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Abstract: Non-negative matrix factorization (NMF) has been widely used in machine learning and
data mining fields. As an extension of NMF, non-negative matrix tri-factorization (NMTF) provides
more degrees of freedom than NMF. However, standard NMTF algorithm utilizes Frobenius norm to
calculate residual error, which can be dramatically affected by noise and outliers. Moreover, the hidden
geometric information in feature manifold and sample manifold is rarely learned. Hence, a novel
robust capped norm dual hyper-graph regularized non-negative matrix tri-factorization (RCHNMTF) is
proposed. First, a robust capped norm is adopted to handle extreme outliers. Second, dual hyper-graph
regularization is considered to exploit intrinsic geometric information in feature manifold and sample
manifold. Third, orthogonality constraints are added to learn unique data presentation and improve
clustering performance. The experiments on seven datasets testify the robustness and superiority of
RCHNMTF.

Keywords: non-negative matrix tri-factorization; capped norm; dual hyper-graph regularization;
robust clustering

1. Introduction

As the dimension of data in machine learning and data mining is too high to learn, matrix
factorization algorithms are adopted to deconstruct the high-dimensional data into several
low-dimensional data and explore the hidden structure of low dimensional data. The widely used
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matrix factorization approaches, include Principal Component Analysis (PCA) [1], Singular Value
Decomposition (SVD) [2], Vector Quantization (VQ) [3] and Non-negative matrix factorization
(NMF).

Different from PCA, SVD and VQ, the main motivations of NMF, are to decompose a
high-dimensional data matrix into two low-rank non-negative matrices, whose product is approximate
to the original data matrix. NMF is able to obtain a parts-based representation of data as the
non-negative constraints allow only additive, not subtractive, combinations [4]. NMF algorithm and
its extensions have been applied in several areas, e.g., medical research [5], community discovery [6],
gene expression [7–10], text mining [11] and neural network [12–15].

As an extension of NMF, Non-negative matrix tri-factorization (NMTF) aims to decompose a
high-dimensional data matrix into three low-rank non-negative matrices [16, 17]. With an extra
decomposition matrix, NMTF can obtain higher degrees of freedom than NMF [18]. NMTF is helpful
for co-clustering task as it can categorize feature space and sample space simultaneously.
Nevertheless, Ding et al. [18] point out that unconstrained NMTF is equivalent to NMF while
constrained NMTF brings new features to NMF and hereby propose orthogonal non-negative matrix
tri-factorization (ONMTF). ONMTF can obtain a rigorous clustering presentation as non-negative and
orthogonality constraints lead to a sparse solution. Abundant research show the superiority of
spareness research [14, 19–27].

The standard NMF and NMTF algorithms rarely consider the hidden geometrical information in
feature space and sample space. However, it is pointed out that the observed data lie on a nonlinear
low dimensional manifold embedded in a high dimensional ambient space [28, 29]. Several manifold
learning algorithms have been proposed to exploit intrinsic geometrical information [30–32], such as
ISOMAP [33] and Laplacian Eigenmap (LE) [34]. Inspired by recent progress in manifold learning,
Cai et al. propose graph regularized NMF (GNMF) [35]. GNMF firstly constructs a nearest neighbor
graph to encode the geometrical information of the data space and incorporates the graph regularization
into its objective function. To explore the geometrical information in feature space, which is neglected
in GNMF, Shang et al. further propose graph dual regularized NMF (DNMF) [17]. DNMF constructs
dual graph to discover the manifold embedded in sample space and feature space simultaneously.
Unfortunately, the high-order relations among samples are seldom considered in graph-based learning
methods as the constructed graph only considers the pairwise relationship between two samples or two
features. This problem has been solved by hyper-graph learning [36, 37]. Contrast to graph, hyper-
graph is constructed by edges connected with multiple samples. Therefore, hyper-graph can explore
high-order relationship of data and features. Hyper-graph is popular in machine learning fields [38,39].
Feng et al. propose Hyper-graph Neural Networks (HNN) [40]. Jiang et al. propose dynamic hyper-
graph neural networks [41]. HNN utilizes hyper-edge convolution operations to learn the hidden layer
representation considering the high-order data structure [40,42]. Zeng et al. first combine hyper-graph
learning and NMF algorithm and propose hyper-graph regularized NMF (HNMF) [43]. HNMF utilizes
single hyper-graph regularization to obtain a better geometrical information in sample space.

Although standard NMF and NMTF algorithms utilize Forbenius norm to calculate residual error
and perform well on untainted data, the performance can be dramatically decreased by noise and
outliers as Forbenius norm calculates the squared residual error. To alleviate the impact of noise and
outliers, several robust M-estimator based NMF algorithms are proposed [44]. Kong et al. propose a
robust NMF using l2,1-norm to calculate the residual error of each sample point without squaring
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it [45]. Gao et al. design a robust capped NMF [46]. The main contribution of robust capped NMF is
that it caps the residual of extreme outlier to further enhance the robustness. Li et al. propose a robust
NMF using l2,p-norm to further reduce the impact of noise and outliers [47]. Guan et al. develop
Truncated Cauchy non-negative matrix factorization which utilizes Truncated Cauchy loss to truncate
large errors and handle outliers [48]. Guan et al. also propose Manhattan non-negative matrix
factorization (MahNMF) which uses Manhattan distance instead of Euclidean distance to model the
heavy tailed Laplacian noise [49].

