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Abstract: The COVID-19 epidemic has had a profound effect on almost every aspect of daily life,
including the financial sector, education, transportation, health care, and so on. Among these sectors,
the financial and health sectors are the most affected areas by COVID-19. Modeling and predicting
the impact of the COVID-19 epidemic on the financial and health care sectors is particularly important
these days. Therefore, this paper has two aims, (i) to introduce a new probability distribution for
modeling the financial data set (oil prices data), and (ii) to implement a machine learning approach to
predict the oil prices. First, we introduce a new approach for developing new probability distributions
for the univariate analysis of the oil price data. The proposed approach is called a new reduced
exponential-X (NRE-X) family. Based on this approach, two new statistical distributions are introduced
for modeling the oil price data and its log returns. Based on certain statistical tools, we observe
that the proposed probability distributions are the best competitors for modeling the prices’ data sets.
Second, we carry out a multivariate analysis while considering some covariates of oil price data. Dual
well-known machine learning algorithms, namely, the least absolute shrinkage and absolute deviation
(Lasso) and Elastic net (Enet) are utilized to achieve the important features for oil prices based on the
best model. The best model is established through forecasting performance.
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1. Introduction

The worldwide COVID-19 outbreak has affected the production and lives of society, in addition to
posing a serious threat to human health [1]. Governments have implemented countermeasures such as,
lock-downs, to circumvent the transmission of the disease as the number of confirmed cases continues
to rise. Global supply networks were disrupted as a result of these actions, and the world experienced
an economic blockade [2]. It resulted in the collapse of the stock market crisis, the energy market, and
a downturn in the world economy [3, 4]. One of the financial markets most influenced by COVID-19
is WTI (West Texas Intermediate) crude oil futures [5]. WTI crude oil futures fall to a negative value
on April 20, 2020, from $18 per barrel to -$38, experienced for the first time in history [6].

The global market economy was seriously affected by the drop in crude oil futures prices. Coal
futures declined from 70.68 (on March 27) to $51.62 (on April 27), indicating that they are alternatives
to each other. Since then, the market has descended into depression. The US government updated a
fresh round of energy perspectives in order to stabilize the market economy and mitigate the influence
of the crises. However, since June, the coal prices and WTI crude oil have risen steadily. Inflationary
pressures have also sparked worries about the energy market’s future growth.

From Figures 1 and 2, it can be observed that the series of oil prices and oil returns are highly volatile
and noisy. The existing statistical tools are not capable to fit both series of oil efficiently, and thereby
this study modifies the statistical tool in order to approximate the oil prices and their return accurately.
In addition, our study adopts dual penalization techniques, namely the Least absolute shrinkage and
selection operator (Lasso) and elastic net (Enet) to select the important features that drive the oil prices
in the case of China.
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Figure 1. Before and during COVID-19 oil prices trend in China.
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Figure 2. Before and during COVID-19 oil return trend in China.

In the financial and other closed connected sectors, statistical distributions play a vital role to
provide the best description of the data under consideration. The next section offers a review of
probability models that are implemented for analyzing data sets in different sectors.

2. Literature review

Probability/statistical models play a vital role in almost every sector. The applications of
statistical models can be found (i) in financial sectors [7, 8], (ii) on social media platforms [9], (iii)
oceanology and metrology [10], (iv) engineering-related areas [11], (v) medicine and healthcare-related
sectors [12], and (vi) hydrology [13], among others.

Among these sectors, the statistical models play an important role in data modeling in different
sectors related to the financial phenomena. For example, (i) Bhati and Ravi [14] introduced a
log-Moyal distribution for modeling the financial and insurance data sets, (ii) Ahmad et al. [15]
implemented a heavy-tailed extension of the Weibull model for analyzing the vehicle insurance loss
data, (iii) Li et al. [16] proposed a generalized log-Moyal distribution for modeling the loss data,
(vi) Bielak et al. [17] implemented a multidimensional and heavy-tailed-based model for market risk
factors analysis. For furthermore details, we refer the interested readers to [18–24].

The development of new statistical distributions for modeling data in the above-mentioned sectors
is a prominent research area. Therefore, numerous new statistical distributions have been introduced
for providing the best description of the metrology, oceanology, engineering, hydrology, medical, and
financial data sets [25]. In this paper, we also introduce a novel statistical approach for modeling data
in the financial sector. The proposed approach is called, a new reduced exponential-X (NRE-X) family
of distributions.
Genesis: Suppose a random variable, say T, with probability density function (PDF) f (t), where
T ∈ [r1, r2] for −∞ ≤ r1 < r2 ≤ ∞. Let X is another random variable with CDF (cumulative distribution
function) represented by K (x). Let L [K (x)] represent a function of CDF of X, satisfying the following
three conditions
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(i) L [K (x)] ∈ [r1, r2] ,
(ii) L [K (x)] is differentiable and monotonically increasing,

(iii) L [K (x)]→ r1 as x→ −∞ and L [K (x)]→ r2 as x→ ∞.

According to the findings of [26], the CDF of the T-X distributions approach is defined by

M (x) =

∫ L[K(x)]

r1

f (t) dt, x ∈ R. (2.1)

Corresponding to M (x), the PDF m (x) of the T-X distributions is given by

m (x) =

{
d
dx

L [K (x)]
}

k {L [K (x)]} , x ∈ R.

