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1. Introduction

This paper deals with the generalization of a shape derivative formula for a volume cost functional
with respect to a class of convex domains, a formula that we already studied in [2,3], and our aim is to
extend it to non-convex domains. To be precise, consider the shape functional J defined by

J(Ω) =

∫
Ω

f (x) dx,

where Ω is a bounded open subset of Rn and f is a fixed function defined in Rn.
Using the deformation (1 − ε)Ω0 + εΩ, ε ∈ [0, 1], of Ω0 and a C1 function f , A. A. Niftiyev and Y.

Gasimov [19] first gave the expression of the shape derivative of J with respect to the class of convex
domains of class C2 by means of support functions:
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Theorem 1.1. (A. Niftiyev, Y. Gasimov) If Ω0,Ω are bounded convex domains of class C2 and the
function f is of class C1, then, the limit

lim
ε→0+

J((1 − ε)Ω0 + εΩ) − J(Ω0)
ε

exists and is equal to ∫
∂Ω0

f (x)
(
PΩ(ν0(x)) − PΩ0(ν0(x))

)
dσ(x), (1.1)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ0 , PΩ are the support functions
of the domains Ω0, Ω, respectively.

Recently, A. Boulkhemair and A. Chakib [3] extended this formula to the case where f is
in the Sobolev space W1,1

loc (Rn). Inspired by the Brunn-Minkowski theory (see, for example, R.
Schneider [20]), they also proposed a similar shape derivative formula by considering the Minkowski
deformation Ω0 + εΩ of Ω0 :

Theorem 1.2. (A. Boulkhemair, A. Chakib) If Ω0,Ω are bounded convex domains of class C2 and the
function f is in the Sobolev space W1,1

loc (Rn), then, the limit

lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

exists and is equal to ∫
∂Ω0

f (x) PΩ(ν0(x)) dσ(x), (1.2)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ is the support function of the
domain Ω.

In fact, this formula holds true even for bounded convex domains, see [2].
If one compares (1.1) and (1.2), one can easily remark that, unlike the first formula, the second one

does not depend on the support function of Ω0. This suggests that (1.2) should hold true for non-convex
Ω0, which would be very interesting for applications in shape optimization. Unfortunately, up to now,
we have not been able to treat the case of general non-convex domains. In this paper, we shall extend
formula (1.2) to the case where Ω0 is a star-shaped domain of class C2. In fact, we were naturally led to
star-shapedness because one can use parts of the proof in [2,3] based on gauge functions. Note that by
using such a method, this is the best result one can obtain since the star-shaped domains are exactly the
sub-level sets of non negative continuous homogeneous functions. Thus, the case of non star-shaped
domains is an open question and clearly needs other methods to study it. Anyhow, we shall return to
this problem in a future work.

Another important motivation for this work came from the fact that, when f = 1, (1.2) is a well-
known formula in the Brunn-Minkowski theory of convex bodies, see [20] for example. Indeed, when
Ω0 and Ω are bounded convex domains in Rn, we know from that theory that, if t is a non negative real
number, one can write

V(Ω0 + t Ω) =

n∑
j=0

(
n
j

)
t jV j(Ω0,Ω) ,
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where V denotes the volume functional, that is, the n-dimensional Lebesgue measure, the
(

n
j

)
are the

usual binomial coefficients, and the coefficients V j(Ω0,Ω) are what one calls mixed volumes of Ω0 and
Ω and are significant in convex geometry, see [16, 20, 22] for example. Let us first remark that the first
mixed volume V0(Ω0,Ω) is simply the volume V(Ω0). Next, it is known since a long time that

V(Ω0 + t Ω) − V(Ω0)
t

=

n∑
j=1

(
n
j

)
t j−1V j(Ω0,Ω) −→ n V1(Ω0,Ω) =

∫
∂Ω0

PΩ(ν0(x)) dσ(x) (1.3)

as t → 0+. Thus, (1.2) is an extension of the above formula to the case where f is not necessarily 1 and
the aim of this work is to extend (1.2) and (1.3) to the case where Ω0 is not necessarily convex. Another
remark is that formula (1.3) is known to be a basic ingredient for solving the classical Minkowski
problem in convex geometry, see [20] for example. Moreover, this idea has been used by some authors
to solve Minkowski type problems associated with geometric functionals other than the volume one.
We quote, for example, [10,11,17,18]. Using our result, one should likely be able to do a similar work
using the functional studied in the present paper.

Originally, even if it is a theoretical one, this work was also motivated by numerical approximations
in shape optimization problems, since it is indeed the most difficult aspect of this subject. We refer
to [1], for example, for explanations about the issues that arise when implementing numerically the
minimization of a shape integral functional, via some gradient method, by using the usual expression
of the shape derivative by means of vector fields. Briefly, the reason is that, when using vector fields,
at each iteration we have to extend the vector field (obtained only on the boundary) to all the domain
or to re-mesh, and both approaches are expensive. On the other hand, when we use support functions,
at each iteration, we get not only a set of boundary points but also a support function which, by taking
its sub-differential at the origin, gives the next domain. This is why we are interested in the above
formulas that is, expressions that use support functions instead of vector fields. In the last section, we
give an idea on how to apply these formulas to the computation of the shape derivative of a simple
shape optimization problem by means of an algorithm based on the gradient method. Anyway, these
formulas are actually applied and implemented in recent papers [5–7].

Concerning the method of proof, we first assume that the deformation domain Ω is strongly convex,
which allows us to construct some parameterization of the perturbed domain Ω0 + εΩ by means of
some C1-diffeomorphism defined on Ω0. The construction is based on some analytical and geometric
properties of gauge and support functions of star-shaped domains, and reduces the problem to the usual
computation of the shape derivative using vector fields. The case of a general convex Ω is then treated
by using an approximation of Ω by a sequence of strongly convex domains and is based on some
crucial analytical and geometric lemmas.

In fact, we have followed the idea of proof of [3]. However, even if the general scheme is the same,
our proofs are far from being a straightforward consequence of the work in [3], essentially because the
theory of star-shaped sets is not as well established as that of convex sets. For example, the construction
of the C1-diffeomorphism that parameterizes the perturbed domains relies on a tricky argument using
the convolution of two hypersurfaces. Let us also quote the result on the continuity of the gauge
function with respect to star-shaped domains by means of the Hausdorff distance (Proposition 4.1), a
result that is new to our knowledge.

The outline of the paper is as follows. In Section 2, we recall some facts about star-shaped domains
and give their proofs. The main results are stated in Section 3 where we also prove consequences
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of Formula (1.2) to the situation where the function f depends also on domains, which is customary
in shape optimization problems. The fourth section is devoted to the proof of the main results using
several lemmas. Finally, in Section 5, in order to illustrate these results, we give an application to
a model shape optimization problem and an algorithm for solving this type of problem based on the
gradient method.