Motivated by the good robustness of l2,p-norm and capped l2,1-norm and excellent performance of
manifold learning based NMF algorithms, a robust capped norm dual hyper-graph regularized NMTF
(RCHNMTF) is proposed. Specifically, RCHNMTF utilizes capped l2,p-norm to enhance robustness.
Second, RCHNMTF constructs dual hyper-graph to encode intrinsic geometrical information in sample
manifold and feature manifold. Third, ONMTF framework is incorporated to RCHNMTF to improve
clustering performance. The main contribution of the article is summarized as follows:

1) A novel method called RCHNMTF is proposed. RCHNMTF first utilizes capped l2,p-norm to
improve robustness. Dual hyper-graph regularization and ONMTF framework are also added to
RCHNMTF to further improve clustering performance. 2) The optimization problem of RCHNMTF
is reformulated and an alternative iteration algorithm is designed thereafter to simplify iteration steps.
The computational complexity of RCHNMTF and its comparison methods are calculated thoroughly
with three arithmetic operations and big O notation. 3) Experiments on seven real-world datasets and
four noised datasets verify the superior clustering performance and robustness of RCHNMTF,
compared with eight state-of-the-art algorithms.

The rest of the paper is arranged as follows: In Section 2, NMF algorithm, lq,p-norm, capped
l2,1-norm NMF and hyper-graph regularization are introduced. In Section 3, the formulation of
RCHNMTF is first described. The optimization problem of RCHNMTF is reformulated thereafter to
simplify iteration steps. The computational complexity of RCHNMTF and its comparison algorithms
are thoroughly analyzed. Section 4 demonstrates the clustering performance and robustness of
RCHNMTF on seven real-world datasets and four contaminated datasets, compared with eight
state-of-the-art algorithms. The paper is summarized in Section 5.

2. Related works

2.1. Non-negative matrix factorization

Given a data matrix X = [x1, x2, ..., xn] ∈ Rm×n, each column of X denotes a sample vector xn.
NMF aims to decompose the data matrix X into two low-dimensional non-negative matrices U =
[u1,u2, ...,uk] ∈ Rm×k and VT = [v1, v2, ..., vk] ∈ Rk×n , whose product UVT is approximate to the
original data matrix X. The residual error between X and UVT is calculated by Frobenius norm. The
optimization problem of NMF is defined as [4]:

min
U,V

∥∥∥X − UVT
∥∥∥2

F
s.t. U ≥ 0,V ≥ 0 (2.1)

where ∥·∥F represents the Frobenius norm of the matrix. Optimization problem (2.1) can be solved by
the following multiplicative update rules [4]:

U ← U
XV

UVT V
(2.2)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12486–12509.



12489

V ← V
XT U

VUT U
(2.3)

2.2. Lq,p-Norm

The lq,p-norm of X is defined as follows [47]:

∥X∥q,p =
 N∑

i=1

∥xi∥
p
q

1/p

, p ∈ (0, 1]. (2.4)

where ∥·∥q,p represents lq,p-norm. Let q = 2, the l2,p-norm of X is defined as follows:

∥X∥2,p =
 N∑

i=1

∥xi∥
p
2

1/p

, p ∈ (0, 1]. (2.5)

where ∥·∥2,p represents l2,p-norm. It should be noticed that l2,p-norm (0 < p < 1) is not a valid matrix
norm as it does not admit the triangular inequality. However, for simplicity, we term it a matrix norm.
Moreover, the l2,p matrix pseudo norm is not convex or Lipschitz continuous as the lp-norm (0 < p < 1)
is neither convex nor Lipschitz continuous.

2.3. Capped L2,1-norm NMF

To decrease the influence of extreme outliers, Gao et al. propose capped l2,1-norm based NMF,
whose optimization problem is defined as follows [46]:

min
U,V

n∑
i=1

min{∥xi − Uvi∥2 , θ}, s.t. U ≥ 0,V ≥ 0. (2.6)

where θ > 0 is a thresholding parameter to choose the extreme data outliers. In capped l2,1-norm
based NMF, if the residual error of a data point ∥xi − Uvi∥ > θ, then data point xi is determined as an
extreme outlier and its residual is capped as θ to fix its effect on the whole model. For other data points
∥xi − Uvi∥ < θ, the algorithm calculates the residual error using l1-norm, which is also robust to regular
data outliers. Moreover, θ is set according to the ratio of outliers. With an extra thresholding parameter
θ to select extreme data outliers and cap their influence, capped l2,1-norm based NMF is more robust
than l2,1-norm based NMF .

2.4. Hyper-graph regularization

With the development of graph theory, hyper-graph regularization has been widely used. Unlike
graph regularization only considers the pairwise relationships between two samples or two features,
hyper graph regularization considers the relationships between multiple samples or multiple features.
Specifically, an edge of graph connects two nodes while an edge of hyper graph connects multiple
nodes. Therefore, using hyper-graph prevents the forced conversion of multivariate relationships into
binary relationships and explores the high-order information in sample space and feature space [43].

Hyper-graph G = (V, E,W) consists of vertex set V , hyper-edge set E and diagonal hyper-edge
weight matrix W. The incidence matrix H ∈ R|V |×|E| is defined as follows:
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H(v, e) =

1, i f v ∈ e;
0, i f v < e.

