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Abstract: When a lightning current flows between the lightning entry and exit points of a structure,
the lightning current density varies in different parts of the structure depending on the shape of the
structure and material variance. The structure can be discretized into parallel wires, called filament
wires, running parallel to the current direction. Furthermore, using the filament wire method, we can
calculate the current distribution among the wires. For a structure that has a low resistance material
such as aluminum, current distribution can be calculated by considering self-inductance of the wire
and mutual-inductance between wires but resistance is not considered. However, in modern aircraft,
composite materials are used for parts of the structure because of their strength and weight. These
composite materials have high resistance compared to metal, and resistance cannot be ignored. Thus,
to solve a system of ordinary differential equations for a filament model, inhomogeneous structure,
aperture, and resistance of each wire must be considered to obtain the correct current distribution of
each part of the structure. However, the numerical solution of the filament wire model does not reveal
the region of convergence and the accuracy of the given mathematical model. It also has high time
complexity. This paper presents the analytic solution and stability condition for the mutually coupled
resistive filament wire model using eigenvalues of given filament wire matrix model. The stability
condition is rigorously calculated and the solution is also consistent with the numerical model.

Keywords: lightning current; differential equation; filament wire model; matrix equation; systems of
ODE
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1. Introduction

Lightning is one of the most powerful natural phenomena. When lightning hits a flying object, such
as an aircraft, a rotorcraft, a missile, or a rocket, the lightning current flows through the object and could
damage the object. Moreover, the electric and magnetic fields induced by the lightning current, which
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flows through the internal ground and surface of the object, induce current and voltage in the equipment
or cable inside the object. The total lightning current that flows through the object is not affected
by the resistivity or inductance of the object because lightning is considered an ideal current source.
However, the current waveform and/or intensity in each part of the object can be different because of the
various materials and shape that make up the object. To evaluate the effect of the electromagnetic field
induced by the lightning currents, determining the current distribution flowing through the structure is
necessary. The formula of the standard lightning current waveforms is defined in the SAE ARP-5412
document in the form of an exponential sum [1]. There are many methods for calculating current
distribution by excited lightning current, such as the numerical solution of the Laplace’s equation,
Finite Difference Time Domain (FDTD) Method, Finite Element Method (FEM), and the filament wire
method [2–4]. However, solving the Laplace’s equation, MoM, FDTD, and FEM for big objects such
as aircraft requires a lot of computation time and memory [5]. Calculating the current distribution and
induced voltage of wires is essential in the process of designing lightning protection. A lot of trial and
error is made in the design process because installation location of the equipment and cables must be
adjusted according to the induced current and voltage. Thus simulation of induced current and voltage
must be accurate and fast to facilitate the design process. This fast simulation is useful for predicting
and verifying results in pre-tests prior to full vehicle lightning tests and debugging. The filament
wire method and its analytical solution provide a fast solution through a simplified object model. The
filament wire method assumes the length of the conductor is infinite and cross section doesn’t change.
The actual aircraft has finite length and complex shape, so we can apply this method to each section
of the aircraft and combine the results. Moreover, the lightning current waveform formula also needs
to be applied by changing the naturally occurring lightning into an idealized waveform because the
actual lightning waveform is very diverse, complex, and noisy. Because of these assumption, the exact
model cannot be obtained. However, it is worthwhile to be able to predict the interaction between
aircraft and lightning at the pre-design stage where the detailed designs are not determined and aircraft
lightning test cannot be held. Although the filament wire method uses a simplified model, it considers
both the shape of the object and its internal grounding structure and the materials. For conventional
aircraft, we only consider self-inductance and mutual-inductance, because the structure consists of
only metal. However, modern aircrafts use various composite materials. Thus, to solve a system of
ordinary differential equations for a filament model, inhomogeneous structure, aperture, and resistance
of each wire must be considered to obtain the correct current density of each part of the structure.
To numerically solve the systems of first-order ODE of the filament wire, the time domain or the
frequency domain must be sampled at desired intervals. If the excited waveform is long in the time
domain or has a high frequency component in the frequency domain, sampling problems may occur.
Low sampling frequency will cause aliasing, and high sampling frequency requires considerable time
to calculate the whole waveform across the time domain. In particular, the induced voltage waveform
is normally a short waveform with a high frequency compared to excited current waveform, rendering
sampling frequency difficult to determine. However, the analytical method can provide exact solutions
without sampling. The standard lightning current formula generally consists of many parts. To analyze
the lightning induced effect, we chose the current component A, which is the most significant current
component of a lightning stroke, as input. The approach presented in this paper is independent of input.
Current component A can be expressed by the quad-exponential formula [1].
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I = I0