2. Preliminaries on star-shaped domains

There are several definitions of what is called a star-shaped set in the literature. Here, we shall use
the following one:

Definition 2.1. An open subset (or a domain) Ω of Rn is said to be star-shaped with respect to some
x0 ∈ Ω, if for all x ∈ Ω, Ω contains the segment [x0, x[= {(1 − t)x0 + tx ; 0 ≤ t < 1}.

It follows from this definition that the domain Ω is convex if and only if it is star-shaped with respect
to each x0 ∈ Ω.

In what follows, we shall often work with bounded domains which are star-shaped with respect to 0.
The reason for this is that such domains are naturally associated to gauge functions like the convex
domains. So, let Ω be a bounded domain which is star-shaped with respect to 0. For each x ∈ Rn,
consider the following set of positive real numbers

{λ; λ > 0 , x ∈ λΩ},

which is always non empty since Ω is a neighborhood of 0. By definition, the gauge function associated
to Ω is the real function JΩ : Rn → R+ given by

JΩ(x) = inf{λ; λ > 0 , x ∈ λΩ}.

As for convex bodies, the gauge functions characterize the star-shaped domains they are associated to.
In the following proposition, we summarize their main properties.

Proposition 2.1. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then, the
gauge function JΩ is a non negative continuous positively homogeneous function of degree 1. More
precisely, we have the following properties:

(i) JΩ(0) = 0, JΩ(x) > 0, ∀x , 0.

(ii) JΩ(tx) = tJΩ(x), ∀x ∈ Rn, ∀t ∈ R+.

(iii) Ω = {x ∈ Rn ; JΩ(x) < 1}.

(iv) ∂Ω = {x ∈ Rn ; JΩ(x) = 1}.

(v) JΩ : Rn → R is continuous.

(vi) If Ω′ is another domain which is star-shaped with respect to 0 and Ω′ ⊂ Ω, then, JΩ ≤ JΩ′ .
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Proof. (i), (ii) and (vi) are easy consequences of the definition of JΩ and the fact that Ω is a bounded
neighborhood of 0.
(iii): As it follows from the definition, if JΩ(x) < 1, we have x ∈ λΩ for all λ > JΩ(x), and in particular
for λ = 1. Conversely, if x ∈ Ω, we have, by definition, only JΩ(x) ≤ 1. However, the fact that Ω is
open implies that Ω contains a ball B(x, r) for some r > 0. Now, take a λ such that 1 < λ < 1 + (r/|x|)
(note that the case x = 0 is obvious). This choice implies λx ∈ Ω because |λx − x| = |x|(λ − 1) < r,
hence, x ∈ (1/λ)Ω, and so JΩ(x) ≤ 1/λ < 1.
(iv): It follows from (iii) that if x ∈ ∂Ω, then JΩ(x) ≥ 1. Now, by star-shapedness, we have tx ∈
Ω, ∀t ∈ [0, 1[ which implies by (iii) that t JΩ(x) = JΩ(tx) < 1, ∀t ∈ [0, 1[; hence, JΩ(x) < λ, ∀λ > 1
which implies JΩ(x) ≤ 1, and so JΩ(x) = 1. Conversely, if JΩ(x) = 1, we have x < Ω and, by definition,
x ∈ λΩ for all λ > 1, which implies that tx ∈ Ω, ∀t ∈ [0, 1[. Since tx→ x when t → 1−, we obtain that
x ∈ ∂Ω.
(v): We know from the classical topology course that a real function f defined in Rn is continuous if
and only if f −1(I) is an open subset of Rn for any interval I of the form ]a,+∞[ or ]−∞, b[. Now, using
(iii), (iv) and the fact that JΩ is a positively homogeneous function, one can easily check that

J−1
Ω (]a,+∞[) =


Rn, if a < 0,
Rn \ {0}, if a = 0,
a(Rn \Ω), if a > 0,

and J−1
Ω (] −∞, b[) =

∅, if b ≤ 0,
bΩ, if b > 0,

which shows the continuity of JΩ. �

It is well known in convex analysis that the gauge function of any convex domain is Lipschitz
continuous. This is no longer true for star-shaped domains. Since such a Lipschitz regularity will
be needed in the sequel, in fact, we shall work exactly with the star-shaped domains whose gauge
functions are Lipschitz continuous. In order to be able to describe geometrically this subfamily of
domains, let us give the following definition.

Definition 2.2. An open set Ω ⊂ Rn is said to be star-shaped with respect to a subset G ⊂ Ω, if it is
star-shaped with respect to any point of G.

This definition allows us to characterize in a simple manner the star-shaped domains whose gauge
functions are Lipschitz continuous. This is done in the following result for which we provide a new
and simple proof (see also [8, 12]).

Proposition 2.2. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then, its
gauge function JΩ is Lipschitz continuous if and only if Ω is star-shaped with respect to some ball
B(0, r) ⊂ Ω centered at 0 and with radius r > 0. Moreover, when this condition is satisfied, one can
take 1/r as a Lipschitz constant for JΩ.

Proof. Assume first that JΩ satisfies the inequality |JΩ(y) − JΩ(x)| ≤ 1
r |y − x| for all x, y ∈ Rn and let us

show that Ω is star-shaped with respect to the ball B(0, r). For all y ∈ B(0, r), x ∈ Ω and t ∈ [0, 1[, it
follows from the assumption that

JΩ((1 − t)y + tx) ≤ JΩ(tx) +
1
r
|(1 − t)y| < t +

1
r

(1 − t)r = 1,
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which says exactly that (1− t)y + tx ∈ Ω for all y ∈ B(0, r), x ∈ Ω and t ∈ [0, 1[, that is, Ω is star-shaped
with respect to the ball B(0, r).

Conversely, assume that Ω is star-shaped with respect to the ball B(0, r), r > 0. For each x ∈ ∂Ω,
consider the convex hull of the set B(0, r) ∪ {x} and denote by Ωx its interior. Clearly, Ωx is a convex
domain and a subset of Ω. Thus, it follows from Proposition 2.1(vi) that

JΩ ≤ JΩx ≤ JB(0,r).

Hence, we can write, for all y ∈ Rn,

JΩ(y) ≤ JΩx(y) ≤ JΩx(x) + JΩx(y − x) ≤ JΩ(x) + JB(0,r)(y − x) ≤ JΩ(x) +
1
r
|y − x|,

since JΩx is a convex function, JΩ(x) = 1 = JΩx(x) and JB(0,r)(z) = |z|/r. So, JΩ(y) − JΩ(x) ≤ 1
r |y − x|

under the assumption x ∈ ∂Ω. This is also true if x = 0 and when x , 0, it follows from this inequality,
since x/JΩ(x) is on ∂Ω, that

JΩ

(
y

JΩ(x)

)
− JΩ

(
x

JΩ(x)

)
≤

1
r

∣∣∣∣∣ y
JΩ(x)

−
x

JΩ(x)

∣∣∣∣∣ ,
which implies by homogeneity that JΩ(y) − JΩ(x) ≤ 1

r |y − x| for all x, y ∈ Rn and, by symmetry, the
Lipschitz continuity of JΩ. �

We shall also need the following technical results. Note here that the scalar product in Rn of x by y
is denoted in what follows by 〈x, y〉 or by x · y .