(2.7)

Wi represents the weight of hyper-edge ei. The calculation method of Wi depends on the specific
situation. Denote Vx and Vy represent the sample points Xx and Xy, respectively. In this paper, Wi is
defined as:

Wi =
∑

Vx,Vy∈ei

exp
(
−
∥Vx − Vy∥

2
2

σ2

)
(2.8)

where σ2 is defined as:

σ2 =
∑

Vx,Vy∈ei

∥Vx − Vy∥
2
2

k
(2.9)

where parameter k represents the value of k-nearest neighbors for each vertex.
The degree of vertex v is expressed as:

d(v) =
∑
e∈E

w(e)H(w, e) (2.10)

The degree of edge e is defined as:

f (e) =
∑
v∈V

H(w, e) (2.11)

Given diagonal matrix Dv composed of d(v) and diagonal matrix De composed of f (e), the
unnormalized hyper-graph Laplacian matrix Lhyper is defined as:

S = HW D−1
e H−1

Lhyper = Dv − S
(2.12)

3. The proposed model

In this section, a novel algorithm called RCHNMTF is proposed. After that, an efficient
optimization algorithm is designed. The computational complexity analysis of RCHNMTF and
comparison algorithms are discussed subsequently. Figure 1 shows the framework of RCHNMTF.
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Figure 1. The framework of RCHNMTF: (a) X ∈ Rm×n is a data matrix and its outlier sample
point xi is colored dark brown. The outlier sample point can contaminate the decomposed
matrices U, B,V thoroughly and accordingly reduce the clustering performance. However,
as RCHNMTF utilizing capped norm to limit the influence of outlier sample points, only a
small part of decomposed matrices U, B,V is influenced, which is also colored dark brown;
(b) let Vn denote vertex n and en denote hyper-edge n, the dual hyper-graph regularization
constructs dual hyper-graph for sample manifold and feature manifold to obtain geometric
information of data X; (c) the orthogonality constraints of matrices U,V guarantee a unique
and sparse solution.

3.1. Problem formulation

The optimization problem of NMTF with capped l2,p-norm is formulated as follows:

min
U,B,V

n∑
i=1

min{
∥∥∥(X − UBVT)i

∥∥∥p

2
, θ}

s.t.U ≥ 0, B ≥ 0,V ≥ 0, p ∈ (0, 1].

(3.1)

where θ denotes a thresholding parameter.
In optimization problem (3.1),

∑n
i=1 min{

∥∥∥(X − UBVT)i

∥∥∥p

2
, θ} indicates using capped l2,p-norm to

measure the residual error of each point. If the residual error
∥∥∥(X − UBVT)i

∥∥∥p

2
of data point xi is

bigger than θ, data point xi is determined as extreme outliers and its residual error is capped. The
influence of outlier sample point xi to the whole model is decreased by capping its residual error. For
other data points whose residual error

∥∥∥(X − UBVT)i

∥∥∥p

2
< θ, the optimization problem will minimize∑n

i=1

∥∥∥(X − UBVT)i

∥∥∥p

2
, which is also robust as it calculates the residual error of each sample point to

the p-th power, compared with Forbenius norm in original NMF measures the residual error to the
power of 2. Therefore, utilizing capped l2,p -norm, the proposed algorithm can decrease the influence
of extreme outliers and have good robustness.

To adopt geometric information of data space and sample space, dual hyper-graph regularization is
incorporated to optimization problem (3.1). Let LU

hyper and LV
hyper represent the unnormalized hyper-

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12486–12509.



12492

graph Laplacian matrix of matrix U and V, respectively. With hyper-graph Laplacian matrix LU
hyper and

LV
hyper, we extend the optimization problem as:

min
U,B,V

n∑
i=1

min{
∥∥∥(X − UBVT)i

∥∥∥p

2
, θ} + αTr(VT LV

hyperV)

+αTr(UT LU
hyperU) s.t. U ≥ 0, B ≥ 0,V ≥ 0, p ∈ (0, 1].

(3.2)

where Tr(·) denotes the trace of a matrix and α denotes dual hyper-graph regularization parameter.
The dual hyper-graph regularization is formulated as αTr(VT LV

hyperV) + αTr(UT LU
hyperU). Dual hyper-

graph regularization utilizes two nearest neighbor hyper-graphs to exploit the geometric structure of
the sample manifold and feature manifold.

Orthogonality constraints in NMTF is important as orthogonality constraints lead to a sparse and
unique solution. To guarantee orthogonality of matrix U and V, orthogonality penalty terms
β
∥∥∥UT U − IK

∥∥∥2

F
and β

∥∥∥VT V − IK

∥∥∥2

F
are added to the optimization problem:

min
U,B,V

n∑
i=1

min{
∥∥∥(X − UBVT)i

∥∥∥p

2
, θ} + αTr(VT LV

hyperV)

+αTr(UT LU
hyperU) + β

∥∥∥UT U − IK

∥∥∥2

F
+ β

∥∥∥VT V − IK

∥∥∥2

F

s.t. U ≥ 0, B ≥ 0,V ≥ 0, p ∈ (0, 1].

(3.3)

where β ≥ 0 denotes orthogonality parameter.