(
e−αI0 t − e−βI0 t

) (
1 − e−γI0 t)2

. (1.1)

This formula implies that the initial condition of the excited lightning currents is zero. Thus, the
initial conditions for the currents in each filament wire are also zero. In addition, the derivative of this
kind of quadruple exponential equation is zero at time zero, thus the initial condition for the voltage is
also zero. Therefore, (1.1) can be rewritten as

I =
NI∑
j=1

I je−τ jt (1.2)

where the NI is the number of terms of (1.2). The excited lightning current flows through the structure,
as shown in Figure 1a. The filament wire method discretizes the structure into several wires called
filament wires, composed of the same material as the structure, as shown in Figure 1b. In this paper, the
filament was created for the scenario shown in Figure 1, but other scenarios can be applied depending
on the actual location of the lightning strike and the geometry of the aperture attached to the aircraft.
Depending on the geometry of the internal conductors where the current is induced, the current around
the aperture, and the geometry of the aperture, a more dominant scenario can be applied. In some
situations, a final solution can be obtained by combining the solutions by superposition. The sum
of the circumference of the filaments should be equal to the cross-section length of the structure to
simulate the surface current of the original structure. Thus, the radius of the filament is determined by
the section length lk, as shown in Figure 2a.

rk =
lk

2π
. (1.3)

(a) (b)

Figure 1. (a) Lightning current flowing through the structure; (b) Discretized structure by
filament.

Figure 2a shows the cross section of the structure. The cross section of the structure is discretized
into a finite number of sections of length lk. Each discretized section forms a single filament wire.
The discretized section need not all be the same size, nor are the each filament’s radius. Each filament
wire has its own resistance, self-inductance, and mutual inductance with other filaments. The mutual
and self-inductance, as well as the total resistance of the filament wires connected in parallel, are all
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equal to the structure’s resistance. The resistance of each filament can be obtained by the material
resistivity ρk of each section and the filament wire length L [6]. Because actual aircraft has complex
shape, we can divide the aircraft into several quasi-uniform sections. And combine all the solutions for
each section to get the current distribution between entry and exit point. The self-inductance of each
filament wire is determined only by its length and radius [7].

S k =
µ0L
2π

[
ln

2L
r
− 1

]
(1.4)

where µ0 = 4π · 10−7 [H/m] is the magnetic permeability of free space. When current flow in one wire
produces a magnetic flux around other wires, mutual coupling occurs between wires because of the
mutual-inductance. The amount of coupling is determined by the length of the wire L, the distance
between wires d, and the current direction [8]. The mutual inductance between two parallel wires is

M =
µ0L
2π

ln L
d
+

√
1 +

L2

d2

 −
√

1 +
d2

L2 +
d
L

 . (1.5)

(a) (b)

Figure 2. (a) Cross section of the filament wire bundle; (b) Circuit model of the filament
wire bundle.

By principle of reciprocity, the induced flux of wire m on wire n, is equal to the induced flux of wire
m on wire n. This means,

Mmn = Mnm. (1.6)

For a real-world case, the mutual inductance matrix is always positive-definite [9]. However, this
filament wire model simplifies the actual aircraft skin and internal structure, and is modeled as a
filament wire structure that is parallel and has a finite length, so although it is very rare, a positive-
definiteness can be broken. It is important not to create a filament wire model with this condition
because it affects the solution and convergence. Nonetheless, even with negative eigenvalues, there
may be some solutions. This is covered in more detail in Case 4.
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Figure 2b shows the circuit model of the filament wire bundle. As previously mentioned, each
filament wire has resistance, self-inductance, and mutual inductance. If we assume that these values
do not change with frequency, based on these variables, the system of first order differential equation
can be established as follows:

v1 = R1i1+ S 1
di1

dt
+M12

di2

dt
+M13

di3

dt
+· · ·+M1N

diN

dt
,

v2 = R2i2+M21
di1

dt
+ S 2

di2

dt
+M23

di3

dt
+· · ·+M2N

diN

dt
,

...

vN =RNiN+MN1
di1

dt
+MN2

di2

dt
+MN3

di3

dt
+· · ·+ S N

diN

dt
.

