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Abstract: The neutron diffusion equation (NDE) is one of the most important partial differential 

equations (PDEs), to describe the neutron behavior in nuclear reactors and many physical phenomena. 

In this paper, we reformulate this problem via Caputo fractional derivative with integer-order initial 

conditions, whose physical meanings, in this case, are very evident by describing the whole-time 

domain of physical processing. The main aim of this work is to present the analytical exact solutions 

to the fractional neutron diffusion equation (F-NDE) with one delayed neutrons group using the 

Laplace transform (LT) in the sense of the Caputo operator. Moreover, the poles and residues of this 

problem are discussed and determined. To show the accuracy, efficiency, and applicability of our 

proposed technique, some numerical comparisons and graphical results for neutron flux simulations 

are given and tested at different values of time 𝑡 and order 𝛼 which includes the exact solutions 

(when 𝛼 = 1). Finally, Mathematica software (Version 12) was used in this work to calculate the 

numerical quantities. 
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1. Introduction 

In the past decades, various contributions have been made to both theory and applications in the 

branch of partial fractional differential equations (P-FDEs) as it has shown its strength in how it has 

expressed vast amounts of physical models which helps in explaining vast amounts of natural 

phenomena such as dynamical models, fluid dynamics, population dynamical systems, random walks, 

electrical circuits, control, wave propagation phenomena, pantograph system, Schrodinger equation, 

continuum and statistical mechanics, dispersive models, oscillation of earthquake, heat transfer model, 

bacteria population model and NDEs [1–26]. 

For example, Oldham and Spanier [1] studied the theory of fractional calculus and its applications 

to differentiation and integration at arbitrary order; Miller and Ross [2] presented the basic concepts 

of fractional calculus as well as FDEs; Podlubny [3] presented the solutions of some FDEs with  

important applications; Kilbas et al. [4] studied the theory and some applications of FDEs; Mainardi [5] 

presented mathematical models of fractional calculus and waves in linear viscoelasticity; Almeida et al. [6] 

introduced the variable-order fractional calculus of variations; Sun et al. [7] introduced a collection of real 

world applications of fractional calculus in science and engineering; Al-Zhour [8] presented a new 

computational formulae of fundamental fractional exponential matrix with some electrical applications; 

Aguilar [9] described the behavioral characteristics of a cap-resistor, memcapacitor, and a memristor 

from the response obtained of RC and RL electrical circuits by FDEs; Gomez-Aguilar et al. [10] 

investigated analytical and numerical solutions of electrical circuits described by fractional derivatives; 

Nigmatullin and Baleanu [11] derived the fractional Newtonian equations of motion with memory; 

Hasan et al. [12] analyzed a fractional population dynamical system using the Atangana-baleanu 

fractional framework to reproduce the kernel technique; Magin [13] studied fractional calculus in 

bioengineering; Manna and Merle [14] studied asymptotic dynamics of short waves as an example of 

nonlinear dispersive models; El-Ajou and Al-Zhour [15] introduced a vector series solution for a class 

of hyperbolic system of Caputo-time-F-PDEs with variable coefficients; El-Ajou et al. [16] 

investigated the construction and prediction of solitary pattern solutions for nonlinear time-fractional 

dispersive PDEs; A. El-Ajou et al. [17] presented an analytical solutions for a class of linear non-

homogenous higher order matrix F-PDEs; El-Ajou et al. [18] presented analytical and numerical 

solutions of the fractional multi-pantograph system; Moa’ath et al. [19] made an interesting 

comparison between conformable and Caputo derivative series of the solutions for nonlinear time 

fractional Schrodinger PDEs; El-Ajou et al. [20] created the series solutions of nonlinear conformable 

fractional KdV-burgers PDEs with some applications; Shqair et al. [21] used the residual power series 

method to solve multi-energy groups of NDEs; Eriqat et al. [22] introduced the Laplace-residual power 

series technique for solving linear and nonlinear neutral fractional pantograph equations, El-Ajou et al. [23] 

presented the smooth expansion to solve high-order linear conformable fractional PDEs, Fisher [24] 

studied the fractional wave of advantageous genes; Merdan [25] solved the time-fractional reaction-

diffusion equation with modified Riemann-Liouville derivative; and El-Sayed et al. [26] solved the 

generalized reaction-diffusion model for bacterial colony. 

The reasons why fractional topics have become famous are [8–11]: 

(i) It can extend the time domain in models. 

(ii) It can explicate as memory and the physical meaning of the fractional order, which is used 

extremely for most physics, control models and engineering. 