Lemma 2.1. If Ω ⊂ Rn is a bounded domain which is star-shaped with respect to a ball B(0, r), then,
the outward unit normal vector ν(x) to Ω exists for almost every x ∈ ∂Ω and is given by

ν(x) =
∇JΩ(x)
|∇JΩ(x)|

.

Proof. First, it follows from Proposition 2.2 that JΩ is Lipschitz continuous, and from Rademacher’s
theorem (see [14], for example) that ∇JΩ(x) exists almost everywhere in Rn.

Next, we have to show in fact that ∇JΩ(x) exists for almost every x ∈ ∂Ω. To do that, let us remark
that, since it is locally bounded (by the Lipschitz constant), ∇JΩ is locally integrable in Rn. In general,
if f is a locally integrable function in Rn which is also homogeneous of degree 0, we can write, by
using polar coordinates, Fubini’s theorem and the homogeneity of f ,

+∞ >

∫
B(0,1)
| f (x)| dx =

∫ 1

0

∫
Sn−1
| f (%ω)| %n−1d% dω =

1
n

∫
Sn−1
| f (ω)| dω.

Hence, ω 7→ f (ω) exists a.e., on Sn−1 and is even integrable. Consider now the map Ψ defined by
Ψ(0) = 0 and

Ψ(x) =
|x|

JΩ(x)
x, x ∈ Rn, x , 0.

One can easily show that this is a bi-Lipschitz homeomorphism from Rn onto itself and that Ψ(Sn−1) =

∂Ω. By applying the above argument to the function f = (∇JΩ) ◦ Ψ which is locally integrable in Rn
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and also homogeneous of degree 0, we obtain that it is defined a.e., on Sn−1. Moreover, it follows from
the fact that Ψ is bi-Lipschitz continuous that sets of measure 0 in Sn−1 correspond to sets of measure 0
in ∂Ω. Hence, ∇JΩ is defined a.e., on ∂Ω.

The last point is the formula giving the outward unit normal vector ν(x) at x ∈ ∂Ω. In fact, the
arguments are more or less classical and we indicate them briefly:
(1) If x ∈ ∂Ω and ∇JΩ(x) exists, any Lipschitz continuous curve γ : I =]−ε, ε[→ ∂Ω such that γ(0) = x
and γ′(0) exists, satisfies JΩ(γ(t)) = 1, ∀t ∈ I, which implies that ∇JΩ(x) · γ′(0) = 0, that is, ∇JΩ(x) is
normal to tangent vectors to ∂Ω at x.
(2) At any x ∈ ∂Ω such that ∇JΩ(x) exists, we can write, as t → 0,

JΩ(x + t∇JΩ(x)) = 1 + t|∇JΩ(x)|2 + o(t),

which shows that, for small t > 0, x + t∇JΩ(x) is outside Ω, that is, ∇JΩ(x) is an outward normal vector
to Ω at x. �

Lemma 2.2. If Ω ⊂ Rn is a bounded domain which is star-shaped with respect to a ball B(0, r), then,
we have

〈ν(x), x〉 ≥ r ,

for almost every x ∈ ∂Ω, where ν(x) is the outward unit normal vector at x.

Proof. It follows from Proposition 2.1 that

Ω = {x ∈ Rn ; JΩ(x) = 1}, (2.1)

and from Proposition 2.2 that JΩ is Lipschitz continuous with a Lipschitz constant equal to 1
r , that is,

for all x, y ∈ Rn,

|JΩ(x) − JΩ(y)| ≤
1
r
|x − y|.

From this inequality and Lemma 2.1, we deduce that |∇JΩ| ≤
1
r a.e., on ∂Ω and that the outward unit

normal vector is given by

ν(x) =
∇JΩ(x)
|∇JΩ(x)|

for almost every x ∈ ∂Ω. Therefore, using the homogeneity of JΩ via Euler relation, we obtain that,
for almost every x ∈ ∂Ω,

〈ν(x), x〉 =
1

|∇JΩ(x)|
〈∇JΩ(x), x〉 =

JΩ(x)
|∇JΩ(x)|

=
1

|∇JΩ(x)|
≥ r .

�

As for convex domains, the regularity of a domain which is star-shaped with respect to a ball is that
of its gauge function:

Lemma 2.3. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to a ball B(0, r),
r > 0. Then, Ω is of class Ck, k ≥ 1, if and only if its gauge function JΩ is of class Ck in Rn\{0}.
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The proof of this last result is the same as that given in [3] in the case of convex domains and makes
use of the fact that 〈ν(x), x〉 does not vanish which is insured by Lemma 2.2 in our case. So, we refer
to it.

Finally, the following result will also be needed:

Proposition 2.3. Let (Φε)0≤ε≤ε0 be a family of C1 diffeomorphisms from Rn onto Rn such that Φ0(x) = x
and (ε, x) 7→ Φε(x) and (ε, y) 7→ Φ−1

ε (y) are of class C1 in [0, ε0] × Rn. Then, for all f ∈ W1,1
loc (Rn), the

limit limε→0+( f (Φε(x)) − f (x))/ε exists in L1
loc(R

n) and is equal to ∇f (x) · d
dεΦε(x)|ε=0.

For a proof of this lemma, see [15], Chapter 5.

3. Main results

Let us first define the set of admissible domainsU to be the set of bounded open subset of Rn which
are of class C2 and star-shaped with respect to some ball.

Recall that the support function PΩ of a bounded convex domain Ω is given by

PΩ(x) = sup
y∈Ω

x · y = sup
y∈Ω

x · y ,

where x · y denotes the standard scalar product of x and y in Rn, a product that we shall also denote
sometimes by 〈x, y〉.

We can now state the first result of this paper which concerns the shape derivative of the volume
functional

Ω 7→ J(Ω) =

∫
Ω

f (x)dx .

Theorem 3.1. Let Ω0 ∈ U, Ω be a bounded convex domain and f ∈ W1,1(D) where D is a large smooth
bounded domain which contains all the sets Ω0 + εΩ, ε ∈ [0, 1]. Then, we have

lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

=

∫
∂Ω0

f (x)PΩ(ν0(x))dσ(x). (3.1)

where ν0 denotes the outward unit normal vector on ∂Ω0.

The proof of this theorem will be given in the following section. Here, we state and prove a corollary
of this result which treats a case that occurs frequently in the applications, that is, the case where the
function f itself depends on the parameter ε. Thus, this second result can be also considered as an
extension of the first one.

Corollary 3.1. Let Ω0, Ω and D be as in Theorem 3.1, let ( fε), 0 ≤ ε ≤ 1, be a family of functions in
L1(D) such that f0 ∈ W1,1(D) and let h be a function such that ( fε − f0)/ε→ h in L1(D) as ε→ 0+. Let
us set Ωε = Ω0 + εΩ and

I(ε) =

∫
Ωε

fε(x)dx .