(1.7)

The voltage drops of each filament wire are v1, v2, · · · , vN . Furthermore, we assumed that the
structure is infinitely long and no current flows in a direction perpendicular to the lightning current.
This means the cross section of the structure is equipotential surface and all voltage drops are same
as (1.8).

v := v1 = v2 = · · · = vN . (1.8)

In addition, for convenience, we assumed that self-inductance notation is similar to mutual
inductance.

Mkk := S k. (1.9)

Using matrix notation, (1.7) becomes

ev =


v
v
...

v

 =


R1 0 · · · 0
0 R2 0
...

. . . 0
0 0 0 RN




i1

i2
...

iN

 +


M11 M12 · · · M1N

M21 M22 M2N
...

. . .

MN1 MN2 MNN


d
dt


i1

i2
...

iN

 (1.10)

where e is a column vector of 1’s. This equation can be expressed as

v = Ri +M
d
dt

i. (1.11)

We note that the Matrix R is a real diagonal matrix and M is real-symmetric. Both R and M
are Hermitian matrices. Theoretically, the self-inductance is greater than induced mutual inductance.
That is,

Mkk > Mkl, k ∈ {1, 2, · · · ,N}, l ∈ {1, 2, · · · ,N}, l , k. (1.12)

The excited input lightning current is defined as the sum of the exponential function as in Eqs (1.1)
and (1.2). Furthermore, (1.11) is a first order differential equation, where each filament current ik can
be expressed as a form of exponential function i = Cexp(−τt). That is, (1.11) can be rewritten as
follows for a specific τ:
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v = (R − τM) i (1.13)

{
v = vp + vh

i = ip + ih
(1.14)

where subscript p denotes the particular solution and subscript h denotes the homogeneous solution.

2. Solution

2.1. Particular solution

The input function has NI exponential terms from (1.2), vp and ipk also have NI exponential terms.
In addition, we assumed that the voltage drop across the filament wire is same, thus all elements of
vector vp are equal.

{
vp = wp1 exp(−τ1t) + wp2 exp(−τ2t) + · · · + wpNI

exp(−τNI t)
ipk = Cp k1 exp(−τ1t) + Cp k2 exp(−τ2t) + · · · + Cp kNI

exp(−τNI t)
(2.1)

where, vp is the element of the vector vp. Additionally, the sum of the filament current ipk is the forcing
function I expressed by (1.2).

I =
NI∑
j=1

I j exp(−τ jt) =
N∑

k=1

ipk =

N∑
k=1

NI∑
j=1

Cpk j exp(−τ jt). (2.2)

For a specific τ j and setting t = 0, we can obtain

I j =

N∑
k=1

Cpk j . (2.3)

By contrast, for a specific τ j and setting t = 0, (1.10) becomes


wp j

wp j
...

wp j

 =



R1 0 · · · 0
0 R2 0
...

. . . 0
0 0 0 RN

 − τ j


M11 M12 · · · M1N

M21 M22 M2N
...

. . .

MN1 MN2 MNN





Cp1 j

Cp2 j
...

CpN j

 = (R − τ jM)cp j . (2.4)

First, we can find wp j using (2.3).

wp j =
I j

eT
(
R − τ jM

)−1
e

(2.5)

where eT denotes the transpose of a column vector e, or a row vector of 1’s. Furthermore, eTAe denotes
the sum of all elements of a matrix A. Then,
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cp j = (R − τ jM)−1ewp j . (2.6)

For the case where the denominator part is infinite, or the matrix R − τ jM is singular, wp j becomes
zero. In this case, cpk j is kernel of the (R − τ jM)−1 and can be uniquely determined using (2.3). This
happens if and only if the τ j is one of the eigenvalues of RM−1. We will discuss it in Lemma 1.

For the case where the denominator part is zero, or the sum of elements of the matrix (R − τ jM)−1

is zero, setting the filament currents as ip j = cp jexp(−τ jt) + c
′

p j
texp(−τ jt) for a corresponding τ j can

solve the case.

2.2. Homogeneous solution

To find a homogeneous solution, the forcing function should be zero and only time dependent.

I =
N∑

k=1

ihk = 0 (2.7)

{
vh = wh1 exp(−τh1t) + wh2 exp(−τh2t) + · · · + wh(N−1) exp(−τh(N−1)t)
ihk = Ch k1 exp(−τh1t) + Ch k2 exp(−τh2t) + · · · + Ch k(N−1) exp(−τh(N−1)t)

. (2.8)

In this condition, for a specific τh j , (2.4) can be rewritten as follows:

(
R − τh jM

)−1
wh j =


Ch1 j

Ch2 j
...