Consider the CDF F (t) of the exponential distribution given by

F (t) = 1 − e−φt, t ≥ 0, φ ∈ R+. (2.2)

Let φ = 1, then, Eq (2.2) becomes

F (t) = 1 − e−t, t ≥ 0. (2.3)

Corresponding to F (t), the PDF f (t) is given by

f (t) = e−t, t > 0. (2.4)

Using Eq (2.4) and L [K (x)] =
λ2[1−K(x)]

(λ−log[1−K(x)])2 in Eq (2.1), we get the CDF of the proposed the NRE-X

family, given by

M (x; λ) = 1 −
λ2K̄ (x)(

λ − log
[
K̄ (x)

])2 , x ∈ R, λ ∈ R+, (2.5)

where, K̄ (x) = 1 − K (x) is the SF (survival function) of the baseline random variable.
Based on our search of the existing literature, the NRE-X approach defined in Eq (2.5) has not been

used/proposed so far. This is one of the key motivations of the current work. Therefore, using the
NRE-X approach numerous new models can also be introduced for data modeling in different sectors.
Corresponding to M (x; λ) , the PDF m (x; λ) is given by

m (x; λ) =
λ2k (x)(

λ − log
[
K̄ (x)

])3

(
2 + λ − log

[
K̄ (x)

])
, x ∈ R, (2.6)

where d
dx K (x) = k (x) .

In link to Eqs (2.5) and (2.6), the SF M̄ (x; λ) = 1 − M (x; λ) and hazard function (HF) h (x; λ) =
m(x;λ)
M̄(x;λ) , are given, respectively, by

M̄ (x; λ) =
λ2K̄ (x)(

λ − log
[
K̄ (x)

])2 , x ∈ R,
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and

h (x; λ) =
k (x)

K̄ (x)
(
λ − log

[
K̄ (x)

]) (
2 + λ − log

[
K̄ (x)

])
, x ∈ R.

In this paper, we implement the proposed NRE-X distributions and introduce updated versions of
the logistic and Fréchet distributions. The updated version of the logistic distribution is called, a
new reduced exponential-logistic (NRE-logistic) model. Whereas, the updated version of the Fréchet
model is called, a new reduced exponential-Fréchet (NRE-Fréchet) model. In the next section, we
provide expressions for the CDF, PDF, SF, and HF of the NRE-logistic and NRE-Fréchet distributions.
Furthermore, different PDF behaviors of the NRE-logistic and NRE-Fréchet distributions are also
presented.

3. Special models of the NRE-X method

This section is devoted to introducing two special models of the NRE-X method by taking the
logistic and Fréchet distributions as baseline models.

3.1. A NRE-logistic distribution

Consider the CDF K (x; θ, σ) of the two parameters (θ ∈ R, σ ∈ R+) logistic distribution is given by

K (x; θ, σ) =
(
1 + e−(

x−θ
σ ))−1

x ∈ R. (3.1)

For θ ∈ R and σ ∈ R+, the PDF, SF and HF of the logistic distribution are given by

k (x; θ, σ) =
1
σ

e−(
x−θ
σ ) (

1 + e−(
x−θ
σ ))−2

, x ∈ R,

K̄ (x; θ, σ) = 1 −
(
1 + e−(

x−θ
σ ))−1

, x ∈ R,

and

h (x; θ, σ) =
e−(

x−θ
σ )

(
1 + e−(

x−θ
σ )

)−2

1 −
(
1 + e−(

x−θ
σ )

)−1 , x ∈ R,

respectively.
Using Eq (3.1) in Eq (2.5), we get the CDF of the NRE-logistic distribution, given by

M (x; λ, θ, σ) = 1 −
λ2

(
1 −

(
1 + e−(

x−θ
σ )

)−1
)

(
λ − log

[
1 −

(
1 + e−(

x−θ
σ )

)−1
])2 , x ∈ R, (3.2)

with PDF
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m (x; λ, θ, σ) =

λ2

σ
e−(

x−θ
σ )

(
1 + e−(

x−θ
σ )

)−2(
λ − log

[
1 −

(
1 + e−(

x−θ
σ )

)−1
])3

(
2 + λ − log

[
1 −

(
1 + e−(

x−θ
σ ))−1

])
, x ∈ R. (3.3)

Some possible plots for the PDF of the NRE-logistic distribution are presented in Figure 3. In
the plots in Figure 3, the additional parameter λ has a positive impact on the shape of the PDF of
the NRE-logistic distribution. These plots reveal that as the value of λ increases, the NRE-logistic
distribution possesses the heavy-tailed characteristics which are very useful in the financial and other
related sectors.
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Figure 3. Plots for the PDF of the NRE-logistic distribution for a fixed value of σ and
different values of θ and λ.

Furthermore, the SF and HF of the NRE-logistic distribution are, respectively, given by

M̄ (x; λ, θ, σ) =

λ2
(
1 −

(
1 + e−(

x−θ
σ )

)−1
)

(
λ − log

[
1 −

(
1 + e−(

x−θ
σ )

)−1
])2 ,

and

h (x; λ, θ, σ) =

1
σ

e−(
x−θ
σ )

(
1 + e−(

x−θ
σ )

)−2
(
2 + λ − log

[
1 −

(
1 + e−(

x−θ
σ )

)−1
])

(
λ − log

[
1 −

(
1 + e−(

x−θ
σ )

)−1
]) (

1 −
(
1 + e−(

x−θ
σ )

)−1
) .
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3.2. A NRE-Fréchet distribution

Let K (x; η, ϕ) be the CDF of the two parameters (η ∈ R+, ϕ ∈ R+) Fréchet distribution, given by

K (x; η, ϕ) = e−ϕx−η , x ∈ R+. (3.4)

For η ∈ R+ and ϕ ∈ R+, the PDF, SF, and HF of the Fréchet distribution are given by

k (x; η, ϕ) = ηϕx−η−1e−ϕx−η , x ∈ R+,

K̄ (x; η, ϕ) = 1 − e−ϕx−η , x ∈ R+,

and

h (x; η, ϕ) =
ηϕx−η−1e−ϕx−η

1 − e−ϕx−η , x ∈ R+,

respectively.

