
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

306

IJRITCC | March 2023, Available @ http://www.ijritcc.org

An Automated Framework for Detecting Change in

the Source Code and Test Case Change

Recommendation

1U. Sivaji, 2V. Mahalakshmi, 3G S Sivakumar, 4Sasirekha. R, 5R Venkataramana

1Associate Professor, Department of IT, Institute of Aeronautical Engineering, Dundigal, 500043, Telangana, India.

Email: sivaji.u117@gmail.com

2Assistant Professor, Department of Computer Science, College of Computer Science & Information Technology, Jazan University,

Jazan45412, Saudi Arabia.

Email: mlakshmi@jazanu.edu.sa

3Associate Professor,Department of ECE, Pragati Engineering College, Surampalem. Kakinada district, AP.

Email: skgompa@yahoo.com

4Assistant Professor, Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai.

Email: sasirekharajeshkumar@gmail.com

5 Assistant Professor, Department of CSE, Sri Venkateswara College Of Engineering, Tirupati, Andhra Pradesh

Email: venkataramana.r@svcolleges.edu.in

Abstract—Improvements and acceleration in software development have contributed towards high-quality services in all domains and all

fields of industry, causing increasing demands for high-quality software developments. The industry is adopting human resources with high

skills, advanced methodologies, and technologies to match the high-quality software development demands to accelerate the development life

cycle. In the software development life cycle, one of the biggest challenges is the change management between the version of the source codes.

Various reasons, such as changing the requirements or adapting available updates or technological upgrades, can cause the source code's version.

The change management affects the correctness of the software service's release and the number of test cases. It is often observed that the

development life cycle is delayed due to a lack of proper version control and due to repetitive testing iterations. Hence the demand for better

version control-driven test case reduction methods cannot be ignored. The parallel research attempts propose several version control

mechanisms. Nevertheless, most version controls are criticized for not contributing toward the test case generation of reduction. Henceforth,

this work proposes a novel probabilistic rule-based test case reduction method to simplify the software development's testing and version control

mechanism. Software developers highly adopt the refactoring process for making efficient changes such as code structure and functionality or

applying changes in the requirements. This work demonstrates very high accuracy for change detection and management. This results in higher

accuracy for test case reductions. The outcome of this work is to reduce the development time for the software to make the software development

industry a better and more efficient world.

Keywords- Change Detection, Prerequisite Detection, Feature Detection, Functionality Detection, and Test Case Change

I. INTRODUCTION

The upgrades in the code improvement are an absolute

necessity to be performed task for all product advancement

cycles because of the nonstop changing customer prerequisites.

The enhancements or adjustments in the product source code

should be possible in different ways, for example, variant

control or prerequisite following or utilizing outsider devices.

Regardless, the refactoring technique is the most successive and

profoundly received strategy proposed by M. Fowler et al. [1].

The impact of refactoring on the product source code is

exceedingly good with the change of the boarding procedure

and further with different periods of programming improvement

life cycle. The remarkable result crafted by E. R. Murphy-Hill

et al. [2] has recorded the standard periods of refactoring of

source code, which profoundly impacts the adjustment of the

procedure.

The analysis of the similar examination of other forming

strategies with refactoring is performed by N. Tsantalis et al. [3],

featuring the advantages of refactoring over different

techniques. The difficulties of the refactoring process for any

source code can't be overlooked. They can cause a higher

multifaceted nature during forming if improper management

occurs, as shown by M. Kim et al. [4].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

307

IJRITCC | March 2023, Available @ http://www.ijritcc.org

 Fig. 1 Source Code Change Detection

Another examination centers around the product

improvement act of spontaneity by Microsoft, proposing

comparative measures as reported by Miryung Kim et al. [5].

Likewise, the comparative examination is led on another open-

source apparatus, GitHub, by D. Silva et al. [6]. The outcome is

the same as the past investigations prescribing comparable

measures to be pursued for safe refactoring of the source code

[Fig – 1]. Therefore, understanding that the refactoring [Fig – 2]

of the source code can be highly helpful for source code

changing, most of the development practices use this method.

Nevertheless, refactoring the code can help make controlled

changes to the code, but these changes result in further changes

in the testing process and test case management. Hence,

industry practitioners and researchers highly prioritize the

demand for change detection and test case verification without

repeating the test cases for the features which have not changed

during the refactoring process. Thus, this work attempts to solve

the change detection and test case reductions.

 Fig. 2 Refactoring of Source Codes

The rest of the work is furnished as Section – II analyzes the

outcomes from the parallel research. In Section – III, the

problem definition and the scope for improvements are listed.