ChN j

 = ch j . (2.9)

Summing every element of (2.9), owing to the homogeneous condition (2.7), the right side becomes
zero. To sum the matrix elements, we multiply the left and right side with eT and e respectively, and
(2.9) becomes,

eT
(
R − τh jM

)−1
ewh j = 0. (2.10)

For the case where wh j is nonzero, and assuming τh j = τh,

f (τh) := eT(R − τhM)−1e, (2.11)

A(τh) := (R − τhM). (2.12)

Summing all the elements of the matrix (R − τhM)−1 to find τh, we obtain the sum of the rational
function of the τh. The matrix (R−τhM) is the first order function of τh. To find the inverse of (R−τhM),
we can brutally inverse the matrix. However, the computation complexity of the polynomial matrix
increases by more than a cube even for a first-order polynomial matrix as N increases [10, 11]. To
reduce the computation complexity, we will use the eigenvalue. The resistivity matrix R is a diagonal
matrix (therefore also symmetric) and consists of only real-positive values. Therefore, it is a positive-
definite matrix. The mutual matrix M is a real-positive symmetric matrix or a Hermitian matrix, in
which each diagonal entry is the largest value of each row by (1.12). Therefore, in most real-world
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cases, M is invertible. We assumed that M is an invertible matrix. The positive-definiteness or the sign
of eigenvalues of the matrix M affects the stability of the entire solution of this problem. To find the
homogeneous solution of (1.11) with (2.7), let

A(τh) = (R − τhM) =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN

 , (2.13)

B(τh) := A − eAk,∗ + αekeT =



a11 − ak1 a12 − ak2 · · · a1N − akN
...

...
...

α α
. . . α

...
...

...

aN1 − ak1 aN2 − ak2 · · · aNN − akN


, (α , 0) (2.14)

where Ak,∗ denotes the row vector of the k-th row of A, ek denotes a column vector of 0’s except in
which k-th row is one. Because the left side of (1.11) is the column vector with same values (voltage),
if we choose any k-th row of the matrix A, and subtract it to every row of matrix A, the left side
becomes a zero vector. Additionally, to meet the homogeneous condition (2.7), we need to insert a
nonzero constant row vector to a k-th row of a matrix B. However, the left side remains zero.

B


ih1
...

ihN

 = Bih = 0. (2.15)

Equation (2.15) contains not only the voltage condition (1.8), but also the homogeneous condition
or the forcing function condition (2.7). Therefore, for this system to have a solution, (2.15) must have
a solution. In summary,

dim(ker(B)) > 0 (2.16)

or,

det (B) = 0. (2.17)

Lemma 1. The determinant of A − eAk,∗ + αekeT is αeTadj(A)e, (α , 0).

Proof. Using matrix determinant lemma [12],

det(B) = det(A − eAk,∗ + αekeT)
= det(1 − Ak,∗(A + αekeT)−1e)det(A + αekeT).

Using Sherman–Morrison formula [13],

AIMS Mathematics Volume 8, Issue 8, 19637–19655.
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=

(
1 − Ak,∗

(
A−1 −

αA−1ekeTA−1

1 + αeTA−1ek

)
e
)

(1 + αeTA−1e) det(A)

=
((

1 + αeTA−1e
)
− Ak,∗A−1

(
1 + αeTA−1e

)
e + Ak,∗

(
αA−1ekeT A−1

)
e
)

det (A) .

To simplify the aforementioned formula, using Ak,∗ = eT
k A and other characteristics,

Ak,∗A−1 = eT
k

eT
k e = 1

eT
k ek = 1

, (2.18)

det (B) = αAk,∗A−1ekeT A−1e det (A)

= αeT
k ekeTA−1e det (A)

= αeT A−1e det (A) (2.19)
= αeT adj (A) e. (2.20)

By (2.19), for an invertible matrix A, det(B) is the product of constant α, sum of elements of inverse
of A, and det(A). For a singular matrix A, by (2.20), det(B) is the sum of the adjugate of matrix A
multiplied by nonzero constant α. □

Thus, for this system to have a solution, either the sum of the inverse of R − τhM should be zero,
which is a rediscovery of (2.11); or det(R − τhM) should be zero, which can be useful for the special
cases as in (2.5) or the repeated eigenvalue condition.

