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Abstract: This work proposes a new scheme under the umbrella of iteration methods to compute the
sign of an invertible matrix. To this target, a review of the exiting solvers of the same type is given
and then a new scheme is derived based on a multi-step Newton-type nonlinear equation solver. It
is shown that the new method and its reciprocal converge globally with wider convergence radii in
contrast to their competitors of the same order from the general Padé schemes. After investigation on
the theoretical parts, numerical experiments based on complex matrices of various sizes are furnished
to reveal the superiority of the proposed solver in terms of elapsed CPU time.
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1. Introduction

The author in [10] first proposed a matrix function for the sign to be used and applied in algebraic
Riccati equations. The sign function of a matrix can be defined using the following Cauchy integral
definition:

S = sign(A) =
2
π

∫ ∞

0
(t2I + A2)−1dt. (1.1)

Assume that A ∈ Cn×n is given, and g is a scalar function. Then, we define g(A) as a function of
a matrix with the same size as the input matrix. As long as g is given on the spectrum of the input
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matrix [5, Chapter 5], we can find the following features for g(A):

• If Y commutes with A, then Y commutes with g(A),
• The eigenvalues of g(A) are g(λi), where λi stand for the eigenvalues of A,
• g(YAY−1) = Yg(A)Y−1,
• g(AT ) = g(A)T ,
• g(A) commutes with A.

Note that both Jordan decomposition and Schur decomposition with block Parlett recursion can be
used under some conditions to compute matrix functions. The matrix sign function can give us the
ability to decompose an appropriate matrix into two components whose spectra lie on opposite sides
of the axis of imaginary. For more information, see [3].

Practically speaking, we are motivated to derive a new Newton-type fast iteration method to find
(1.1), which is efficient. That is, due to its higher order and wider convergence radii, fewer iterations
will be required. This results in lower computational cost of the whole algorithm since fewer number of
stopping terminations should be computed per cycle for the iterative structure. This is useful especially
when the entries of the input matrix are changing a bit in a loop and each time, it is needed to find (1.1).
The goal of this research is to boost convergence speed, resulting in high computational efficiency.

Here, we concentrate on functions of matrices and especially the sign function. Toward this aim,
we first derive an iterative scheme for finding the matrix sign function. We derive a novel numerical
procedure to find (1.1) for which the convergence rate is high via the number of matrix-matrix products
while only one matrix inversion is needed per full stage.

For this research study, the remaining sections of this article are unfolded as comes next. In Section
2, iteration methods for finding (1.1) are discussed. Section 3 investigates a higher order method,
which is under the umbrella of iteration methods to compute the sign of an invertible matrix. The
convergence of the scheme and its asymptotical stability are brought forward. To test the correctness,
efficiency, and stability, we run numerical tests on various problems in Section 4. Finally, based on the
numerical results obtained, the suggested technique is determined to be efficient. Some remarks are
furnished in Section 5.

2. Iteration methods in the literature

A typical procedure for finding iteration methods to calculate matrix functions is via employing a
suitable nonlinear solver and selecting an initial value so as to guarantee the (local) convergence. It
is here requisite to remind that the results originated from scalar nonlinear solvers do not generalize
necessarily to the matrix environment. As an instance, standard convergence conditions given via the
derivatives of g at a fixed point in the scalar case do not translate explicitly to similar conditions on the
Frechét derivatives in the matrix environment.

