction when a supervisor or teacher 

is not available. Using a trial-and-error method of instruction, 

this process is conducted [22]. 
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There are objects provided for the program, however no labels 

have been defined. Based on the principles of grouping, the 

algorithm observes examples and recognizes patterns. Objects 

are grouped in such a way that they are related to one another. 

An example of an unsupervised algorithm would be cluster 

analysis and dimension reduction. 

Cluster analysis 

Unsupervised learning is illustrated by cluster analysis. By 

clustering or grouping objects, it tries to group them together. 

An object is clustered based on its attributes using cluster 

analysis. Data objects in different partitions vary from each 

other significantly, while some are similar. 

Dimensionality reduction 

An example of an unsupervised algorithm is a dimension 

reduction algorithm. By utilizing the variance of the data, it 

takes a high-dimensional dataset and outputs it in a lower-

dimensional dataset. It consists of reducing the dataset to a 

small number of features while maintaining generality. 

3.3.1.3 Semi-supervised learning 

There are instances in which a dataset contains a large amount 

of unlabelled data and a few labelled data. Humans have 

difficulty performing labelling because it is very costly and 

time-consuming. By assigning a pseudo-label to unlabelled 

data, semi-supervised algorithms generate output using 

unlabelled data [23]. Once the datasets have been labelled and 

pseudo-labelled, they can then be combined. 

3.3.1.4 Reinforcement learning 

A reinforcement learning system mimics the way that humans 

learn. A reinforcement learning agent interacts with its 

environment in order to receive rewards [23]. This is in the 

same way that humans use their ears and eyes to perceive the 

world and act upon it. There can be many types of agents, 

including humans, animals, robots, or even non-human 

programs. Agents gain experience through rewards. 

Maximizing rewards is the objective of an agent. A reward 

could be a positive one (reward) or a negative one 

(punishment). It is easier to learn when the rewards are more 

appealing. 

IV. PROPOSED ESTIMATION FRAMEWORK 

It is possible to determine software development effort and 

cost using the proposed estimation methodology which is 

presented in figure 2. To estimate the effort and costs involved 

in developing software, this provides a structured approach to 

managing and planning the project. 

4.1 Identification of Experimental Dataset 

It is challenging to begin a research project without accurate, 

complete, and relevant data from experimental datasets that 

meet all industry standards. It is crucial to collect and prepare 

data carefully. We should make sure that all the data files 

concerned are in the most recent version before documenting a 

dataset. 

Users commonly encounter the following problems with their 

data: 

1. Records in the dataset cannot be uniquely identified by 

variables. 

2. Observations that are duplicated. 

3. A merge of multiple datasets may result in errors. 

4. Comparing the contents of the survey questionnaire with 

the content of the data files produced incomplete results. 

5. Data that is not labelled. 

6. Missing values in variables. 

7. A data file that contains unneeded or temporary variables. 

8. Direct identifiers or sensitive data. 

 

 

 

 

 

 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 5 

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602 

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023 

___________________________________________________________________________________________________________________ 

 

165 

IJRITCC | May 2023, Available @ http://www.ijritcc.org 

Experiments should use high-quality datasets that have well-

defined details, which are appropriate for software estimation. 

Machine learning deep learning algorithms are trained using 

software estimation experimental datasets. To obtain relevant 

and appropriate data, it is necessary to identify them from 

publicly available repositories [24]. Below is a list of some 

software estimation datasets. 

Table 1 Experimental Datasets for Estimation in Software 

development 

Datasets Number of Attributes Records 

Albrecht 8 24 

China 19 499 

Cocomo81 19 63 

Desharnais 12 81 

Maxwell 27 62 

Nasa93 24 93 

ISBSG16 264 7518 

Kitchenham 10 145 

Kemerer 8 15 

Miyazaki94 9 48 

Finnish 9 38 

 

We must choose one experimental dataset from Table 1 to 

proceed further. 

4.2 Data Understanding and Preparation 

The process of interpreting data involves reviewing data and 

applying different analytical techniques to draw relevant 

conclusions from it. To answer pertinent questions, data 

interpretation is used to categorize, manipulate, and 

summarize information. A variety of data sources may be used 

to gather data, and these data tend to arrive in haphazard order 

at the beginning of the estimation process. Interpreting data 

properly is of paramount importance, so it must be performed 

correctly. Cleansing, transforming, and reducing data are the 

three main steps of data preparation. 

4.2.1 Selection and Cleaning  

A crucial part of machine learning is data cleaning. It has a 

significant role to play in the creation of a model. Clean data is 

crucial to the success of a project. In order to make their work 

more efficient, data scientists tend to spend a great deal of 

time on this step since they believe "Good data is more useful 

than fancy algorithms”. Clean datasets often allow us to 

achieve accurate results with simple algorithms as well, which 

can be very useful if we need to compute very large datasets. 

http://www.ijritcc.org/
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Our model will perform better if we carefully choose the input 

we need and delete duplicate and redundant columns. Using 

appropriate data types can conserve memory by transforming 

numerical data into integers.Data from experiments determine 

how incomplete information is resolved. It may be necessary 

to investigate imputation, which replaces absent values with 

placeholders or other values based on assumptions.  