Using Eq (3.4) in Eq (2.5), we get the CDF of the NRE-Fréchet distribution, given by

M (x; λ, η, ϕ) = 1 −
λ2

(
1 − e−ϕx−η

)
[
λ − log

(
1 − e−ϕx−η)]2 , x ∈ R+, λ ∈ R+, (3.5)

with PDF

m (x; λ, η, ϕ) =
λ2ηϕx−η−1e−ϕx−η[

λ − log
(
1 − e−ϕx−η)]3

[
2 + λ − log

(
1 − e−ϕx−η

)]
, x ∈ R+. (3.6)

Some possible behaviors for the PDF of the NRE-Fréchet distribution are presented in Figure 4. The
plots in Figure 4, show that the additional parameter λ, has a significant impact on the PDF shape of the
NRE-Fréchet distribution. In a nutt shell, we can see that as the value of λ increases, the NRE-Fréchet
distribution tends to be a heavy-tailed distribution.
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Figure 4. Plots for the PDF of the NRE-Fréchet distribution for fixed values of (η, ϕ) and
different values of λ.

Furthermore, the SF and HF of the NRE-Fréchet distribution are given by

M̄ (x; λ, η, ϕ) =
λ2

(
1 − e−ϕx−η

)
[
λ − log

(
1 − e−ϕx−η)]2 , x ∈ R, λ ∈ R+,

and

h (x; λ, η, ϕ) =
ηϕx−η−1e−ϕx−η

[
2 + λ − log

(
1 − e−ϕx−η

)][
λ − log

(
1 − e−ϕx−η)] (1 − e−ϕx−η) , x ∈ R+,

respectively.

4. Estimation and simulation of the NRE-logistic and NRE-Fréchet distributions

In this section, we use the maximum likelihood estimation method to obtain the maximum
likelihood estimators (MLEs) for the parameters of the NRE-logistic and NRE-Fréchet distributions.
Furthermore, simulation studies are also provided to assess the performances of the MLEs of the NRE-
logistic and NRE-Fréchet distributions.

4.1. Estimation and simulation of the NRE-logistic distribution

Assume a set of random samples, say X1, X2, ..., Xn, taken from the NRE-logistic distribution with
PDF m (x; λ, θ, σ) in Eq (3.3). Then, corresponding to m (x; λ, θ, σ) , the log-likelihood function (LLF),
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say ` (λ, θ, σ) , is given by

` (λ, θ, σ) = 2n log λ − n logσ −
n∑

i=1

( xi − θ

σ

)
− 2

n∑
i=1

log
(
1 + e−

( xi−θ
σ

))
+

n∑
i=1

log
(
2 + λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
])

+ 3
n∑

i=1

log
(
λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
])
.

Corresponding to ` (λ, θ, σ) , the partial derivatives with respect to θ, σ, and λ are given, respectively,
by

∂

∂θ
` (λ, θ, σ) = +

n
σ
−

2n
σ

n∑
i=1

e−
( xi−θ

σ

)(
1 + e−

( xi−θ
σ

)) − n∑
i=1

n
σ

e−
( xi−θ

σ

) (
1 + e−

( xi−θ
σ

))−2

[
1 −

(
1 + e−

( xi−θ
σ

))−1
] (

2 + λ − log
[
1 −

(
1 + e−

( xi−θ
σ

))−1
])

−
3n
σ

n∑
i=1

e−
( xi−θ

σ

) (
1 + e−

( xi−θ
σ

))−2

[
1 −

(
1 + e−

( xi−θ
σ

))−1
] (
λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
]) ,

∂

∂σ
` (λ, θ, σ) = −

n
σ

+

n∑
i=1

xi

σ2 − 2
n∑

i=1

xi
σ2 e−

( xi−θ
σ

)
(
1 + e−

( xi−θ
σ

)) − n∑
i=1

xi
σ2 e−

( xi−θ
σ

) (
1 + e−

( xi−θ
σ

))−2

[
1 −

(
1 + e−

( xi−θ
σ

))−1
] (

2 + λ − log
[
1 −

(
1 + e−

( xi−θ
σ

))−1
])

− 3
n∑

i=1

xi
σ2 e−

( xi−θ
σ

) (
1 + e−

( xi−θ
σ

))−2

[
1 −

(
1 + e−

( xi−θ
σ

))−1
] (
λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
])

and

∂

∂λ
` (λ, θ, σ) =

2n
λ

+

n∑
i=1

1(
2 + λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
]) + 3

n∑
i=1

1(
λ − log

[
1 −

(
1 + e−

( xi−θ
σ

))−1
]) .

On solving ∂
∂θ
` (λ, θ, σ) = 0, ∂

∂σ
` (λ, θ, σ) = 0, and ∂

∂λ
` (λ, θ, σ) = 0, we get the MLEs(

θ̂MLE, σ̂MLE, λ̂MLE

)
of the parameters (θ, σ, λ) of the of the NRE-logistic distribution.

Next, we provide a Monte Carlo simulation study (MCSS) to evaluate the performances of
θ̂MLE, σ̂MLE, and λ̂MLE. For the NRE-logistic distribution, the MCSS is conducted by generating
the random numbers such as n = 25, 50, ..., 500 using the inverse CDF method. The MCSS s
conducted for two different combinations of θ, σ, and λ. These combination values are given by (i)
θ = 1.5, σ = 0.9, λ = 0.5 and (ii) θ = 1.3, σ = 0.7, λ = 1.1.