The Caputo fractional derivative of one-dimensional flux 𝜑(𝑥, 𝑡) of order 𝛼 > 0 is defined by: 
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𝔇𝑡
𝛼 𝜑(𝑥, 𝑡) = 𝐽𝑡

𝑚−𝛼𝔇𝑡
𝑚 𝜑(𝑥, 𝑡) ,𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ ℕ, 𝑥 ∈ 𝐼, 𝑡 > 0, 

where 𝐼 is the interval and 𝐽𝑡
𝛽

 the time Riemann-Liouville fractional integral operator of order 𝛽 > 0, 

given by: 

𝐽𝑡
𝛽
 𝜑(𝑥, 𝑡) =

{
 

 1

𝛤(𝛽)
∫(𝑡 − 𝜏)𝛽−1 𝜑(𝑥, 𝑡) 𝑑𝜏

𝑡

0

, 𝛽 > 0 , 𝑡 > 𝜏 ≥ 0,

𝜑(𝑥, 𝑡) , 𝛽 = 0.

 

Some useful and important properties of fractional operators can be summarized for 𝜇 > −1, 

𝑐 ∈ ℝ, 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝔱 ≥ 0, and 𝜔 > 0 as [15–26]: 

(i) 𝔇𝑡
𝛼𝑐 = 0. 

(ii) 𝔇𝑡
𝛼𝑡𝜇 =

𝛤(𝜇+1)

𝛤(𝜇+1−𝛽)
𝔱𝜇−𝛼. 

(iii) 𝔇𝑡
𝛼𝐽𝑡
𝛼 𝜑(𝑥, 𝑡) = 𝜑(𝑥, 𝑡). 

(iv) ℒ[𝔇𝑡
𝛼 𝜑(𝑥, 𝑡)] = 𝜔𝛼 𝜙(𝑥, 𝜔) − ∑ 𝜔𝛼−𝑘−1 ∂𝑡

𝑘 𝜑(𝑥, 0)𝑚−1
𝑘=0 , 0 < 𝛼 < 1 

where 𝜙(𝑥, 𝜔) = ℒ[𝜑(𝑥, 𝑡)] is the LT of 𝜑(𝑥, 𝑡). 

Nuclear reactors guarantee the demands of human needs for energy. For over 7 decades, since 

1951, when the first small experimental breeder reactor, EBR-1, was made in the Argonne National 

Laboratory, nuclear reactor theory has been of very high interest in the community of science all over 

the world. 

The main books of nuclear reactor theory work cover nuclear reactor theory such as nuclear 

reactor physics by Stacey [27], nuclear reactor analysis by Duderstadt and Hamilton [28], and 

introduction to nuclear engineering by Lamarsh [29]. Because nuclear reactors are not homogeneous 

systems (they have many components such as fuel, cladding, coolant, and control rods), dealing with 

these parts is a difficult task that requires a complete team working system. 

The most significant element governing nuclear reactors is neutron behavior, where the spread of 

neutrons throughout the reactor illustrates the nuclear reaction, which is typically fission. When a 

heavy nucleus, such as uranium (235), splits into two new nuclei known as fragments, energy is 

released; however, this energy release must be calculated because it depends on the reactor’s neutron 

count, which must remain constant. This situation is known mathematically as the steady state neutron 

diffusion equation. 

Neutron behavior in nuclear reactors is governed by the NDE (which is a special case of the 

neutron transport equation after applying Fick’s law) [27–29], which captured many authors’ interest 

in solving with various techniques. Such as: Hemispherical symmetry, NDE in cylindrical symmetry, 

reflected spherical reactor NDEs and a two-group reflected cylindrical reactor were solved using the 

homotopy perturbation method [30–33]; multi-energy groups of the NDEs and symmetric fractional 

Helmholtz cylindrically equation were solved using the residual power series technique [21,34]; and 

modified differential transform technique was used to find the analytical solution of NDE in reflected 

reactors employing [35]. 
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The continuity equation represents the NDE from high to low regions of neutron flux, i.e., 

1

𝑉

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= 𝑠(𝑥, 𝑡) − 𝛴𝑎𝜑(𝑥, 𝑡) − 𝛻. 𝐽(𝑥, 𝑡), (1.1) 

where 𝑉 is neutron velocity, ∑𝑎 is the macroscopic absorption cross-section. Eq (1.1) relates the 

neutron flux 𝜑(𝑥, 𝑡)  to the neutron current density 𝐽(𝑥, 𝑡) . While 𝑠(𝑥, 𝑡)  represents the source of 

neutrons. The neutron flux 𝜑(𝑥, 𝑡) is equivalent to the neutron intensity in the case of a unidirectional 

neutron beam. According to Fick’s law, the current density 𝐽(𝑥, 𝑡)  is proportional to the negative 

gradient of the neutron flux 𝜑(𝑥, 𝑡), i.e., 

𝐽(𝑥, 𝑡) =  −𝐷𝛻𝜑(𝑥, 𝑡), (1.2) 

where 𝐷  is the coefficient of neutron diffusion. In the case of a homogeneous system and after 

applying Fick’s law, Eq (1.1) can be written as: 

1

𝑉

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
=  𝑠(𝑥, 𝑡) − 𝛴𝑎𝜑(𝑥, 𝑡) +  𝐷𝛻

2𝜑(𝑥, 𝑡). (1.3) 

The concept of criticality in nuclear reactors (i.e., safe number of neutron generation in every 

generation in nuclear reactors) must be observed carefully to sustain the safety of nuclear reactors. 