The method of finding the solution depends on the sign, eigenvectors, and repeatability.

Case 1: The eigenvalues of the matrix RM−1 are all positive and distinctive, ξk , 0.

Because the eigenvalues of the real-symmetric matrix M are all positive, the matrix M is positive-
definite matrix. Using eigenvalue decomposition, RM−1 can be factorized as

QDQ−1 = RM−1 (2.21)

where D is the diagonal matrix and diagonal entries are the eigenvalues of RM−1, with Dii = λi. For
convenience, let λ1 ≤ λ2 ≤ · · · ≤ λN . In addition, Q is the corresponding eigenvector matrix. Then,
(2.11) becomes

f (τh) = eTM−1Q(D − τhI)−1Q−1e, (2.22)

A−1 =M−1Q(D − τhI)−1Q−1. (2.23)

Here, both D and τhI are the diagonal matrix; therefore they can easily be inverted compared to the
original (2.11). Thus, (2.13) can be expressed as

f (τh) =
N∑

k=1

ξk
λk − τh

(2.24)
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where ξk is the product of the k-th column sum of M−1Q and the k-th row sum of Q−1. Equation (2.24)
can be solved directly by multiplying each denominator to obtain N-th order polynomials. However,
in the real-world problem, not only are ξk and λk usually small, but the eigenvalues λk might be
close to each other. Moreover, multiplying every denominator to form a polynomial function from
rational functions causes substantial difference between the coefficient of the highest order term and
the constant term. When N becomes hundreds or more, the constant term might not be expressed
by ordinary floating-point arithmetic. This causes precision problems when solving higher order
polynomial, such as that of hundreds order or more. To solve (2.24) for the positive-definite matrix M,
it is essential to know its properties. Because the matrix R is positive-definite,

f (0) = eTR−1e > 0, (2.25)
N∑

k=1

ξk = eTM−1Q ·Q−1e = eTM−1e, (2.26)

d f
dτh
= eTM−1Q(D − τhI)−2Q−1e

= eTM−1Q(D − τhI)−1Q−1MM−1Q(D − τhI)−1Q−1e
= (A−1e)TM(A−1e)

=

N∑
k=1

ξk

(λk − τh)2 . (2.27)

Therefore,

d f
dτh
> 0, τh , λk, k ∈ {1, 2, · · · ,N} (2.28)

ξk > 0, k ∈ {1, 2, · · · ,N} (2.29)
lim
τh→λk

∓
f (τh) = ±∞, k ∈ {1, 2, · · · ,N} (2.30)

lim
τh→±∞

f (τh) = 0∓. (2.31)

The graph of the function f (τh) is shown in Figure 3. The roots of the function f (τh) lie between
the eigenvalues of RM−1. The eigenvalues are asymptotes. According to Eqs (2.25), (2.28), and
(2.31), no negative root exists and no root greater than the largest eigenvalue for this case exist.
Considering the graph between eigenvalues, the graph is continuous on an interval (λk, λk+1), 1 ≤ k < N
and monotonically increasing from −∞ to +∞; therefore, only one root between adjacent eigenvalue
exists. In this case, it is good to use the bisection method to find the root rapidly and with desired
accuracy [14], as follows:

Step 1 Set Xmin = λk, Xmax = λk+1.

Step 2 Calculate c = (Xmin + Xmax)/2, f (c) and check if convergence is satisfactory.

Step 3-1 If not, and f (c) < 0, set Xmin = c and go to Step 2.

AIMS Mathematics Volume 8, Issue 8, 19637–19655.



19647

Step 3-2 If not, and f (c) > 0, set Xmax = c and go to Step 2.

Step 3-3 If convergence is satisfactory, c is a root between (λk, λk+1).

In this case, if all eigenvalues are positive and distinctive, and if the numerator part of (2.24) is
ξk , 0, N − 1 roots exist.

Case 2: The eigenvalues of the matrix RM−1 are all positive and distinctive, and some ξk = 0.