In Section – IV, the proposed change detection algorithm is

discussed. Section – V elaborates on the proposed test case

detection and reduction algorithm. In Section – VI, the proposed

complete automated framework is furnished. In Section – VII,

the results are discussed. In Section VIII, the comparative

analysis for understanding the improvements is discussed; in

Section IX, this work presents the conclusion.

II. BACKGROUND AND FRAMEWORK

The source code's versioning is performed to include changes

in the source code. Often the customer recommends the changes,

or the changes are made due to the technical requirements

fulfillment. Thus, refactoring results in changes in prerequisites

or the feature of the source code or functionality of the source

code. Hence, detecting the correct changes is an important

prime task. The prime task is to detect the correct changes after

a source code is refactored. Several similar types of research are

taken place to accomplish this task. In this section of the work,

the parallel research outcomes are analyzed.

The first case study by E. R. Murphy-Hill et al. [2] reported

a framework that collects historical data from the source code

version control and integrates the changes into the popular

Eclipse IDE. The advancements of this work are done by S.

Negara et al. [7], where metadata generated by version history

is used. Nevertheless, this process completely depends on the

refactoring trails or the auto-generated information during the

refactoring process.

Removing the dependencies on the auto-generated

information by the refactoring tools, J. Ratzinger et al. [8]

propose a framework to generate commit messages during the

refactoring process. This feature enables the framework to

detect all changes, including minor updates. Regardless, this

framework is expected to be deployed from the beginning of the

code development life cycle, which makes this framework

criticized among the practitioner's community. Other popular

strategies supporting this method were also made. The work of

Miryung Kim et al. [5] has finetuned the framework for

detecting further detection of changes. Yet other popular

methods for detecting the change are analyzing the pattern and

behaviors of the source code, as demonstrated by G. Soares et

al. [9], or analyzing the software code metrics, as represented

by S. Demeyer et al. [10].

 On the other hand, detecting refactoring using static code

analysis is also a widely accepted method. The work by D. Dig

et al. [11] on component-based detection of changes made the

process of detection automated and specified. Also, the work by

K. Prete et al. [12] proposed an alternative method for detecting

source code changes using the templates. The major bottleneck

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

308

IJRITCC | March 2023, Available @ http://www.ijritcc.org

of this process is to separate the workable templates from the

templates, which does not defer any functionality. M. Kim et al.

[13] proposed a logical separation of the templates by querying

the code's construction to improve this process. Furthermore, all

the bottlenecks of the current works are summarized and

analyzed by P. Weissgerber et al. [14]. This work takes up the

recommendations and frames the generic scopes for

improvements in the next section of the work

III. EASE OF USE

Furthermore, with a detailed understanding of the refactoring

process outcomes by various research attempts and the strong

connection with the change detection with test case

management, in this section of the work, the research problems

are identified. Based on the outcomes of the parallel research,

the following shortcomings are identified:

• Firstly, general-purpose regression testing is carried out

on a complete set of source code produced and modified

from time to time in the software development life cycle.

In most of the instances, it has been observed that the

pre-configured test cases are deployed in the new

version of the source code. Hence, the optimizations of

the test cases are completely ignored.

• Secondly, during the manual generation of the test cases,

the high-priority test cases are identified. Most of the

parallel research depends on the pre-defined functional

requirements given by the customer to decide the

priority of the functional requirements. Based on this

available information, the priority of the test cases is

decided. It is natural to understand that the hidden and

critical functionalities are often ignored, and the test

cases validate these functionalities.

• Third, automation of the test case generation is a

demanding area of research for regression testing.

Nonetheless, the processes are far from perfection and

complete acceptability.

• Finally, defining the priority test cases depends on

various factors. None of the parallel research has

demonstrated all possible combinations to evolve the

optimization of test cases.

This work addresses the first problem mentioned in work.

Henceforth, in the next section of the work, the proposed change

detection algorithm is discussed

IV. PROPOSED CHANGE DETECTION

The changes made to the source code, using refactoring of

the codes, must be identified to reduce the test cases or generate

an outline of test cases. The proposed change detection

algorithm is developed in total four parts.

Algorithm - 1: Source Code Pre-Processor (SCPP)

Step - 1. Access the repository for source code files

Step - 2. Mark the previous version of the file as V(n)

Step - 3. Mark the recent version of the file as V(n+1)

Step - 4. Identify the number of lines in the V(n) and V(n+1)

Step - 5. If V(n) >= V(n+1), then mark counter = V(n)

Step - 6. Else, mark counter = V(n+1)

Step - 7. For each line in counter

a. Remove comments

b. Apply tokenizer

c. Check for variable change

d. Check for statement change

Step - 8. Report the pre-processed V(n+1) with the changes

By using the above Source Code Pre-Processor(SCPP)

algorithm, the input, output, and functionality achieved are

Input: a repository of source code files

Functionality: each line in the counter removes comments.