The mathematical expression of the criticality is maintaining the multiplication factor to one, 

which means that the neutron number must always be constant in the reactor. The criticality condition 

makes the NDE in Eq (1.3), a time independent equation and it can be re-written as: 

𝑠(𝑥) − 𝛴𝑎(𝑥)𝜑(𝑟) + 𝐷𝛻
2𝜑(𝑥) = 0, (1.4) 

where, 

𝑠(𝑥) = 𝑣𝛴𝑓𝜑(𝑥), (1.5) 

where 𝛴𝑓 is the fission macroscopic cross-sections, 𝑣 is the neutron number per fission. In general, 

the microscopic cross-section 𝜎 represents the probability of the reaction while the relation between 

the macroscopic cross-section 𝛴 and microscopic cross-section 𝜎 is 𝛴 = 𝜎 𝑁.  Eq (1.4), represents 

the time independent NDE, in the reactor which is represented as: 

𝛻2𝜑(𝑥) + 𝐵2𝜑(𝑥) = 0, (1.6) 

where the nuclear reactor concept called the nuclear buckling 𝐵2 is defined as: 

𝐵2 =
𝜈𝛴𝑓  − (𝛴𝑓 + 𝛴𝛾)

𝐷
. (1.7) 

In general, the first boundary condition is: 

which represents constant flux, and zero neutron current density at the center of the reactor. 

The second boundary condition is at the reactor edges. That is:  

𝜑 (𝑎)  =  0, 𝜑 (∞)  =  0, (1.9) 

where the flux must be zero at infinity (or in the case of finite reactors at its edge, i.e., 𝑥 = 𝑎) [27–29]. 

𝜑(0) = 𝐼, 𝐽(0) = 0, (1.8) 
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The time dependence of a related process in determining the core multiplication as a function of 

the power level of the reactor represents the dynamics of the nuclear reactor. 

The time-dependent nuclear reactor system can be represented by the F-NDEs.  

The time behavior and the effect of the delayed neutrons in nuclear reactors can also be studied 

via this model of criticality. 

Delayed neutrons are extremely important for reactor time behavior. In the case of fast and 

thermal reactors, lifetimes of prompt neutrons range from 10−4 s and 10−7 s. 

According to the predictions made by this model, the reactor period is to modicum for effective 

control of the reactor. Also, the model does not treat the reactor as a point but assumes that the flux 

shape does not vary in time. 

In reactors, the effective lifetime of neutrons plays an important role in delayed neutrons. The 

effective lifetime is equal to their prompt lifetime plus additional delay time, which is characterized 

by the β-decay of their antecedent, and considerably longer lifetime than the prompt neutron. Hence, 

delayed neutrons significantly increase the time constant of a reactor so that effective control is 

possible. It must be noted that the source term 𝑠(𝑟) in Eq (1.3) must be modified to include the effect 

of delayed neutron effect as: 

𝑠(𝑥) = (1 − 𝛽)𝜈𝛴𝑓 𝜑(𝑥, 𝑡) +  𝜆𝑐(𝑥, 𝑡). (1.10) 

The neutron point kinetic model for NDE with delayed neutrons can be represented by a coherent 

system of two equations: 

1

𝑉

𝜕

𝜕𝑡
𝜑(𝑥, 𝑡) = 𝐷

𝜕2

𝜕𝑥2
𝜑(𝑥, 𝑡) + (−∑𝑎 + (1 − 𝛽)𝜈∑𝑓)𝜑(𝑥, 𝑡) +  𝜆𝑐(𝑥, 𝑡), 

(1.11) 

𝜕

𝜕𝑡
𝑐(𝑥, 𝑡) =  𝛽𝜈∑𝑓 𝜑(𝑥, 𝑡)  −  𝜆𝑐(𝑥, 𝑡),  

(1.12) 

where 𝑡 > 0, 0 < 𝑥 < 𝐿,  𝜑(𝑥, 𝑡) is the neutron flux, 𝑐(𝑥, 𝑡)  is the delayed neutron density, 𝑉  is 

neutron velocity, ∑𝑎  is the macroscopic absorption cross-section, 𝐷  is the neutron diffusion 

coefficient and β, λ, and 𝜈 are the fraction of the delayed fission neutrons, the radio-active decay 

constant, and the average number of neutrons produced per fission respectively. 

𝜑(0, 𝑡) = 𝜑(𝐿, 𝑡) = 0 (1.13) 

𝜑(𝑥, 0) = 𝜑0(𝑥), 𝑐(𝑥, 0) =
𝛽𝜈∑𝑓
𝜆

𝜑0(𝑥) (1.14) 

The design and analysis of various operational modes in nuclear reactors is a complicated task. 

