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Abstract—Machine learning has proven to be a practical medical image processing technique for pattern discovery in low-quality labelled and 

unlabeled datasets. Deep vein thrombosis and pulmonary embolism are both examples of venous thromboembolism, which is a key factor in 

patient mortality and necessitates prompt diagnosis by experts. An immediate diagnosis and course of treatment are necessary for the life-

threatening cardiovascular condition known as pulmonary embolism (PE). In the study of medical imaging, especially the identification of PE, 

machine learning (ML) algorithms have produced encouraging results. This study's objective is to assess how well machine learning (ML) 

algorithms perform in identifying PE in computed tomography (CT) scans. A range of ML approaches were used to the dataset, including deep 

learning algorithms such as convolutional neural networks. The effectiveness of PE detection systems can be greatly enhanced by the use of 

cutting-edge methodologies like deep learning, which lowers the possibility of incorrect diagnoses and enables the quick administration of 

therapy to individuals who require it. This work contributes to the growing body of evidence that supports the use of ML in medical imaging 

and diagnosis. Future research should examine how these algorithms might be included into clinical workflows, resolving any potential 

implementation challenges, and making sure their adoption is done so in a secure and efficient way. In this study, we provide a thorough 

evaluation of three different models: the streamlined architecture MobileNetV2 with an accuracy of 96%, compared to other models like the 

Xception model with an accuracy of 91%, and the Efficientnet B5 model with an accuracy of 97%, after observation and process following. 

Keywords-Pulmonary Embolism, Machine Learning, CNN, MobileNet V2, Xception, EfficentNet, Segmentation. 

 

I. INTRODUCTION  

A wide variety of medical disorders can be diagnosed with 

the help of medical imaging. Yet, manual image analysis for 

medical purposes can be laborious and prone to human mistake. 

Machine learning (ML), which makes use of the creation of 

algorithms that can learn from and predict from massive volumes 

of data, has emerged as a viable remedy to these problems. 

Recent results from the use of ML approaches to medical 

imaging have been positive, offering chances to improve the 

precision, effectiveness, and affordability of medical imaging 

analysis. The purpose of this work is to review recent advances 

in medical image analysis using ML. 

Pulmonary embolism is one of the most challenging 

diagnoses to make because it can be fatal if not caught in time. 

A blockage of a pulmonary artery in the lungs can result in 

pulmonary embolism (PE), a potentially dangerous 

cardiovascular illness. A blockage of one of the pulmonary 

arteries in the lungs can cause pulmonary embolism (PE), a 

potentially fatal cardiovascular condition. A blood clot that 
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develops in a deep vein, such as the legs, and then moves to the 

lungs frequently causes PE. The term "deep vein thrombosis" 

refers to this kind of blood clot (DVT). Less blood flowing to the 

lung's afflicted area due to pulmonary artery obstruction can 

result in tissue damage and a reduction in the body's ability to 

absorb oxygen[1]. 

As the symptoms of PE frequently resemble those of other 

disorders, such as a heart attack or pneumonia, diagnosing PE 

can be difficult. A physician might prescribe tests like a 

computed tomography (CT) scan, a lung scan, or an MRI, as well 

as blood tests to check for the presence of clots, to confirm a 

diagnosis of PE. Blood tests may not always give a reliable 

diagnosis, and manual interpretation of medical imaging can 

take time and be susceptible to human error.. 

Machine learning techniques have recently gained popularity 

in medical research and diagnostics, offering a fresh and 

improved means of identifying specific medical disorders. ML is 

a subfield of AI that comprises formulating programmes 

specifically designed to learn new tasks that can generate 

predictions and learn from massive volumes of data. Medical 

imaging analysis using ML algorithms has recently 

demonstrated encouraging outcomes, including the diagnosis of 

PE. ML algorithms can analyse enormous amounts of data and 

find patterns and features that may be missed by human 

interpretation by applying cutting-edge techniques like deep 

learning. 

The aim of this study is to see how well ML algorithms 

perform in detecting PE in CT scans. The collection and 

processing of a dataset of CT scans from patients with and 

without PE. The dataset was subjected to a range of ML 

techniques, including deep learning algorithms that make use of 

CNNs. The best algorithms for identifying PE were then 

determined by comparing the findings of this investigation. This 

study is notable because it illustrates the potential of utilising ML 

algorithms in the detection of PE and contributes to the growing 

volume of study showing the benefits of ML in medical imaging 

and diagnostics. Increased diagnosis speed and accuracy can 

lessen the chance of misdiagnosis and enhance patient 

outcomes[2]. 

In this paper, we give a general overview of PE, covering its 

aetiology, symptoms, and available diagnostic techniques. Then, 

we give a backdrop and rationale for utilising ML algorithms to 

identify PE, as well as a summary of the different ML 

approaches that were tested in this study. A discussion of the 

implications of these findings and recommendations for further 

research follow the presentation of the study's methodologies 

and findings. The research also emphasises the difficulties and 

limitations of using ML to medical imaging, such as the need for 

big, diverse datasets to train ML systems, as well as data privacy 

and security issues. 

The results of this study show how machine learning (ML) 

possesses ability to revolutionise medical imaging analysis by 

providing better accuracy, speed, and cost-effectiveness than 

manual techniques. However, more investigation is required to 

fully understand the advantages of ML in medical imaging and 

to address any challenges that would prevent its deployment. 

Further study in the areas of medical imaging and ML is 

suggested as a possible direction in the paper's conclusion. 

Machine learning (ML) models are required for the detection 

of pulmonary embolisms (PE) for several reasons: 

Early and precise diagnosis are essential for the best results 

because PE is a disorder that can be fatal and necessitates quick 

medical attention. ML algorithms are able to analyse medical 

images quickly and automatically, including computed 

tomography (CT) scans, and can identify PE more effectively 

than manual techniques[3]. 

