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Abstract: In this paper, we study the finite volume element method of bilinear parabolic optimal
control problem. We will use the optimize-then-discretize approach to obtain the semi-discrete finite
volume element scheme for the optimal control problem. Under some reasonable assumptions, we
derive the optimal order error estimates in L>(J; L?) and L™(J; L?)-norm. We use the backward Euler
method for the discretization of time to get fully discrete finite volume element scheme for the optimal
control problem, and obtain some error estimates. The approximate order for the state, costate and
control variables is O(h*? + At) in the sense of L*(J; L*) and L*(J; L*)-norm. Finally, a numerical
experiment is presented to test these theoretical results.
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1. Introduction

With the rapid development of science and technology, it is becoming more and more important
to solve the optimal control problem by using appropriate numerical methods for satisfying various
different actual requirements. Many numerical methods, such as finite volume element method, finite
element method, mixed finite element method, and spectral method have been applied to approximate
the solutions of optimal control problems (see, e.g., [4,7-9,12,16,18,20-23,25]). The optimal control
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problem of bilinear type considered in this paper includes a useful model of parameter estimation
problems. It plays a very important role in many fields of science and engineering, where prior errors
can improve accuracy and promote the development of related practical applications, such as air and
water pollution control, oil exploration, and other fields. Although numerical analysis for bilinear
optimal control problem was considered in a number of [11,23,28], there were few papers that consider
the error estimates of finite volume element method for bilinear parabolic optimal control problem.

The finite volume element methods lie somewhere between finite difference and finite element
methods, they have a flexibility similar to that of finite element methods for handling complicated
solution domain geometries and boundary conditions, and they have a simplicity for implementation
comparable to finite difference methods with triangulations of a simple structure. The finite
volume methods are effective discretization technique for partial differential equations. Bank and
Rose obtained some results for elliptic boundary value problems that the finite volume element
approximation was comparable with the finite element approximation in H'-norm which can be
found in [3]. In [15], the authors presented the optimal L>-error estimates for second-order elliptic
boundary value problems under the assumption that f € H', they also obtained the H'-norm and
L>”-norm error estimates for those problems. In [27], Luo and Chen used the finite volume element
method to obtain the approximation solution for optimal control problem associate with a parabolic
equation by using optimize-then-discretize approach and the variational discretization technique. The
authors also derived some error estimates for the semi-discrete approximation. Recently, the first
author of this paper investigated L™ -error estimates of the bilinear elliptic optimal control problem
by rectangular Raviart-Thomas mixed finite element methods in [23]. In this paper, we will study
a priori error estimates for the finite volume element approximation of bilinear parabolic optimal
control problem. By using finite volume element method to discretize the state and adjoint equations.
Under some reasonable assumptions, we obtained some optimal order error estimates. Moreover, by
employing the backward Euler method for the discretization of time, and using finite volume element
method to discretize the state and adjoint equations, we will construct the fully discrete finite volume
element approximation scheme for the bilinear optimal control problem. Then we obtain a priori
error estimates for the fully discrete finite volume element approximation of bilinear parabolic optimal
control problem.

In this paper, we use the standard notations W"?(Q) for Sobolev spaces and their associated norms
IVl (see, e.g., [1]) in these paper. To simplify the notations, we denote Wm2(Q) by H™(Q) and
drop the index p = 2 and Q whenever possible, i.e., [ull,20 = |[Ulln2 = llulln, llullo = [lull. Set
Hy(Q) = {ve H" : vlsgo = 0}. As usual, we use (-, ) to denote the L*(Q)-inner product.

We consider the following bilinear parabolic optimal control problem

(1 (T
min {5 fo (ly(x, 1) = ya(x, Dl + @llueCx, t)lliz(g))dt}, (1.1)
yi(x, 1) = V- (AVy(x, 1)) + u(x, y(x,1) = f(x,1), t€J, x€Q, (1.2)
yx,0)=0, teJ, xel, y(x,0) =y, x€Q, (1.3)

where « is a positive constant,

1

0 0
V. (AVy) = . (aij(x)(.)Ty_) ,
J
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Q c R? is a bounded convex polygonal domain and I' is the boundary of Q, f(-,1) € L*(Q) or H'(Q),
J =(0,T], A = (a;)2x 1s a symmetric, smooth enough and uniformly positive definite matrix in €,
yo(x) = 0, x € I'. It is assumed that the functions y have enough regularity and they satisfy appropriate
compatibility conditions so that the boundary value problems (1.1)—(1.3) has a unique solution. U, is
a set defined by

Uy ={u: ue L*(J; LZ(Q)), u(x,t) >0, ae.inQ, t€ J, a,b € R}.