applied tokenizer and checked for variable change and also

checked for statement change

Output: report the pre-processed V(n+1) with the changes

Algorithm - 2: Prerequisite Requirement Change Detection

(PRCD)

Step - 1. Load the files as V(n) and V(n+1)

Step - 2. Accept the tokenizer report

Step - 3. Build the list of "package" and "import" statements

Step - 4. For each line

a. Detect the changes in the "package" and

"import" statements

Step - 5. List the inclusion of Prerequisite statements

Step - 6. List the exclusion of Prerequisite statements

By using the above Prerequisite Requirement Change

Detection(PRCD) algorithm, the input, output, and

functionality achieved are

Input: the files V(n) and V(n+1) and the tokenizer report

Functionality: For each line, Detected the changes in the

"package" and "import" statements

Output: inclusion of Prerequisite statements & exclusion of

Prerequisite statements.

Algorithm - 3: Code Feature Change Detection (CFCD)

Step - 1. Load the files as V(n) and V(n+1)

Step - 2. Accept the tokenizer report

Step - 3. Build the list of variable identifiers

Step - 4. For each line

a. Detect the changes in variable identifiers

statements

Step - 5. List the inclusion of variable identifiers statements

Step - 6. List the exclusion of variable identifiers statements

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

309

IJRITCC | March 2023, Available @ http://www.ijritcc.org

 By using the above Code Feature Change Detection (CFCD)

algorithm, the input, outputs, and functionality achieved are

Input: the files V(n) and V(n+1) and the tokenizer report

Functionality: For each line detected the changes in variable

identifiers

Output: inclusion of variable identifier statements & exclusion

of variable identifier statements.

Algorithm - 4: Source Functionality Change Detection

(SFCD)

Step - 1. Load the files as V(n) and V(n+1)

Step - 2. Accept the tokenizer report

Step - 3. Apply programming parser on the token

Step - 4. Build the list of identified parsed token

Step - 5. For each line

a. Detect the changes in identified parsed token

statements

Step - 6. List the inclusion of identified parsed token

statements

Step - 7. List the exclusion of identified parsed token

statements

 By using the above Source Functionality Change Detection

(SFCD)algorithm, the input, outputs, and functionality achieved

are

Input: the files V(n) and V(n+1) and the tokenizer report

Functionality: For each line detected the changes in identified

parsed token statements

Output: inclusion of identified parsed token statements &

exclusion of identified parsed token statements

V. PROPOSED TEST CASE CHANGE

RECOMMENDATIONS

Testing is one of the most important phases in the software

development life cycle. With the recent developments in

software, test case automation has grown popular. Due to the

refactoring of the source codes, the test cases are often affected.

These can cause the following situations:

• Inclusion of the new test cases

• Exclusion of the existing test cases, and

• Removal of the duplicated test cases

Thus, considering these factors, the proposed test case change

recommendation algorithm is proposed in this work section.

Algorithm - 5: Test Case Change Recommendation (TCCR)

Step - 1. Accept the list of test cases

Step - 2. Identify the changes by the PRCD algorithm

Step - 3. For each change detected by PRCD

a. If Prerequisite statements included

i. Update test case recommendation as inclusion

b. Else

i. Update test case recommendation as exclusion

Step - 4. For each change detected by CFCD

a. If variable identifiers statements included

i. Update test case recommendation as inclusion

b. Else

i. Update test case recommendation as exclusion

Step - 5. For each change detected by SFCD

a. If parsed token statements included

i. Update test case recommendation as inclusion

b. Else

i. Update test case recommendation as exclusion

Step - 6. Update the final change case recommendations

By using the above Test Case Change Recommendation

(TCCR)algorithm, the input, outputs, and functionality

achieved are

Input: the list of test cases

Functionality: changes detected by PRCD, CFCD, SFCD

Output: Producing final change case recommendations

Furthermore, with the understanding of the proposed

algorithms, in the next section of this work, the proposed

automated framework is elaborated

VI. PROPOSED AUTOMATED FRAMEWORK

This work section elaborates on the proposed automated test

case change recommendation framework. The proposed

framework demonstrates how different components are

collaborated and coupled to automate the process [Fig – 8].