Increased precision: PE diagnosis can be tough because the 

symptoms are frequently similar to those of other illnesses and 

might be challenging to distinguish. Medical image analysis 

using machine learning (ML) algorithms can spot patterns and 

details that could be overlooked by human interpretation. Its 

increased precision may aid in lowering the possibility of a false 

positive and enhancing patient outcomes[3]. 

Cost-effectiveness: ML algorithms can automate the 

diagnostic procedure and cut down on the time and resources 

needed for manual analysis, making them cost-effective. This 

may contribute to lowering healthcare expenses and improving 

access to diagnostic services for those who require them. ML 

algorithms can automate the diagnostic procedure and cut down 

on the time and resources needed for manual analysis, making 

them cost-effective. This may contribute to lowering healthcare 

expenses and improving access to diagnostic services for those 

who require them[4]. 

Addressing manual methods' limitations: Manual analysis of 

medical imaging can be laborious and prone to human error. 

These restrictions can be solved by ML algorithms by delivering 

quicker, more precise, and more reliable results[4]. 

A. Pulmonary Embolism 

A thrombus (clot of blood) that breaks free from a vein and 

lodges in the pulmonary circulation, blocking one or more 

pulmonary arteries, is known as pulmonary embolism 

(PE).Diagnosis of PE involves a combination of patient medical 

history, physical examination, and various diagnostic tests such 

as chest X-rays, CT scans, and blood tests measuring biomarkers 

associated with PE. The standard treatment for PE is 

anticoagulant medication, such as heparin or warfarin, to prevent 

further clots and dissolve existing ones. In severe cases, a 

procedure known as thrombolysis, in which a clot-dissolving 

medication is directly delivered to the clot, may be used. In 
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certain instances, a filter may also be inserted in the inferior vena 

cava to prevent clots from reaching the lungs. 

In the process of identifying and treating pulmonary emboli, 

machine learning can be quite helpful (PE). These are some 

applications for machine learning: 

1. Predictive modelling: Machine learning algorithms can be 

trained on massive datasets of patient medical history, 

demographic data, imaging results, and other pertinent 

characteristics to predict the likelihood of a PE diagnosis. This 

can assist medical professionals in better deciding whether 

additional diagnostic procedures or medical therapy are 

necessary. 

2. Imaging analysis: Machine learning algorithms can be 

used to analyze imaging data, such CT scans, to find PE 

symptoms and gauge how severe the blockage is. This can aid 

medical professionals in making more precise diagnosis and 

choosing the most appropriate course of action[5]. 

3. Risk assessment: Based on a range of variables, including 

age, medical history, lifestyle, and genetics, machine learning 

can also be used to determine an individual's risk of having PE. 

Healthcare professionals can utilise this information to monitor 

individuals who are at high risk of PE and to prioritize preventive 

interventions[6]. 

4. Monitoring and tracking: Machine learning algorithms can 

be used to monitor patients who have been given a PE diagnosis 

and to follow their development over time. Healthcare 

professionals can use this information to identify patients who 

could be at risk for issues and to modify treatment regimens as 

necessary[6]. 

B. Convolution Neural Networks (CNN) 

For tasks like image identification, object detection, and 

image segmentation, convolutional neural networks (CNNs), a 

type of artificial neural network, are frequently employed in 

image and video analysis. The principle of convolution, which 

involves swiping a tiny matrix known as a kernel or filter over 

the input image to extract features, is the foundation for 

CNNs[7]. 

Due to their capacity to learn and recognize intricate patterns 

within images, convolutional neural networks (CNN) are 

frequently utilized for the detection of medical imaging, 

including X-rays, CT scans, and MRIs. CNN works the 

following way: 

Input Layer: The input to the CNN is an image or a sequence 

of images. The image is taken in by the input layer and sent on 

to the following layer. 

Convolutional Layers: At the center of the CNN are 

convolutional layers. They take features out of the input image 

using a collection of filters or kernels. Each filter performs a dot 

product with the image's pixel values as it slides over the input 

image. A feature map that highlights parts of the picture that 

contain the feature the filter is looking for is the output that is 

produced as a result. 

Activation Function: For the network to gain nonlinearity, an 

activation function is used to each convolutional layer's output. 

Rectified Linear Unit (ReLU) and Sigmoid are often used 

activation functions. 

Pooling Layers: By using pooling layers, the output of the 

convolutional layers are down sampled, causing the feature 

maps' spatial dimensions to be reduced. As a result, the network's 

parameters are reduced, improving its computational efficiency. 

Fully Connected Layers: These layers perform classification 

or regression operations after receiving the output from the 

preceding levels. These layers are similar to the layers in a 

standard artificial neural network and employ the extracted 

features to classify the input image. 

Output Layer: The output layer creates the CNN's ultimate 

output, which may be a regression or classification label. 

To decrease the discrepancy between the expected and actual 

output, the CNN modifies the weights of the filters and fully 

connected layers during the training phase. 

In order to detect medical images like X-rays, CT scans, and 

MRIs, convolutional neural networks (CNNs) are frequently 

utilised. This is because CNNs have the capacity to recognise 

and understand complicated patterns in images. The automated 

learning capacity of convolutional neural networks (CNNs) and 

recognize complex patterns within the pictures makes them a 

popular choice for the detection of abnormalities and diseases in 

CT scans[8]. The following are some of the crucial functions 

CNNs in the detection of CT scans: 

Convolutional layers are used by CNNs to extract features 

from CT scan pictures. The image is subjected to a series of 

filters or kernels known as convolutional layers in order to 

recognise patterns and features including edges, curves, and 

textures. The retrieved features are then applied to the image to 

determine if it is normal or aberrant[8]. 

Classification: Having retrieved the features, the CNN 

classifies the image as normal or abnormal using a collection of 

fully linked layers. By changing the weights of the fully linked 

layers during training, the CNN learns to link the retrieved 

characteristics with the associated labels[9]. 