After determining the neutronic conditions of the reactor core, which plays a key role in the analysis- 

the main objective of such neutronic analysis is to predict and describe the states of a reactor under 

various conditions which enables determining the optimum configuration (i.e., capable of long-term, 

self-sustained operation) with minimal human intervention. 

The kinetics equations in the diffusion theory of neutrons govern the dynamics of space-time and 

neutron population. Kinetics equations are classified into point and space kinetic equations. Point 

kinetic equations describe the variation of neutron density over time and estimate the power response 

of a reactor, allowing the ability to control the operations of the power plant to avoid the occurrence 

of any incidents. Now a recent approach is the fractional kinetics model, which reproduces the classical 



19302 

AIMS Mathematics  Volume 8, Issue 8, 19297–19312. 

model and enables us to capture the different effects from the usually employed Fick’s hypothesis. 

Also, it is widely used in reactor dynamics because of the simplicity of the resulting equations. 

Sure, systems do not obey the normal (Gaussian) diffusion process where the rate at which the 

particles/objects diffuse either is slower or faster than that of the Gaussian diffusion processes in the 

system. Such deviation from the Gaussian diffusion is defined as anomalous diffusion. 

Anomalous diffusion is characterized by its asymptotic nonlinearity (especially power-law type) 

and its dependence on the average-squared displacement on time, i.e., 

〈𝑥2(𝑡)〉~𝑡𝛼 

According to the value of α, normal and anomalous diffusion is classified. When 𝛼 =  1 , 

Gaussian diffusion, and when 𝛼 <  1 or 𝛼 >  1, then anomalous diffusion is studied. 

Anomalous diffusion is classified into Sub-diffusion (𝛼 <  1) which is characterized by the slow 

movement of particles because of being trapped in the medium for a very long or infinite time. While 

super diffusion (𝛼 >  1) is described by the fast movement of particles, because of their non-collision 

with any particles for a very long time. Many researchers showed how anomalous diffusion is modeled 

using the technique of F-NDEs [36–37]. 

The F-NDEs method has been studied by many researchers where fractional of two energy group 

matrices are used to represent the dynamics of the nuclear reactor in case of an external source [38], 

while coupled F-NDEs is solved [39], and an exact solution in the case of one-dimensional neutron 

diffusion kinetic equation with one delayed antecedent concentration in Cartesian coordinates is 

studied [40]. Various numerical and analytical methods have been used by many researchers to find 

exact and approximate solutions for P-FDEs [41–44]. 

Here, the F-NDE with one delayed neutrons group can be written as: 

𝔇𝑡
𝛼 𝜑(𝑥, 𝑡) = 𝑉𝐷 

𝜕2

𝜕𝑥2
𝜑(𝑥, 𝑡) + 𝜇 𝜑(𝑥, 𝑡) + 𝜆𝑉𝑐(𝑥, 𝑡), (1.15) 

𝔇𝑡
𝛼 𝑐(𝑥, 𝑡) = 𝜎 𝜑(𝑥, 𝑡) − 𝜆 𝑐(𝑥, 𝑡), (1.16) 

𝜑(0, 𝑡) = 𝜑(𝐿, 𝑡) = 0 (1.17) 

𝜑(𝑥, 0) = 𝜑0(𝑥), 𝑐(𝑥, 𝑡) =
𝜎

𝜆
𝜑0(𝑥), (1.18) 

where 𝜇 = 𝑉(−∑𝑎 + (1 − 𝛽)𝜈∑𝑓) and 𝜎 = 𝛽𝜈∑𝑓. 

2. Materials and methods 

In this work, we create the analytical exact and approximate series solutions to the F-NDEs using 

the LT method via Caputo sense. Also, the poles and residues of this problem are calculated and 

determined. Finally, some numerical comparisons and graphical results for neutron flux simulations 

are given and tested at different values of time 𝑡 and order 𝛼, which includes the exact solutions at 

𝛼 = 1. 

The fractional neutron flux equation in Eq (1.15) can be solved exactly with the use of the LT, as 
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shown below. 

Taking the LT to both sides of F-PDEs in Eq (1.15), according to: 

ℒ[𝔇𝑡
𝛼 𝜑(𝑥, 𝑡)] = 𝜔𝛼 𝜙(𝑥, 𝜔) − 𝜔𝛼−1 𝜑(𝑥, 0) 

and the initial condition in Eq (1.17), we get: 

𝜔𝛼 𝜙(𝑥, 𝜔) − 𝜔𝛼−1𝜑0(𝑥) = 𝑉𝐷 
𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔) + 𝜇 𝜙(𝑥, 𝜔) + 𝜆𝑉𝐶(𝑥, 𝜔), (2.1) 

where 𝜙(𝑥, 𝜔) = ℒ[𝜑(𝑥, 𝑡)], 𝐶(𝑥, 𝜔) = ℒ[𝑐(𝑥, 𝑡)]. 

