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Abstract: This paper investigates the fault tolerance problem of flexible satellites subject to actuator
faults and multiple disturbances. An adaptive sliding mode fault tolerant control (ASMFTC) approach
based on Takagi-Sugeno (T-S) fuzzy disturbance observer (TSFDO) is presented for attitude control
system (ACS) under loss of actuator effectiveness, environmental disturbance torque and elastic modal
generated by flexible appendages. Compared with the traditional disturbance observer based con-
trol (DOBC) methods, the T-S fuzzy technology is applied to estimate the unknown nonlinear elastic
modal. Then, the energy bounded disturbance is eliminated by designing an adaptive sliding mode
controller. The proposed ASMFTC design can guarantee the sliding surface to approach zero. Fi-
nally, the effectiveness of the control method proposed in this paper is further verified by comparative
simulation.
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1. Introduction

The rapid advancement of space technology and the growing demand for aerospace applications, a
new generation of satellites, space stations, manned spacecrafts and space probes generally have large
flexible accessories such as solar panels, mechanical arms and antennas [1, 2]. Nowadays, one of the
most cutting-edge science and technology in the world is aerospace technology. With the complexity
and diversity of space missions, the attitude control of flexible satellites is required to be more accurate.
Therefore, there is no doubt that ACS is playing an important role in various satellite subsystems [3].
High-precision attitude control algorithms often determine the success or failure of scientific tasks.
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Robust control [4], PD (proportional-derivative) control [5], sliding mode control (SMC) technology
[6] and ACS [7, 8] have been commonly used in the ACS of flexible satellites.

In addition, exogenous disturbances widely exist in robotic manipulators [9], aerospace systems
and motion control systems [10] and so on. In order to protect the system performance from external
disturbances, many scholars have adopted different methods to solve the anti-disturbance control prob-
lems in ACS [11,12]. For the framework of DOBC, an observer is designed to estimate some unknown
disturbances and then equivalently compensate the disturbances in the controller [13, 14]. However,
the existing DOBC method cannot accurately describe nonlinear or irregular disturbances. Therefore,
it is particularly important to study a new disturbance modeling method. Reference [15] has a very
interesting research work, an event-triggered anti-disturbance attitude control approach is proposed for
the ACS with multiple disturbances. Meanwhile, a disturbance observer is designed to estimate uncer-
tain modeling disturbance and norm-bounded equivalent disturbance, and its effectiveness is verified
by simulation. In [16–18], the TSFDO was used to describe some irregular and nonlinear disturbances.
Compared with the traditional disturbance observer approaches, T-S fuzzy disturbance observers can
effectively estimate nonlinear disturbances.

In the past decades, fault-tolerant control (FTC) has become a research hotspot in the field of
aerospace, and it is also an effective way to improve the reliability of satellite ACS [19]. Satellites
that have been in orbit for a long time are likely to fail [20–22]. In [23], an adaptive variable structural
FTC scheme is introduced to address sensors and thrusters faults in spacecraft formations. In [24], the
synthesis of reliable state feedback control for T-S fuzzy systems with sensor multiplicative faults is
studied. Different from the existing research on sensor failure, the influence of sensor failure on the
premise variables is taken into account. In [25], an adaptive FTC approach based on disturbance ob-
server is presented for ACS with actuator faults, elastic modal and environmental disturbance torque. In
order to compensate for external disturbances, uncertainties and time-varying faults, a time-converged
robust sliding mode fault-tolerant controller (RSMFTC) is designed. Unlike general fault diagnosis
observers (FDO), the fault-tolerant controller did not require fault detection [26]. In [27], a fault di-
agnosis observer and a disturbance observer are proposed to observe the actuator failure and system
disturbances. Furthermore, an adaptive FTC method is proposed to improve the stability and reliabil-
ity of rigid satellites. In [28], based on a robust fault tolerant controller, system output can track the
desired signals for faulty nonlinear systems subject to parameter uncertainties and no full-state mea-
surements. An adaptive sliding mode fault-tolerant control scheme is proposed for flexible satellites
with saturation and partial failure of the actuator in [29], where an estimator and the neural network
are applied to estimate fault and the nonlinear dynamic, respectively.

This paper addresses an ASMFTC approach for for flexible satellite ACS subject to the loss of
actuator effectiveness and multiple disturbances. Compared to previous DOBC results [1, 30], the
disturbance is not restricted to be a constant or represented by a linear exo-system. In addition, com-
pared with references [1, 27], the multi-source disturbance caused by flexible accessories is taken into
account. Firstly, the T-S fuzzy model (TSFM) is applied to describe the irregular and nonlinear dis-
turbances caused by the elastic modal, and a fuzzy disturbance observer (FDO) is further designed to
estimate the elastic modal. Then, based on the TSFDO, an ASMFTC method is investigated for ACS of
flexible satellites. Finally, the simulation results show that the introduction of the disturbance observer
and the proposed ASMFTC method can guarantee that the system reaches a steady state quickly and
show the efficiency.
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Figure 1. The schematic diagram of a flexible satellite.