The remainder of this paper is organized as follows. In Section 2, we present some notations and the
finite volume element approximation for the bilinear parabolic optimal control problem. In Section 3,
we analyze the error estimates between the exact solution and the finite volume element solution. In
Section 4, a priori error estimates for the fully discrete finite volume element approximation of the
bilinear optimal control problem are presented. a numerical example is presented to test the theoretical
results in Section 5. Finally, we briefly give conclusions and some possible future works in Section 6.

2. Finite volume element approximation for bilinear parabolic optimal control

For the convex polygonal domain €, we consider a quasi-uniform triangulation 77, consisting of

closed triangle elements K such that Q@ = |J K. We use N, to denote the set of all nodes or vertices of
KeT),

T - To define the dual partition 7, of 77, we divide each K € 77, into three quadrilaterals by connecting
the barycenter Ck of K with line segments to the midpoints of edges of K as is shown in Figure 1.

¢

=
I,

Figure 1. The dual partition of a triangulark.

The control volume V; consists of the quadrilaterals sharing the same vertex z; as is shown in
Figure 2.
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Figure 2. The control volume V; sharing the same vertex z;.

The dual partition 7" consists of the union of the control volume V;. Let 7 = max{hg}, where hg
is the diameter of the triangle K. As is shown in [15], the dual partition 7, is also quasi-uniform.
Throughout this paper, the constant C denotes different positive constant, which is independent of the
mesh size i and the time step k.

We define the finite dimensional space V), associated with 77, for the trial functions by

Vi=1{v:veCQ), vk € P(K), YK €T}, vir =0},

and define the finite dimensional space Q), associated with the dual partition 7, for the test functions
by

On=1q: g€ L*(Q), qly € Po(V), YV €T}; qly. =0, 7T},

where P;(K) or P/(V) consists of all the polynomials with degree less than or equal to / defined on K
orV.
To connect the trial space and test space, we define a transfer operator 7, : V;, — Q) as follows:

Ly, = Z Vi@, Dwvalv, = vi(z), Y Vi€ T,

Zi€Nj

where y; is the characteristic function of V;. For the operator I, it is well known that there exists a
positive constant C such that for all v € V},, we can get

lv = Iyl < ChIvl;. 2.1

Leta(w,v) = fQ AVw-Vvdx. We assume a(v, v) satisfies the coercive conditions, then coercive property
of a(-, -) is that there exists a positive constant ¢ such that for all v € V},, we can obtain (see, e.g., [5])

a(v,v) > clvlli. (2.2)
As is defined in [6], we define the standard Ritz projection R, : Hé — V, by

a(Ryu, ) = a(u, x), ¥ x € V. (2.3)
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For the projection Ry, it has the property that (see, e.g., [6])
IRy = ull < Ch*|jully. (2.4)

Now, we will use the optimize-then-discretize approach to obtain the semi-discrete finite volume
element scheme for the bilinear parabolic optimal control problem.

As is seen in [25], the necessary and sufficient optimal condition of (1.1)—(1.3) consists of the
state equation, a co-state equation and a variational inequality, i.e., find y(-,#), p(-,t) € Hé(Q) and
u(-,t) € U, such that

O, W) + (AVY, Vw) + (uy, w) = (f,w), Y we Hy(Q), y(x,0) = yo(x), (2.5)
~(piq) + AV, V) + (up,q) = (y = ya. @), V¥ g € H)(Q), p(x,T) =0, (2.6)
T
f (au—yp,v—uw)ydt >0, VveUy,. 2.7
0