𝑉𝐷
𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔) + (𝜇 − 𝜔𝛼) 𝜙(𝑥, 𝜔) + 𝜔𝛼−1𝜑0(𝑥) + 𝜆𝑉𝐶(𝑥, 𝜔) = 0. (2.2) 

Again, applying LT on the fractional Precursor concentration in Eq (1.16) and using the initial 

condition in Eq (1.18), we get: 

𝜔𝛼 𝐶(𝑥, 𝜔) −
𝜎𝜔𝛼−1

𝜆
𝜑0(𝑥) = 𝜎𝜙(𝑥, 𝜔) − 𝜆𝐶(𝑥, 𝜔), (2.3) 

(𝜔𝛼 + 𝜆)𝐶(𝑥, 𝜔) =
𝜎𝜔𝛼−1

𝜆
𝜑0(𝑥) + 𝜎𝜙(𝑥, 𝜔), (2.4) 

𝐶(𝑥, 𝜔) =
𝜎𝜔𝛼−1

𝜆(𝜔𝛼 + 𝜆)
𝜑0(𝑥) +

𝜎

𝜔𝛼 + 𝜆
𝜙(𝑥, 𝜔), (2.5) 

𝐶(𝑥, 𝜔) =
𝜔𝛼−1𝛿

𝜔𝛼 + 𝜆
𝜑0(𝑥) +

𝜎

𝜔𝛼 + 𝜆
𝜙(𝑥, 𝜔), (2.6) 

where 𝛿 =
𝜎

𝜆
. 

Inserting Eq (2.6) in Eq (2.2), we get: 

𝑉𝐷
𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔)+ (𝜇−𝜔𝛼) 𝜙(𝑥, 𝜔) +𝜔𝛼−1𝜑0(𝑥) + 𝜆𝑉 (

𝜔𝛼−1𝛿
𝜔𝛼 + 𝜆

𝜑0(𝑥) +
𝜎

𝜔𝛼 + 𝜆
𝜙(𝑥, 𝜔))

= 0 

(2.7) 

𝑉𝐷
𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔)+ ((𝜇−𝜔𝛼) +

𝜆𝑉𝜎

𝜔𝛼 + 𝜆
)𝜙(𝑥, 𝜔) = −𝜑0(𝑥) (𝜔𝛼−1 +

𝜆𝑉𝜔𝛼−1𝛿
𝜔𝛼 + 𝜆

) (2.8) 
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𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔)+

1
𝑉𝐷

(
(𝜇−𝜔𝛼)(𝜔𝛼 + 𝜆) + 𝜆𝑉𝜎

𝜔𝛼 + 𝜆
)𝜙(𝑥, 𝜔)

=
−𝜑0(𝑥)

𝑉𝐷
(
𝜔𝛼−1(𝜔𝛼 + 𝜆) + 𝜆𝑉𝛿𝜔𝛼−1

𝜔𝛼 + 𝜆
) 

(2.9) 

𝜕2

𝜕𝑥2
𝜙(𝑥, 𝜔) −

1

𝑉𝐷
(
𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎)

𝜔𝛼 + 𝜆
)𝜙(𝑥, 𝜔)

=
−𝜑0(𝑥)

𝑉𝐷
(
𝜔2𝛼−1 + 𝜆𝜔𝛼−1(1 + 𝑉𝛿)

𝜔𝛼 + 𝜆
). 

(2.10) 

Which is equivalent to the known differential equation, 

𝑑2

𝑑𝑥2
𝜙(𝑥, 𝜔) − 𝑓2(𝜔𝛼)𝜙(𝑥, 𝜔) = −𝑔(𝜔𝛼),  

where: 

𝑓(𝜔𝛼) =
1

√𝑉𝐷
√
𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎)

𝜔𝛼 + 𝜆
, (2.11) 

𝑔(𝜔𝛼) =
𝜑0(𝑥)

𝑉𝐷
(
𝜔2𝛼−1 + 𝜆𝜔𝛼−1(1 + 𝑉𝛿)

𝜔𝛼 + 𝜆
). (2.12) 

The general exact solution is:  

𝜙(𝑥, 𝜔) = ℎ1(𝜔)cosh(𝑓(𝜔
𝛼)𝑥) + ℎ2(𝜔)sinh(𝑓(𝜔

𝛼)𝑥) +
𝑔(𝜔𝛼)

𝑓2(𝜔𝛼)
. (2.13) 

After applying the LT, we obtain the following two forms for ℎ1(𝜔) and ℎ2(𝜔): 

ℎ1(𝜔) = −
𝑔(𝜔𝛼)

𝑓2(𝜔𝛼)
,  ℎ2(𝜔) = −

𝑔(𝜔𝛼)(1 − cosh(𝑓(𝜔𝛼)𝐿))

𝑓2(𝜔)sinh(𝑓(𝜔𝛼)𝐿)
.  