4.2.2 Transformation of data 

Transforming data means converting it from one scale to 

another. Our model must be implemented so that a significant 

increase in accuracy can be achieved. Transformation is 

therefore avoided when datasets behave as if they have already 

been refined. Machine learning models cannot handle data 

without completing certain data transformation stages. There 

are several steps in this process: removing string formatting, 

carriage returns, gaps at the beginning and end of entries, 

monetary symbols, and more. A phrase becomes less 

understandable for people if textual and other letters are 

deleted. However, an algorithm can digest the data more 

efficiently. 

Transformation of data begins with identifying the data types, 

sources, and structures; determining how the transformations 

should be structured; and defining how fields will be 

aggregated or changed. The process involves extracting and 

transforming data from its original source. 

4.2.3 Data Reduction 

In data reduction, the original volume of the data is reduced, 

and it is represented as a much smaller amount than before. 

The integrity of data is ensured while the data is reduced 

through data reduction techniques. The goal of data reduction 

is to make it more compact. The application of sophisticated 

and computationally expensive algorithms is easier when the 

data size is smaller. Data reduction can be carried out by 

reducing the number of rows (records) or columns 

(dimensions). 

To reduce data, there are several strategies available, including 

the following: 

● Aggregation of data cubes. 

● Selecting attributes from a subset. 

● Choosing from a variety of options, etc. 

4.3 Machine Learning  

Once the experimental data has been refined and cleaned to 

meet the desired standards, the next step is to estimate the 

effort and cost associated with this evaluation. It is possible to 

reduce software development  risk  by  using   machine  

learning/deep  learning  in estimation [25]. This can improve 

software development project planning, improve project 

efficiency, and increase project success. 

4.3.1 Data Pre-processing 

During the pre-processing stage, raw input data is corrected, 

refined, and converted into a format that is useful for the 

learning process. Alternatively, the process of enhancing raw 

data by adjusting, cleaning, and converting it into enhanced 

refined forms is known as  pre-processing. Machine learning / 

deep learning models may be adversely affected by unreliable 

data. It is possible that inaccurate and inconsistent results may 

result from poor data quality, especially if there are missing 

records or outliers. 

Data preparation involves removing unwanted information, 

such as duplicate observations, observations with irrelevant 

information, and observations without information. We 

transform refined data if the set of records is biased or skewed 

after removing unwanted information. 

There are numerous approaches and techniques available for 

cleaning data and preparing experimental datasets, but only 

those that meet our requirements can be chosen for 

implementation. 

4.3.1.1 Machine Learning Expert 

To select the appropriate ML/DL algorithm as part of machine 

learning methodologies, experts from interdisciplinary fields 

are required to provide human intervention in the process. 

These experts are called ML experts. There is the participation 

of machine learning experts in the methodologies of machine 

learning. Their expertise in designing ML systems as 

professionals provides them with a unique perspective on their 

potential and limitations. Data are reviewed and analysed by 

experts in the field of machine learning in order to determine 

the most effective frameworks, correlations, and 

characteristics. Due to the lack of experience and capabilities 

associated with the ML system's solution, the involvement of 

ML professionals is essential. The use of DL techniques does 

not require human intervention. 

4.3.2  Machine Learning Deep Learning Techniques 

As humans learn from experience, machines learn from data 

through machine learning algorithms. Data patterns are 

recognized directly by machine learning algorithms, without 

relying on a predetermined equation for modelling. In contrast, 

deep learning is used to process unlabelled or unstructured 

data. Therefore, it is capable of automatically detecting 

differences between different categories of data. 

This phase is crucial to the estimation process as it 

incorporates ML/DL techniques. Machine learning estimates 

software using a variety of approaches and technologies. 

http://www.ijritcc.org/
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Statistical inference, appraisal, and forecasting of experimental 

results are possibilities enabled by Deep Learning/Machine 

Learning techniques. Software estimation using Machine 

Learning and Deep Learning has been developed using several 

algorithms. There is a difference between Deep Learning and 

Machine Learning in terms of their capabilities. These 

algorithms perform the following actions in the following 

pattern: 

(1) Dataset division 

(2) Feature extraction and selection 

(3) Selection of appropriate ML/DL algorithm. 

4.3.2.1 Dataset Division  

Data can be used to train machine learning models, which can 

then be used to generate predictions based on new data. Divide 

the dataset according to the following steps: 

Step 1: We select a dataset for experimentation. 

Step 2: Training and testing datasets are now divided, such as 

80% or 75% for training and 20% or 25% for testing. As a 

rule, these are the standard ratios. 

Step 3: There are two partitioned datasets: a training one and a 

testing one. We may use the training dataset to perform the 

next stage of feature extraction and selection. A testing dataset 

enables the machine learning model to be evaluated in the 

future after it has been trained. 

Step 4: Data pre-processing is an essential and inevitable part 

of training dataset preparation. 