Let ξm = 0,m ∈ {1, 2, · · · ,N}. In this case, the m-th term of (2.24) vanishes, resulting in less than
N asymptotic curves on Figure 3, despite the presence of N eigenvalues. Therefore, it is not possible
to find all solutions using the bisection method. To find a root that satisfies (2.16), from (2.24) with
ξm = 0,m ∈ {1, 2, · · · ,N},

f (τh) =
N∑

k=1

ξk
λk − τh

=

N∑
j=1
ξ j

N∏
k=1, k, j

(λk − τh)

N∏
k=1

(λk − τh)
=

N∑
j=1
ξ j

N∏
k=1, k, j

(λk − τh)

det (D − τhI)
. (2.32)

In addition,

f (τh) = eT(R − τhM)−1e =
eTadj (R − τhM) e

det (R − τhM)

=
eTadj (R − τhM) e

det (Q) det (D − τhI) det
(
Q−1) det (M)

=
eTadj (R − τhM) e

det (D − τhI) det (M)
. (2.33)

Substituting (2.32) into (2.33),

eTadj (R − τhM) e = det (M)
N∑

j=1

ξ j

N∏
k=1, k, j

(λk − τh). (2.34)

The matrix M is invertible; therefore, det(M) , 0. Assuming τh = λm,

eTadj (R − λmM) e = eTadj (A (λm)) e = 0 for ξm = 0. (2.35)

From (2.20), f (λm) satisfies (2.17). Thus, λm is one of the solutions for ξm = 0. The rest of the
solutions can be found with the bisection method used in Case 1.

Case 3: The eigenvalues of the matrix RM−1 are all positive and some eigenvalues are repeated
multiple times.

We assumed that only two eigenvalues are repeated: λm = λm+1, 1 ≤ m < N . In this case, the
m-th and (m + 1)-th terms of (2.24) are merged; thus, less than N asymptotic curves are present on
Figure 3, despite the presence of N eigenvalues. Therefore, it is not possible to find all solutions using
the bisection method. Repeated eigenvalues can occur in a physically symmetric system. Let, τh = λm.
Then,
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rank (A (λm)) ≤ N − 2. (2.36)

Inequality holds for eigenvalues repeated more than two times. From (2.36), adj(A(λm)) = 0 [15].
Thus, λm is one of the solutions for the repeated λm. If λm is repeated p, 1 ≤ p ≤ N times, by
rank-nullity theorem [16, 17],

dim (ker (A (λm))) = p, (2.37)
rank (A (λm)) = N − p. (2.38)

The remaining solutions can be found with the bisection method used in Case 1. In particular, the
last root τN−1 can be obtained by Vieta’s formula.

From (2.32), to find f (τh) = 0,

f (τh) =
N∑

j=1

ξ j

N∏
k=1, k, j

(λk − τh)

=

(−1)N
N∑

j=1

ξ j

 τN
h +

(−1)N−1
N∑

j=1

ξ j

N∑
k=1

λk − ξ jλ j


 τN−1

h

+ · · · +

N∑
j=1

ξ j

λ j

N∏
k=1

λk, (τh , λk, k ∈ {1, 2, · · · ,N}) . (2.39)

The condition τh , λk is equivalent to det(D − τhI) , 0.

Figure 3. Graph of the function f (τh) with positive-definite matrix M.

Lemma 2. Let QDQ−1 = RM−1, where D is the diagonal matrix in which diagonal entries are the
eigenvalues of RM−1 and Q is the corresponding eigenvector matrix. If ξk is the product of the k-th
column sum of M−1Q and the k-th row sum of Q−1 , then ξ1λ1 + ξ2λ2 + · · · + ξNλN = eTM−1RM−1e.
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Proof. From (2.21),

QD−1Q−1 =MR−1. (2.40)

Then, (2.22) and (2.24) becomes

N∑
k=1

ξk
1/λk − τh

= eTM−1Q
(
D−1 − τhI

)−1
Q−1e. (2.41)

Letting τh = 0,

N∑
k=1

ξkλk = eTM−1QDQ−1e = eTM−1RM−1e. (2.42)

□
Then, (2.39) can be simplified as

f (τh) =(−1)NeTM−1eτN
h + (−1)N−1

(
tr(D)eTM−1e − eTM−1RM−1e

)
τN−1

h

+ · · · + eTR−1e det(D), (τh , λk, k ∈ {1, 2, · · · ,N}) . (2.43)

Using Vieta’s sum of roots formula,

τN−1 =
eTM−1e tr (D) − eTM−1RM−1e

eTM−1e
−

N−2∑
k=1

τN−1 (2.44)

= tr (D) −
eTM−1RM−1e

eTM−1e
−

N−2∑
k=1

τN−1 (2.45)

where tr(D) is the trace of the matrix D or the sum of eigenvalues of RM−1. We note that many
alternative forms for this expression exist. In addition, using Vieta’s product of roots formula,

τN−1 =

eTR−1e
N∏

k=1
λk

eTM−1e
N−2∏
k=1
τk

. (2.46)

Equation (2.46) seems neater than (2.45) and can be calculated by known values rather than matrix
multiplications. However, for a large N, multiplying all the eigenvalues or the roots might cause a
floating point precision problem.