3.2. Optimization of RCHNMTF

First, the following equation can be easily proved:∥∥∥X − UBVT
∥∥∥p

2,p
= Tr((X − UBVT)H(X − UBVT)T ), p ∈ (0, 1]. (3.4)

where H is the diagonal matrix whose i -th diagonal element is calculated as:

hii =
1

∥(X − UBVT )i∥
2−p
2

(3.5)

It is apparent that optimization problem (3.3) is a non-convex optimization problem, so it is not
easy to solve the optimization problem (3.3) directly. The optimization problem (3.3) is reformulated
as follows:

min
U,B,V

Tr
((

X − UBVT
)

D
(
X − UBVT

)T
)
+ αTr(VT LV

hyperV)

+ αTr(UT LU
hyperU) + β

∥∥∥UT U − Ik

∥∥∥2

F
+ β

∥∥∥VT V − Ik

∥∥∥2

F

s.t. U ≥ 0, B ≥ 0,V ≥ 0, p ∈ (0, 1].

(3.6)

where Ik is the a × a identity matrix and D is the diagonal matrix whose i-th diagonal element is
calculated as:

dii =


1

∥(X − UBVT )i∥
2−p
2

, i f
∥∥∥(X − UBVT )i

∥∥∥2−p

2
< θ;

0, otherwise.
(3.7)
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3.3. Update rules of RCHNMF

Considering ||X||2F = Tr(XXT ), the optimization problem (3.6) is rewritten as follows:

min
U,B,V

Tr
(
X DXT

)
− 2Tr

(
UBVT DXT

)
+ Tr

(
UBVT DVBT UT

)
+ αTr

(
VT LV

hyperV
)
+ αTr

(
UT LU

hyperU
)

+ βTr
(
UT UUT U − 2UT U + Ik

)
+ βTr

(
VT VVT V − 2VT V + Ik

)
(3.8)

Optimization problem (3.8) can be solved by multiplicative iteration method. Let ϕ = [ϕ jk] ∈ Rm×k
≥0 ,

ω = [ωkk′] ∈ Rk×k
≥0 , ψ = [ψik] ∈ Rn×k

≥0 be the Lagrange multipliers for U, B, V respectively, Lagrange
function L is obtained as follows:

L = Tr
(
X DXT

)
− 2Tr

(
UBVT DXT

)
+ Tr

(
UBVT DVBT UT

)
+ αTr

(
VT LV

hyperV
)
+ αTr

(
UT LU

hyperU
)

+ βTr
(
UT UUT U − 2UT U + Ik

)
+ βTr

(
VT VVT V − 2VT V + Ik

)
+ Tr

(
ϕUT

)
+ Tr

(
ωBT

)
+ Tr

(
ψVT

)
(3.9)

The partial derivatives of L with respect to U, B and V are as follows:

∂L

∂U
= −2X DVBT + 2UBVT DVBT

+ 2αLU
hyper + 4β(UUT U − U) + ϕ

(3.10)

∂L

∂B
= −2UT X DV + 2UT UBVT DV + ω (3.11)

∂L

∂V
= −2DXT UB + 2DVBT UT UB

+ 2αLV
hyper + 4β(VVT V − V) + ψ

(3.12)

Considering that LU
hyper and LV

hyper are not non-negative matrices, we refer to (2.12) and define non-
negative matrices DU

hyper, SU
hyper, DV

hyper, SV
hyper as follows:

LU
hyper = DU

hyper − SU
hyper

LV
hyper = DV

hyper − SV
hyper

(3.13)

Using the KKT condition ϕU = 0, ωB = 0, and βV = 0, we have:

−(X DVBT + αSU
hyperU + 2βU) jku jk

+(UBVT DVBT + αDU
hyperU + 2βUUT U) jku jk = 0

(3.14)

−(UT X DV)kk′bkk′ + (UT UBVT DV)kk′bkk′ = 0 (3.15)
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−(DXT UB + αSV
hyperV + 2βV)ikvik

+(DVBT UT UB + αDV
hyperV + 2βVVT V)ikvik = 0

(3.16)

According to the above equations, the multiplicative update rules of RCHNMTF are as follows:

u jk ← u jk

(X DVBT + αSU
hyperU + 2βU) jk

(UBVT DVBT + αDU
hyperU + 2βUUT U) jk

(3.17)

bkk′ ← bkk′
(UT X DV)kk′

(UT UBVT DV)kk′
(3.18)

vik ← vik

(DXT UB + αSV
hyperV + 2βV)ik

(DVBT UT UB + αDV
hyperV + 2βVVT V)ik

(3.19)

Algorithm 1 Alternative iteration algorithm for RCHNMTF
Input: Data matrix X ∈ Rm×n, parameter α, β, k.
Output: U ∈ Rm×k, V ∈ Rn×k

1: Initialize U ≥ 0, B ≥ 0,V ≥ 0
2: Initialize matrix D based on Eq (3.7)
3: Repeat:
4: Calculate matrix D based on Eq (3.7)
5: Update U based on Eq (3.17)
6: Update B based on Eq (3.18)
7: Update V based on Eq (3.19)
8: Until Converges
9: Return U,V

10: Apply K-means clustering method to U,V to get learned cluster label information.