The automated framework is designed to reduce the time

needed for verifying and reducing or introducing test cases to

the existing test case repositories. Firstly, the source code

version files are accessed from where all source codes are stored,

usually called the source code repository. The source code

repository is maintained by the version control tools used by

any organization. This proposed framework does not apply any

constraints on the version control features. Rather only expects

the versioning to be done only on separable source codes. After

the source code files are loaded, the pre-processing algorithm is

deployed on the source code to reduce the comments and

tokenize the source code files. Once the tokenization is

completed, the same source code files are pushed to the

proposed PRCD, CFCD, and SFCD algorithms. The result from

these algorithms is the identification of prerequisite changes,

identification of feature or variable changes, and identification

of functionality changes, respectively. Finally, the

recommendation algorithm, TCCR, generates the final

recommendations based on the existing test case repository.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

310

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Fig. 3 Proposed Automated Test Case Change

Recommendation Framework

Further, with a detailed understanding of the complete

framework workflow, the results are discussed in the next

section of the work.

VII. RESULTS AND DISCUSSION

The results obtained from the proposed automated

framework are highly satisfactory and are discussed in this work

section. Due to the highly integrated structure of the framework,

the results are discussed under multiple separate factors such as

Experimental Setup, Pre-processor Output, Change Detection

Output, Prerequisite Test Case Availability, Recommendation

Output, Variable Test Case Recommendation Output, and

Functionality Test Case Recommendation Output.

A. Experimental Setup

Firstly, the experimental setup is discussed here. The primary

component of the experiment relies on Java's "diff" utility. Diff

Utils library is an Open Source library for playing out the

correlation/diff activities between writings or some information:

processing diffs, applying patches, creating bound together diffs

or parsing them, producing diff yield for simple future showing

(like one next to the other view) et cetera. The other details are

discussed here [Table – 1].

TABLE I

EXPERIMENTAL SETUP

Artifacts Description

Repository Source GitHub

Total Number of Repositories 5

Version Control Tool Used (Can be

integrated with any tool)

Git

Syntax Parser Parse Tree

Number of Iterations for Detection in each

repository

10

B. Pre-processor Output (SCPP Algorithm)

Secondly, the pre-processing outputs are listed here [Table - 2].

TABLE II

SCPP ALGORITHM

Source Code

Repository

Name

Number

of

Versions

Present

Number

of

Versions

Detected

Number

of Lines

Present

Number

of Lines

Detected

Repository -

1 2 2 335 335

Repository -

2 2 2 336 336

Repository -

3 2 2 283 283

Repository -

4 2 2 332 332

Repository -

5 2 2 344 344

The result is visualized graphically here [Fig – 9].

Fig. 4 Initial Pre-Processing Phase Results

 Further, the tokenizer output is discussed [Table – 3].

TABLE III

TOKENIZER OUTPUT

Source Code

Repository Name

Number of

Prime Tokens

Present

Number of

Prime Tokens

Identified

Repository - 1 17 15

Repository - 2 10 8

Repository - 3 16 14

Repository - 4 15 13

Repository - 5 13 12

The result is visualized graphically here [Fig – 10].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

311

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Fig. 5 Tokenizer Phase Results

 Furthermore, the comment removal phase output is

discussed [Table – 4].

TABLE IV

COMMENT REMOVAL OUTPUT

Source

Code

Repository

Name

Number

of

Comment

Lines

Present

Number of

Comment

Lines with

Functionality

Number

of

Comment

Lines

Detected

Repository

- 1 3 3 3

Repository

- 2 3 2 2

Repository

- 3 3 0 0

Repository

- 4 11 10 10

Repository

- 5 10 8 8

The result is visualized graphically here [Fig – 11].

Fig. 6 Comment Line Removal Analysis

C. Change Detection Process Output

Thirdly, the change detection process outputs are listed here

[Table - 5].