The main chapters in this paper are arranged as follows. In Section 2, the structural diagram of
flexible satellite is introduced, and the mathematical model with multi-source disturbances and partial
actuator failure is given. Meanwhile, the T-S fuzzy disturbance modeling is discussed and designed.
In Section 3, a TSFDO is designed to estimate the disturbance which generated by the elastic modal.
Then, an ASMFTC is constructed for a flexible satellite. In Section 4, the effectiveness of the control
method is verified by comparing simulation examples. Last but not the least, the concluding comments
in this paper can be found in Section 5.

2. Mathematical model and and problem description

2.1. Mathematical model

Flexible satellite system is more complex, usually composed of satellite body, flexible accessories,
attitude control system, electronic power system, power system, etc. Among them, attitude control
system is the most important subsystem (see Figure 1). The mathematical model of a flexible satellite
includes a flexible appendage and a rigid body structure [25, 31]. The Lagrange method is used to
describe the attitude dynamics equation as

 Jθ̈ + Hη̈ = Tz(t)

η̈ +Cη̇ + Eη + HT θ̈ = 0
(2.1)

where J is three-axis inertia moment. Variable θ represents three attitude angles. Tz(t) = Tc(t) +
Td(t) represent command control torques, including external disturbance torque Td(t) and control
torque Tc(t). H is the rigid-elastic coupling matrix and η is the flexible modal coordinate. E =
diag
{
n2

i , i = 1, 2, ..., n
}

represents the stiffness matrix, where ni (i = 1, 2, .....n) represent the modal fre-
quency. C = diag {2εini, i = 1, 2, ......n} is the damping matrix, where εi (i = 1, 2, ..., n) is the damping
ratio. The attitude dynamics equation (2.1) can be rewritten as the following matrix form by modal
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truncation of flexible structure.(
J − HHT

)
θ̈(t) = H(Cη̇ + Eη) + Tc(t) + Td(t) (2.2)

The disturbance d0(t) generated by the flexible appendages can be written as

d0(t) = H(Cη̇ + Eη) (2.3)

Define x(t) =
[
θT (t) θ̇T (t)

]T
. Taking into account the multiple disturbances and partial actuator

failure in the flexible satellite, Eq (2.2) can also be rewritten as

ẋ(t) = Ax(t) + B0
[
ρ(t)u(t) + d0(t)

]
+ B1d1(t) (2.4)

where x(t) is the state variable of the system, u(t) is the system control input and

A =
[

0 I
0 0

]
, B0 = B1 =

[
0

(J − HHT )−1

]
.

I is a unit matrix with suitable dimensions. d0(t) is the modelable disturbance generated by flex-
ible appendages. d1(t) is an equivalent energy bounded disturbance, which satisfies |d1(t)| ≤ d1.
Its upper bound d1 is positive and unknown. ρ(t) represents the actuator failure factor and ρ(t) =
diag
{
ρ1(t) ρ2(t) ρ3(t)

}
, 0 < ρi ≤ 1, i = 1, 2, 3. It is worth noting that ρi(t)=1 means the i − th

actuator is healthy, and 0 < ρi(t) < 1 means that the i− th actuator is working but partially fails. There-
fore, only partial failure and complete health of the actuator are considered here, Eq (2.4) is rewritten
as follows by a simple transformation.

ẋ(t) =Ax(t) + B0u(t) − B0∆ρ(t)u(t) + B0d0(t) + B1d1(t) (2.5)

where ∆ρ(t) = I − ρ(t). Here it can be assumed that ρ0 = min
i=1,2,3

ρi(t), then it can be concluded that

σ = ∥∆ρ(t)∥ = 1 − ρ0. Define eθ(t) = θd(t) − θ(t), where θd(t) represents the desired attitude and θ(t) is
the actual attitude. For clarity, eθ(t) is marked as eθ.

2.2. T-S Disturbance model

TSFDO is described by a set of fuzzy If-Then rules, and the nonlinear and irregular disturbance
d0(t) cannot be described by a linear external system [1,27]. Since T-S fuzzy model has strong approx-
imation ability, a TSFDO with r rule will be applied to approximate nonlinear interference d0(t).