If y(-,1) € H)(Q) N C*(Q) and p(-, 1) € Hy(Q) N C*(Q), then the optimal control problems (2.5)—-(2.7)
can be written by

vi—V-(AVy)+uy=f, teJ, xeQ, (2.8)

yx,0) =0, 1€, xel, y(x0)=yo(x), x €L, (2.9)

-pi—V-(AVp)+up=y—-ys, telJ, xeQ, (2.10)

px,t)=0,teJ, xel', p(x,T)=0, xe€Q, 2.11)
T

f(cm—yp,v—u)dtZO, YveUyy,. (2.12)
0

Then, we use the finite volume element method to discretize the state and co-state equations
directly. Then the continuous optimal control problems (2.8)—(2.12) can be approximated by: find
(yh(', 1), ph(', D, u,(-,1) eV XV, X Uy such that

Ones Inwn) + anQns Inwn) + unyn, Iywn) = (f, Inwy), Y wy, € Vy, (2.13)
yu(x,0) = Rypyo(x), x € Q, (2.14)
—(Pues Ingn) + an(pus Ingn) + Wnpn, Ingn) = On = Ya, Ingn), Y qn € Vi, (2.15)
pr(x,T) =0, x € Q, (2.16)
T
f (aup = ynpp,v—up)dt 20, Vve Uy, (2.17)
0

where a, (¢, L) = — Y, Y(z) fav,— AV¢ - nds.

Z;EN;,
Similar to [17], we can find that the variational inequality (2.12) is equivalent to

u(x, r) = max(y(x, 1)p(x, 1), 0). (2.18)
And then the variational inequality (2.17) is equivalent to

un(x,t) = max(y,(x, H)pr(x, 1), 0). (2.19)
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3. A priori error estimates

In this section, we will analyze the error between the exact solution and the finite volume element
solution. Let €,(x,y) = a(x,y) — ay(x, I,,y), it is well known (see, e.g., [6, 13]) that for all y € V;:

leaCe, VI < Chllxlly - llyll, ¥V x € Vi (3.1

To deduce the error estimates, let (y,(u),p,(u)) be the solution of

Om (W), Inwn) + an(yn(u), Lwy) + uyn(u), Lwy) = (f, lywn), (3.2)
yr(u)(x, 0) = Rpyo(x), x € €, (3.3)
=(pnW), Ingn) + an(pu(), Ingn) + Wpn(u), Ingn) = u(@) = ya, Ign), (3.4)
pr(u)(x, T) =0, x € Q, 3.5

where for all wy, g, € Vj, note that y, = y,(u), pr, = pn(uy), we have the following lemma for y,(u)

and py(u).

Let (p(u), y(u)) and (p(u), y,(u)) be the solutions of (2.13)—(2.15) and (3.2)—(3.4), respectively. Let
J(-) : U,q — R be a G-differential convex functional near the solution u# which satisfies the following
form:

1 a
J(I/l) = 5“)’ _Yd”iz(g) + Ellu”iZ(Q)

Then we have a sequence of convex functional J,, : U,y — R:

1 a
Jh(l/l) = EHYh(”) - yd”i2(g) + E”u”%}(g)’

1 a
Jh(uh) = E”yh(uh) - yd”%}(g) + §||uh”i2(g)'

It can be shown that

(J'(w),v) = (au —yp,v),
(Jpw), v) = (au = yp(u)pr(u), v),
(Jp(un), v) = (Qup, = yupp, v).
In the following we estimate |[u — uy||;2(;.12). We assume that the cost function J is strictly convex

near the solution u, i.e., for the solution u there exists a neighborhood of u in L? such that J is convex
in the sense that there is a constant ¢ > 0 satisfying:

T
f () = J'W),u = v)dt > cliu = Vi 0, (3.6)
0

For all v in this neighborhood of u. The convexity of J(-) is closely related to the second order
sufficient optimality conditions of optimal control problems, which are assumed in many studies on
numerical methods of the problem. For instance, in many references, the authors assume the following
second order sufficiently optimality condition (see [14,26]): there is ¢ > 0 such that J” (u)»* > c||v||é.
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From the assumption (3.6), by the proof contained in [2, 10], there exists a constant ¢ > 0 satisfying

T
f (J,(v) = J(u),v —u)dt = c|lv — u”iZ(J;LZ)’ Yve Uy.
0

Now, we estimate the error of the approximate control in L?-norm.