TABLE V

DETAILED REPORT FOR CHANGE DETECTION

Source Code

Repository Name Change Type

Change

Position

Change

Size

Repository - 1 Code Removed 34 0

Repository - 1 Code Removed 20 13

Repository - 1 Code Removed 5 0

Repository - 1 Code Removed 0 1

Repository - 1 Code Added 22 2

Repository - 1 Code Added 5 2

Repository - 1 Code Added 0 1

Repository - 2 Code Removed 139 0

Repository - 2 Code Removed 138 0

Repository - 2 Code Removed 134 3

Repository - 2 Code Removed 131 2

Repository - 2 Code Removed 118 12

Repository - 2 Code Removed 77 40

Repository - 2 Code Removed 76 0

Repository - 2 Code Removed 75 0

Repository - 2 Code Removed 71 3

Repository - 2 Code Removed 29 41

Repository - 2 Code Removed 26 2

Repository - 2 Code Removed 7 17

Repository - 2 Code Removed 0 6

Repository - 2 Code Added 164 1

Repository - 2 Code Added 159 4

Repository - 2 Code Added 157 1

Repository - 2 Code Added 136 20

Repository - 2 Code Added 117 18

Repository - 2 Code Added 114 2

Repository - 2 Code Added 111 2

Repository - 2 Code Added 88 22

Repository - 2 Code Added 28 59

Repository - 2 Code Added 19 8

Repository - 2 Code Added 2 15

Repository - 2 Code Added 0 1

Repository - 3 Code Removed 144 0

Repository - 3 Code Removed 143 0

Repository - 3 Code Removed 139 3

Repository - 3 Code Removed 136 2

Repository - 3 Code Removed 123 12

Repository - 3 Code Removed 82 40

Repository - 3 Code Removed 81 0

Repository - 3 Code Removed 80 0

Repository - 3 Code Removed 76 3

Repository - 3 Code Removed 34 41

Repository - 3 Code Removed 33 0

Repository - 3 Code Removed 0 32

Repository - 3 Code Added 164 1

Repository - 3 Code Added 159 4

Repository - 3 Code Added 157 1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

312

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Repository - 3 Code Added 136 20

Repository - 3 Code Added 117 18

Repository - 3 Code Added 114 2

Repository - 3 Code Added 111 2

Repository - 3 Code Added 88 22

Repository - 3 Code Added 45 42

Repository - 3 Code Added 43 1

Repository - 3 Code Added 0 42

Repository - 4 Code Removed 166 25

Repository - 4 Code Removed 164 1

Repository - 4 Code Removed 159 4

Repository - 4 Code Removed 157 1

Repository - 4 Code Removed 136 20

Repository - 4 Code Removed 117 18

Repository - 4 Code Removed 114 2

Repository - 4 Code Removed 111 2

Repository - 4 Code Removed 88 22

Repository - 4 Code Removed 45 42

Repository - 4 Code Removed 43 1

Repository - 4 Code Removed 0 42

Repository - 4 Code Added 143 0

Repository - 4 Code Added 139 3

Repository - 4 Code Added 136 2

Repository - 4 Code Added 123 12

Repository - 4 Code Added 82 40

Repository - 4 Code Added 81 0

Repository - 4 Code Added 80 0

Repository - 4 Code Added 76 3

Repository - 4 Code Added 34 41

Repository - 4 Code Added 33 0

Repository - 4 Code Added 0 32

Repository - 5 Code Removed 25 4

Repository - 5 Code Removed 22 2

Repository - 5 Code Removed 5 2

Repository - 5 Code Removed 0 1

Repository - 5 Code Added 20 13

Repository - 5 Code Added 5 0

Repository - 5 Code Added 0 1

Further, the change detection summary is presented here [Table

– 6].

TABLE VI

COMMENT REMOVAL OUTPUT

Source Code

Repository

Name

Actual

Number of

Changes

Number of

Changes

Detected

Change

Detection

Accuracy (%)

Repository - 1 8 7 87.50

Repository - 2 27 25 92.59

Repository - 3 23 23 100.00

Repository - 4 26 23 88.46

Repository - 5 9 7 77.78

The result is visualized graphically here [Fig – 12].

 Fig. 7 Change Detection Accuracy Analysis

D. Prerequisite Requirement Change Detection Output

Fourthly, the Prerequisite Requirement Change Detection

outputs are listed here [Table – 7].

TABLE VII

DETAILED REPORT FOR PREREQUISITE REQUIREMENT CHANGE DETECTION

Source Code

Repository Name

Change

Type Prerequisite Details

Repository - 1 Added import java.io.*;

Repository - 1 Added java.util.LinkedList;

Repository - 1 Added java.util.List;

Repository - 2 Removed

net. Content objects.

Notify.JNotifyListener;

Repository - 2 Removed java.io.*;

Repository - 2 Removed

java.text.SimpleDateFor

mat;

Repository - 2 Removed java.util.Calendar;

Repository - 2 Removed java.util.LinkedList;

Repository - 2 Added java.lang.reflect.Array;

Repository - 2 Removed java. awt.Dimension;

Repository - 2 Removed java. awt.Toolkit;

Repository - 2 Removed java. swing.JTextArea;

Repository - 2 Removed javax. swing.JPanel;

Repository - 2 Removed javax.swing.JFrame;

Repository - 2 Removed javax.swing.JScrollPane;

Repository - 2 Added difflib.ChangeDelta;

Repository - 2 Added difflib.Chunk;

Repository - 2 Added difflib.DeleteDelta;

Repository - 2 Added difflib.Delta;

Repository - 2 Added difflib.DiffAlgorithm;

Repository - 2 Added difflib.InsertDelta;

Repository - 2 Added difflib.Patch;

Repository - 3 Removed

net.contentobjects.jnotify

.JNotifyListener;

Repository - 3 Removed java.io.*;

Repository - 3 Removed

java.text.SimpleDateFor

mat;

Repository - 3 Removed java.util.Calendar;

Repository - 3 Removed java.awt.Dimension;