Now, inserting the functions ℎ1(𝜔), ℎ2(𝜔), 𝑔(𝜔), and 𝑓(𝜔) into Eq (2.13), we have: 

𝜙(𝑥, 𝜔) = 𝜑0(𝑥)

[
 
 
 
 2(𝜔2𝛼−1 + 𝜆𝜔𝛼−1(1 + 𝑉𝛿))sinh (

𝑓(𝜔𝛼)𝑥
2 ) sinh (𝑓(𝜔𝛼) (

𝐿 − 𝑥
2

))

(𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎))cosh (
𝑓(𝜔𝛼)𝐿
2 )

]
 
 
 
 

 (2.14) 

Now, we first need to determine the poles and residues of Eq (2.14) to be able to the inverse LT. 

2.1. Pole calculations of 𝜙(𝑥, 𝑠) 

We determine the poles from the zeros of the denominator in Eq (2.14). Specifically, we appoint 
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them from the two factors, (𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎)) and cosh(𝑓(𝜔𝛼)𝐿/2). We determine 

the first set of poles by the setting: 

𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎) = 0. (2.15) 

Using the definition of 𝑓(𝜔𝛼) in Eq (2.11) to determine the first order poles of Eq (2.15) yields 

𝑓2(𝜔𝛼) = 0, consequently 𝑓(𝜔1
𝛼) = 𝑓(𝜔2

𝛼) = 0, where: 

𝜔1 = (
1

2
[𝜇 − 𝜆 + √(𝜇 − 𝜆)2 + 4𝜆(𝜇 + 𝑉𝜎)])

1/𝛼
, (2.16) 

𝜔2 = (
1

2
[𝜇 − 𝜆 − √(𝜇 − 𝜆)2 + 4𝜆(𝜇 + 𝑉𝜎)])

1/𝛼
. (2.17) 

To find the second set of poles, we must set the second factor of the denominator in Eq (2.14) as 

cosh (
𝑓(𝜔𝛼)𝐿

2
) = 0. 

Consequently, 

𝑓(𝜔𝛼) = −𝑖(2𝑛 + 1)
𝜋

𝐿
, 𝑛 = 0,1,2, .. (2.18) 

Substituting 𝑓(𝜔𝛼) from Eq (2.18) into Eq (2.11), we get: 

−(𝜔𝛼 + 𝜆)𝑉𝐷(2𝑛 + 1)2
𝜋2

𝐿2
= 𝜔2𝛼 − (𝜇 − 𝜆)𝜔𝛼 − 𝜆(𝜇 + 𝑉𝜎), (2.19) 

𝜔2𝛼 − (𝜇 − 𝜆 − 𝑉𝐷(2𝑛 + 1)2
𝜋2

𝐿2
)𝜔𝛼 − 𝜆 (𝜇 + 𝑉𝜎 − 𝑉𝐷(2𝑛 + 1)2

𝜋2

𝐿2
) = 0 (2.20) 

Solving Eq (2.20) for 𝜔 yields, 

𝜔3 = (
1

2
[𝜇 − 𝜆 − 𝑉𝐷(2𝑛 + 1)2

𝜋2

𝐿2
+√(𝜇 − 𝜆 − 𝑉𝐷(2𝑛 + 1)2

𝜋2

𝐿2
)
2

+ 4𝜆 (𝜇 + 𝑉𝜎 − 𝑉𝐷(2𝑛 + 1)2
𝜋2

𝐿2
)])

1/𝛼

, 

𝜔4 = (
1

2
[𝜇 − 𝜆 − 𝑉𝐷(2𝑛 + 1)2

𝜋2

𝐿2
−√(𝜇 − 𝜆 − 𝑉𝐷(2𝑛 + 1)2

𝜋2

𝐿2
)
2

+ 4𝜆 (𝜇 + 𝑉𝜎 − 𝑉𝐷(2𝑛 + 1)2
𝜋2

𝐿2
)])

1/𝛼

. 

The above Poles’ values can be real or complex numbers. It depends on the parameter values 

inside the radical. When presenting the numerical analysis of the results, the values of the poles will 

be real numbers based on the submitted known physical quantities. 

2.2. Residues calculation of 𝜙(𝑥, 𝑠) 

Note that by Eqs (2.11), (2.16) and (2.17), and 𝑓(𝜔1
𝛼) = 𝑓(𝜔2

𝛼) = 0, it can be easily checked 

that: 

𝑅𝑒𝑠(𝜙(𝑥, 𝜔)𝑒𝜔𝑡; 𝜔1) = 0, (2.21) 

and similarly, 
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𝑅𝑒𝑠(𝜙(𝑥, 𝜔)𝑒𝜔𝑡; 𝜔2) = 0, (2.22) 

Now for 𝜔 = 𝜔3 and 𝜔 = 𝜔4, let us reform 𝜙(𝑥, 𝜔) by substituting from Eqs (2.11) and (2.18) into 

Eq (2.14) to get the following formula: 