The performances of θ̂MLE, σ̂MLE, and λ̂MLE are evaluated using two decisive tools. The numerical
values of the selected decisive tools are computed as
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• Bias

Bias
(
θ̂MLE

)
=

n∑
i=1

(
θ̂i − θ

)
.

• Mean square error (MSE)

MS E
(
θ̂MLE

)
=

n∑
i=1

(
θ̂i − θ

)2
.

The MLEs and the above evaluation criteria are computed using the optim()R with argument
method = “L-BFGS-B”. After carrying out the MCSS, the numerical results are provided in Tables 1
and 2. Whereas, the results of the MCSS are illustrated visually in Figures 5 and 6.

The results of the MCSS of the NRE-logistic distribution presented in Tables 1 and 2, Figures 5
and 6, reveal that as the size of the sample n increases

• The MLEs θ̂MLE, σ̂MLE, and λ̂MLE tend to stable.
• The MSEs of θ̂MLE, σ̂MLE, and λ̂MLE decreases.
• The biases of θ̂MLE, σ̂MLE, and λ̂MLE decay to zero.

Table 1. The results for the MCSS of the NRE-logistic for θ = 1.5, σ = 0.9, λ = 0.5.

n Parameters MLEs MSEs Biases
θ 1.5306540 0.0845499 0.03065429

25 σ 1.6616360 1.6801157 0.76163600
λ 2.1413169 6.5317397 1.64131690
θ 1.4878190 0.0405659 -0.01218063

50 σ 1.3621325 0.8178465 0.46213251
λ 1.7129257 4.8094673 1.21292570
θ 1.4833020 0.0266625 -0.01669770

75 σ 1.2395189 0.5670010 0.33951893
λ 1.3942232 3.2730729 0.89422320
θ 1.4907440 0.0200039 -0.00925587

100 σ 1.1644847 0.4874031 0.26448468
λ 1.2066578 2.6246481 0.70665780
θ 1.4939300 0.0128720 -0.00606980

200 σ 1.0687798 0.3153811 0.16877977
λ 0.9406648 1.4242122 0.44066480
θ 1.4850080 0.0079217 -0.01499184

300 σ 1.0421690 0.2105968 0.14216899
λ 0.7456199 0.7993679 0.30561990
θ 1.4895150 0.0067249 -0.01048548

400 σ 1.0060013 0.1530510 0.10600131
λ 0.5966013 0.3541581 0.19660130
θ 1.4963270 0.0048694 -0.00367308

500 σ 0.9351764 0.1209646 0.07517640
λ 0.5406189 0.2645338 0.14061890

AIMS Mathematics Volume 8, Issue 8, 19477–19503.



19487

Table 2. The results for the MCSS of the NRE-logistic for θ = 1.3, σ = 0.7, λ = 1.1.

n Parameters MLEs MSEs Biases

θ 1.3409810 0.06089320 4.0981e-02
25 σ 0.9684732 0.32269754 0.26847323

λ 2.4804880 6.35740400 1.58048760

θ 1.3207820 0.03098274 2.0781e-02
50 σ 0.8257357 0.18517215 0.12573567

λ 2.0018830 4.78013720 1.10188330

θ 1.3131030 0.02263240 1.3103e-02
75 σ 0.8056960 0.16232288 0.10569596

λ 1.8454520 3.95911760 0.94545150

θ 1.2969670 0.01678957 -3.0325e-03
100 σ 0.8074029 0.13781325 0.10740290

λ 1.8371310 3.76135120 0.93713060

θ 1.3000190 0.01000074 1.9164e-05
200 σ 0.7502970 0.09277251 0.05029699

λ 1.4371740 2.04954990 0.53717410

θ 1.2876490 0.00735997 -1.2350e-02
300 σ 0.7879704 0.07972821 0.08797043

λ 1.4682940 1.76350150 0.56829450

θ 1.2992960 0.00527875 -7.0367e-04
400 σ 0.7273118 0.05311106 0.02731182

λ 1.1906500 0.97227000 0.29065020

θ 1.3000400 0.00404874 3.9596e-05
500 σ 0.7113346 0.04542952 0.01133456

λ 1.1060500 0.72525460 0.20605010
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Figure 5. The visual illustration of the simulation results of the NRE-logistic for θ = 1.5, σ =

0.9, λ = 0.5.
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Figure 6. The visual illustration of the simulation results of the NRE-logistic for θ = 1.3, σ =

0.7, λ = 1.1.

4.2. Estimation and simulation of the NRE-Fréchet distribution

Consider a random sample, say X1, X2, ..., Xn, observed from the NRE-Fréchet distribution with PDF
m (x; λ, η, ϕ) expressed by Eq (3.6). Then, corresponding to m (x; λ, η, ϕ) , the LLF, say ` (λ, η, ϕ) , is
given by

m (x; λ, η, ϕ) =
λ2ηϕx−η−1e−ϕx−η[

λ − log
(
1 − e−ϕx−η)]3

[
2 + λ − log

(
1 − e−ϕx−η

)]
,

` (λ, η, ϕ) = 2n log λ + n log η + n logϕ − (η + 1)
n∑

i=1

log xi −

n∑
i=1

ϕx−ηi +

n∑
i=1

log
[
2 + λ − log

(
1 − e−ϕx−ηi

)]
− 3

n∑
i=1

log
[
λ − log

(
1 − e−ϕx−ηi

)]
.