Localization: CNNs can also be utilized to pinpoint a disease 

or abnormality's exact location inside a CT scan image. 

Localization networks, which forecast the position and size of 

the anomaly inside the image, are used to do this. 

Segmentation: Another use of CNNs in CT scan detection is 

segmentation, which entails separating the abnormality or 

disease from the surrounding image. Segmentation networks, 

which divide the image into regions of interest using 

convolutional layers, are used to achieve this. 

By automatically learning and recognizing complicated 

patterns within the images CNNs play a crucial part in the 
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evaluation of anomalies and diseases in CT scans. A number of 

medical diseases can now be diagnosed and treated more 

accurately and efficiently because to the use of CNNs in CT scan 

processing. 

CNNs have shown encouraging outcomes in the early and 

precise diagnosis of pulmonary embolism when used for CTPA 

image detection. The application of CNNs in the early and 

accurate diagnosis of pulmonary embolism has demonstrated 

great levels of accuracy and performance in the detection of 

CTPA pictures. The standard of the training data, the intricacy 

of the medical condition being diagnosed, and the specific 

architecture of the CNN being utilized are all variables that 

might have an impact on the model's performance and accuracy. 

II. RELATED WORK 

A few of the most effective methods for integrating, analyzing, 

and drawing conclusions from copious amounts of data , diverse 

data sets is through machine learning (ML) [10]. Among the 

most important uses for artificial intelligence (AI) systems is 

the diagnosis of disease using image processing and machine 

learning [11]. Early work on employing clinical factors or 

perfusion imaging as inputs to neural networks rather than 

CTPA led to moderate generalization when ML was applied to 

the problem of PE detection [12]. Other early approaches relied 

on complicated feature engineering and pre-processing to 

automate identification without external validation, which made 

them expensive from multiple angles [13]. By directly creating 

the learning architectures, the use of Deep Learning minimizes 

or eliminates the requirement for human feature engineering on 

images and gives designers greater freedom when designing the 

end-to-end pipeline for this automated process. Diagnosing PE 

using CTPA imaging has become a focus of more recent 

strategies. This is advantageous since CTPA imaging is the 

imaging technique that PE examinations use the most, and the 

data collected allows for a firm diagnosis using various learning 

strategies. Furthermore, the newly-emerging field of applying 

Deep Learning techniques to medical applications enables 

setting-up an ever-improving process of collaboration between 

humans and machines by delegating the initial diagnosis to 

automated DL pipelines and further examination to human 

doctors. As a result, even if the model is not the most accurate, 

it would still speed up diagnosis time by enabling doctors to 

better identify where to conduct additional research. In contrast 

to [14], which separates each CTPA into smaller cubes instead 

of working with a full CTPA scan, [13] substantially 

preprocesses image features using segmentation and vessel-

alignment. These features are then provided as an input to a 3D 

CNN. Our method works on whole CT scans rather than 

splitting them up, and it requires substantially less feature 

engineering than previous methods. It simply involves 

segmentation to extract the key features from the pictures and 

applying basic transformations. Our findings therefore offer a 

stronger argument for integrability with current medical 

diagnostic processes if they are upgraded 

III. PROPOSED MODEL 

A. Dataset Preprocessing and Exploration 

About Dataset: 

A collection of computed tomography (CT) scans that have 

been labelled to show whether or not pulmonary emboli are 

present may be found in the RSNA Pulmonary Embolism (PE) 

dataset. The Radiological Society of North America (RSNA) 

Pulmonary Embolism Detection Challenge, which sought to 

increase the precision of automatic pulmonary embolism 

identification on CT images, inspired the creation of this 

dataset[15]. 

12,126 CT scans in all, including 10,330 for training and 

1,796 for testing, make up the dataset. A series of two-

dimensional CT images are combined to create a three-

dimensional volume for each scan. The existence or absence of 

pulmonary embolism, as well as the location and severity of any 

emboli that are present, have all been identified on the pictures 

by board-certified radiologists[16]. 

The RSNA PE CT Dataset, which is available to the public, 

is the biggest dataset of CTPA trials that has been expertly 

annotated that we are aware of. This dataset aims to further 

machine learning research and innovation, which will 

ultimately improve the calibre, efficacy, and accessibility of 

patient care around the globe. It is freely available to all 

researchers who want to use it for academic purposes. 

 

 
Fig 1. Proposed model and workflow 
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Dataset Exploration: 

The Dataset has following labels to work with: 

Label Name Explanation Description 

PE – Negative Exam PE is not present Analysis 

Central PE PE involving the saddle embolus that is present in either 

the left or right major pulmonary arteries 

Analysis 

Left Sided PE PE found in the left pulmonary arterial tree at or above 

the lobar level 

Analysis 

Right Sided PE PE seen in the right pulmonary arterial tree at or above 

the lobar level 

Analysis 

Chronic PE Only those with persistent PE were observed. Analysis 

Acute and Chronic PE The study includes both acute and chronic PE. Analysis 

Filling Defect – No PE Examples of a true intraluminal filling defect that is not a 

normal PE include tumor invasion, thrombus in a stump, a 

catheter, and an embolized wire. 

Analysis 

QA-motion Patient movement that is significant enough to 

compromise imaging quality and prevent PE from being 

detected or excluded 

Analysis 

QA-constant Poor pulmonary arterial tree opacification that is severe 

enough to prevent PE from being detected or excluded from 

the picture 

Analysis 

RV to LV ratio < 1 Maximum short-axis diameter of RV to LV in a typical 

ratio 

Analysis 

RV to LV ratio >=1 Elevated RV/LV ratio, which denotes the possibility of 

right heart stress 

Analysis 

PE – present on the image PE (acute, chronic, or both) is labelled at the image-level 

when it appears in a picture. 