(3.7)

Theorem 3.1. Let (y,p,u) and (y,, pp,un) are the solutions of (2.5)—(2.7) and (2.13)—(2.17),

respectively. Then there exists a constant hy > 0 such that for all 0 < h < hy, we have
2
ot — wpllp202) < Ch”.

Proof. Letv =u;, in (2.7) and v = u in (2.17), then we have
T
f (au — yp,u, —u)dt > 0,
0
T
f (auy, = ynpp, u — up)dt 2 0.
0

From (3.9) and (3.10), it is easy to see that

T T
f a(u — up, u — uy)dt < f (VP — Ynpn, u — up)dt.
0 0

By using (3.7) and (3.11), we obtain
T T
cllu — Mhlliz(J;Lz) < L (J (W), u — wy)dt — \fo (J(up), u — up)dt
T T
= f (u — yp(u) pr(u), u — up)dt — f (Quy, = ynpn, u — up)dt
0 ) 0
= f a(u — up, u — wy)dt + f OnpPr — Yn@) pp(u), u — uy)dt
O ’
< f P = Yupn, u — up)dt + f Onpn — yn(w)pr(u), u — up)dt
0 0
= fo p = yu(@)pr(u), u — up)dt

T T
= f p = yn(wp, u — w,)dt + f n(wp — yu(u) pp(u), u — uy)dt.
0 0

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Now, we estimate all terms at the right side of (3.12). By using the Theorem 4.2 in [24] and the

0-Cauchy inequality, we have

T
f p = ynw)p,u — uy)dt <Clly — )’h(u)||L2(J;L2) Nlu — Mh||L2(J;L2)
0

2
<Ch7|lu — upll2(s:12)

4 2
<Ch* + 6llu — w2 .12

(3.13)
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In the same way, we also have

T
f ()P = Y pr(a0), = )t <Cllpa(a) = pllizay - 1 = wallzeras
0

<Ch?||u - unllz2.12)
<CH* + 6llu = w321, (3.14)

Putting (3.13) and (3.14) into (3.12) and choosing appropriate value for 6, we can obtain the result (3.8).
O

Theorem 3.2. Let (y,p,u) and (yu, pn,un) are the solutions of (2.5)—(2.7) and (2.13)—(2.17),
respectively. Then there exists a constant hy > 0 such that for all 0 < h < hy, we have

Iy = yallee o2y + 1P = pallsgirzy < Ch, (3.15)
ly = Yilleozmry + 1P = palls:mry < Ch. (3.16)

Proof. By employing the triangle inequality, we have

Iy — yh”L‘”(l;Lz) <lly- yh(”)”L""(l;Lz) + |lyn(u) — )’h||L°°(J;L2),
llp — Ph||L°°(J;L2) <llp- Ph(u)||L°°(J;L2) + |l pa(u) = ph||L°°(J;L2)-

Similar to Lemma 3.1 in [16], it implies that

lly — yh||L°°(J;L2) <lly- Yh(M)||L°°(J;L2) + Cllu - uh”LZ(J;LZ)’ (3.17)
llp — ph||L°°(J;L2) <llp- Ph(“)||L°°(J;L2) + Cllu - Mh||L2(J;L2)- (3.18)

By using Theorem 3.1, (3.17)—(3.18) and Theorem 4.2 of [24], we can easily obtain

Iy = yulleorzy < My = ye@lls o2y + Cllu — uplli2g.12)
< CI* + Cllu — wpllz2.2)
< Ch*. (3.19)

In the same way, we also have
llp — ph||L°°(J;L2) <llp- Ph(”)||L°°(1;L2) + Cllu - Mh||L2(J;L2)
< Ch2 + C”l/l - uh”LZ(J;LZ)

< Ch*. (3.20)

Combining (3.19) with (3.20), we can prove (3.15). Similarly, we can obtain (3.18). |
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4. Fully discrete finite volume element approximation

In this section, we will present a fully discrete scheme and error estimates of the finite volume
element approximation.