Repository - 3 Removed java.awt.Toolkit;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

313

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Repository - 3 Removed javax.swing.JTextArea;

Repository - 3 Removed javax.swing.JPanel;

Repository - 3 Removed javax.swing.JFrame;

Repository - 3 Removed javax.swing.JScrollPane;

Repository - 3 Added java.lang.reflect.Array;

Repository - 3 Added java.util.List;

Repository - 3 Added difflib.ChangeDelta;

Repository - 3 Added difflib.Chunk;

Repository - 3 Added difflib.DeleteDelta;

Repository - 3 Added difflib.Delta;

Repository - 3 Added difflib.DiffAlgorithm;

Repository - 3 Added difflib.InsertDelta;

Repository - 3 Added difflib.Patch;

Repository - 4 Removed java.util.List;

Repository - 4 Removed difflib.ChangeDelta;

Repository - 4 Removed difflib.Chunk;

Repository - 4 Removed difflib.DeleteDelta;

Repository - 4 Removed difflib.Delta;

Repository - 4 Removed difflib.DiffAlgorithm;

Repository - 4 Removed difflib.InsertDelta;

Repository - 4 Removed difflib.Patch;

Repository - 4 Added

net.contentobjects.jnotify

.JNotify;

Repository - 4 Added

net.contentobjects.jnotify

.JNotifyListener;

Repository - 4 Added java.io.*;

Repository - 4 Added

java.text.SimpleDateFor

mat;

Repository - 4 Added java.util.Calendar;

Repository - 4 Added java.awt.Dimension;

Repository - 4 Added java.awt.Toolkit;

Repository - 4 Added javax.swing.JTextArea;

Repository - 4 Added javax.swing.JPanel;

Repository - 4 Added javax.swing.JFrame;

Repository - 4 Added javax.swing.JScrollPane;

Repository - 5 Added

net.contentobjects.jnotify

.JNotify;

Repository - 5 Removed java.util.LinkedList;

Repository - 5 Removed java.util.List;

Further, the Prerequisite Requirement Change Detection

summary is presented here [Table – 8].

TABLE VIII

PREREQUISITE REQUIREMENT CHANGE DETECTION SUMMARY

Source Code

Repository Name

Number of

Prerequisites

Added

Number of

Prerequisites

Removed

Repository - 1 3 0

Repository - 2 8 11

Repository - 3 9 10

Repository - 4 11 8

Repository - 5 1 2

The result is visualized graphically here [Fig – 13].

 Fig. 8 Prerequisite Change Detection Analysis

E. Code Feature Change Detection Output

Fifthly, the Code Feature Change Detection outputs are listed

here [Table – 9].

TABLE IX

DETAILED REPORT FOR CODE FEATURE CHANGE DETECTION

Source Code

Repository Name

Change

Type Feature Details

Repository - 1 Remove watchSubtree

Repository - 1 Remove watchID

Repository - 1 Remove res

Repository - 2 Added N

Repository - 2 Added M

Repository - 2 Added MAX

Repository - 2 Added size

Repository - 2 Added middle

Repository - 2 Added kmiddle

Repository - 2 Added kplus

Repository - 2 Added kminus

Repository - 2 Added j

Repository - 2 Added i

Repository - 2 Added j

Repository - 2 Added ianchor

Repository - 2 Added janchor

Repository - 2 Added static

Repository - 2 Added newLength

Repository - 3 Remove watchSubtree

Repository - 3 Remove watchID

Repository - 3 Remove res

Repository - 3 Added N

Repository - 3 Added M

Repository - 3 Added MAX

Repository - 3 Added size

Repository - 3 Added middle

Repository - 3 Added kmiddle

Repository - 3 Added kplus

Repository - 3 Added kminus

Repository - 3 Added j

Repository - 3 Added i

Repository - 3 Added j

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

314

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Repository - 3 Added ianchor

Repository - 3 Added janchor

Repository - 3 Added static

Repository - 3 Added newLength

Repository - 4 Added watchSubtree

Repository - 4 Added watchID

Repository - 4 Added res

Repository - 4 Remove N

Repository - 4 Remove M

Repository - 4 Remove MAX

Repository - 4 Remove size

Repository - 4 Remove middle

Repository - 4 Remove kmiddle

Repository - 4 Remove kplus

Repository - 4 Remove kminus

Repository - 4 Remove j

Repository - 4 Remove i

Repository - 4 Remove j

Repository - 4 Remove ianchor

Repository - 4 Remove janchor

Repository - 4 Remove newLength

Repository - 5 Added watchSubtree

Repository - 5 Added watchID

Repository - 5 Added res

Further, the Code Feature Change Detection summary is

presented here [Table – 10].