Corresponding to ` (λ, η, ϕ) , the partial derivatives with respect to η, ϕ, and λ are given, respectively,
by

∂

∂η
` (λ, η, ϕ) =

n
η
−

n∑
i=1

log xi +

n∑
i=1

(
log xi

)
ϕx−ηi +

n∑
i=1

(
log xi

)
ϕx−ηi e−ϕx−ηi(

1 − e−ϕx−ηi

) [
2 + λ − log

(
1 − e−ϕx−ηi

)]
− 3

n∑
i=1

(
log xi

)
ϕx−ηi e−ϕx−ηi(

1 − e−ϕx−ηi

) [
λ − log

(
1 − e−ϕx−ηi

)] ,
∂

∂ϕ
` (λ, η, ϕ) =

n
ϕ
−

n∑
i=1

x−ηi −

n∑
i=1

x−ηi e−ϕx−ηi(
1 − e−ϕx−ηi

) [
2 + λ − log

(
1 − e−ϕx−ηi

)] + 3
n∑

i=1

x−ηi e−ϕx−ηi(
1 − e−ϕx−ηi

) [
λ − log

(
1 − e−ϕx−ηi

)] ,
and

∂

∂λ
` (λ, η, ϕ) =

2n
λ

+

n∑
i=1

1(
1 − e−ϕx−ηi

) [
2 + λ − log

(
1 − e−ϕx−ηi

)] − 3
n∑

i=1

1(
1 − e−ϕx−ηi

) [
λ − log

(
1 − e−ϕx−ηi

)] .
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Equating the expressions ∂
∂η
` (λ, η, ϕ), ∂

∂ϕ
` (λ, η, ϕ), and ∂

∂λ
` (λ, η, ϕ) to zero and solving we get the

MLEs
(
η̂MLE, ϕ̂MLE, λ̂MLE

)
of the parameters (η, ϕ, λ) of the of the NRE-Fréchet distribution.

After obtaining the MLEs η̂MLE, ϕ̂MLE, and λ̂MLE, now we check their performances through a Monte
Carlo simulation study (MCSS). The evaluation of η̂MLE, ϕ̂MLE, and λ̂MLE is carried out by generating
random numbers from the NRE-Fréchet distribution by implementing the NRE-Fréchet distribution.
For the NRE-Fréchet distribution, the MCSS is conducted for two sets of parameters, such as (i) θ =

1.5, σ = 0.9, λ = 0.5 and (ii) θ = 0.9, σ = 1.1, λ = 1.5.
Again, we use the Bias and MSE as decisive tools to judge the performances of η̂MLE, ϕ̂MLE, and

λ̂MLE. After conducting the MCSS, the numerical results for the MLEs, MSEs, and biases of the NRE-
Fréchet distribution are presented in Tables 3 and 4. Whereas, the results of the MCSS are illustrated
visually in Figures 7 and 8.

From the results of the MCSS of the NRE-Fréchet distribution provided in Tables 3 and 4, Figures 7
and 8, we can see that the MLEs of the NRE-Fréchet distribution tend to sable as the size of the sample
increases. With the increase in the sample size, the MSEs of the η̂MLE, ϕ̂MLE, and λ̂MLE decreases and
biases of η̂MLE, ϕ̂MLE, and λ̂MLE decay to zero.

Table 3. The results for the MCSS of the NRE-Fréchet for η = 0.7, ϕ = 1.6, λ = 1.3.

n Parameters MLEs MSEs Biases
η 0.8295898 0.08826282 0.12958978

25 φ 1.6435660 0.20131711 0.04356598
λ 1.8830760 1.75815404 0.58307614
η 0.7636202 0.03381550 0.06362024

500 φ 1.6144310 0.11071804 0.01443136
λ 1.5688950 0.60710519 0.26889488
η 0.7413941 0.02058671 0.04139414

75 φ 1.6032170 0.07300298 0.00321683
λ 1.4934430 0.38750257 0.19344311
η 0.7308403 0.01473447 0.03084032

100 φ 1.6124770 0.05724885 0.01247658
λ 1.4101360 0.15857094 0.11013555
η 0.7159275 0.00628118 0.01592747

200 φ 1.5983640 0.02611875 -0.00163616
λ 1.3440490 0.02956159 0.04404876
η 0.7083867 0.00356276 0.00838667

300 φ 1.6127650 0.01877270 0.01276520
λ 1.3214120 0.01317318 0.02141173
η 0.7037929 0.00282884 0.00379289

400 φ 1.6012280 0.01354377 0.00122802
λ 1.3194250 0.01055359 0.01942524
η 0.7062376 0.00234377 0.00623763

500 φ 1.5949220 0.01018247 -0.00507846
λ 1.3100780 0.00762077 0.01907786
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Table 4. The results for the MCSS of the NRE-Fréchet for η = 0.9, ϕ = 1.1, λ = 1.5.

n Parameters MLEs MSEs Biases

η 1.0040981 0.083711686 0.10409810
25 φ 1.2140710 0.098602278 0.11407104

λ 1.8282900 0.975918910 0.3282901

η 0.9628862 0.037615081 0.06288619
500 φ 1.1532450 0.036819558 0.05324535

λ 1.6785700 0.420855040 0.17856980

η 0.9416555 0.026231108 0.04165548
75 φ 1.1467750 0.027392599 0.04677475

λ 1.5794770 0.139978210 0.07947676

η 0.9243457 0.015663488 0.02434573
100 φ 1.1333150 0.021317467 0.03331549

λ 1.5717710 0.105736930 0.07177117

η 0.9111239 0.007281454 0.01112393
200 φ 1.1173830 0.012048905 0.01738310

λ 1.5347830 0.045606720 0.03478277

η 0.9082706 0.005246932 0.00827062
300 φ 1.1059050 0.007748683 0.00590497

λ 1.5355600 0.032318420 0.03556033

η 0.9051241 0.003407605 0.00512410
400 φ 1.1116230 0.006835205 0.01162262

λ 1.5194740 0.024970670 0.01947445

η 0.9068855 0.003215347 0.00688549
500 φ 1.1049340 0.005313549 0.00493448

λ 1.5219570 0.020792440 0.02195670
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Figure 7. The visual illustration of the simulation results of the NRE-Fréchet for η = 0.7, ϕ =

1.6, λ = 1.3.
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Figure 8. The visual illustration of the simulation results of the NRE-Fréchet distribution for
η = 0.9, ϕ = 1.1, λ = 1.5.