𝜙(𝑥, 𝜔) =
2𝐿2𝜑0(𝑥)

(2𝑛 + 1)2𝜋2𝑉𝐷
sin [(𝑛 +

1

2
)𝜋

𝑥

𝐿
] sin [(𝑛 +

1

2
)𝜋 (1

−
𝑥

𝐿
)]

(𝜔2𝛼 + 𝜆𝜔𝛼(1 + 𝑉𝛿))

𝜔(𝜔𝛼 + 𝜆) cosh
𝑓(𝜔𝛼)𝐿
2

 

(2.23) 

Using the last form of 𝜙(𝑥, 𝜔) appearing in Eq (2.23) and the value of 𝑓(𝜔𝛼) as in Eq (2.18), we 

get: 

𝑅𝑒𝑠(𝜙(𝑥, 𝜔)𝑒𝜔𝑡; 𝜔3) =
8𝜑0(𝑥)

𝛼𝜋
𝜉(𝑛, 𝑥)𝑒𝜔3𝑡

(𝜔3
𝛼 + 𝜆)(𝜔3

𝛼 + 𝜆(1 + 𝑉𝛿))

(𝜔3
𝛼 + 𝜆)2 + 𝜆𝑉𝜎

, (2.24) 

and: 

𝑅𝑒𝑠(𝜙(𝑥, 𝜔)𝑒𝜔𝑡; 𝜔4) =
8𝜑0(𝑥)

𝛼𝜋
𝜉(𝑛, 𝑥)𝑒𝜔4𝑡

(𝜔4
𝛼 + 𝜆)(𝜔4

𝛼 + 𝜆(1 + 𝑉𝛿))

(𝜔4
𝛼 + 𝜆)2 + 𝜆𝑉𝜎

, (2.25) 

where: 

𝜉(𝑛, 𝑥) =
(−1)𝑛

(2𝑛 + 1)
sin [(𝑛 +

1

2
)𝜋

𝑥

𝐿
] sin [(𝑛 +

1

2
)𝜋 (1 −

𝑥

𝐿
)] (2.26) 

Applying the residue theorem method and using Eqs (2.19), (2.22), (2.24) and (2.25), we finally obtain: 

𝜑(𝑥, 𝑡) =
8𝜑0(𝑥)

𝛼𝜋
∑𝜉(𝑛, 𝑥)[𝜀1(𝑛)𝑒

𝜔3(𝑛)𝑡 + 𝜀2(𝑛)𝑒
𝜔4(𝑛)𝑡]

∞

𝑛=0

 (2.27) 

where: 

𝜀1(𝑛) =
(𝜔3

𝛼 + 𝜆)(𝜔3
𝛼 + 𝜆(1 + 𝑉𝛿))

(𝜔3
𝛼 + 𝜆)2 + 𝜆𝑉𝜎

, (2.28) 

and 

𝜀2(𝑛) =
(𝜔4

𝛼 + 𝜆)(𝜔4
𝛼 + 𝜆(1 + 𝑉𝛿))

(𝜔4
𝛼 + 𝜆)2 + 𝜆𝑉𝜎

 . (2.29) 

3. Numerical results and discussion 

To verify the driven theory in Section 2, we solve the time dependent F-NDEs using the LT 

method, and the results will be tested with the numerical values of the following nuclear reactor cross-

section data [40]: 𝑉 = 1.103497 × 107 , 𝐷 = 0.96343 , 𝜆 = 0.08 , 𝜎 = 0.00014986 , 𝜇 =
191015.738, 𝐿 = 22.9, 𝜑(𝑥, 0) = 5226.54. 

The neutron flux is an important nuclear reactor notion that defines the number of neutrons 
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moving through a unit area in a unit period. This study demonstrates the neutron flux findings for both 

anomalous diffusion and sub-diffusion; the super diffusion case is not considered. 

Solving non-F-NDE has been used to study neutron behavior in nuclear reactors without taking the 

effect of delayed neutrons into account [30–33,35]. However, when the effect of the delayed neutron is 

considered, fractional calculus is introduced, which aids scientists in solving the NDEs [36–40]. 

Table 1 studies the impact of the number of terms on the neutron, it should be emphasized that 

Table 1 only examines the non-fractional instance of the flux, which depicts Gaussian diffusion when 

𝛼 = 1. 

From Table 1, it is shown that the Gaussian flux rapidly converges and becomes stable for the 

first few calculations (𝑁 = 10) although we took up to 400 terms and 10 digits but that is just to 

clarify the idea and to show that the difference between them is of the order ∆𝜑 = 1.563 × 10−7. 

Table 1. Neutron flux simulations at 𝑥 = 11.45 𝑐𝑚, 𝑡 = 1, 𝛼 = 1. 