3.4. Computational complexity analysis

In this part, the computational complexity of the proposed RCHNMTF algorithm and comparison
algorithms are calculated and presented. The computational complexity of NMF is also added for
reference. To accurately present the computational complexity of RCHNMTF and comparison
algorithms, big O notation and three arithmetic operations, namely addition, multiplication and
division, are adopted. Table 1 shows the detailed computational complexity information of each
algorithm in each iteration. It can be seen that the extra factorization matrix, graph regularization,
hyper-graph regularization and orthogonality constraints will all increase the computational
complexity. However, these extra term will not dramatically affect the runtime of algorithms. It can be
explained by two reasons. First, if measured by big O notation, the computational complexity of all
algorithms are O(mnk). Second, considering k << min (m, n), mnk term counts much in
computational complexity analysis and the coefficient of mnk term in RCHNMTF is not high, which
indicates the computational complexity of RCHNMTF is not high. Moreover, compared with other
M-estimator based NMF algorithms, the computational complexity of capped lq,p-norm are small
(e.g., correntropy based NMF algorithms require exponential operation). If calculate the
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computational complexity of RCHNMTF algorithm from the beggining to the n-th iterations, then the
computational complexity of RCHNMTF is O(tmnk + mn2 + nm2), due to the extra O(mn2 + nm2)
from constructing dual hyper-graph in feature space and sample space.

Table 1. Computational complexity comparison.

floating point addition floating point multiplication floating
point
division

overall

CNMTF 5mnk + 9mk2 + 6nk2 + 2k3 +

11mk + 5nk + (m + n)pk
5mnk + 9mk2 + 6nk2 + 2k3 +

8mk + 2nk + k2 + (m + n)pK
mk + nk +
k2

O(mnk)

CHNMF 2mnk + 2mk2 + 2nk2 + 4mk +
3nk + npk

2mnk + 2mk2 + 2nk2 + 5mk +
2nk + npk

mk + nk O(mnk)

DNMF 2mnk + 2mk2 + 2nk2 + 3mk +
3nk + (m + n)pk

2mnk + 2mk2 + 2nk2 + 2mk +
2nk + (m + n)pk

mk + nk O(mnk)

GNMF 2mnk + 2mk2 + 2nk2 + mk +
3nk + npk

2mnk + 2mk2 + 2nk2 + mk +
2nk + npk

mk + nk O(mnk)

HNMF 2mnk + 2mk2 + 2nk2 + mk +
3nk + mpk

2mnk + 2mk2 + 2nk2 + mk +
2nk + npk

mk + nk O(mnk)

RHNMF 2mnk+2mk2+2nk2+7nk+npk 2mnk + 2mk2 + 2nk2 + mk +
6nk + npp

mk + nk O(mnk)

CaNMF 3mnk + mk2 + 3nk2 + 4nk 3mnk+mk2+3nk2+mk+5nk mk + nk O(mnk)
DHSNMF 2mnk + 2mk2 + 2nk2 + 3mk +

3nk + (m + n)pk
2mnk + 2mk2 + 2nk2 + 2mk +
2nk + (m + n)pk

mk + nk O(mnk)

RCHNMTF 3mnk + 8mk2 + 5nk2 + 6k3 +

5mk + 11nk + (m + n)pk
3mnk + 8mk2 + 5nk2 + 6k3 +

2mk + 8nk + k2 + (m + n)pk
mk + nk +
k2

O(mnk)

4. Experiments

In this section, RCHNMTF algorithm is compared with eight state-of-the-art algorithms on seven
datasets (i.e., AR100*, ORL†, YALE‡, PIE§, MSRA25¶, PENDIGITS∥ and COIL100**) to verify the
effectiveness and robustness of the proposed algorithm.

4.1. Experiments setting

4.1.1. Datasets

Seven real-world datasets are used in the experiment. The description of these datasets can be found
in Table 2. Besides, to simulate the situation in reality where parts of sample points are affected by noise

*http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
†http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att faces.tar.Z
‡http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
§https://www.ri.cmu.edu/publications/the-cmu-pose-illumination-and-expression-pie-database-of-human-faces
¶http://www.escience.cn/people/fpnie/index.html
∥http://archive.ics.uci.edu/ml/datasets/pen-based+recognition+of+

handwritten+digits
**https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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and outliers, four contaminated datasets are produced by adding noise to parts of the sample points of
the original dataset while leaving the other data points unchanged. Specifically, the formulations are:
1) The last 5 images of each class in PIE dataset are noised by Gaussian noise with mean 0 and variance
V = 0.1, 0.2, 0.3, 0.4, 0.5; 2) The last 4 images of each class in YALE dataset are contaminated with
Speckle noise with mean 0 and variance V = 0.08, 0.16, 0.24, 0.32, 0.4; 3) The last 2 images of each
class in ORL dataset are polluted by a × a-blocks noise with a = 6, 7, 8, 9, 10; 4) The last 2 images of
each class in ORL dataset are contaminated by Salt & Pepper noise with noise density D = 10, 20, 30,
40, 50%. Figure 2 shows the example class of each polluted datasets.

Table 2. Datasets description.

Datasets Sample Feature Class Data types
AR100 1300 1024 100 Face Image
ORL 400 1024 40 Face Image
YALE 165 1024 15 Face Image
PIE 1166 1024 53 Face Image
MSRA25 1799 256 12 Face Image
PENDIGITS 10992 16 10 Handwritten digits
COIL100 7200 1024 100 Object image

(a)

(b)

(c)

(d)

Figure 2. Sample class of polluted datasets: (a) an example class from PIE dataset and its last
5 images are contaminated by Gaussian noise with mean 0 and variance 0.5; (b) an example
class from YALE dataset and its last 4 images are polluted by Speckle noise with mean 0
and variance 0.4; (c) an example class from ORL dataset with its last 2 images polluted
by 10 × 10-blocks noise. (d) an example class from ORL dataset and its last 2 images are
contaminated by Salt & Pepper noise with noise density D = 50%;
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4.1.2. Comparison algorithms

The proposed RCHNMTF algorithm are compared with eight state-of-the-art algorithms to verify
its clustering performance and robustness, which are listed as follows:

1). CNMTF [50]. A correntropy based NMTF combines dual graph regularization and orthogonal
constraints.