Image 

Artifact flow A filling deficiency that appears to be caused by PE but is 

actually caused by sluggish blood flow or contrast mixing 

Analysis 

Indeterminate The poor image quality prevented either a negative or 

positive diagnosis from being made. 

Analysis 

Table 1.  Introduction to labels of the dataset 

A study has multiple images grouped into series. Thus, each 

image is characterized by identifiers:  

• StudyInstanceUID: Indicates a unique identifier for the 

study to which the image belongs  

• SeriesInstanceUID: Indicates the series in the study to 

which the image belongs  

• SOPInstanceUID: A unique identifier for the image itself, 

defining the slice of a patient’s data pertaining to the chest (in 

the context of CT scans, there are several images taken at 

different locations and angles from the patient body called 

slices).  

For each training image there are 14 labels, that belong to 3 

levels: 

 • Image-Level Labels Label for each image. Here, the only 

label at the image-level is the one used to indicate whether a PE 

is present on the image or not.  

 

• Exam-Level Labels: These labels are used to detect the 

labels corresponding to characteristics of the PE and include the 

labels corresponding to the ratio of the right valve to left valve 

(greater than or less than 1), location of the PE (left, right, 

center), nature of PE (acute, chronic or both) and a label to 

indicate whether the study was conclusive or not. 

 • Informational Labels: These labels are used to indicate 

whether the radiologists noted an issue with motion or contrast 

in the study, whether there were artifacts present or whether the 

thing diagnosed was something else other than PE. We used the 

insights obtained in the paper to determine the labels that need 

to be predicted, and finally narrowed the labels down to 9[16]:  

acute_and_chronic_pe, central_pe, 

chronic_pe, indeterminate, leftsided_pe, 

pe_present_on_image, rightsided_pe, 

rv_lv_ratio_gte_1, rv_lv_ratio_lt. 

 

A worldwide standard for the sharing, storage, and 

transmission of digital medical images is called Digital Imaging 

and Communications in Medicine (DICOM), and this is how 

the images are saved[17]. A variety of 2D picture slices of 

various patients are included in the study. By giving the patient 

iodine and contrast to the chest, these images are produced. The 

information in the raw pixels comes from several examples of 

the exam's phases and through various tissues. The Hounsfield 
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Unit (HU) scale, which ranges from -1000 HU for air to 0 HU 

for water, is used to estimate the density of tissues[18]. On disc 

versus in memory, CT scan images could be represented 

differently. This problem typically arises because DICOM 

images frequently store as unsigned integers, even though they 

may have negative values. We may convert the values to HU 

units by using the intercept and slope values from the DICOM 

data format (supplied by the device maker). So, we modified the 

CT numbers through a procedure known as segmentation to 

extract the relevant information from the images [19]. 

 

Fig 2. Digram of the workflow of labels of dataset 

 

The CT scan records data regarding the radiodensity of a 

substance or tissue that has been subjected to x-rays. After 

gathering measurements in numerous different directions, a 

scan's transversal slice is recreated. 

Since the spectrum makeup of x-rays varies on measurement 

conditions like acquisition parameters and tube voltage, we 

must convert to Hounsfield units. The images of various 

measures can be compared by normalising to the values of water 

and air (water has HU 0 and air -1000)[18]. 

 

Hounsfield Unit: 

In medical imaging, a scale called the Hounsfield unit (HU) 

is used to quantify the tissue density. Sir Godfrey Hounsfield 

created the Hounsfield scale, which is used to quantify the tissue 

density in computed tomography (CT) scans. The scale goes 

from -1000 HU, which stands in for air, to +1000 HU, which 

stands in for bone[20]. 

Hounsfield units are used to discern between various tissues 

and structures, such as blood vessels, lung parenchyma, and 

pleural fluid, in computed tomography pulmonary angiography 

(CTPA) pictures. Hounsfield units can be used to distinguish 

between healthy and unhealthy tissues, which makes it simpler 

to spot and identify diseases like pulmonary embolism[21]. 

For instance, blood arteries are often represented by higher 

Hounsfield units in a CTPA image because they are denser than 

the nearby tissues. Lower Hounsfield units are used to represent 

pleural fluid and pulmonary enema because of their lower 

densities. Healthcare professionals can precisely identify the 

presence of aberrant tissues, such as clots or obstructions in the 

pulmonary arteries, which may suggest the existence of PE, by 

analysing the Hounsfield units in CTPA images. 

Hounsfield units are an essential part of CTPA images and 

are crucial for the detection of diseases like pulmonary 

embolism. Hounsfield units help healthcare professionals 

properly distinguish between normal and pathological tissues 

and make more informed judgements about patient treatment by 

quantitatively describing the density of tissues in CT scans. 

  

Fig3.1 HU values for a single CTPA Image 

 

In computed tomography pulmonary angiography (CTPA) 

pictures, the use of Hounsfield units in the identification of 

pulmonary embolism (PE) is advantageous for a number of 

reasons: 

1. More accuracy: Hounsfield units quantify tissue density 

and make it simpler to discern between normal and diseased 

tissues. The likelihood of misdiagnosis is decreased thanks to 

the increased accuracy, which also enables healthcare 

professionals to make better informed decisions about patient 

care[21]. 

2. Removing subjectivity from the diagnosis process is made 

possible by the use of Hounsfield units, which offer a consistent 

way to assess tissue density. This guarantees that different 

healthcare professionals receive the same results and helps to 

eliminate variability in the interpretation of CTPA images[21]. 

3. Automation: The PE detection procedure can be 

automated with the use of machine learning algorithms and 

Hounsfield units. Due to the absence of human mistake, manual 

interpretation requires less time and resources[21]. 

4. Consistency: By incorporating Hounsfield units into 

CTPA pictures, results are guaranteed to be uniform across 

various imaging systems and institutions. This makes it simple 

to compare the results and enhances the precision of 

diagnosis[21]. 