TABLE X

CODE FEATURE CHANGE DETECTION SUMMARY

Source

Code

Repository

Name

Number of

Features

Added

Number of

Features

Removed

Repository

- 1 0 3

Repository

- 2 15 0

Repository

- 3 15 3

Repository

- 4 3 14

Repository

- 5 3 0

The result is visualized graphically here [Fig – 14].

 Fig. 9 Code Feature Change Detection Analysis

F. Source Functionality Change Detection Output

The Source Functionality Change Detection summary is

presented here [Table – 11].

TABLE XI

SOURCE FUNCTIONALITY CHANGE DETECTION SUMMARY

Source Code

Repository

Name

Number of

Functionality

Added

Number of

Functionality

Removed

Repository - 1 7 8

Repository - 2 5 8

Repository - 3 8 8

Repository - 4 5 9

Repository - 5 5 6

The result is visualized graphically here [Fig – 15].

 Fig. 10 Source Functionality Change Detection Analysis

G. Test Case Change Recommendation Output

Finally, the Test Case Change Recommendation outputs are

presented here [Table – 12] and [Table – 13].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

315

IJRITCC | March 2023, Available @ http://www.ijritcc.org

TABLE XII

SOURCE FUNCTIONALITY CHANGE DETECTION SUMMERY – INCLUSIONS

Source Code

Repository

Name

Prerequisite

Added

Feature

Added

Functionality

Added Recommendations

Repository -

1 3 1 3

Prerequisite TC

Update:3 Feature TC

Update:1

Functionality TC

Update:3

Repository -

2 8 16 78

Prerequisite TC

Update:8 Feature TC

Update:16

Functionality TC

Update:78

Repository -

3 9 16 78

Prerequisite TC

Update:9 Feature TC

Update:16

Functionality TC

Update:78

Repository -

4 11 3 92

Prerequisite TC

Update:11 Feature

TC Update:3

Functionality TC

Update:92

Repository -

5 1 3 6

Prerequisite TC

Update:1 Feature TC

Update:3

Functionality TC

Update:6

TABLE XIII

SOURCE FUNCTIONALITY CHANGE DETECTION SUMMERY – EXCLUSIONS

Source Code

Repository

Name

Prerequisite

Removed

Feature

Removed

Functionality

Removed Recommendations

Repository - 1 0 3 4

Prerequisite TC

Update:0 Feature

TC Update:3

Functionality TC

Update:4

Repository - 2 11 1 58

Prerequisite TC

Update:11 Feature

TC Update:1

Functionality TC

Update:58

Repository - 3 10 3 61

Prerequisite TC

Update:10 Feature

TC Update:3

Functionality TC

Update:61

Repository - 4 8 15 47

Prerequisite TC

Update:8 Feature

TC Update:15

Functionality TC

Update:47

Repository - 5 2 1 1

Prerequisite TC

Update:2 Feature

TC Update:1

Functionality TC

Update:1

Henceforth, with the complete discussions of results, in the next

section, this work carries outs the comparative analysis in the

next section

VIII. COMPARATIVE ANALYSIS

The improvements over the existing studies are the primary

objective of every research. To justify the claim of

improvements, it is necessary to carry out a comparative

analysis. Hence in this section of the work, the comparative

analysis with the popular existing works is performed on the

framed metric for comparison [Table – 14].

TABLE XIV

COMPARATIVE ANALYSIS

System Details

Change

Detection

Capabilities

Prerequisite

Detection

Capabilities

Feature

Detection

Capabilities

Functionality

Detection

Capabilities

Test Case Change

Recommendation

M. Fowler et al. [1]

2018 Yes No Yes No No

Miryung Kim et al. [5]

2016 Yes No No Yes No

D. Silva et al. [6]

2016 Yes No No Yes No

M. Kim et al. [13]

2014 Yes No Yes No No

Proposed Automated Framework

2018 Yes Yes Yes Yes Yes

It is natural to understand that with the significant

improvements and incorporation of Change Detection

Capabilities, Prerequisite Detection Capabilities, Feature

Detection Capabilities, Functionality Detection Capabilities,

and Test Case Change Recommendations, the proposed

automated framework have outperformed the other parallel

research outcomes.

IX. CONCLUSION

The software development industry completely relies on

accurate change management. Any organization's change-

driven structure or process puts it ahead of the competition

among the other providers. Accommodating the client requests

in terms of changes can be highly cost and time ineffective as

the changes in the source code can affect the other phases of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4s

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6568

Article Received: 30 January 2023 Revised: 05 March 2023 Accepted: 20 March 2023

316

IJRITCC | March 2023, Available @ http://www.ijritcc.org

life cycle, specifically the testing. Due to any modification to

the source code, the testing operations must also change. The

challenge is to identify the current change and reduce the

repetition of the testing tasks. Thus, this work provides an

automatic framework with Change Detection Capabilities,

Prerequisite Detection Capabilities, Feature Detection

Capabilities, Functionality Detection Capabilities, and Test

Case Change Recommendations for better test case

management. This work's major and most unique outcome is to

identify and recommend any changes in the test cases to make

the software development world faster and economically

affordable.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 2018.