5. Data analyses

In this this section, we implement the NRE-logistic and NRE-Fréchet distributions for analyzing a
data set taken from the healthcare economic sector. The data set consists of fifty-nine (59) observations
and is taken from an oil company in China during the COVID-19 pandemic. First, we analyze the price
data taken from the oil company of China. Then, we obtain the price returns of the same oil company
in China during the COVID-19 epidemic.

The comparison of the NRE-logistic is made with the (i) logistic (a two-parameter model; see
Eq (7)), (ii) exponentiated logistic (Exp-logistic) which is a three-parameter competing distribution,
and (iii) Kumaraswamy logistic (Kum-logistic) which is a four-parameter competing distribution. The
CDFs of the Exp-logistic and Kum-logistic distributions are given by

K (x;α, θ, σ) =

((
1 + e−(

x−θ
σ ))−1

)α
, x ∈ R, α ∈ R+,

and

K (x;α, β, θ, σ) = 1 −
(
1 −

[(
1 + e−(

x−θ
σ ))−1

]α)β
, x ∈ R, α ∈ R+, β ∈ R+,

respectively.
Whereas, the results of the NREi-Fréchet distribution are compared with (i) the Fréchet distribution

(a two-parameter model; see Eq (10)) and alpha power transformed Fréchet (APT-Fréchet) which is a
three-parameter competing distribution. The CDF of the APT-Fréchet distribution is given by

K (x;α1, η, ϕ) =
αe−ϕx−η

1 − 1
α1 − 1

, x ∈ R, α1 ∈ R
+, α1 , 1.

To figure out analytically/numerically which competing model provides the close fit to the economic
data collected during the COVID-19 pandemic, three goodness-of-fit tests such as (i) Anderson-Darling
(AD) test, (ii) Cramér-von Mises (CVM) test, and (iii) Kolmogorov-Smirnov (KS) test, are considered.
Besides these tests, the p-value of the competing models has also been calculated. The numerical
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values of the goodness-of-fit tests and MLEs of the fitted distributions are obtained using the R-script
Adequacy Model with BFGS algorithm.

5.1. An application of the NRE-Fréchet model

This section is devoted to implementing the NRE-Fréchet distribution for modeling the oil prices
data, given by: 369.66, 373.55, 351.07, 359.46, 343.74, 314.33, 322.73, 333.15, 347.80, 363.43,
397.06, 403.46, 425.79, 400.65, 405.52, 433.35, 468.06, 465.40, 488.27, 487.03, 516.71, 532.23,
432.55, 371.54, 384.04, 411.75, 428.13, 460.63, 459.14, 412.43, 422.83, 407.27, 427.24, 405.65,
423.91, 444.75, 426.54, 373.43, 225.98, 148.81, 216.04, 279.61, 294.83, 301.01, 276.45, 267.42,
279.53, 318.90, 346.71, 390.55, 415.50, 410.38, 427.01, 461.28, 474.47, 446.01, 470.01, 526.12,
510.69.

For easily carrying out the numerical computation, we transformed the oil prices data using X = Y
10 ,

where Y represents the data set. Some summary measures (SMs) of the transformed data are given by:
is is given by minimum = 1.488, 1st Quartile (Q1) = 3.473, Median (Q2) = 4.056, Mean =3.912, 3rd
Quartile (Q1) = 4.391, maximum = 5.322, skewness = -0.6735137, kurtosis = 3.442013, variance =

0.6276279, and range = 3.8342. In line with the oil price data, some key plots are obtained in Figure 9.
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Figure 9. Some basic plots of the oil prices data.

Corresponding to the oil prices data, the values of the maximum likelihood estimators (MLE)(
λ̂MLE, η̂MLE, ϕ̂MLE, α̂1MLE

)
of the fitted models are reported in Table 5. For the NRE-Fréchet

distribution, the profiles of the log-likelihood function of the MLES are displayed visually in Figure 10.
Furthermore, the values of AD, CVM, KS and p-value are obtained in Table 6. From the given

results in Table 6, we can see that (i) for the NRE-Fréchet model, the values of the selection criteria
are CVM = 0.27746, AD = 1.59522, KS = 0.11565, p-value = 0.38000, (ii) for the Fréchet model,
the values of the selection criteria are CVM = 0.70603, AD = 4.02970, KS = 0.20811, p-value =
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0.60170, and (iii) for the APT-Fréchet model, the values of the selection criteria are CVM = 0.50369,
AD = 2.873401, KS = 0.16504, p-value = 0.07141. From the above discussion, it is obvious that the
NRE-Fréchet distribution provides a close fit to the oil prices data.

Besides the numerical illustration, visual proof of the best fitting of the NRE-Fréchet distribution is
also provided. For the visual illustration, the plots of fitted PDF, CDF, SF, QQ (quantile-quantile), and
PP (probability-probability) are considered; see Figure 11. Based on the visual illustration provided in
Figure 11, it is clear that the NRE-Fréchet distribution provides a close fit to the oil prices data.

Table 5. The values of λ̂MLE, η̂MLE, ϕ̂MLE, and α̂1MLE of the fitted models for the oil prices
data.