Now, we shall construct the fully discrete approximation scheme for semi-discrete scheme (2.13)—
(2.17). Let0 =ty <ty < - <ty <ty =T, t; = int, At = L, fori = 1,2,--- ,M. And let
U= w(x, ), oY = (Y — W“)/At We define a discrete time- dependent norm for 1 < s < oo by

Wi lzsrsmmeyy = (Z Af||lﬁl|| ) e.g. W22y = (Z Aty ) M o2y = max ||W||) By using

the backward Euler method for the discretization of tlme in (2.13) and (2.15), we can obtaln the fully
discrete scheme of (2.13)—(2.17) is to find (yh,ph ,uh) € V, x V, x U, such that

0y, Iown) + anVly Lwy) + W@iyh, Lwy) = (f Lwy), Y wy € Vi, 4.1)
W) = Ryyo(x), x€Q,i=1,2,- , M, 4.2)
— 0Pl Ingn) + an(pl s Lugn) + @y pi ' Lows) = O = Yo Inqn)s Y qi € Vi 4.3)
X)) =0, xeQ, i=MM-1,---,1; 4.4)
(a/uh y’h lp;l l,v—u;l) >0, VvelUy, i=12,--- ,M. 4.5

To derive the fully discrete error analysis, let (¥, (1), pi~' (1)) be the solution of

0y}, (w), Lwy) + an(y},(w), Iywy) + (u' yh(u) Lwy) = (f Twy), Y wy € Vi, (4.6)
yh(u)(x) =Ryyo, x€eQ, i=1,2,--- M, “4.7)
—(0p,w), Ingn) + an(pj,w), Ingn) + (MZPZ L), Lwn) = 05, () = Yigs Ingin), (4.8)

Y gn(u) € Vi, py, Muw(x) =0, xeQ, i=MM-1,---,1. 4.9)

Let uy = (up, -+ 1)), v = O Yo+ 5 33) and piy = (P, py -+, o). For (3,), p ' (), we have
the following lemma.

Lemma 4.1. Assume that (y,, pi', u) and (y,(w), p} " (u)) are the solutions of (4.1)~(4.5) and (4.6)-
(4.9), respectively. Then we have the following results:

||)’2(M) - y;,||H1(Q) < Clllu - Mh|||L2(J;L2(Q)), (4.10)
||P;1(u) - p;,”H'(Q) < Clllu— Mh|||L2(J;L2(Q))- (4.11)

Proof. Letf* = y}(u) — yi (1 < k < i). Subtracting (4.1) from (4.6), we have
O, Lwn) + an(', Lywy) + @5, Lowy) = (Ul — ub)yh, Lwy), Y wy, € Vi
Let wy, = 91", we have
@', 1ndn") + an(, 1on") + Wn, o) = ((w, — u")y},, 1hdn").
Due to g,(x,y) = a(x,y) — an(x, I,y), we can get
@', 1) + a(y', o)
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=&,(1", ") — (W, L,onb) + () — W)k, Lon®).
Note that

k—1

1 ) . .
a(t, ont) = Tm(a("k’"k) —a@ " "N +a@t -7 g = ).

Thanks to a(n* — n*~!,n* — ") > 0, we obtain
@ 1) + 5 () — a ™ )
<&, ') = (i, 1) + (), = u)y) 1hdn').
The inverse estimate and (3.1) imply that
&a(7", ") < Chllnlly - 1051l < Clln“ll - 107111 < ClIn!I1; + €6 110m"11.
Note that
Wn", o) < C I IP + €6 (Ldn', L),
and
(= uYyy, 1nd) < C |l — | + CS (10", 1ndn).
Using the equivalent properties of (-, ), (-, I;(-)) and (,(-), I;(-)), we derive
CS (I, 0n) + a(r', ") < a0 ) + Catig' I} + Cotlld* — uy)I”.
Choosing appropriate value for 6, we have

k—1

a0ty < a0 ") + Catllh P + Catllut — ub)

Applying the coercive property of a(, -), and summing k from 1 to i and noticing n° = 0, we can get

W1} < - Cadi I} + - Cadllut = uf)P.
k=1 k=1
By using the discrete Gronwall’s lemma (see, e.g., Lemma 3.3 in [9]), Then we have

||77i||1 = IIyZ(u) - y;,||1 < Clllu - Mh|||L2(J;L2(Q))-
Then we prove (4.10). In the same way as (4.10), we can obtain (4.11). O

We can get the error estimate for uy, in the discrete L>(J; L*)-norm by using Lemma 4.1.