2). CHNMF [7]. It incorporates correntropy and hyper-graph regularization into NMF.
3). DNMF [17]. It utilizes dual graph regularization to learn the geometrical information of the

sample manifold and the feature manifold.
4). GNMF [35]. It constructs a single graph to consider the geometrical information of the sample

manifold.
5). HNMF [43]. A hyper-graph regularized NMF constructs a hyper-graph to explore the

geometrical information of the sample manifold.
6). RHNMF [8]. A robust NMF utilizes l2,1-norm and hyper-graph regularization.
7). CaNMF [46]. A robust NMF adopts capped norm to cap the residual error of extreme outliers.
8). DHSNMF [51]. A robust dual hyper-graph regularized supervised NMF. To compare DHSNMF

with other unsupervised algorithms in a fair way, the label information parameter of DHSNMF is set
to 0 specifically.

4.1.3. Evaluation metrics

To evaluate the performance and robustness of RCHNMTF and comparison algorithms in a sound
manner, three evaluation metrics, namely purity (PUR) , normalized mutual information (NMI) and
accuracy (ACC) are introduced.

Purity demonstrates how well each cluster contains sample from primarily one, which is defined as
follows:

Purity =
1
N

N∑
j=1

max(n j
i ) (4.1)

where n j
i denotes the sample in cluster i that also belongs to original class j.

NMI calculates the shared information of two clusters and it expresses the degree of agreement
between the two clusters. Given the ground truth cluster C and the cluster C from clustering algorithm
result, NMI of C and C is calculated as follows:

NMI =
MI(C,C)

max(H(C),H(C))
(4.2)

where MI(C,C) denotes the mutual information of the cluster C and C, H(C) and H(C) are the
entropies of C and C, respectively.

Given ground truth label li and the learned cluster label ri, accuracy is defined as follows:

ACC =
∑N

n=1 δ(ln,map(rn))
n

(4.3)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise. Mapping function Map(·) is solved by Hungarian
algorithm [52]. For the mentioned evaluation metrics PUR, NMI and ACC, the higher they are, the
better clustering performance the algorithm is.
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4.1.4. Experimental setup

In this part, experiments setup are reported in detail. The dimension k of the B ∈ Rk×k is adjusted
to be the same as the number of real classes for all datasets. K-nearest neighbor method is applied
to construct graph and hyper-graph in graph regularized and hyper-graph regularized algorithms. The
nearest neighbor parameter p in k-nearest neighbor method is set to 5 empirically. HeatKernel method
is adopted to assign weights for each edge of a graph. For hyper-graph, the weight of a hyper-edge
is calculated by (2.8). Parameter θ is not fixed but set according to the outliers radio s. Outliers ratio
s denotes the ratio of outlier samples to the whole sample. Specifically, in the first five iterations,
the outlier data with the largest l2,p loss at a ratio of s are selected to determine θ. To better reduce
the influence of extreme sample points, s is set to 0.05 and 0.1 for unpolluted real-world datasets and
polluted real-world datasets, respectively. Additionally, dual hyper-graph regularization parameter α
in RCHNMTF is tuned as 100 and orthogonality parameter β is set to 0.01. Moreover, the parameter
p in the capped l2,p-norm is set to 0.5 to achieve good clustering performance and robustness. The
parameters of the comparison algorithms are set according to the default given values. Matrices U, B,V
are initialized randomly and we run each method on different datasets 20 times. After decomposition
to obtain low-dimensional representation matrix V, we apply k-means method to V to get clustering
performance measured by PUR, NMI and ACC.

4.2. Experiment results

To testify the clustering performance of RCHNMTF, RCHNMTF and eight comparison algorithms
are first experimented on seven real-world datasets. Tables 3–5 demonstrate the clustering performance
on seven real-world datasets measured by PUR, NMI and ACC. Figures 3–6 present the clustering
performance on polluted datasets. Figure 7 shows the convergent results on seven datasets. To validate
the robustness of RCHNMTF, RCHNMTF and the comparison algorithms are further experimented on
four contaminated datasets. From the experiment results on seven real-world datasets and four polluted
datasets, the following conclusions are obtained:

1) RCHNMTF outperforms other algorithms on most original datasets (e.g., AR100, PIE, ORL,
MSRA25, PENDIGITS, COIL100). The reasons are as follows: i.) Capped l2,p-norm can alleviate
the impact caused by the noise and outliers inherent in the original datasets; ii.) Dual hyper-graph
regularization helps RCHNMTF to obtain intrinsic geometrical information of feature manifold and
data manifold; iii.) Orthogonal NMTF framework provides a decomposed results with more degree of
freedom and enables RCHNMTF to learn a unique decomposition result.

2) The algorithms which utilize lq,p-norm or capped lq,p-norm (e.g., RHNMF, CaNMF, RCHNMTF)
are more robust than other algorithms as the former calculates the residual error of each sample point.
When parts of sample points are contaminated, lq,p-norm and capped lq,p-norm are able to distinguish
the polluted sample points and reduces the influence of outlier sample points. Moreover, RCHNMTF
is more robust to CaNMF and RHNMF because capped l2,p-norm caps the residual error of extreme
outlier points and uses l2,0.5-norm to calculate the residual error of other data, which can alleviate the
impact of outlier points as much as possible. Therefore, RCHNMTF outperforms other algorithms
when the dataset has extreme outliers.