N 𝜑(cm-2 s-1) 

5 0.1700188336 

10 0.1700213179 

15 0.1700208490 

20 0.1700210249 

25 0.1700209455 

30 0.1700209742 

60 0.1700209838 

90 0.1700210039 

150 0.1700209568 

200 0.1700209595 

250 0.1700208786 

300 0.1700210515 

350 0.1700210453 

400 0.1700211616 

Table 2 gives the flux at 𝑥 = 11.45 for different time intervals, where the anomalous diffusion, 

𝛼 < 1 (sub diffusion), and normal diffusion, 𝛼 = 1, are considered. It must be noted that the results 

of the normal diffusion case shown in Table 1, are reproduced at 𝑡 = 1. Also, it is clear from Table 2 

that the neutron flux decreases as the time increases for both Gaussian and sub-diffusion cases (for all 

values of 𝛼), whereas the flux is expected to vanish as time becomes large and that agrees with nuclear 

reactor theory [36,37]. 

Table 2. Neutron flux (𝜑) at 𝑥 = 11.45 at different values of time (𝑡) and 𝛼. 

Time (t) α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1 

0.0005 0.951223 0.475612 0.317074 0.237806 0.190245 

0.0010 0.907964 0.453982 0.302655 0.226991 0.181593 

0.0100 0.906962 0.453481 0.302321 0.226740 0.181392 

0.0200 0.906369 0.453184 0.302123 0.226592 0.181274 

Continued on next page 
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Time (t) α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1 

0.0800 0.902819 0.45141 0.300939 0.225705 0.180564 

0.1000 0.901639 0.45082 0.300547 0.22541 0.180328 

0.3000 0.889924 0.444962 0.296641 0.222481 0.177985 

0.6000 0.872636 0.436318 0.290879 0.218159 0.174527 

0.9000 0.855683 0.427842 0.285228 0.213921 0.171137 

1.0000 0.850106 0.425053 0.283369 0.212526 0.170021 

 

Figure 1. The surface graphs of the 300th approximate solutions, 𝜑300(𝑥, 𝑡)  of the 

boundary value problem (1.15)–(1.18): (a) when 𝛼 = 0.4, (b) when 𝛼 = 0.6, (c) when 

𝛼 = 0.8, (d) when 𝛼 = 1.0. 

Then for more clarification, we plotted the profile of the neutron fluxes, 𝜙(𝑥, 𝑡), against 𝛼 and 

𝑥 for different values of 𝛼 (𝛼 = 0.4, 0.6, and 𝛼 = 0.8) in Figure 1(a)–(c) respectively. The results 

were compared to the classical result (i.e., 𝛼 = 1) shown in Figure 1(d) [40]. 

By comparing non-Gaussian flux using the LT method in this work, Figure 1(a)–(c), with 

Gaussian flux Figure 1(d) and the results are compatible. 

It must be noted that the MATHEMATICA package (Version 12) was used to find the needed data 

to construct the tables and figures to achieve our target. 

Finally, as it is observed from the tables and figures, the LT method used in solving the time 
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dependent F-NDEs gives us more details about the neutron flux in non-Gaussian diffusion for different 

selected times, where the flux values decrease as it is close to the Gaussian case. Furthermore, based 

on the given values of the parameters, which are the cross-section data taken from truth elements, we 

would like to indicate the values of 𝜔3(𝑛) and 𝜔4(𝑛) are negative. Hence, the solution in Eq (2.27) 

approaches zero in the long-run behavior and appropriate 𝛼 values. This solution is consistent with 

the nuclear reactor idea, in which the flux must vanish over an infinite period. 

4. Conclusions 

We have reformulated the NDEs in the sense of Caputo fractional derivative with integer-order 

initial conditions, whose physical meanings, in this case, are very evident by describing the whole-

time domain of physical processing. Despite some drawbacks in the LT method, some of which can be 

summarized in the following points: 

1) It becomes complicated if the equation coefficients are not constants. 

2) It deals with initial conditions and not boundary conditions. 

3) It becomes almost impossible to use if the equation is non-linear unless we circumvent the equation 

form to eliminate nonlinearity. 

4) The difficulty in finding the inverse LT directly for the final solution. In this case, we need to 

calculate the poles and use the residue theorem. Unfortunately, this is often complicated if the poles 

are complex numbers. Despite all these drawbacks, we have used the LT method for creating a series 

solutions for the F-NDEs with one delayed neutron group. In addition, the theoretical results were 

tested numerically at different values of time t for both cases, sub-diffusion (0 < 𝛼 < 1)  and 

Gaussian diffusion (𝛼 = 1). The used method is successful in giving an exact solution for the studied 

cases (i.e., Gaussian and sub-diffusion) where the neutron flux decreased as the time elapsed for both 

Gaussian and sub-diffusion cases, whereas the flux, as expected, vanished over a long time.  

This work can be considered a step in studying fractional and non-fractional nuclear reactor 

theory phenomena. How to solve F-NDEs via other methods combined with the LT, such as the Laplace 

residual power series method, Laplace-ARA method, and other new methods, still require further 

research. 
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