The second-order Newton’s method (NM) has the following structure to calculate the sign of a
square invertible matrix:

Wm+1 =
1
2

(
Wm + W−1

m

)
, (2.1)

where
W0 = A, (2.2)
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is initial value. Authors in [7] proposed an important family of iterative schemes for finding (1.1)
employing the following Padé approximants:

g(ζ) = (1 − ζ)−1/2 . (2.3)

Let us consider that the (m1,m2)-Padé approximate to g(ζ) is defined by:

Pm1(ζ)
Qm2(ζ)

, (2.4)

where P, Q are polynomials of the approximate degree in the Padé approximation and m1 + m2 ≥ 1.
Then, [7] showed that the iterative scheme

wm+1 =
wmPm1(1 − w2

m)
Qm2(1 − w2

m)
:= ψ2m1+1,2m2 , (2.5)

converges with convergence speed m1 + m2 + 1 to ±1.
By considering (2.5), the well-known locally convergent inversion-free Newton-Schulz method

Wm+1 =
1
2

Wm(3I −W2
m), (2.6)

and Halley’s iteration scheme

Wm+1 = [I + W2
m][Wm(3I + W2

m)]−1, (2.7)

belong to this family. It is noted that Newton’s method (2.1) is a member of the reciprocal of (2.5), [4].
Authors in the work [2] investigated a fourth-order family of methods to find (1.1) with the following

structure:
Wm = Wm

(
(1 − 6v)I + 2(−7 + 2v)W2

m + (−3 + 2v)W4
m

)
×

[
(1 − 2v)I − 2(3 + 2v)W2

m + (−11 + 6v)W4
m

]−1
,

(2.8)

wherein v is a free real parameter.
Two other fourth-order methods from (2.5) having global convergence behavior are given by:

Wm+1 = [I + 6W2
m + W4

m][4Wm(I + W2
m)]−1, Padé [1,2], (2.9)

Wm+1 = [4Wm(I + W2
m)][I + 6W2

m + W4
m]−1, Reciprocal of Padé [1,2]. (2.10)

For a recent work on this topic, an interested reader may refer to [12].

3. A novel fourth-order method

3.1. A Newton-type nonlinear equation solver

Recalling that iteration methods can be constructed for matrix sign function if they can solve the
matrix equation below (see, e.g., [11]):

G(X) := −I + X2 = 0, (3.1)

AIMS Mathematics Volume 8, Issue 8, 19264–19274.



19267

wherein I is the unit matrix. In the scalar case, we consider g(x) = x2 − 1 = 0. To get a better
background on nonlinear equation solvers and their recent findings, one may refer to [1].

Without loss of generality, consider the scalar case. Now, we propose the following multi-step
Newton-type iteration scheme for solving (3.1):

ym = wm −
g(wm)
g′(wm)

, m = 0, 1, . . . ,

hm = wm −
g(wm) − (5/4)g(ym)
g(wm) − (9/4)g(ym)

g(wm)
g′(wm)

,

wm+1 = hm −
g(hm)(hm − wm)
g(hm) − g(wm)

.

(3.2)

Theorem 3.1. Let ξ ∈ D be a simple solution (root) of g : D ⊆ C → C, which is a sufficiently smooth
nonlinear function. Also assume the initial value w0 is close enough to the solution. Then, the sequence
generated by (3.2) has at least fourth-order convergence and satisfies the following equation of error:

em+1 = −
k3

2

4
e4

m +

(
31
16

k4
2 −

9
4

k2
2k3

)
e5

m + O(e6
m), (3.3)

where k j =
g( j)(ξ)
j!g′(ξ) and em = wm − ξ.

Proof. The proof is via Taylor expansions. See e.g., [13, 14]. Hence, it is omitted. �

3.2. Extension to matrix sign computation

By employing (3.2) to solve the scalar version of (3.1), we attain the following iterative method in
a unique way:

Wm+1 = Wm

(
23I + 38W2

m + 3W4
m

) [
5I + 42W2

m + 17W4
m

]−1
, (3.4)

having the initial value (2.2). Similarly, one may obtain the reciprocal version of (3.4) as follows:

Wm+1 =
(
5I + 42W2

m + 17W4
m

) [
Wm

(
23I + 38W2

m + 3W4
m

)]−1
. (3.5)

3.3. Convergence

Now, the convergence properties of (3.5) are investigated. Recall that for any H such that A + H is
positive definite, we have

sign
(

0 A + H
I 0

)
, (3.6)

as a fixed point of (3.5).