Theorem 4.1. Let (y, p,u) and (y,, pi', ul) be the solutions of problems (2.5)~(2.7) and (4.1)—(4.5),
respectively. Then there exists a constant hy > 0 such that for all 0 < h < hy, we have

llu — wplll 202y < C(R"* + Ab). (4.12)
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Proof. Note that y, = yi(u,) and p| = p}(u}), it can be shown that

(J3(u),v) = (au' =y, ()p),w), v),
(3 (), v) = (@, = Y, p), V)-

From (2.7), (3.7), and (4.5), we have

ti-1

1
alllu - uh|||Lz(,Lz)_Z f () u = u)dr - f (). u = id)dr
i i=1

i M i
f (au' — y,(Wp), W), u' — u,)dt — Z f (auy, — y,py, u' — up)dt

'M

= Z At(a/u - yh(u)ph(u) u' uh) - Z At(a/uh yhph, u;,)

Ay p' =y py o = ) ~ Z NCAOTAOESA AT
1 .

1

Aty p' = Yy wpj (), uf uh)+ZAt<yhph Vi Py = )

i=1

Mk

1l
—

i

=T+ T>.

For the first term 7', using the Cauchy inequality and the Theorem 4.1 in [29], we can obtain

M
=Z at(y p' = ¥ Wpj ), ' — u})

u
D atG'p = yiwp' wl — ) + Z Ay, wp' = ¥, Wpj ), v’ - uy)
i=1 i

Zmny = Yl i’ = +Zmnp PhIl - ' = )
i=1
< C(h3/2 + 20w = unlll 212

For the second term 7, we can derive

T> = ) atGip) =i v ul = u)

< Catlmpwilllzgsizey - lu = walllze.rz)
< Catlllu = uplllz2 .12

Connecting T and 75, we can obtain (4.12) easily for sufficiently small 4.

Then we can obtain the following result from Lemma 4.1 and Theorem 4.1.
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Theorem 4.2. Let (y, p,u) and (y;'l, p;l‘l, u;l) be the solutions of problems (2.5)—(2.7) and (4.1)—(4.5),
respectively. Then there exists a constant hy > 0 such that for all 0 < h < hy, we have

Iy = yalllzszzy + Wlp = pallliscazy < CH? + o). (4.13)

5. Numerical example

In this section, we give a numerical example to validate the error estimates for the control, state and
adjoint state. We consider the bilinear parabolic optimal control problem:

1

1
. 2 )
u(l‘n)’lelll’flad 7 ‘f()‘ (”y yd”LZ(Q) + ”Ll MOHLz(Q))dt,

vi—Ay+uy=f, (x,1)€QXJ,
v(x,t) =0, (x,1) € 0Q X J,
y(x,0)=0, xeQ,

where Q = [0,1] X [0, 1], J = (0, 1], and U,; = {u : u > 0}. The dual equation of the state equation is

—pi—Ap+up =y-—ya.
Then we assume that

y(x, 1) = sin(mx;) sin(mwx,)t,
p(x,t) = sin(zxy) sin(zrxy)(1 — 1),
up(x,t) = 0.5 — sin(zrx;) sin(mx,)t,
Ya(x, 1) =y + p,+ Ap —up,
u(x,t) = max (uy + yp,0),

f(x,t) =y, — Ay + uy.

Firstly, we adopt the same mesh partition for the state and the control such that At = h? in our
test. In this case, we investigate the convergence order for the solutions which compute on a series of
uniformly triangular meshes. We present the L*(J; L?), L*(J; L?) and L*(J; L?) errors for u, y and p
in Table 1, which means that the convergent rates are O(h? + Ar). We show the convergence orders in
Figure 3, where dofs denotes degree of freedoms. It is easy to see that this is consistent with the results
proved in the previous.
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Table 1. The numerical errors for state and control variables.