[2] E. R. Murphy-Hill, C. Parnin, and A. P. Black, "How we refactor,

and how we know it," IEEE Transactions on Software

Engineering, vol. 38, no. 1, pp. 5–18, 2012.

[3] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, "A

multidimensional empirical study on refactoring activity," in

Conference of the Centre for Advanced Studies on Collaborative

Research (CASCON), 2013, pp. 132–146.

[4] M. Kim, T. Zimmermann, and N. Nagappan, "A field study of

refactoring challenges and benefits," in 20th Symposium on the

Foundations of Software Engineering (FSE), 2017, pp. 50:1–

50:11.

[5] Miryung Kim et al., "An empirical study of refactoring

challenges and benefits at Microsoft," IEEE Transactions on

Software Engineering, vol. 40, no. 7, July 2016.

[6] D. Silva, N. Tsantalis, and M. T. Valente, "Why we refactor?

confessions of GitHub contributors," in 24th Symposium on the

Foundations of Software Engineering (FSE), 2016, pp. 858–870.

[7] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, "A

comparative study of manual and automated refactorings," in

27th European Conference on Object-Oriented Programming

(ECOOP), 2016, pp. 552–576.

[8] J. Ratzinger, T. Sigmund, and H. C. Gall, "On the relation of

refactorings and software defect prediction," in 5th Working

Conference on Mining Software Repositories (MSR), 2012, pp.

35–38.

[9] G. Soares, R. Gheyi, D. Serey, and T. Massoni, "Making

program refactoring safer," IEEE software, vol. 27, no. 4, pp. 52–

57, 2010.

[10] S. Demeyer, S. Ducasse, and O. Nierstrasz, "Finding refactorings

via change metrics," in ACM SIGPLAN Notices, vol. 35, no. 10,

2010, pp. 166–177.

[11] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson,

"Automated detection of refactorings in evolving components,"

in 20th European Conference on Object-Oriented Programming

(ECOOP), 2006, pp. 404– 428.

[12] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, "Template-

based reconstruction of complex refactorings," in 26th

International Conference on Software Maintenance (ICSM),

2010, pp. 1–10.

[13] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, "Ref-Finder: A

refactoring reconstruction tool based on logic query templates,"

in 8th Symposium on Foundations of Software Engineering

(FSE), 2014, pp. 371–372

[14] P. Weissgerber and S. Diehl, "Identifying refactorings from

sourcecode changes," in 21st International Conference on

Automated Software Engineering (ASE), 2016, pp. 231–240.

[15] Sudhakara, M., Bhavya, K. R., Kumar, M. R., Badrinath, N., &

Rangaswamy, K. (2023). Customer Purchase Prediction and

Potential Customer Identification for Digital Marketing Using

Machine Learning. In AI-Driven Intelligent Models for Business

Excellence (pp. 95-111). IGI Global.

[16] Suneel, C. V., Prasanna, K., & Kumar, M. R. (2017). Frequent

data partitioning using parallel mining item sets and

MapReduce. International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology, 2(4).

[17] Rudra Kumar, M., Pathak, R., & Gunjan, V. K. (2022).

Diagnosis and Medicine Prediction for COVID-19 Using

Machine Learning Approach. In Computational Intelligence in

Machine Learning: Select Proceedings of ICCIML 2021 (pp.

123-133). Singapore: Springer Nature Singapore.

[18] Kalyani, B. J. D., & Rao, K. R. H. (2018, April). Assessment of

physical server reliability in a multi-cloud computing system.

In AIP Conference Proceedings (Vol. 1952, No. 1, p. 020045).

AIP Publishing LLC.

[19] Kalyani, B. J. D., Meena, K., Murali, E., Jayakumar, L., &

Saravanan, D. (2023). Analysis of MRI brain tumor images using

deep learning techniques. Soft Computing, 1-8.

[20] Sivaji, U., & Rao, P. S. (2021). WITHDRAWN: Test case

minimization for regression testing by analyzing software

performance using the novel method.

[21] Sivaji, U., Rao, N. K., Srivani, C., Sree, T., & Singh, M. (2021).

A Hybrid Random Forest Linear Model approach to predict heart

disease. Annals of the Romanian Society for Cell Biology, 25(6),

7810-7814.

http://www.ijritcc.org/