Theorem 3.2. In computing the sign of the matrix A without any eigenvalues on the imaginary axis,
consider that W0 is sufficiently close to S or is chosen by (2.2) and commutes with A. Then, the scheme
(3.5) (or equivalently (3.4)) converges to the sign matrix S , and the convergence rate is four.

Proof. Let us use the Jordan block matrix J and decompose A using an invertible matrix T of the same
size as follows:

A = T JT−1. (3.7)
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Employing this along with the iterative method yields an iteration scheme similar to the original
matrix iterative method but on the eigenvalues from the step m to the step m + 1 as follows:

λi
m+1 =

(
5 + 42λi

m
2

+ 17λi
m

4) [
λi

m

(
23 + 38λi

m
2

+ 3λi
m

4)]−1
, 1 ≤ i ≤ n, (3.8)

where
si = sign(λi

m) = ±1. (3.9)

In general and after some mathematical simplifications, the expression (3.8) shows that the
eigenvalues tend to si = ±1, that is:

lim
m→∞

∣∣∣∣∣∣λi
m+1 − si

λi
m+1 + si

∣∣∣∣∣∣ = 0. (3.10)

This shows the convergence and states that the eigenvalues tends to ±1 after each iteration, and there
would be eigenvalue clustering using (3.5). After studying the convergence, it is requisite to compute
the convergence speed. Toward this, it is considered that:

∆m = Wm(23I + 38W2
m + 3W4

m). (3.11)

Using (3.11), we can write:

Wm+1 − S = (5I + 42W2
m + 17W4

m)∆−1
m − S

= [5I + 42W2
m + 17W4

m − S ∆m]∆−1
m

= [5I + 42W2
m + 17W4

m − 23WmS − 38W3
mS − 3W5

mS ]∆−1
m

= [−5(Wm − S )4 + 3WmS (W4 − 4W3
mS

+6W2
mS 2 − 4WmS 3 + I)]∆−1

m

= [−5(Wm − S )4 + 3WmS (Wm − S )4]∆−1
m

= (Wm − S )4[−5I + 3WmS ]∆−1
m .

(3.12)

Using (3.12), it is possible to get that:

‖Wm+1 − S ‖ ≤
(
‖ − 5I + 3WmS ‖‖∆−1

m ‖
)
‖Wm − S ‖4, (3.13)

which shows the convergence rate of four. This completes the proof. The analysis of error for (3.4)
might be similarly performed. The proof is complete now. �

We remark that W0 = A is the best choice as the initial approximation since no eigenvalues are
located on the axis of imaginary and could lead to convergence. However, another sufficiently close
initial approximation based on µA where µ is an appropriate non-zero parameter can be chosen as long
as no eigenvalues are located on the axis of imaginary.

The presented method needs computation of matrix multiplications, as do the other competitors.
On the other hand, most of the convergence theory for the presented method is via the calculation of
the eigenvalues [8] from an iterate to the next one. Nonetheless, we have showed the fourth order is
obtained only if the initial approximation is chosen properly.

The cost of an algorithm is important for employing it in practical problems. The convergence rate
is not the only factor, and the method is useful only if it can compete with the most efficient existing
solvers of the same type. When we compare (3.5) to (2.9)–(2.10), it is observed that all possess per
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cycle four matrix products and only one matrix inversion. It is now seen and checked that the proposed
methods have wider convergence radii.

To check the global convergence of the presented scheme in contrast to the existing solvers, we may
draw attraction basins of the iterative methods when solving the nonlinear equation g(x) = x2 − 1 on
the complex domain [−2, 2] × [−2, 2]. In fact, we divide the domain into a refined mesh and test to
what root, each of the mesh points converge. Results of comparisons are brought forward in Figures 1
and 2 by employing the stopping condition

|g(xm)| ≤ 10−3. (3.14)

The results are shaded via the number of iterates required to reach the convergence. They too show
that (3.4) and (3.5), have wider convergence radii than their competitors of the same order from (2.5).