Using Hounsfield units enables accurate, effective, and 

uniform PE diagnosis, resulting in the best management for 

patients. 

The result of HU exploration was as follows: 
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Fig.3.2 HU values of all the images in the dataset 

With -320 we are separating between lungs (-700) /air (-1000) 

and tissue with values close to water (0). 

 

B. Segmentation 

A system is trained to recognize and distinguish particular 

features or regions of interest within an image as part of the 

machine learning process known as medical image 

segmentation. This is accomplished by segmenting an image 

into many areas or segments, every area having their own unique 

set of attributes and properties. Images from CTPA (Computed 

Tomography Pulmonary Angiography) may be segmented into 

its component parts so that the pulmonary arteries, which are 

crucial in cases of pulmonary embolism, can be isolated, 

enabling a more precise identification of PE[22]. 

The outcome of image segmentation method is a collection 

of segmented images that clearly show the pulmonary arteries 

and enable a more precise PE detection. These segmented 

pictures can be utilized to confirm a PE diagnosis in conjunction 

with other diagnostic procedures, such as blood testing and 

clinical examinations. 

A crucial step in the process of applying machine learning to 

detect PE is segmenting CTPA images. Algorithms for machine 

learning can identify and measure the presence of PE more 

precisely and increase the precision of diagnosis by isolating and 

highlighting the pulmonary arteries[23]. 

Steps followed during the Implementation were as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1 Workflow of the segmentation process 

Step 1: For scans that are washed out, find the average pixel 

value near to the lungs. 

This is given as: 

 

image = image-mean 

image = image/std 

 

middle = image [(column size/5) : (column size/5*4), (row 

size/5) : (row size/5*4)] 

mean = mean(middle)   

max = max(image) 

min = min(image) 

 

Step 2: Moving the underflow and overflow on the pixel 

spectrum will improve threshold detection. 

In image processing methods like segmentation, which 

divides several tissues based on their pixel values, the threshold 

value is an important component. The threshold value 

establishes which pixel values are regarded as background noise 

and which as being a part of the target tissue. 

The range of pixel values in the image must be taken into 

account when choosing a threshold value. The CT machine's 

technical limits or the existence of picture distortions, however, 

may cause some pixel values to fall outside of this range. 

The threshold value needs to be changed to include these 

extreme pixel values in order to move the underflow and 

overflow on the pixel spectrum. The complete range of pixel 

values is used in this way, which may produce better 

segmentation outcomes[24]. 

This is given by: 

image [image = = max] =mean 

image [image = = min] =mean 

The observed result is as follows. 
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Fig 4.2 Output after changing the threshold values of the 

orignial image 

 

Step 3: Separating the background (lung/air) from the 

foreground (soft tissue/bone) using Kmeans. 

The goal of utilising k-means to separate the foreground in CT 

scans is to divide the image into distinct regions that correspond 

to various structures or tissues in the body. 

The technique requires a set of features that describe the 

picture pixels in order to be used for foreground segmentation in 

CT scans. These characteristics are commonly represented by 

the pixels' Hounsfield Units (HU) in CT images. several people 

in the community, the government and the defence of the 

bone[24]. 

It is also necessary to provide the number of clusters that k-

means will produce. The quantity of clusters on a CT scan often 

reflects the variety of tissue types shown in the image. 

K-means will iteratively allocate each pixel to the nearest 

cluster centre after determining the characteristics and the 

number of clusters, and it will change the centres to decrease the 

total squared distance between each pixel and its corresponding 

centres. When the maximum number of iterations has been 

reached or the assignment of pixels to clusters stops changing, 

this process is repeated[25]. 

Using k-means, we may divide the image pixels into foreground 

and background clusters in CT scans to distinguish the 

foreground. By calculating the distance between each pixel and 

the two cluster centres, it is possible to determine which pixels 

are closest to the foreground cluster. A binary mask that 

distinguishes the foreground from the background can be made 

using the chosen pixels[25]. 

Step 4: First erode the finer elements, then dilate to include some 

of the pixels surrounding the lung.   

In morphological image processing, erosion and dilation are 

two fundamental procedures that are used to change the 

geometry of objects in an image. Other image processing 

methods, such segmentation and edge detection, are frequently 

combined with these procedures. 

Erosion: 

Erosion is a morphological technique in which the 

boundaries of objects in an image are shrunk. The method 

involves sliding a structuring element (typically a tiny binary 

image) over the original image and replacing each pixel in the 

image with the minimum value of all pixels in the structuring 

element that overlap with the pixel. As a result, the boundaries 

of the items in the image are lost, making the objects smaller[26]. 

Little airways and blood arteries that are not a part of the lung 

tissue can be removed using erosion in a CT image of the lungs. 

The result is a segmented image that solely displays lung tissue. 

The following equation defines Erosion: 

 

M⊝N={x|(N^)A∈M} 

 

The structural component is only considered in the equation 

when it is either equal to or a fraction of the source images M. 

Fig. shows this procedure. Once more, the white square denotes 

O and the black square denotes 1.[27]. 

 

Fig 4.3.1 Visualization of the Erosion Process 

Dilation: 

The process of dilation, which is the reverse of erosion, 

entails enlarging the boundaries of the objects in an image. In 

order to perform the process, a structuring element is slid over 

the original image, and The maximum value of all the pixels is 

then used to swap each pixel in the image in the structuring 

element that overlap with the pixel. The outcome is an expansion 

of the image's object boundaries, which makes the objects 

larger[28]. 

In a CT scan of the liver, dilation can be used to join minor blood 

veins and fill in spaces between the liver lobes. The end result is 

a segmented picture that displays the entire liver tissue. 