Then, we have

lim
ε→0+

I(ε) − I(0)
ε

=

∫
Ω0

h(x)dx +

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) . (3.2)
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Proof. We write

I(ε) − I(0)
ε

=

∫
Ωε

(
1
ε

( fε − f0)(x) − h(x)
)

dx +

∫
Ωε

h(x)dx +
1
ε

(∫
Ωε

f0(x)dx −
∫

Ω0

f0(x)dx
)
,

and then study each of the three terms on the right hand side of this equality. It follows from the
assumption that ∣∣∣∣∣∣

∫
Ωε

(
1
ε

( fε − f0)(x) − h(x)
)

dx

∣∣∣∣∣∣ ≤
∫

D

∣∣∣∣∣1ε ( fε − f0)(x) − h(x)
∣∣∣∣∣ dx −−−−→

ε→0+
0 .

On the other hand, since the characteristic functions of Ωε converge almost everywhere to the
characteristic function of Ω0 when ε → 0+, it follows from the Lebesgue convergence theorem and
from (3.1) that

lim
ε→0+

I(ε) − I(0)
ε

=

∫
Ω0

h(x)dx +

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) .

�

4. Proof of Theorem 3.1

Note first that one can assume that f ∈ W1,1
loc (Rn) or even f ∈ W1,1(Rn). Indeed, one can reduce to

this case just by extending the function f to Rn by means of the usual results on Sobolev spaces.
We follow the same idea as [3], that is, we treat first the case where the deformation domain Ω is

strongly convex, the general case being obtained by means of an appropriate approximation.
To be able to use gauge functions, we have to assume that Ω0 and Ω are neighborhoods of 0.

However, this is not a restriction of generality. Indeed, assume that Theorem 3.1 (and hence also
Corollary 3.1) is proved in this case, then, if Ω0 and Ω are neighborhoods of 0 and c0, c ∈ Rn, we have,
by obvious changes of variables,

(J(c0 + Ω0 + ε(c + Ω)) − J(c0 + Ω0))/ε
=(J(c0 + εc + Ωε) − J(c0 + Ω0))/ε

=
1
ε

(∫
Ωε

f (c0 + εc + x) dx −
∫

Ω0

f (c0 + x) dx
)
.

It follows then from Proposition 2.3 that

f (x + c0 + εc) − f (x + c0)
ε

−→ ∇f (x + c0) · c = div( f (x + c0)c) in L1
loc(R

n)

as ε→ 0+, and from Corollary 3.1 that

lim
ε→0+

J(c0 + Ω0 + ε(c + Ω) − J(c0 + Ω0)
ε

=

∫
∂Ω0

f (x + c0)PΩ(ν0(x)) dσ(x) +

∫
Ω0

div( f (x + c0)c)dx.

Now, it remains to apply the divergence formula to get

lim
ε→0+

J(c0 + Ω0 + ε(c + Ω) − J(c0 + Ω0)
ε
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=

∫
∂Ω0

f (x + c0)PΩ(ν0(x)) dσ +

∫
∂Ω0

f (x + c0) c · ν0(x) dσ

=

∫
∂Ω0

f (x + c0)Pc+Ω(ν0(x)) dσ

=

∫
∂(c0+Ω0)

f (x)Pc+Ω(νc0+Ω0(x)) dσ,

where νc0+Ω0 is the exterior unit normal vector to ∂(c0 + Ω0) at x, which establishes the formula in the
case where the domains are not necessarily neighbourhoods of 0.

In what follows Ω0 is thus assumed to be star-shaped with respect to the ball B(0, r) and Ω is a
neighborhood of 0.

4.1. Case where the deformation domain is strongly convex

Assume that Ω is strongly convex, that is, near each point of its boundary, the open set Ω is defined
by {ϕ < 0} and its boundary ∂Ω by {ϕ = 0}, with some C2 function ϕ whose Hessian matrix is positive.
Such an assumption allows us to do some geometrical construction to show that the domain Ω0 + εΩ is
the deformation of Ω0 via some diffeomorphism. This reduces the problem to a well known situation
of deformations with vector fields, see [15] for example. The construction relies on several lemmas
and starts with the following:

Lemma 4.1. Let Ω0 and Ω be bounded open subsets of Rn of class C2 and assume that Ω is strongly
convex. Then, there exists a map a0 : ∂Ω0 → ∂Ω, such that
(i) For all x ∈ ∂Ω0, PΩ(ν0(x)) = ν0(x) · a0(x) .
(ii) For all x ∈ ∂Ω0, ν(a0(x)) = ν0(x), where ν(y) denotes the exterior unit normal vector to ∂Ω at y.
(iii) The map a0 : ∂Ω0 → ∂Ω is of class C1.

The proof of this lemma indeed does not assume a particular geometry for Ω0 and is the same as
that of Lemma 1 of [3], so we refer to it.

Now, we would like to extend a0 to a map from Ω0 to Ω and even from Rn to Rn. This is done by
using homogeneity.

Lemma 4.2. Ω0 and Ω being as in the preceding lemma, assume moreover that Ω0 is star-shaped with
respect to a ball centered at 0. Then, there exists a map a defined from Rn to Rn, satisfying the following
properties:
(i) a = a0 on ∂Ω0.

(ii) a(Ω0) ⊂ Ω and a(Rn \Ω0) ⊂ Rn \Ω.

(iii) a is positively homogeneous of degree 1, Lipschitz continuous on Rn and of class C1 in Rn \ {0}.

Proof. We define a on Rn by

a(x) =

0, if x = 0,
JΩ0(x) a0(x/JΩ0(x)), if x , 0.

Using Propositions 2.1, 2.2, Lemmas 2.3 and 4.1, it is easy to check that a satisfies (i), (ii) and (iii). �
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Using the vector field a, let us now consider the map

Φε(x) = x + εa(x), x ∈ Rn, ε > 0.

Since a is lipschitz continuous on Rn, it is a classical fact (and easy to check) that, if ε is sufficiently
small, Φε is a Lipschitz homeomorphism from Rn onto Rn. Moreover, it follows from the inverse
function theorem that Φε is a C1-diffeomorphism from Rn \ 0 onto Rn \ 0. See for example [9]. We
shall use Φε to parameterize the set Ω0 + εΩ. In order to be able to do that, we need the following
result which estimates the boundary of the Minkowski sum of two subsets of Rn using the convolution
of hypersurfaces.

Lemma 4.3. Let A, B ⊂ Rn be open, bounded and of class C1. Consider the following set

∂A ? ∂B := {x + y : x ∈ ∂A, y ∈ ∂B and νA(x) = νB(y)} (4.1)

where νA and νB are the outward unit normal vectors to ∂A and ∂B respectively. Then, we have

∂(A + B) ⊂ ∂A ? ∂B.