Case 4: Some eigenvalues are negative.

Let λ1, λ2, · · · , λm, (m ≤ N) be negative eigenvalues. As we described in Case 1, with more than
one distinctive eigenvalues with ξk , 0, (1 ≤ k ≤ m), roots exist between the eigenvalues. If ξk = 0,
as shown in Case 2, a negative eigenvalue itself is a root. If one or more than one of the eigenvalues
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is repeated, as shown in Case 3, a repeated negative eigenvalue itself is a root. For some special case
where only one eigenvalue is negative and eTMe> 0 , a stable solution with all positive exponents can
be obtained by solving the solution presented in this paper. However, as mentioned in introduction,
this is a case where the model is incorrect because it is physically impossible.

If all roots τ1, τ2, · · · , τm, (m ≤ N − 1) are found, according to (2.15), the coefficient of current for
each root can be obtained by finding the kernel of B(τh) for each root τh = τ1, τ2, · · · , τm. If there is no
repeated eigenvalue, N − 1 roots are present because dim(ker(B(τh))) = 1 for each root. If there is an
eigenvalue that repeats twice, N − 1 roots are present. If there is an eigenvalue that repeats more than
twice, there are less than N − 1 roots. For the root τk, k ∈ {1, 2, · · · ,m}.

ker (B (τk)) = Hk


Ch1k
...

ChNk

 (2.47)

where Hk is a scaling factor for the kernel.

ihk =

m∑
j=1

Chk j exp
(
−τ jt

)
. (2.48)

We note that for the homogeneous conditions (2.7) and (2.15), the column sum of (2.47) is zero.
That is, the sum of elements of the kernel is zero. By the initial condition at t = 0, and using (2.1)
through (2.6),

ik (0) = ipk (0) + ihk (0) =
NI∑
j=1

Cpk j +

m∑
j=1

Chk j = 0. (2.49)

Using matrix form,

−



NI∑
j=1

Cp1 j

...
NI∑
j=1

CpN j


=



Ch11 Ch12 · · · Ch1m

Ch21 Ch22

...
...

. . .

ChN1 · · · ChNm





H1

H2
...

Hm


. (2.50)

The coefficient matrix on the right side is N-by-m matrix. If there are no eigenvalues repeated three
or more times, it would be N-by-(N − 1) matrix. We previously calculated the left side of (2.50) in
Section 2.1. In addition, the coefficient matrix on the right side can be calculated using (2.47). The
unknown variable is the scaling factor of the kernel. Although m(m ≤ N−1) unknowns and N equations
are present, the coefficient for the kernels can be easily calculated. Finally, we calculate the voltage as
in (2.4). 

wh j

wh j
...

wh j

 =



R1 0 · · · 0

0 R2
...

...
. . . 0

0 · · · 0 RN

 − τ j


M11 M12 · · · M1N

M21 M22
...

...
. . .

MN1 · · · MNN





H1Ch1 j

H2Ch2 j
...

HNChN j

 . (2.51)
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3. Stability

For the system to remain stable, every root must be positive. Otherwise, the system diverges because
the roots are the exponential part of the current or the voltage. Although we show from (2.15) that the
kernel exists for all roots, some cases may exist where the exponential part diverges and the coefficient
is zero. Therefore, no zero column kernel exists. The solution has been investigated through various
cases. If the mutual inductance matrix M is not positive-definite, the system is unstable but it is
physically impossible for a correct model.

Lemma 3. For a positive-definite Hermitian matrix R and Hermitian matrix M, the eigenvalues of
RM−1 and M have the same sign.