The following equation defines Dilation: 

 

M⊕N={x|[(N^)A∩M]∈M} 

 

where N is the copy of N that has been rotated about the 

centre. According to Formula, N will include at least one 

component that as the structural component N dilates the image 

M, it coincides with one of the components in M. 

If this is the case, "ON" will appear at the location where the 

structural component is cantered on the image. This procedure is 

shown in Fig. 4.3.2 is represented by the black square, and 0 by 

the white square.[27]. 
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Fig 4.3.2 Visualization of the Dilation Process 

 

The Results of the following were as follows: 

 

Fig 4.3.3 Output after Erosion and dilation process 

 

Step 5: Applying colour labels. 

The visibility and interpretation of the image can be 

improved by applying a colour label during the processing of CT 

scan images. 

Based on the attenuation or absorption of X-rays by the tissue 

or material being imaged, different portions of the image are 

given different pixel values during the processing of CT scan 

images. Depending on the density of the tissue or material, the 

pixel values can range from low to high, with low pixel values 

denoting low density and high pixel values denoting high 

density. 

The image can be color-coded to draw attention to particular 

elements or structures by giving distinct ranges of pixel values a 

colour designation. Bone tissue, for instance, might be given a 

white colour label, while soft tissue might be given a grey or blue 

colour label[29]. 

Colour labelling can also be used to divide or separate 

various areas of the image for analysis or visualisation. For 

instance, colour labelling in medical imaging can be used to 

distinguish between distinct tissue types, such as the brain's grey 

and white tissue, or to separate the brain from the skull. 

Overall, applying a colour label on CT scan image processing 

can enhance accuracy and efficiency of image analysis, making 

it simpler to recognise and interpret important features or 

structures[30]. 

The results of the following are as follows: 

 

 

Fig 4.4 Output after applying colour labels 

 

Step 6: Applying Mask. 

While processing CT scan image data, applying a mask entail 

choosing and isolating a particular area or region of interest 

within the image. Because the mask is a binary picture, it only 

comprises the values 0 and 1, with 1 denoting the region of 

interest and 0 denoting the rest of the image[30]. 

Using a mask could be advantageous when processing CT 

scan images for several reasons. A mask, for instance, can be 

utilised for: 

Eliminate unwanted structures or noise: By using a mask, it 

is possible to remove undesired structures or noise from the 

image that can obstruct analysis or interpretation. When working 

with photos that have artefacts or other kinds of noise, this is 

quite helpful. 

Using a mask can assist in concentrating the analysis on 

structures or areas of interest in the image. The area of medical 

imaging might benefit from this, where it is frequently necessary 

to isolate anatomical components in order to make a diagnosis 

or determine a course of therapy. 

Increase efficiency: Using a mask can increase the efficiency of 

image processing by confining the evaluation to a narrow region 

of interest, enabling faster and more accurate analysis[31]. 

The results are as follows: 
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Fig 4.5 Output after applying final mask 

 

Final results of the segmentation process was as follows: 

 

Fig 4.6 Final output after the segmentation process 

C. Model Building  

The image is sent into the model network for classification, 

which then extracts latent features and averages them using a 

Global Average Pooling Layer. After that, a dropout of 25% is 

performed, followed by 5 back-to-back fully connected layers 

that reduce the features to 64, which are then fed to 9 fully 

connected layers—1 for each label—activated by sigmoid to 

forecast the label probability. 

 

The Architecture is divided into two sections: 

(1) A convolutional base to extract the image's latent 

characteristics. 

The three model networks were utilized as the convolutional 

foundation.Three flows are used to transfer the data: The input 

flow has five convolutional layers with batch-normalization and 

residual connection, the middle flow has three separable 

convolutions that are repeated eight times, and the exit flow has 

two layers of normalized convolutions. A 16x16x2048 vector 

of latent features is the result of the model's feature extractor. A 

Global Average Pooling (GAP) Layer is used to transmit this. 

This layer conducts dimensionality reduction by averaging the 

16x16 values, resulting in a feature vector of 2048 length. A 

dropout layer is then applied to this feature vector, randomly 

setting 25% of the 2048 values to 0. The benefit of this dropout 

layer, as discussed in, is that the classifier is compelled to learn 

more reliable weights that are not impacted by losing random 

Neurons, helping to stabilize the network and lowering over-

fitting. 

After the dropout, the feature vector is passed through five 

dense, completely linked layers to extract more precise features. 

By learning the necessary parameters, the first dense layer 

reduces the feature vector to half its size, or from 1024 to 512. 

With each subsequent layer, the feature vectors' size is cut in 

half, from 512 to 256 to 128. This 64-length vector is fed into a 

multi-output configuration with nine outputs, each 

corresponding to one label. In contrast to all of the preceding 

layers, which were all activated by ReLu functions, each of 

these output layers uses a sigmoid function to combine the 64 

attributes and output the probability of one label for each. The 

models employ the Adam optimizer, which computes an 

exponential moving average of the gradient and the squared 

gradient before decaying both at rates that can be manually 

adjusted[32]. Since the output was divided into nine 

probabilities between 0 and 1, we utilized a binary cross-

entropy loss function to make the gradients decay according to 

errors. The batch size for each training was eight. 

 

 

Fig 5.   Architecture employed for classification 

 

Mobilenet V2:  

In contrast to the traditional convolution, the revised MobileNet 

V2 design incorporates a “depth-wise-separable convolution” 

into each of its architecture's hidden layers. This allows for a 

significant reduction in the total number of variables as well as 

the generation of a lightweight neural-network. In place of the 

conventional convolution, the depth-wise-convolution employs 

a solitary filter and is preceded by a pointwise convolution that 

is referred to as a “depth-wise-seperable convolution”. This new 

convolution method is intended to improve image quality. 