4.3.2.2 Feature Extraction and Selection  

As part of feature extraction, attributes are retrieved from the 

data. The selection of attributes is accomplished by converting 

relevant attributes into sets and groups, as well as determining 

which attributes have meaningful relationships between 

entities. It is possible to generate customized attributes by 

combining raw/provided attributes.  

This process involves developing novel features from the 

existing ones in a dataset and discarding the original features 

to reduce the number of features in the data. Using 

regularization techniques instead can result in a variety of 

additional benefits, including increased accuracy during model 

training and a reduction in overfitting risk. 

4.3.2.3 Selection of appropriate ML/DL Algorithm 

A rule-based approach for selecting appropriate algorithms 

was developed by Machine Learning experts to analyse 

estimates in software development. We use machine learning 

techniques in this selection phase to enable prediction. 

However, when we require both prediction and transfer 

learning in the future, we can use other techniques such as 

deep learning. Large or complex data sets might require deep 

learning approaches. 

In comparison to existing individual machine learning or deep 

learning models, ensemble techniques provide more accurate 

results. An ensemble approach is a method of providing better 

results by combining multiple models (also known as base 

learners). The prediction performance is improved by training 

different types of learning machines and combining them. 

K-fold cross-validation is also possible if the available 

experimental attributes in the data are all required, but they are 

still overfitting the model. In ML/DL models, we must split 

data samples into groups in the training phase, so we select the 

K number of best-performing algorithms. By applying cross-

validation to an experimental data set, we can determine 

accuracy and positive predictive rates. 

4.3.3 Evaluation Criteria 

At this stage, we will measure model performance with MAE, 

MMRE, RMSE, PRED and R2. Performance evaluation 

metrics are listed below. 

4.3.3.1 Mean Absolute Error (MAE) 

An effective way of measuring evaluation criteria is through 

MAE. The equation below indicates the average of absolute 

errors between actual and projected efforts [13]. 

 

(3) 

For each test data, AEi is the original value found in the 

dataset. Using the created model, PEi is the resulting output. 

The test set has TP records. 

4.3.3.2  Mean Magnitude Relative Error (MMRE)  

Software prediction models are mostly compared using 

MMRE. We select the most appropriate model based on 

MMRE [13]. 

 

(4) 

Where the test set size is equal to N. 

4.3.3.3  Mean Squared Error (MSE) 

MSE measures how close the regression line is to the data 

points by taking the projected value into account. By doing 

this, we avoid the unfairness inherent in residual square sums. 

Our estimation errors are calculated using the MSE equation, 

which uses both the model's actual output and its prediction 
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[13]. An error variation will be smaller if the MSE value is 

smaller.MSE can be determined mathematically using the 

following equation. 

 

(5) 

Where the test set size is equal to n. 

4.3.3.4  Prediction (PRED (x)) 

The predictive performance of a regression model should be 

measured to determine if it is superior to its competitors. 

(1) Use different performance indicators to compare models.  

(2) Evaluate the results of the measures outlined above.Below 

is an equation that illustrates how to determine PRED(x) 

mathematically [13]. 

 

(6) 

There are N projects, where 'MRE' represents the percentage 

of projects with MREs less than or equal to x. It is possible 

that x could be 0.25, 0.50, 0.75, or 1.0. In a scenario where x is 

0.50, PREDs (0.50) are projects with MREs under 50%. 

4.3.3.5 Squared coefficient of correlation (R²) 

We will examine the performance of the model at this stage by 

calculating the Squared Correlation Coefficient (R2). The 

equation below shows the performance evaluation metrics 

[26]. 

 
(7) 

For each estimated point, the first summation is per 

appropriate point divided by N. 

4.3.4 Experts from Interdisciplinary Fields 

Interdisciplinary experts pass on the results obtained from the 

performance metrics to the machine learning steps. Results are 

assessed by experts in various fields. The ML model is tuned 

to predict effort and costs more accurately based on the 

evaluation of the findings. 

4.4 Estimation Result  

Studies done with experimental data are summarized in the 

results section, as well as how these studies supersede 

previous studies. Estimated results are matched with actual 

entities at each step of the estimation process, while 

proficiency is matched using evaluation criteria. As a further 

step, any additional improvements or threats to the study may 

be added for better prediction of software effort and cost 

estimation. 

V. CONCLUSION 

Project managers need to estimate efforts in order to allocate 

resources effectively and manage time effectively during the 

development process. Initially, estimation was performed 

using both algorithmic and non-algorithmic approaches. This 

study explores the possibility of predicting software project 

effort and costs through machine learning and deep learning 

approaches. When provided with accurate, large, and well-

labelled data, ML models perform well, however, an 

inefficient dataset reduces their performance. ML model 

performance can be improved by using this scenario as the 

foundation. Data division, data pre-processing, and the 

algorithms used in the ML model also shape the model's 

performance. In ML models, the variance of performance is 

heavily influenced by the steps and phases. It may not be 

possible for the model to give a 100 percent accurate 

prediction; however, it can provide some useful estimations. 
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