Proof. Recall that the Minkowski sum of two subsets A, B of Rn can also be written as

A + B = {x ∈ Rn ; (−A + x) ∩ B , ∅}. (4.2)

Let x ∈ ∂(A + B). It follows from (4.2) that (−A + x) ∩ B = ∅ and that (−A + x) ∩ B , ∅; hence,
∂(−A+x)∩∂B , ∅. Let y ∈ ∂(−A+x)∩∂B. Since −A+x ⊆ Rn\B, the hypersurfaces ∂(−A+x) and ∂B are
tangent at y and we have Ty ∂(−A + x) = Ty ∂B and ν(−A+x)(y) = −νB(y). Now, y ∈ ∂(−A + x) = −∂A + x,
so that x ∈ ∂A + y and there exists a ∈ ∂A such that x = y + a. Moreover, since −A + x is the image of
A by the diffeomorphism z 7→ −z + x, we also have

−νA(a) = ν(−A+x)(y) = −νB(y) ,

which achieves the proof of the lemma. �

We will also need the following result:

Lemma 4.4. Let Ω be a bounded and strongly convex domain of class C2 and let ν denote the outward
unit vector field normal to ∂Ω. Then, ν : ∂Ω 7→ S n−1 is injective.

Proof. Let ϕ : Rn → R be a C2 function such that Ω = {x ∈ Rn ; ϕ(x) < 0}, ∂Ω = {x ∈ Rn ; ϕ(x) = 0}
and ∇ϕ , 0 and ϕ′′ > 0 in a neighborhood of ∂Ω. We know then that ν = ∇ϕ/|∇ϕ|. Let x, y ∈ ∂Ω be
such that ν(x) = ν(y) and let us show that x = y. Assume that x , y. It follows from Taylor’s formula
and the positivity of ϕ′′ that

〈∇ϕ(x), y − x〉 < ϕ(y) − ϕ(x) and 〈∇ϕ(y), x − y〉 < ϕ(x) − ϕ(y).

Since ϕ(x) = ϕ(y) = 0, multiplying respectively by 1
|∇ϕ(x)| and 1

|∇ϕ(y)| yields

〈ν(x), x − y〉 > 0 and 〈ν(y), x − y〉 < 0,

which gives a contradiction since ν(x) = ν(y). So, x = y and the lemma is proved. �
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The above lemmas allow us to prove the following crucial one which concerns the parameterization
of the perturbed domain Ωε by means of Ω0 and Φε.

Lemma 4.5. Let Ω0 ∈ U and Ω be a bounded and strongly convex domain of class C2 in Rn. Consider
the set Ωε = Ω0 + εΩ and the map Φε : x 7→ x + εa(x), ε > 0, where a is as in Lemma 4.2. Then, if ε is
sufficiently small, we have the following:

(i) Φε(∂Ω0) = ∂Ω0 ? ε∂Ω and ∂Ωε ⊆ ∂(Φε(Ω0)).

(ii) Φε(Ω0) = Ωε.

Proof. Let ν0 and ν denote the outward unit normal vectors to Ω0 and Ω respectively and let x ∈ ∂Ω0.
According to Lemmas 4.1 and 4.2, a(x) = a0(x) ∈ ∂Ω and ν0(x) = ν(a(x)); hence, Φε(x) = x + εa(x) ∈
∂Ω0 ? ε∂Ω. Conversely, if z ∈ ∂Ω0 ? ε∂Ω, there exists (x, y) ∈ ∂Ω0 × ∂Ω such that z = x + εy and
ν0(x) = νεΩ(εy) = ν(y). Applying once again Lemma 4.2, we have a(x) ∈ ∂Ω and ν0(x) = ν(a(x)) =

ν(y). Next, applying Lemma 4.4 yields a(x) = y. Therefore, z = x + εa(x) = Φε(x) ∈ Φε(∂Ω0). Thus,
we have proved that Φε(∂Ω0) = ∂Ω0 ? ε∂Ω. Now, according to Lemma 4.3, we have

∂Ωε = ∂(Ω0 + εΩ) ⊆ ∂Ω0 ? ∂(εΩ) = ∂Ω0 ? ε∂Ω = Φε(∂Ω0) = ∂Φε(Ω0),

which achieves the proof of (i).
To show (ii), note first that Φε(Ω0) ⊂ Ωε is an obvious consequence of Lemma 4.2. To prove the

other inclusion, let us first remark that it follows from the homogeneity of Φε that Φε(Ω0) is also a star-
shaped domain with respect to 0 as it can be checked easily. Next, assume that there exists x ∈ Ωε such
that x ∈ Rn\Φε(Ω0). Then, it follows from Proposition 2.1 that 0 < JΩε

(x) < 1 and JΦε(Ω0)(x) ≥ 1. Now,
consider x∗ = x/JΩε

(x) ∈ ∂Ωε. Clearly, JΦε(Ω0)(x∗) = JΦε(Ω0)(x)/JΩε
(x) > 1, that is, x∗ < ∂(Φε(Ω0)),

which contradicts (i). Thus, Φε(Ω0) = Ωε. �

Lemma 4.5 provides the main tool in the proof of Theorem 3.1 in the case where Ω is strongly
convex and of class C2. Indeed, according to this lemma, Ωε = Φε(Ω0) and the problem is reduced to
the case of a deformation of Ω0 by a diffeomorphism or, more precisely, a Lipschitz homeomorphism.
According to [21] for example, we have the following shape derivative formula

d
dε
J(Ω0 + εΩ)

∣∣∣∣∣
ε=0+

=

∫
∂Ω0

f (x) a(x) · ν0(x) dσ ,

and according to Lemmas 4.1 and 4.2, we have

a(x) · ν0(x) = a0(x) · ν0(x) = PΩ(ν0(x)).

We obtain therefore the formula

lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

=

∫
∂Ω0

f (x)PΩ(ν0(x))dσ(x) ,

and this achieves the proof of Theorem 3.1 in the case where Ω is strongly convex.
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4.2. The general case

The domain Ω is now assumed to be bounded and (only) convex. We shall approximate it by a
sequence of strongly convex ones. To do that, let us recall the following approximation result used
in [3].

Lemma 4.6. Let Ω be a bounded convex domain in Rn. Then, there exists a sequence (Ωk)k∈N of
strongly convex smooth open subsets of Ω such that

dH(Ω
k
,Ω) −−−→

k→∞
0,

where dH denotes the Hausdorff distance.

Such an approximation is used to prove the following lemma which is an important step in the proof
of our theorem.

Lemma 4.7. Let Ω0 ∈ U, Ω be a bounded convex domain in Rn and (Ωk)k∈N the sequence given by
Lemma 4.6 which approximates Ω. Then, for all ε ∈ [0, 1] and for all k ∈ N, we have

dH(Ω
k
ε,Ωε) ≤ ε dH(Ω

k
,Ω).

where Ωk
ε = Ω0 + εΩk et Ωε = Ω0 + εΩ.