MobileNetV2 is built on the concept of inverted residuals, 

which implies that rather than the conventional method of 

increasing the number of channels using 3x3 convolutional 

layers, the input and output of a residual block are enlarged and 

contracted using 1x1 convolutional layers. This minimises the 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 4 

DOI: https://doi.org/10.17762/ijritcc.v11i4.6455 

Article Received: 12 February 2023 Revised: 16 March 2023 Accepted: 24 March 2023 

___________________________________________________________________________________________________________________ 

 

309 

IJRITCC | April 2023, Available @ http://www.ijritcc.org 

amount of parameters and computations, while preserving 

accuracy[33]. 

 

MobileNetV2 also features: 

Linear bottlenecks In MobileNetV2, the non-linear activation 

function (ReLU) is applied after the depth-wise convolution to 

improve accuracy and decrease the amount of computations. 

Expansion layer: In each inverted residual block, a 1x1 

convolutional layer is utilised to increase the  amount of nodes, 

followed by a depth wise convolutional layer to reduce the 

number of calculations. 

 

MobileNet V2 architecture: 

Among the most popular deep learning architectures for mobile 

devices is MobileNet V1, which is not only compact but also 

computationally effective, attaining great performance. The 

primary concept of MobileNet is that the process is broken into 

depthwise-separable 3X3 convolution filters followed by 1X1 

convolution rather than utilizing standard 3X3 convolution 

filters. The new design does the same filtering with lesser steps 

and parameters and combination process as a normal 

convolution. In MobileNet V1, The amount of channels needed 

to be maintained or quadrupled for the pointwise convolution. 

The pointwise convolution in MobileNet V2 has the opposite 

effect: it reduces the number of channels. Because it converts 

data with many reducing the dimension while adding 

dimensions (channels) to a tensor, this layer has come to be 

known as the projection layer[35]. 

The extension layer is the first brand-new function introduced 

by MobileNet V2. A 1-1 convolution makes up the expansion 

layer. Before beginning the depth-wise convolution, its purpose 

is to expand the image data's channel count. Because of this, the 

expansion layer always has a greater number of output channels 

compared to input channels, which is opposed to the projection 

layer. 

concentrate on key elements by adjusting the channel weights. 

Numerous input/output sizes: MobileNetV2 is adaptable for a 

variety of applications thanks to its support for multiple input 

and output sizes[34]. 

 

 

 

 

Fig 6. Architecture of MobileNet V2 Model 

  

The residual connection shown in Figure is the second new 

feature of MobileNet V2. This functions similarly to the 

ResNeT and aids in the gradient flow through the network. The 

feature channels are expanded by a factor of t. 

While the MobileNet V2 is primarily concerned with reducing 

latency, it also gives small networks the ability to function 

effectively and accept input of any size. This can result in 

improved performance due to the inclusion of batch 

normalization and ReLU6 as the activation function in every 

layer[33]. 

 

 

Fig 7 Model of MobileNet V2 
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Xception Model: 

Xception is a deep-convolutional-neural-network architecture 

with “Depthwise Separable Convolutions”. Convolutional 

neural networks utilize Inception modules Following a depth-

wise convolution comes a pointwise convolution, which serves 

as a transitional stage between the depth-wise-separable 

convolution process and the conventional convolution that 

comes after it. This makes a depth-wise separable convolution 

comparable to an Inception module with the most towers 

possible. Using this insight, they suggest a novel deep 

convolutional neural network structure that draws inspiration 

from Inception model, replacing Inception modules with depth-

wise separable convolutions.[36].  

By maintaining or even increasing the model's accuracy, this 

method drastically minimises the parameters and calculations 

that the network must perform. Xception can achieve equivalent 

or higher performance with lesser components than previous 

top of the line and latest models by swapping the ordinary 

convolution for the depth wise separable convolution operation. 

With a sequence of “convolutional-layers”, “a GAP layer”, and 

a “fully-connected layer” following, Xception has a hierarchical 

structure. The design consists of numerous blocks, each of 

which has multiple depth-wise separable convolutional layers. 

Depending on the needs of the application, the number of blocks 

and the amount of levels within each block can be modified. 

The capacity of Xception to learn complicated features from 

incoming data is one of its main advantages, and this property 

makes it particularly beneficial for tasks like segmentation, 

object detection, and image categorization. Fine-grained picture 

recognition, medical image analysis, and scene understanding 

are just a few of the image-related applications that have used 

Xception.[36]. 

Across a number of benchmark datasets, including ImageNet, 

CIFAR-10, and CIFAR-100, Xception has also been 

demonstrated to outperform other cutting-edge CNN 

architectures. For other applications including speech 

recognition and natural language processing, deep learning 

models have also been developed using Xception. 

In general, Xception is a robust and effective CNN architecture 

that is frequently utilised in a variety of applications involving 

images. It is an important tool in the field of deep learning due 

to its capacity to learn intricate features from input data and its 

exceptional performance on benchmark datasets.[37]. 

The success of Xception's two fundamental concepts makes for 

a very effective architecture: 

Depth wise Separable Convolution 

Shortcuts between Convolution blocks as in Reset[38]. 

XCeption provides a structure that is built with depth-wise 

separable convolution blocks + Maxpooling, all connected 

using shortcuts, similar to ResNet implementations. 

 

 

Fig 8. Model of XCeption Model 

 

EfficientNet B5 Model: 

EfficientNet B5 is a convolutional neural network architecture 

that was introduced in the paper "EfficientNet: Rethinking 

Model Scaling for Convolutional Neural Networks" by Tan et 

al. in 2019[39]. 

EfficientNet B5's design is built on a scaling method that 

balances the model's depth, width, and resolution. As a result, 

the model is computationally effective while achieving cutting-

edge accuracy. The following list of building blocks makes up 

the architecture: 

Stem: After batch normalisation and activation, a convolutional 

layer is applied to the input image with a small kernel size. This 

helps to extract low-level information from the supplied 

image.[40]. 