3) The convergence curve in Figure 7 shows the convergence results of RCHNMTF.
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Table 3. Clustering accuracy and standard deviation (accuracy ± standard deviation) on
different datasets.

Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100

CNMTF [50] 48.78±1.24 70.00±2.18 63.92±2.81 57.31±4.16 47.03±2.42 73.44±3.17 47.72±1.17
CHNMF [7] 52.28±1.37 74.83±1.60 62.56±1.54 57.42±2.16 46.42±2.10 67.12±4.06 47.86±1.55
DNMF [17] 59.70±1.47 77.87±2.71 60.94±1.88 54.78±2.84 42.42±3.18 73.64±4.45 54.81±2.14
GNMF [35] 58.14±1.63 78.73±1.95 63.44±2.99 53.00±2.66 42.24±3.12 71.00±5.19 55.33±1.10
HNMF [43] 55.43±1.57 76.44±2.81 64.05±1.67 55.04±1.87 42.60±2.42 73.24±5.46 58.00±1.29
RHNMF [8] 59.05±1.22 78.49±2.21 63.05±1.50 54.37±1.78 47.93±1.39 71.46±6.22 50.62±1.58
DHSNMF [51] 55.96±1.77 75.28±2.58 65.12±1.58 52.57±1.998 43.15±2.58 70.27±4.32 51.91±1.34
RCHNMTF 60.08±1.91 80.04±2.44 65.50±2.31 59.13±2.72 45.33±2.39 74.24±2.91 58.26±1.64

Table 4. Purity (purity± standard deviation) on different datasets.

Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100

CNMTF [50] 51.98±1.37 74.10±1.63 69.12±1.96 58.84±3.63 48.00±2.70 75.13±2.71 51.91±1.06
CHNMF [7] 55.79±1.42 78.30±1.41 67.36±1.57 59.57±1.49 47.21±2.25 70.22±3.02 52.73±1.34
DNMF [17] 62.99±1.23 81.50±2.02 67.02±1.50 56.85±2.31 43.87±2.53 75.56±3.37 58.83±1.59
GNMF [35] 61.20±1.45 82.50±1.85 68.34±1.73 55.05±2.03 43.75±2.90 73.61±3.31 59.12±0.84
HNMF [43] 58.37±1.54 80.64±2.07 68.25±1.55 57.67±1.25 43.87±2.06 74.86±3.58 62.35±0.93
RHNMF [8] 61.52±0.78 79.53±2.39 68.10±1.56 61.11±3.73 44.97±1.81 74.38±2.78 55.78±1.16
CaNMF [46] 61.96±0.99 81.97±1.81 66.75±1.31 56.81±1.63 48.66±1.64 73.42±4.53 53.36±1.18
DHSNMF [51] 58.89±1.46 79.19±1.95 69.20±1.33 55.53±1.88 44.06±2.08 72.48±2.84 56.30±1.21
RCHNMTF 62.50±1.64 83.35±1.68 69.61±2.01 61.22±2.82 46.48±2.40 75.87±2.67 62.75±1.44

Table 5. Normalized mutual information (NMI± standard deviation) on different datasets.

Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100

CNMTF [50] 75.85±1.24 83.37±1.22 82.35±1.28 61.77±3.72 51.68±2.37 71.10±2.55 74.99±0.55
CHNMF [7] 78.41±0.72 86.29±1.11 80.48±0.79 63.61±2.46 51.70±2.24 65.52±2.22 75.43±0.31
DNMF [17] 82.54±0.54 88.48±1.11 82.56±0.37 60.87±2.19 48.26±2.11 69.61±2.98 81.77±0.32
GNMF [35] 82.15±0.78 89.52±1.47 81.70±1.29 59.03±1.71 48.02±1.72 69.63±1.23 81.65±0.24
HNMF [43] 80.62±0.96 88.54±1.27 80.87±0.88 60.85±1.84 47.83±1.38 70.33±1.31 78.29±0.81
RHNMF [8] 82.31±0.20 87.21±1.42 80.69±0.93 63.92±3.28 49.38±2.10 69.81±1.43 78.27±0.18
CaNMF [46] 82.08±0.50 88.53±1.20 79.74±0.70 59.68±1.95 51.51±1.41 68.85±3.42 76.18±0.46
DHSNMF [51] 79.8±0.64 87.54±1.03 81.84±1.13 60.45±2.79 48.33±1.43 68.10±1.71 77.00±0.45
RCHNMTF 82.56±0.77 89.64±0.99 81.84±0.56 64.92±2.28 50.46±1.08 67.46±2.36 80.78±0.67
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Figure 3. Clustering results on ORL dataset contaminated by Salt & Pepper noise.

Table 6. Tunning p on different datasets.

Accuracy under different values of p
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100
p = 0.75 58.67 77.83 63.25 52.15 44.72 66.88 54.975
p = 0.5 60.08 80.04 65.50 59.13 45.33 74.24 58.26
p = 0.25 59.09 77.39 63.0 54.43 43.515 70.63 58.50

Purity under different values of p
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100
p = 0.75 61.40 81.32 67.7 55.23 46.42 69.22 59.48
p = 0.5 62.50 83.35 69.61 61.22 46.48 75.87 62.75
p = 0.25 61.75 81.02 67.95 56.77 44.24 71.78 62.91

NMI under different values of p
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100
p = 0.75 82.68 87.90 80.665 58.24 49.94 65.61 78.83
p = 0.5 82.56 89.64 81.84 64.92 50.46 67.46 81.78
p = 0.25 83.24 88.50 80.67 60.42 48.18 66.29 80.61
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Figure 4. Clustering results on ORL dataset contaminated by block noise.