Here, although the iterative methods (2.1), and (2.9) are globally convergent, the basins for (3.4)
and (3.5) contain lighter areas which indicate wider convergence radii.

Figure 1. Attractors and convergence radii for (2.1) on left, and (2.9) on right.

Figure 2. Attractors and convergence radii for (3.4) on left, and (3.5) on right.

The larger attraction basins given for the proposed solvers are mainly due to the appropriate
selection of the parameters furnished in the second step of the nonlinear equation solver (3.2). In fact,
the parameters are selected as limiting values, in which the convergence order of the solver improves
to higher order, but it does not select the exact limiting value since it costs further matrix products. In
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this way, by keeping the number of matrix products fixed, we can derive an iterative method for
finding the sign of a nonsingular matrix with larger attraction basins than the competitors from the
Padé scheme.

3.4. Stability

The stability for (3.4) or similarly (3.5) are presented now. Theorem 3.3 follows from [6] on the
stability of “pure matrix iterations.”

Theorem 3.3. Using (3.5) and having a nonsingular matrix A, {Wm}
∞
m=0 with W0 = A is stable

asymptotically.

Proof. Assume that δm is a numerical perturbation which is produced in the mth iteration. So, we can
define

W̃m = Wm + δm. (3.15)

In the rest of the proof, it is assumed that (δm)i ≈ 0, i ≥ 2, is used, which is valid based on first
order error analysis. This is rational if δm is sufficiently small. Now, we obtain

W̃m+1 =[5I + 42W̃2
m + 17W̃4

m]

× [W̃m(23I + 38W̃2
m + 3W̃4

m)]−1.
(3.16)

For sufficiently large m, viz., at the phase of convergence, it is assumed that

Wm ≈ sign(A) = S , (3.17)

where the following facts are employed (for any the matrix E and any invertible matrix H) [15, page
188]:

(H + E)−1 ' H−1 − H−1EH−1. (3.18)

We used
S 2 = I, (3.19)

and
S −1 = S , (3.20)

to get that

W̃m+1 ≈

(
S +

1
2
δm −

1
2

S δmS
)
. (3.21)

By further simplifications and using δm+1 = W̃m+1 −Wm+1, we can find

δm+1 ≈
1
2
δm −

1
2

S δmS . (3.22)

This can lead to the point that the method at the stage m + 1 is bounded, i.e., we have:

‖δm+1‖ ≤
1
2
‖δ0 − S δ0S ‖. (3.23)

Therefore, the sequence {Wm}
∞
m=0 produced via (3.4) has asymptotical stability. The proof ends now.

�
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4. Numerical aspects

Here, the entire implementations were performed by Mathematica 12.0 in machine precision [16,
Chapter 1.4]. The iteration methods (2.1), (2.7), (2.9), (3.4) and (3.5) (denoted by NM, HM, Padé,
PM1, and PM2, respectively) were compared based on the efficiency and stability on complex test
matrices of various sizes. We compared the methods using the following condition:

Em+1 = ‖W2
m+1 − I‖2 ≤ 10−4. (4.1)

It is recalled that for (2.1), the process can be accelerated, via calculating an extra parameter per
iterate and replacing Wm with µmWm as follows:

µm =



|det(Wm)|
−1
n , (determinantal scaling),√

ρ(W−1
m )

ρ(Wm)
, (spectral scaling),√

‖W−1
m ‖

‖Wm‖
, (norm scaling).

(4.2)

Further acceleration and optimizing of (2.7) were studied in [9]. Similar investigations can be
performed for the new derived iterative method in order to accelerate the scheme. Anyhow, none of
such accelerations will be performed in this section for any of the compared methods in order to have
a fair comparison.