) Errors
Resolution
llze — Mh||L2(J;L2) lly — )’h||L°°<J;L2) llp — Ph||L°°(J;L2)
16 X 16 6.24692E-03  3.05468E-02 1.91005E-02
32 %32 2.10214E-03  9.84713E-03 6.35234E-03
64 x 64 6.66687E-04  3.30168E-03 2.11847E-03
128 x 128 2.39392E-04  1.18101E-03  7.44588E-04
150 #

-2+

o lu-uyll 3,3,

Bl ko A N

log jlerror)

-4

=Pl =12

2.4 26 28

3 3.2 34 3.6 3.8
log X u(dofs}

4 42

Figure 3. Convergence orders of u — u;,, y — y;,, and p — p;, in different norms.

In order to explore more on the rates of convergence separately in time and space, we try to validate
the estimates by separating the discretization errors. We consider the behavior of the errors under
refinement of the spatial triangulation for fixed Ar = %. Then, we show the errors for u, y, and p in
Table 2. Figure 4 depicts the convergence orders under refinement of the spatial triangulation for fixed
At = %. We can observe the order is O(h%).

AIMS Mathematics

Table 2. The numerical errors for state and control variables.

I Errors

o — will2zy W1y = yaullzsizy P = palleeirz
% 498753E-03  2.53465E-02  1.87542E-02
3—12 1.66221E-03  8.44288E-03  6.22578E-03
é 5.54334E-04  2.81459E-03  2.15089E-03
L 1.98298E-04 9.89101E-04  7.71995E-04

—
(N3
2o}
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Figure 4. Convergence orders of u — u;, y — yy,, and p — pj, in different norms.

Table 3. The numerical errors for state and control variables.

Errors

Ily - yh||L°°(J;L2)

llp - ph||L°°(J;L2)

At

e — wnllr2rz2)
7 4.68547E-03
55 1.56117E-03
% 5.22744E-04

% 1.91003E-04

2.34568E-02
7.81571E-03
2.60798E-03
9.36223E-04

1.62486E-02
5.23753E-03
1.74768E-03
6.30968E-04

2L .,

log, ,(error)

-3

-4

-0 ||u_uh”L2(J.L2)
il ) o A PPN

i i
2.4 26 28

L i
3 3.2

34 3.6
log 1o (dofs}

”p_ph”L"iJ )
T~
~.
~.
~,
-
S~
T
=,
~.
~,
~o
L i i
3.8 4 42

Figure 5. Convergence orders of u — uy,, y — y,, and p — p;, in different norms.

Finally, we examine the behavior of the errors for a sequence of discretizations with decreasing size

of the time steps and a fixed spatial triangulation with & =

1

256"

The L2(J; L?), L®(J; L*) and L>(J; L?)

error norms for control variable state variable and adjoin variable are shown in Table 3. In Figure 5, the

AIMS Mathematics
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convergence orders under refinement of the time steps for 4 = ﬁ are shown. Up to the discretization

errors it exhibits the proven convergence order O(Af). From the numerical results, we observe that
convergence of order O(Ar) which demonstrates our theoretical results.

Seen from the numerical results listed in Tables 1-3 and Figures 3-5, it is easy to find that the
convergent orders match the theories derived in the previous sections.

6. Conclusions

In this paper, we established semi-discrete and fully discrete finite volume element approximation
scheme of bilinear parabolic optimal control problem. Then we used the finite volume element method
to discretize the state and adjoint equations of the system. Under some reasonable assumptions, we
obtained some error estimates. To our best knowledge in the context of optimal control problems, the
priori error estimates of finite volume element method for bilinear parabolic optimal control problems
are new.

In the future, we shall consider the finite volume element method for bilinear hyperbolic optimal
control problems. Furthermore, we shall consider a priori error estimates and superconvergence of the
finite volume element solutions for hyperbolic optimal control problems.
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