Proof. Let

R−1 = C∗C. (3.1)

In addition, let (
C−1

)∗
M−1C−1 = UΛU∗ (3.2)

where Λ is the eigenvalue of matrix (C−1)∗M−1C−1. Because M and M−1 are symmetric, the left side
of (3.2) is symmetric. Thus, U∗ = U−1; then,

M−1 = C∗UΛU∗C. (3.3)

Then, (2.21) becomes

RM−1 = (C∗C)−1C∗UΛU∗C =
(
C−1U

)
Λ
(
C−1U

)−1
= QDQ−1. (3.4)

This implies that the eigenvalues of (C−1)∗M−1C−1 are the same as the eigenvalues of matrix RM−1.
In summary,

Q = C−1U, (3.5)

D = Λ. (3.6)

Furthermore, let

M−1 = ZXZ∗ (3.7)

where X is diagonal and the eigenvalue matrix of M−1 and Z is the corresponding eigenvector matrix.
Then,

X = Z−1C∗UDU∗C
(
Z−1

)∗
=

(
Z−1C∗U

)
D
(
Z−1C∗U

)∗
. (3.8)

Because both X and D are diagonal matrices, the eigenvalues of matrix M and the eigenvalues of
matrix RM−1 have the same sign. □

Here, we investigated the stability using the eigenvalues of the matrix RM−1. However, by
Lemma 3, the stability depends on only the matrix M, which is the mutual inductance matrix. This also
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implies if the mutual inductance matrix M is positive-definite, all eigenvalues of RM−1 are positive.
This appears logical because as long as the resistance is positive, only the mutual inductance terms
multiplied by the derivatives of the filament current have possibilities of divergence.

4. Example

Figure 4 shows the analytically and numerically calculated result. The analytic results followed the
methods and procedures presented in this paper. The numerical results are obtained by solving the
following discrete equations.

vn+1 = Rin +M
in+1 − in

(sampling period)
(4.1)

where the subscript n denotes each sample, not the number of filaments. Both i and v have an initial
condition of 0 at t= 0, and sampling period was set to 5 ns for convenience. This discrete equation was
solved using the conditions that the value of v is the same for all filaments at the same sample n and
that the sum of the current i of filaments is the same as the excited waveform (1.1).

The red color in Figure 4 denotes the carbon fiber composite (CFC) material, which has thousands
times more resistance than typical aluminum. The energy of the excited lightning waveform in this
paper is mostly concentrated in the low frequency band below 100 kHz [1]. Therefore, this paper
assumes that the conductivity change with frequency characteristics of carbon fiber is negligible. The
resistivity of the CFC is ρCFC ≈ 2.65 × 10−5 Ω ·m. In addition, black color in Figure 4 denotes the
typical aluminum, resistivity of which is ρAl ≈ 2.65 × 10−8 Ω ·m. The total number of filaments
is N=64. Figure 4a shows the physical model of the example. It is a cross section of 1 m long CFC
circular cylinder, which has openings on both top sides. In addition, an aluminum plate is located inside
along the cylinder. The radius of the CFC cylinder is 1 m, and the width of the aluminum plate is 1 m.
The length of the aluminum plate is also 1 m. Figure 4b shows the filament model for Figure 4a. The
CFC cylinder is discretized into 54 filaments, and the aluminum plate is discretized into 10 filaments.
The radius of the filaments is determined by (1.3). The injected current is current component A, which
is defined in SAE ARP-5412B document [1]. The parameters of (1.1) are I0=1.094 5, αI0=11 354,
βI0=647 265, γI0=5 423 540. Figure 4c shows the calculated filament current. The circle markers
denote the numerical results, and the solid lines denote the analytic results using the method presented
in this paper. The numbers in the graph represent the index numbers of the filaments. To make the
graph easier to read, the currents of all the filaments are not plotted in the graph. The similarity of the
lightning waveform to the lightning waveform incident on a conductor inside a resistive surface (CFC)
presented in the SAE ARP-5412B document was also verified [1]. Figure 4d shows the calculated
filament voltage. We note that by (1.7), every voltage across the filaments is the same. As shown in
Figure 4c and 4d, no difference between the numerical and analytic method exists.
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(a) (b)

(c) (d)

Figure 4. (a) Physical model; (b) Filament model; (c) Filament current waveform; (d)
Filament voltage waveform.

5. Conclusions

In this study, we investigated analytic solutions and stability conditions for the filament wire method
model. The filament wire method can be mathematically modeled as a system of first-order ordinary
differential equations. Using its initial condition and characteristics such as positive-definiteness or
Hermitian, we can solve the equation and find the stability condition at which a solution converges.
We proved that only the mutual inductance between filament wires has an effect on the stability.
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The stability condition is well-matched with the physical meaning, and the results are comparable
to waveforms, which are the results of a similar scenario presented in a related document [1, 2, 4].
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