Experiment 4.1. Various complex matrices of different sizes are employed here to compare the
efficiency of the existing solvers based on both the number iterations as well as the CPU time in
seconds. Ten matrices are produced as follows:

SeedRandom[123];

number = 10;

Table[A[l] = RandomComplex[{-5 - 5 I,

5 + 5 I}, {100 l, 100 l}];, {l, number}];

tolerance = 10ˆ-4;

Results are provided in Tables 1 and 2 showing that PM1 has the best performance against its
competitors. Here, it is important to note that the convergence of the discussed iteration methods
relies on an appropriate choice of initial matrices. It is observed PM1 beats all other competitors by
converging to the sign as quickly as possible.

This part of the work is ended by stating that after drawing attraction basins of the new methods,
such as PM1, in Figures 3 and 4 for higher degree polynomials, it can be stated that like all the other
solvers, when one wants to extend NM, HM, Padé or PM1 to find the matrix sector function, then
similar conditions can be imposed since they have local convergence (like the Newton’s solver) to find
the matrix sector function, but PM1 or PM2 enjoy higher rates of convergence, which will reduce the
CPU time in practice.
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Figure 3. Attractors and convergence radii for (2.1) on left, and (3.2) on right for the equation
x3 − 1 = 0.

Figure 4. Attractors and convergence radii for (2.1) on left, and (3.2) on right for the equation
x4 − 1 = 0.

Table 1. Comparisons for the number of iterates needed to find the signs of the matrices in
Experiment 4.1.

Matrices Size NM HM Padé PM1 PM2

#1 100 × 100 16 11 8 7 7
#2 200 × 200 18 12 9 8 8
#3 300 × 300 16 11 8 7 7
#4 400 × 400 18 12 9 8 8
#5 500 × 500 19 12 10 9 9
#6 600 × 600 18 11 9 8 8
#7 700 × 700 18 12 9 8 8
#8 800 × 800 21 13 11 9 9
#9 900 × 900 18 12 9 8 8
#10 1000 × 1000 20 13 10 9 9

Mean 18.2 11.9 9.2 8.1 8.1
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Table 2. Comparison of CPU times in seconds required to find the signs of the matrices in
Experiment 4.1.

Matrices Size NM HM Padé PM1 PM2

#1 100 × 100 0.03 0.02 0.03 0.01 0.01
#2 200 × 200 0.12 0.10 0.10 0.09 0.09
#3 300 × 300 0.28 0.29 0.25 0.27 0.26
#4 400 × 400 0.62 0.62 0.54 0.54 0.55
#5 500 × 500 1.15 1.05 1.07 1.03 1.08
#6 600 × 600 2.07 1.56 1.48 1.49 1.45
#7 700 × 700 3.13 2.41 2.23 2.08 2.16
#8 800 × 800 5.15 3.75 3.84 3.40 3.54
#9 900 × 900 5.23 4.96 4.36 4.20 4.19
#10 1000 × 1000 8.45 7.57 6.76 6.25 6.50

Mean 2.62 2.23 2.06 1.94 1.98

5. Concluding remarks

This paper has discussed the existing iteration methods to find the matrix sign functions. The most
challenging ones arise from (2.5) with arbitrary order of convergence. Such methods are called optimal
in some sense in the literature. However, in this article, we have proposed a novel Newton-type solver
possessing fourth convergence speed with global convergence behavior to calculate the sign of a matrix.
The new method competes with corresponding methods from the Padé family of methods.

A clear application of the sign matrix is in finding the matrix geometric mean of two Hermitian
positive definite matrices, which is required mainly in the context of solving a special class of nonlinear
matrix equations. For the proposed solvers in this work, (3.4) and (3.5), parallel implementations
are simple, employing the available optimized programs for matrix-matrix products. Computational
tests in Section 4 have been performed to show the effectiveness of the new iterative methods for a
variety of complex matrices of different sizes. The mean CPU times for (3.4) and (3.5) showed better
performance than the others.
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