Table 7. Ablation experiments.

RCHNMTF without dual hyper-graph regularization
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100
PUR 53.93 79.14 58.85 55.22 44.84 70.34 26.05
NMI 76.76 86.69 73.89 58.14 49.43 64.54 58.28
ACC 51.33 75.48 55.40 53.61 43.75 69.62 24.02

RCHNMTF without orthogonality constraints
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100
PUR 33.82 78.21 67.10 46.51 39.39 61.50 29.03
NMI 61.54 86.31 80.15 51.28 45.32 56.48 48.43
ACC 30.32 74.97 62.75 43.46 37.57 60.78 24.33

RCHNMTF with dual hyper-graph regularization and orthogonality constraints
Datasets AR100 PIE ORL MSRA YALE PENDIGITS COIL100

PUR 62.50 83.35 69.61 61.22 46.48 75.87 62.75
NMI 82.56 89.64 81.84 64.92 50.46 67.46 81.78
ACC 60.08 80.04 65.50 59.13 45.33 74.24 58.26
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Figure 5. Clustering results on PIE dataset contaminated by Gaussian noise.

4.3. Parameter selection

Parameter selection are crucial to RCHNMTF algorithm. The main parameters in RCHNMTF
are p in capped l2,p-norm, outlier ratio s, thresholding parameter θ, hyper-graph graph regularization
parameter α and orthogonality constrains parameter β. During the experiments, α and β are fixed as
100 and 0.01 [8, 50]. The value of θ is set according to the ratio of the outliers s. Specifically, in the
first five iterations, we select outlier data with the largest l2,p loss at a ratio of s and the value of l2,p

loss is assigned to θ. By this means, outlier data with the largest l2,p loss is capped and its impact to
the whole model is reduced. In parameter selection, s and p are adjusted to find their optimal values.
Figure 8 shows the clustering accuracy on different datasets with s ranging in {0, 0.05, 0.1, 0.15, 0.2}.
Table 6 demonstrates the clustering performance with p ranging in {0.25, 0.5, 0.75}. The conclusions
are as follows:

1) Compared with uncapped l2,p-norm, a proper value of s in capped l2,p-norm can improve
clustering performance on both original and noised datasets (e.g., s = 0.05 for original datasets and
s = 0.1 for noised datasets), because the residual error of intrinsic noised points in original real-world
datasets and the formulated outlier sample points in noised datasets are capped and thus the influence
of noise and outliers are decreased. However, relatively large s will reduce the clustering
performance, as the unpolluted sample points are misidentified as outlier sample points.

2) RCHNMTF with p = 0.5 is better than the ones with p = 0.75 and p = 0.25. Given that l2,p-norm
calculates the residual error of each sample points to the p-th power, a relatively large p will decrease
the robustness of capped l2,p-norm while a relatively small p will blur the difference between normal
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sample points and outlier sample points.
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Figure 6. Clustering results on YALE dataset contaminated by Speckle noise.
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Figure 7. Convergence results on seven datasets.
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Figure 8. Tuning outlier ratio s.

4.4. Ablation study

In this subsection, ablation study is made to demonstrate the superiority of dual hyper-graph
regularization and orthogonality constraints. Table 7 records the ablation study of RCHNMTF for
three cases: 1) without dual hyper-graph regularization; 2)without orthogonality constraints; 3) with
dual hyper-graph regularization and orthogonality constraints. α and β are accordingly set to: 1) 0 and
0.01; 2) 100 and 0; 3) 100 and 0.01. From Table 7, we can learn that both hyper-graph regularization
and orthogonality constraints will improve the clustering performance of RCHNMTF.

5. Conclusions and feature work

In this paper, the robustness of NMTF is improved by introducing capped l2,p-norm to cap the
extreme outlier points. Dual hyper-graph is constructed to encode the high-dimensional geometrical
information of the sample space and feature space. ONMTF framework is incorporated to RCHNMTF
to get unique clustering solution and improve clustering performance. To solve the formulated problem,
the optimization problem is rewritten and an alternative algorithm is designed. The computational
complexity of RCHNMTF and comparison algorithms are thoroughly analyzed. Abundant experiments
verify that RCHNMTF performs well on real-world datasets and performs better on datasets with
extreme outliers.

Although RCHNMTF is robust and has good clustering performance, it still has some limitations.
Firstly, RCHNMTF has many parameters, which makes adjusting parameters troublesome. Secondly,
though the first term in (3.3) can distinguish and cap outlier sample points, the orthogonal penalty
term and hyper-graph regularization term regard outlier sample points as normal sample points and
can not cap the influence of outliers. In the future, several investigations will be conducted to improve
RCHNMTF:

1) Systematic mechanisms for simplifying parameter selections are needed.
2) The orthogonality penalty term and hyper-graph regularization term also need to be optimized

for finding and capping outlier sample points.
3) Multi-view clustering is popular in machine learning field as multi-view clustering can analyze
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multi-view data [53–62]. It is worth the time to utilize RCHNMTF in multi-view clustering field.
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