Proof. We have Ω
k
ε = Ω0 + εΩ

k
and Ωε = Ω0 + εΩ, thus according to [20], Page 64, we have

dH(Ω
k
ε,Ωε) = dH(Ω0 + εΩ

k
,Ω0 + εΩ) ≤ dH(Ω0,Ω0) + dH(εΩ

k
, εΩ).

Since Ωk ⊆ Ω, then dH(εΩ
k
, εΩ) = supx∈εΩ d(x, εΩ

k
) = εdH(Ω

k
,Ω). Thus, dH(Ω

k
ε,Ωε) ≤ ε dH(Ω

k
,Ω).
�

We need also the following result.

Proposition 4.1. Let A, B ⊂ Rn be two bounded domains which are star-shaped with respect to the
ball B(0, r), r > 0 and such that A ⊆ B. Then, we have

sup
S n−1
|JA − JB| ≤

1
r2 dH(A, B). (4.3)

Proof. Let x ∈ ∂B. Since A ⊂ B, there exists yx ∈ ∂A such that d(x, A) = |x − yx|. According
to Proposition 2.2, the gauge functions JA, JB are Lipschitz functions with Lipschitz constant 1

r .
Therefore, since JA(yx) = 1 = JB(x) and A ⊂ B, we can write

|JA(x) − JB(x)| ≤ |JA(x) − JA(yx)| + |JA(yx) − JB(x)| = |JA(x) − JA(yx)|

≤ r−1|x − yx| = r−1d(x, A)

≤ r−1 sup
z∈B

d(z, A) = r−1dH(A, B),

an inequality that holds for x ∈ ∂B. Now, if x ∈ S n−1, we have x
JB(x) ∈ ∂B, and by using the homogeneity

of the gauge functions we obtain

|JA(x) − JB(x)| = JB(x)|JA(
x

JB(x)
) − JB(

x
JB(x)

)| ≤ JB(x)r−1dH(A, B).

Since B(0, r) ⊂ B, we have JB(x) ≤ JB(0,r)(x) = |x|/r = 1/r, which implies the desired inequality. �
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The last lemma is crucial for our proof.

Lemma 4.8. Let Ω0 ∈ U, Ω be a bounded convex domain and f ∈ W1,1
loc (Rn), and let (Ωk)k∈N be as in

Lemma 4.6. Then, there exists a constant C > 0 such that, for all k ∈ N and all ε ∈ [0, 1], we have∣∣∣∣∣∣
∫

Ωk
ε

f (x)dx −
∫

Ωε

f (x)dx

∣∣∣∣∣∣ ≤ C ε dH(Ω
k
,Ω),

where Ωk
ε = Ω0 + εΩk et Ωε = Ω0 + εΩ.

Proof. We follow the idea of [4]. Let r > 0 be such that Ω0 is star-shaped with respect to B(0, r) and let
B(0,R) be a large ball which contains all the sets Ω0 + εΩ, ε ∈ [0, 1]. As one can easily check, Ωε and
Ωk
ε are star-shaped with respect to B(0, r), and we shall denote by Jε and Jk

ε respectively their gauge
functions. Let us denote by Ik

ε( f ) the difference∫
Ωε

f (x)dx −
∫

Ωk
ε

f (x)dx .

Since Ωε = {Jε < 1} and Ωk
ε = {Jk

ε < 1}, by using polar coordinates, we can write

Ik
ε( f ) =

∫
S n−1

∫ 1
Jε(ω)

0
f (ρω)ρn−1dρdω −

∫
S n−1

∫ 1
Jk
ε (ω)

0
f (ρω)ρn−1dρdω =

∫
S n−1

∫ 1
Jε(ω)

1
Jk
ε (ω)

f (ρω)ρn−1dρdω.

This allows us to estimate Ik
ε( f ) as follows:

|Ik
ε( f )| ≤

∫
S n−1

∣∣∣∣∣∣ Jε(ω) − Jk
ε(ω)

Jε(ω)Jk
ε(ω)

∣∣∣∣∣∣ sup
ρ∈[ 1

Jk
ε (ω)

, 1
Jε(ω) ]
| f (ρω)ρn−1|dω.

Note that, since B(0, r) ⊂ Ωk
ε ⊂ Ωε ⊂ B(0,R), we have JB(0,R) ≤ Jε ≤ Jk

ε ≤ JB(0,r). Recall that
JB(0,r)(x) = |x|/r, JB(0,R)(x) = |x|/R. Hence,

|Ik
ε( f )| ≤ R2

∫
S n−1
|Jε(ω) − Jk

ε(ω)| sup
ρ∈[r,R]

| f (ρω)ρn−1|dω.

Since Ωε and Ωk
ε are star-shaped with respect to B(0, r) and Ωk

ε ⊆ Ωε, it follows from Lemmas 4.1
and 4.7 that

sup
S n−1
|Jε − Jk

ε | ≤
1
r2 dH(Ω

k
ε,Ωε) ≤

ε

r2 dH(Ω
k
,Ω).

Therefore,

|Ik
ε( f )| ≤

R2ε

r2 dH(Ω
k
,Ω)

∫
S n−1

sup
ρ∈[r,R]

| f (ρω)ρn−1| dω.

It remains to apply the following classical inequality for functions of one real variable:

‖ϕ‖L∞(I) ≤
1
|I|

∫
I
|ϕ(t)| dt +

∫
I
|ϕ′(t)| dt, ϕ ∈ W1,1(I), (4.4)
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where I is a bounded interval and |I| is its length. In fact, this is just a precise version of Sobolev’s
inequality. Its proof is easy when ϕ is of class C1 on Ī and the general case is obtained by a density
argument and is left to the reader. Applying (4.4) to the function ρ 7→ f (ρω) ρn−1 yields

|Iε,k( f )| ≤
R2ε

r2 dH(Ω
k
,Ω)

∫
S n−1

∫ R

r

(
| f (ρω)|

( ρn−1

R − r
+ (n − 1)ρn−2

)
+ |∇ f (ρω)|ρn−1

)
dρdω

≤
R2ε

r2 dH(Ω
k
,Ω)

∫
r≤|x|≤R

(
| f (x)|
R − r

+
n − 1
|x|
| f (x)| + |∇ f (x)|

)
dx

≤
R2ε

r2 dH(Ω
k
,Ω)

(
1

R − r
+

n − 1
r

+ 1
) ∫

r≤|x|≤R
(| f (x)| + |∇ f (x)|) dx

≤
R2ε

r2 dH(Ω
k
,Ω)

(
1

R − r
+

n − 1
r

+ 1
)
|| f ||W1,1(D),

which achieves the proof of the lemma. �

Using the above lemmas, we can now finish the proof of Theorem 3.1. Let δ > 0 be arbitrary. We
can write

J(Ω0 + εΩ) − J(Ω0)
ε

−

∫
∂Ω0

f (x)PΩ(ν0(x))dσ(x)

=
1
ε

(∫
Ωε

f (x)dx −
∫

Ωk
ε

f (x)dx
)

+
1
ε

(∫
Ωk
ε

f (x)dx −
∫

Ω0

f (x)dx
)

−

∫
∂Ω0

f (x)PΩk(ν0)(x)dσ(x) +

∫
∂Ω0

f (x)
(
PΩk(ν0(x)) − PΩ(ν0(x))

)
dσ(x).