Basic network: The base network is made up of a succession of 

repeated blocks, each with numerous layers. Using skip 

connections and squeeze-and-excitation modules, each block is 

composed of a mixture of depth-wise separable convolution and 

regular convolution. These building components aid in the 

extraction of more intricate details from the source image.[40]. 

Head: The output of the primary network is then subjected to a 

pooling-layer, a fully-connected layer, and a SoftMax-

activation function. This helps assign the correct class as the 

destination for the characteristics extracted.[40]. 

EfficientNet B5 has a total of 30.5 million parameters, and it 

has been shown to achieve sophisticated and latest performance 

on several benchmark datasets, including ImageNet, COCO, 

and CIFAR-100[41]. 
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Fig 9. Model of Efficientnet B5 

IV.  EXPERIMENTS AND  RESULTS 

Because to the size of the competition's data—roughly 1 TB—

and the inability of our systems to handle or train it, our 

experimentation pipeline was severely constrained to the 

metrics and time constraints of Kaggle kernels. The total 

amount of time spent in training for our model was about four 

or five hours of training time on Kaggle GPUs (40 hours of GPU 

usage per week), allowing us to train no more than 400 epochs 

in a single run. Here, the loss over-training and validation as 

well as the model's classification accuracy served as our 

measuring measures. a point in the direction of the next step, 

which is why the next step is to be based. For all labels, the 

accuracy in all experiments reached a value at the conclusion of 

training on the validation set. Since the issue was divided into 

nine binary classification problems, we chose to train our model 

utilizing the “Binary-Cross-Entropy loss” and assess the degree 

of agreement between the predicted labels and the labels in the 

validation set. 

The three models were trained to equal epochs, and a 

comparison of the three was conducted to assess the models, 

determine which model is most effective for the task of PE 

detection, and construct the results appropriately. 

Our starting point was the simple architecture discussed in part 

II, which performed admirably on the validation set, with an 

average loss of 2.166 and an average accuracy, equally 

weighted for all metrics, of roughly 94.7% across all 3 models. 

In order to improve accuracy and outcomes, we implemented a 

variety of modifications by adding a variety of segmentation 

processes to the training model. 

 

a) Fig 10.1 Loss Plot for MobileNet V2 

 

 

b) Fig 10.2 Loss Plot for EfficentNet B5 

 

 

c) Fig 10.3 Loss Plot for Xception Model 
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Compared to the existing works, our suggested approach can 

reach higher accuracy. Also, it should be emphasized that our 

approach results in a very small MSE loss compared to what is 

shown in Fig. 10. The gap between our anticipated value and 

actual value is quite minimal thanks to the decreased MSE 

value. In each epoch, the MSE of. 10 changes. To solve the 

overfitting issue, it is crucial to identify the best epoch. To do 

this, the model is stored if the outcome obtained using an epoch 

is superior to the previous one. Evaluation of the set of 

test accuracy is used to determine whether or not the outcome 

is superior. We also take into account the natural change in MSE 

with epoch to combat the overfitting issue. Training is 

considered complete when the MSE loss of the testing curve has 

been stable after four iterations. Then, we take into account both 

the accuracy score and the MSE loss to guarantee that the 

overfitting problem is not influencing our approach. The 

foregoing discussion leads us to the conclusion that our 

technique is superior to existing ones in its ability to detect the 

severity of pulmonary embolism, as evidenced by its greater 

accuracy, lower MSE, and assurance that no overfitting occurs. 

From the table, In terms of precision, we find that EfficientNet 

performs best, followed by MobileNet V2. With less 

computational time and less loss, MobileNet V2 offers good 

accuracy. 

  MOBILENE

T V2 

EFFICIENTNET 

B5 

XCEPTION 

PE_PRESENT

_ON_IMAGE 

 

Accuracy  96 97 91 

 Loss 0.1478 0.1302 0.3524 

RV_LV_RATI

O_GTE_1 

 

Accuracy 86 89 85 

 Loss 0.4122 0.3332 0.4473 

RV_LV_RATI

O_LT_1 

 

Accuracy 79 80 78 

 Loss 0.5339 0.5044 0.5482 

CENTRAL_PE Accuracy 90 95 92 

 Loss 0.3487 0.2097 0.3045 

CHRONIC_PE Accuracy  91 94 92 

 Loss 0.3303 0.2389 0.2949 

INDETERMIN

ATE 

Accuracy 98 100 97 

 Loss 0.0933 0.0275 0.1298 

LEFTSIDED_P

E 

Accuracy 72 76 73 

 Loss 0.6257 0.5795 0.6185 

RIGHTSIDED_

PE 

Accuracy 74 73 69 

 Loss 0.5752 0.5724 0.6541 

ACUTE_AND

_CHRONIC_P

E 

Accuracy 99 98 95 

 Loss 0.0613 0.1261 0.2254 

     

d) Tabel 2. Reading of the accuracy and Loss for all the 

labels of after using all three models . 

V. CONCLUSION 

In this piece, we presented a full-pipeline method for picking up 

PE from chest CTs. We worked with the model and the data that 

the RSNA provided. Using the Xception, MobileNet V2, and 

EfficientNet CNN will use AI to identify latent details in the 

scans, we then applied a classifier to predict the 9 labels of the 

classification job, resulting in an overall loss on the training and 

validation sets. These labels were predicted by breaking the 

multi-category classification problem down into 9 binary 

classification units, which were then used to assess the model 

using accuracy as a metric. On the validation test set, With this 

approach, we had a 92% accuracy rate. Although this is not yet 

up to par for direct application in the medical industry, we do 

present an architecture that can be improved upon to raise the 

caliber of the classifications. The two ways that additional 

enhancements can be made have been determined: First, the 

feature extractor can be combined with RNN units that treat the 

study's collection of images as a series to increase accuracy. 

Moreover, the data can be further pre-processed to improve the 

label balance. 
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