Model λ̂MLE η̂MLE ϕ̂MLE α̂1MLE

NRE-Fréchet 0.00317 0.97677 25.00396 -
Fréchet - 3.14566 44.87837 -
APT-Fréchet - 4.20771 41.89421 139.89786

Table 6. The values of analytical measures of the fitted models for the oil prices data.

Model CVM AD KS p-value
NRE-Fréchet 0.27746 1.59522 0.11565 0.38000
Fréchet 0.70603 4.02970 0.20811 0.06170
APT-Fréchet 0.50369 2.873401 0.16504 0.07141
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Figure 10. The profiles of the LLF of λ, η, and ϕ of the NRE-Fréchet distribution using the
oil prices data.
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Figure 11. The estimated PDF, CDF, SF, QQ, and PP plots of the NRE-Fréchet distribution
for the oil prices data.

5.2. An application of the NRE-logistic model

This subsection is devoted to apply the NRE-logistic distribution for analyzing the prices returns of
an oil company. The prices returns (log-returns) of the oil company, rt, is obtained as rt = log (Pt) −
log (Pt−1), where Pt represents the oil price at time t. The SMs of this is given by minimum = -
0.502284, 1st Quartile (Q1) = -0.036423, Median (Q2) = 0.028893, Mean = 0.005572, 3rd Quartile
(Q3) = 0.053652, maximum = 0.372793, skewness = -1.396718, kurtosis = 9.199987, variance =

0.01558175, and range = 0.8750773. Corresponding to the log-returns of the oil prices data, some
basic plots are presented in Figure 12.
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Figure 12. Some basic plots of the log returns of the oil prices data.
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In the link to the prices returns data, the values θ̂MLE, σ̂MLE, λ̂MLE, and α̂MLE of the logistic, Exp-
logisitc, and NRE-logistic distributions are presented in Table 7. For the NRE-logistic distribution,
the profiles of the log-likelihood function of the MLEs based on the prices returns data are displayed
visually in Figure 13.

Furthermore, the values of AD, CVM, KS and p-value are reported in Table 8. From the obtained
results in Table 8, we can see that (i) for the NRE-logistict model, the values of the selection criteria
are CVM = 0.28420, AD = 1.68629, KS = 0.11902, p-value = 0.35560, (ii) for the Logistic model,
the values of the selection criteria are CVM = 0.33210, AD = 1.91355, KS = 0.12817, p-value =

0.27250, (iii) for the Exp-logistic model, the values of the selection criteria are CVM = 0.30118, AD
= 1.84708, KS = 0.12076, p-value = 0.31480, and (iv) for the Kum-logistic model, the values of the
selection criteria are CVM = 0.32518, AD = 1.96717, KS = 0.13960, p-value = 0.18960. From the
above discussion, it is obvious that the NRE-Fréchet distribution provides a close fit to the oil prices
data. Based on the obtained results in Table 8, it is clear that the NRE-logistic distribution provides a
close fit to the prices returns data of an oil company.

After the proof of the best fitting capability of the NRE-logistic distribution, a visual illustration of
the performances of the NREi-logistic model is also provided. For this purpose, the plots of the fitted
PDF, CDF, PP, QQ, and SF are again considered; see Figure 14. The plots, in Figure 14, show that the
NRE-logistic distribution provides the best fit for the price returns data.

Table 7. The values of λ̂MLE, θ̂MLE, σ̂MLE, α̂MLE, and β̂MLE of the fitted models for the price
returns data.

Model λ̂MLE θ̂MLE σ̂MLE α̂MLE β̂MLE

NRE-logistic 1.11894 0.08833 0.06210 - -
Logistic - 0.01619 0.05521 - -
Exp-logistic - 0.05203 0.03959 0.55644 -
Kum-logistic - 0.09952 0.07700 1.06195 2.81753

Table 8. The values of analytical measures of the fitted models for the price returns data.

Model CVM AD KS p-value
NRE-logistic 0.28244 1.68355 0.12088 0.33750
Logistic 0.33210 1.91355 0.12817 0.27250
Exp-logistic 0.30118 1.84708 0.12096 0.31480
Kum-logistic 0.32518 1.96717 0.13960 0.18960
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Figure 13. The profiles of the LLF of λ, θ, and σ of the NRE-logistic distribution using the
price returns data.

x

F
it
te

d
 P

D
F

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

6

NRWei−logistic

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

x

F
it
te

d
 C

D
F

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Emprical
NRWei−logistic

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

E
s
ti
m

a
te

d
 S

F

Emprical
NRWei−logistic

@

@

@

@@
@@@

@@@@@@
@@@

@@@@
@@@@@@@@@@

@@@@@@@@@@@@@
@@@@@@@

@@
@@@

@

@

−2 −1 0 1 2

−0
.4

−0
.2

0.
0

0.
2

0.
4

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Figure 14. The estimated PDF, CDF, PP, QQ, and SF of the NRE-logistic distribution for the
price returns data.
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6. The penalized regression techniques

In the classical linear regression model, it is assumed that there is no severe correlation among
the set of explanatory variables, and such an ideal situation usually does not exist in practice. The
violation of such an assumption induces a problem that refers to multicollinearity. In the presence of
severe multicollinearity, the estimates computed from the ordinary least squares (OLS) approach are
not reliable. In other words, the estimates of the unknown parameters have a large standard error with
the false signs, which adversely affect estimation as well as forecasting. In such circumstances, the
most popular way of estimating the unknown parameters is the penalization family of tools.

Generally, penalized regression methods are modified versions of ordinary least squares regression
methods (OLS) and are undeniably deemed an essential part of Machine Learning (ML) techniques.
It has already been demonstrated in the literature that ML methods are effective for analyzing large
datasets [27].