(4.5)

For the first term in the righthand side of (4.5), according to Lemmas 4.6 and 4.8, there exists k0 ∈ N,
such for all k ≥ k0 and for all ε ∈]0, 1], we have

1
ε

∣∣∣∣∣∣
(∫

Ωε

f (x)dx −
∫

Ωk
ε

f (x)dx
)∣∣∣∣∣∣ ≤ δ. (4.6)

Using the formula ||PA − PB||L∞(S n−1) = dH(A, B) for compact convex sets, (see for example, Page 66
of [20]), we can estimate the last term in the righthand side of (4.5) as follows:∣∣∣∣∣∣

∫
∂Ω0

f
(
PΩk(ν0) − PΩ(ν0)

)
dσ

∣∣∣∣∣∣ ≤ ||PΩk − PΩ||L∞(S n−1)

∫
∂Ω0

| f | dσ = dH(Ω
k
,Ω)

∫
∂Ω0

| f | dσ,

which implies that it tends to 0 when k → ∞ by virtue of Lemma 4.6. Hence, there exists k1 ∈ N, such
that, for all k ≥ k1, we have ∣∣∣∣∣∣

∫
∂Ω0

f
(
PΩk(ν0) − PΩ(ν0)

)
dσ

∣∣∣∣∣∣ ≤ δ. (4.7)

Now, if k2 = max{k0, k1}, since Ωk2 is strongly convex, it follows from the first part of the proof that
there exists εδ such that for all ε ≤ εδ, we have∣∣∣∣∣∣1ε

(∫
Ω

k2
ε

f (x)dx −
∫

Ω0

f (x)dx
)
−

∫
∂Ω0

f (x)PΩk2 (ν0(x))dσ(x)

∣∣∣∣∣∣ ≤ δ. (4.8)
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By taking k = k2 in (4.5) and using (4.6)–(4.8), we obtain that, for all ε ≤ εδ,∣∣∣∣∣∣1ε
(∫

Ωε

f (x)dx −
∫

Ω0

f (x)dx
)
−

∫
∂Ω0

f (x)PΩ(ν0(x))dσ(x)

∣∣∣∣∣∣ ≤ 3δ ,

which achieves the proof of Theorem 3.1.

5. Application

To illustrate our work, we give an algorithm based on the gradient method to indicate how our
formula could be applied to a shape optimization problem and we compute the shape derivative of some
functional related to the solution of a partial differential equation. This is done without implementing to
keep our paper in a reasonable length. Anyhow, we have successfully implemented such an algorithm
in the study of several problems: a Bernoulli type shape optimization problem in [5] and constrained
shape optimization ones in [6, 7].

Let us define the setU of admissible domains by Ω ∈ U ⇐⇒ Ω is a C3 open subset of Rn which is
star-shaped with respect to some ball of radius r.

If D is an open bounded (convex) and non empty subset of Rn, let us consider the problem

(PO)


Find Ω∗ ∈ U(D) such that J(Ω∗) = inf

Ω∈U(D)
J(Ω),where U(D) = {Ω ∈ U ; Ω ⊂ D},

J(Ω) =

∫
Ω

(uΩ − ud)2dx and uΩ is the solution of(PE)

−∆v + v = f , in Ω,
∂v
∂ν

= g, on ∂Ω,

where ud ∈ H1(D), f ∈ L2(D) and g ∈ H2(D). Let u0 be the solution of (PE) on Ω0 ∈ U(D) and uε
be the solution of (PE) on Ωε = Ω0 + εΩ, ε ∈ [0, 1]. Assuming that Ω is a strongly convex domain,
we know from Lemma 4.5 that Ωε can be considered as a deformation of the domain Ω0 by the vector
field a, that is Ωε = (IdRn + εa)(Ω0) for small enough ε. Therefore, at least when f ∈ H1(D), according
to [1], we can write

ũε = ũ0 + εu′0 + εvε

where ũε and ũ0 are respectively extensions of uε and u0 to D, u′0 ∈ H2(Ω0) ∩ H1(D) is the shape
derivative of ũ0 with respect to the vector field a and vε −→ 0 in L2(D) as ε → 0+. It follows from that
result that

1
ε

[(̃uε − ud)2 − (̃u0 − ud)2] − 2u′0(̃u0 − ud) −−−−→
ε→0+

0 in L1(D),

which allows one to apply Corollary 3.1 to obtain

lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

=

∫
Ω0

2u′0(̃u0 − ud)dx +

∫
∂Ω0

(̃u0 − ud)2PΩ(ν0)dσ(x).

Now, in this expression of the shape derivative of J , even the domain integral can be written as a
boundary integral. Indeed, for example, if one follows the same method as [15], one can show that u′0
satisfies the boundary value problem−∆u′0 + u′0 = 0, in Ω0,

∂
∂ν0

u′0 = ( ∂g
∂ν0
−

∂2u0
∂ν2

0
)〈a, ν0〉 + ∇u0∇∂Ω0〈a, ν0〉, on ∂Ω0,

(5.1)

AIMS Mathematics Volume 8, Issue 8, 19773–19793.



19789

where
∂2u0

∂ν2
0

=

n∑
i, j=1

∂2u0

∂xi∂x j
ν0,i ν0, j

and ∇∂Ω0 is the tangential gradient (see [15]). Note here that, since Ω0 is of class C3, u0 is in fact in
H3(Ω0), u′0 ∈ H2(Ω0) (see [15]), so that the second derivative ∂2u0

∂ν2
0

is well defined on ∂Ω0. Now, using
the solution of the following adjoint state boundary value problem−∆ψ + ψ = −2(u0 − ud), in Ω0,

∂ψ

∂ν0
= 0, on ∂Ω0 ,

(5.2)

we obtain the following expression for the shape derivative of the functional J (see [1])

lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

=

∫
∂Ω0

dΩ0〈a, ν0〉 dσ ,

where
dΩ0 = (u0 − ud)2 + 〈∇u0,∇ψ〉 + ψ(u0 − f ) −

∂(gψ)
∂ν0

−Hgψ.

Now, since Ω is strongly convex, it follows from Lemmas 4.1 and 4.2 that

〈a(x), ν0(x)〉 = PΩ(ν0(x)) on ∂Ω0, (5.3)

so that
lim
ε→0+

J(Ω0 + εΩ) − J(Ω0)
ε

=

∫
∂Ω0

dΩ0 PΩ ◦ ν0 dσ.

The last thing we propose is an algorithm to solve the shape optimization problem (PO).