This study adopts the dual most well-known tools of penalized regression, including the least
absolute shrinkage and selection operator (Lasso) and elastic net (Enet) for variable selection [28].
Penalized the least square regression performs variable selection and coefficients estimation by
minimizing

1
2
‖ ϑ − zθ ‖22 +τ

ρ m∑
k=1

|θk| + (1 − ρ)
m∑

k=1

|θk|
2

 ,
where ϑ = (ϑ1, ϑ2, ..., ϑn), z = (z1, z2, ..., zn), and θ is the coefficient matrix with θ = (θ1, θ2, ..., θn).
Here, m and n represent the number of explanatory variables and data points, respectively. The second
term indicates a penalty function, which plays a crucial role in variable selection. The penalty function
puts some coefficients exactly equal to zero in order to reduce the dimensionality. The component τ is
so-called the hyperparameter that controls the amount of shrinkage, and its range lies between zero and
infinity [29, 30]. The different values of parameter ρ are responsible for providing different models,
given as follows:

• Ridge regression if ρ = 0.
• Lasso regression if ρ = 1.
• Elastic net if 0 < ρ < 1.

The selection of a hyperparameter, also known as a tuning parameter is very crucial and therefore
several approaches have been followed in the literature while selecting its optimum value for the
model [31]. One of them is cross-validation (CV), that commonly used for obtaining the optimum
model. Our study uses the CV approach for the selection of tuning parameters.

Data analysis

After performing univariate analysis, now we carry out multivariate analysis to investigate the
impact of macroeconomic variables on oil prices (OP) in the case of China for the period January 2017
to November 2021. The macroeconomic variables include the gross domestic product (GDP), the real
effective exchange rate (REER), consumer price index (CPI) and money supply (MS). Although the
data is time series, it is more probable to face the problem of autocorrelation, because autocorrelation
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is a pure phenomenon of time series data. Therefore, we proceed with our analysis by incorporating
the common factors in the models. This study takes into account five lags for each variable (response
and explanatory variables), which in turn induce a total of 29 variables. Before modeling, it is more
appropriate to determine the correlation pattern among the set of 29 variables. For that purpose, we
use the graphical approach.

In Figure 15, red and blue colors manifest the negative and positive association, respectively. The
circle area and severity are positively related to the correlation coefficients. There are numerous dark
colors in Figure 15, which ensures the problem of multicollinearity in the data.
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Figure 15. The pairwise correlation of the data.

We observed that the length of explanatory variables is large, and they are highly correlated to each
other, and thereby it is plausible to apply the traditional models like vector autoregression, etc., to
the underlying dataset [32]. Therefore, this study adopts dual advanced machine learning techniques,
namely Lasso and Enet, to resolve these problems and obtain reliable results.

The feature selection plots are presented in Figures 16 and 17. The Lasso holds 22 features out
of 29 and the rival approach Enet selects 18 features. The RMSE, MAE and R-squared values are
given in Table 9. The Lasso produces the RMSE, MAE and R-squared values of 44.77, 33.84 and
0.75. In contrast, the Enet produces the RMSE, MAE and R-squared values of 41.71, 31.30 and
0.78, respectively. We can observe that the error metrics associated with Enet are smaller than the
error metrics attached with Lasso, and similarly the value of Enet R-squared exceeds the Lasso R-
squared value. These results clearly reveal that Enet fitted the data more accurately as compared to
the competitor counterpart. Figures 18 and 19 are based on the findings given in Table 9. It can be
concluded that Lasso holds more irrelevant features and thereby over-specify the model, which in turn
adversely affects the performance of Lasso.

Table 9. Error metrics for Lasso and Enet using oil prices data.

Method RMSE MAE R-squared
Lasso 44.77 33.84 0.75
Enet 41.71 31.30 0.78
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Figure 16. Feature selection via Lasso.
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Figure 17. Feature selection via Enet.

Figure 18. In a sample comparison of Lasso and Enet using oil prices data.
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Figure 19. R-squared for Lasso and Enet.

7. Conclusions

The COVID-19 pandemic has highly damaged the healthcare and business sectors. To have enough
knowledge and description of the events related to the COVID-19 epidemic, numerous research
studies have been performed. Most of these research studies have been carried out by introducing
new statistical methodologies. This paper further contributed to the development of the statistical
methodologies by introducing a novel statistical approach for modeling the oil price data. The proposed
method was named the NRE-X approach. Based on the NRE-X approach, two new statistical models
were introduced. The first model was named the NRE-Fréchet distribution. The proposed NRE-Fréchet
distribution was applied for analyzing the oil price data, whereas, the second model was named the
NRE-logistic distribution. The suggested NRE-logistic distribution was applied for modeling the log-
returns of the oil price data. By considering three different analytical measures (with p-value) as
decisive tools, it is observed that the proposed probability distributions were the best competitors for
the oil price and log-returns of the oil price data set. Complementing the univariate analysis, we
performed the multivariate analysis to examine the influence of macroeconomic variables on oil price
in the case of China. For this purpose, our study implemented dual penalization techniques, including
Lasso and Enet. The empirical analysis reveals, that Lasso keeps 22 covariates out of 29 and Enet
holds 18 covariates. On the basis of three popular statistical accuracy measures, namely, the RMSE,
MAE, and R-squared, Enet and Lasso were compared, and it can be inferred that the forecasting ability
of Enet is superior to Lasso. It clearly demonstrates that Lasso over-specified the model. In other
words, Lasso holds more irrelevant variables in contrast to Enet, which adversely affects its forecasting
performance.

In the future, we are motivated to introduce the bivariate and multivariate modifications of the NRE-
logistic and NRE-Fréchet distributions for bivariate and multivariate analyses.
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