Algorithm.
1) Choose Ω0 ∈ U(D), ρ ∈]0, 1[ and a precision ε.
2) Solve the state equation:

(PE)


−∆u0 + u0 = f , in Ω0 ,
∂u0

∂ν0
= 0, on ∂Ω0.

(5.4)

3) Solve the adjoint state problem

(PEA)


−∆ψ0 + ψ0 = −2(u0 − ud), in Ω0 ,
∂ψ0

∂ν0
= 0, on ∂Ω0.

(5.5)

4) Calculate p̂0 solution of
arg min

p∈E
F0(p) (5.6)

where
E = {ϕ ∈ C(D) ; ϕ is convex and homogeneous of degree 1 and ϕ ≤ PD},

and

F0(p) =

∫
∂Ω0

(
(u0 − ud)2 + 〈∇u0,∇ψ〉 + ψ(u0 − f ) −

∂(gψ)
∂ν0

−Hgψ
)

p ◦ ν0 dσ.
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5) At step k, if
||uk − ud||L2(Ωk) < ε,

go to 7, where uk is the solution of the state equation in Ωk (the domain at step k).
6) Compute

Ωk+1 =
{
rθ; θ ∈ Sn−1, r ∈

[
0, 1/JΩk+1(θ)

[}
(5.7)

where JΩk+1 is the gauge function of Ωk+1 given by Ωk+1 := Ωk + ρ Ω̂k with

Ω̂k = ∂ p̂k(0) =
{
` ∈ Rn; p̂k(x) ≥ 〈`, x〉, ∀x ∈ Rn}

and go to 2.
7) End.

Let us end this section by making three remarks which clarify some points about the above
algorithm: the first one explains the determination of a descent direction for the convergence of this
algorithm, the second one is concerned with how to solve problem (5.6) and in the last one we give
some details on the computation of Ωk+1 at each iteration.

Remark 5.1. In the above algorithm, the sequence of domains (Ωk)k∈N is constructed in such a way
that (J(Ωk))k∈N is decreasing. Indeed, let k ∈ N∗, then, for a small ρ ∈]0, 1[, we have

J(Ωk+1) − J(Ωk) = J(Ωk + ρΩ̂k) − J(Ωk) = ρ

(∫
∂Ωk

dΩk PΩ̂k
◦ νkdσ

)
+ O(ρ2).

Now, since p̂k = P
Ω̂k

is a solution of arg min
p∈E

Fk(p), then

Fk(p̂k) =

∫
∂Ωk

dΩk PΩ̂k
◦ νkdσ ≤ Fk(0) = 0 ,

which guarantees the decrease of the functional J . Thus, Ω̂k defines a descent direction for J .

Remark 5.2. The problem (5.6) admits a solution p̂ ∈ E because the functional

p ∈ E 7−→ Fk(p) =

∫
∂Ωk

dΩk p ◦ νk dσ

is continuous and E is a compact subset of C(D). Indeed, the functional Fk being clearly continuous
on C(D), let us show that E is a compact subset of C(D). Any p ∈ E is the support function of a unique
convex bounded open set which is its sub-differential at 0, that is, p = P∂p(0) (see for example [20,22]).
So, for all x, y ∈ D, using the fact that a support function is sub-linear and homogenous of degree 1
and p ≤ PD, we get

∀p ∈ E, |p(x) − p(y)| = |P∂p(0)(x) − P∂p(0)(y)| ≤ sup
w∈Sn−1

P∂p(0)(w) ‖x − y‖ ≤ sup
w∈Sn−1

PD(w) ‖x − y‖,

which implies that the family E is equicontinuous. On the other hand, the fact that E is a bounded
subset of C(D) is obvious, while the fact that it is closed is easy: because of the homogeneity, the
uniform convergence on D implies the pointwise convergence in all Rn, which allows to pass to the
limit in inequalities. The compactness of E follows of course by applying Ascoli-Arzela’s theorem.
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Remark 5.3. Let Ω0 ∈ U(D) and let JΩ0 denote its gauge function. In order to determine the domain
of the next iteration Ω1 = Ω0 + ρ ∂P̂0 (0) one can consider applying the techniques based on the use of
support functions as in [5, 7]. However, support functions do not characterize star-shaped sets unlike
gauge functions (see e.g., [12,13]). Because of that, in this work we have proposed an algorithm based
on the use of gauge functions, more precisely this concerns the Step 6 and the proposed process to
achieve this step is as follow: to determine Ω1, it is numerically sufficient to determine its boundary
∂Ω1. For this purpose, we recall that ∂Ω1 can be defined by (see e.g., [12])

∂Ω1 =
{
θ/JΩ1(θ); θ ∈ S

n−1
}
. (5.8)

Next, by homogeneity of the gauge function JΩ1 , we can check that ∂Ω1 =
{
w/JΩ1(w); w ∈ ∂Ω0

}
. We

have therefore to compute the gauge function JΩ1 on ∂Ω0. To do that, let δ > 0 be small enough.
According to Lemma 4.6, the convex domain ∂P̂0 (0) can be approximated by a strongly convex sub-
domain Λ such that

||P̂0 − PΛ||Sn−1 = dH(∂P̂0 (0) ,Λ) ≤ δ. (5.9)

Moreover, using (5.9) and the properties of Hausdorff distance on convex domains (see e.g., [20]), we
obtain

dH(Ω1,Ω0 + ρΛ) = dH(Ω0,Ω0) + ρ dH(∂P̂0 (0) ,Λ) ≤ ρδ,

which, combined with Proposition 4.1, gives

sup
Sn−1
|JΩ1 − JΩ0+ρΛ| ≤

1
r2ρδ.

Hence, we can approximate the functions JΩ1 and P̂0 by JΩ0+ρΛ and PΛ respectively, where P̂0 is a
solution of (5.6). Thus, it remains to compute JΩ0+ρΛ on ∂Ω0. According to Lemma 1 of [2], the
function (t, x) 7→ Jt := JΩ0+t Λ(x) is smooth at least in [0, 1] × (Rn \ {0}) and we have

d
dt

Jt = −JtPΛ(∇Jt). (5.10)

Using the Taylor expansions of Jt, we have

Jt = J0 + t
d
dt

Jt|t=0 + o(t)

= J0 − tJ0PΛ(∇J0) + o(t)
= J0 − tJ0PΛ(∇JΩ0/|∇JΩ0 |)|∇JΩ0 | + o(t).

Thus, for all y ∈ ∂Ω0, using Lemma 2.2 we obtain Jt(y) = 1 − t
PΛ(νΩ0 (y))
〈νΩ0 (y),y〉 + o(t). Finally, ∂Ω1 can be

determined by

∂Ω1 =

{
y/

(
1 − t

PΛ(νΩ0(y))
〈νΩ0(y), y〉

)
; y ∈ ∂Ω0

}
,

where PΛ(νΩ0) and νΩ0 are known on ∂Ω0.
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