Rule j: If ϑ1 is µ1 j, ϑ2 is µ2 j, · · · and ϑn is µn j, then ẇ(t) = W jw(t)

d0(t) = V jw(t)
(2.6)

where V j and W j are two known parameter matrices. ϑi and µi j (i = 1, · · · , n; j = 1, · · · , r) represent
the premise variables and the fuzzy sets. r is the number of If-Then rules and n is the number of
premise variables. The whole TSFM is obtained based on fuzzy blending.

ẇ(t) =
r∑

j=1

h j(ϑ j)W jw(t)

d0(t) =
r∑

j=1

h j(ϑ j)V jw(t)

(2.7)
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Figure 2. The diagram of the ACS for the flexible satellite.

where ϑ = [ϑ1, . . . , ϑn], h j (ϑ) = Υ j(ϑ)
r∑

j=1
Υ j(ϑ)

, Υ j (ϑ) =
n∏

i=1
µi j

(
ϑ j

)
, and µi j(·) is the grade of the membership

function of µi j. Here it can be supposed that

Υ j(ϑ) ≥ 0, j = 1, · · · , r,
r∑

j=1

Υ j(ϑ) > 0

for any ϑ. Therefore, h j(ϑ) satisfies the following formula

h j(ϑ) ≥ 0, j = 1, · · · , r,
∑r

j=1 h j(ϑ) = 1 .

Remark 1: It is noted that the existing DOBC approaches can observe some unknown constant and
harmonic signals [32, 33]. However, in practical control systems, the disturbance is usually irregular
or nonlinear. Therefore, the traditional DOBC method is no longer applicable. The main task of anti-
disturbance control is to compensate or weaken disturbance, just as T-S fuzzy observer has the ability
to estimate nonlinear or irregular disturbances [34,35]. In this paper, the TSFDM is applied to describe
the elastic modal with high precision.

2.3. Control objectives

In this paper, an ASMFTC method based on TSFDO is proposed to deal with the fault-tolerant
problem of flexible satellites under actuator failure and multiple disturbances. By designing Lya-
punov function and selecting appropriate control parameters, the sliding surface can be guaranteed
to approach zero. The effectiveness of the proposed ASMFTC can be further proved by simulation
verification. The diagram of the ACS for the flexible satellite as shown in Figure 2.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12700–12717.
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3. Anti-disturbance fault tolerant controller design

3.1. Design of T-S fuzzy disturbance observer

It can be obtained from Eq (2.7) and Remark 1, regular disturbance d0(t) can be easily estimated by
constructing T-S fuzzy disturbance observer

ε̇(t) =
r∑

j=1

h j(ϑ)(W j + L1B0V j)(ε(t) − L1x(t))

+ L1[Ax(t) + B0u(t)]
ŵ(t) =ε(t) − L1x(t)

d̂0(t) =
r∑

j=1

h j(ϑ)V jŵ(t)

(3.1)

where d̂0(t) is the estimation of d0(t). Matrix L1 is the unknown T-S fuzzy disturbance observer gain
to be designed later. ε(t) is the auxiliary function of design. The disturbance estimation error ew(t) is
defined as

ew(t) = w(t) − ŵ(t) (3.2)

From Eqs (2.4), (2.7) and (3.1), and computing the time derivative along the trajectory of Eq (2.7),
the disturbance estimation error equation satisfies

ėw(t) =
r∑

j=1

h j(ϑ)[(W j + L1B0V j)ew(t) − L1B0∆ρ(t)u(t) + L1B1d1(t)] (3.3)

Theorem 1: If there exist matrices P1 > 0, R satisfying

Ω j=

 sym
(
P1W j − RB1V j

) √
2RB0

√
2BT

0 RT −I

 < 0 (3.4)

j = 1, · · · , r, then with the disturbance observer gain matrix L1 = RP−1
1 , the estimation error system Eq

(3.3) is stable and ultimately uniformly bounded (UUB), where

sym(P1W j − RB1V j) = (P1W j − RB1V j) + (P1W j − RB1V j)T

Proof: Consider the following Lyapunov candidate function as

V1(t) = eT
w(t)P1ew(t) (3.5)

Computing the time derivative along the trajectory of Eq (3.3), it can be shown that

V̇1 (t) =2eT
w (t) P1ėw (t)

=2
r∑

j=1

h j (ϑ)eT
w (t) P1[(W j + L1B0V j)ew(t) − L1B0∆ρ(t)u(t) + L1B1d1(t)]
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≤2
r∑

j=1

h j (ϑ)eT
w (t) P1

(
W j + L1B0V j

)
ew (t) +

r∑
j=1

h j(ϑ)(uT (t)u(t) + d̄T
1 d̄1)

+2
r∑

j=1

h j (ϑ)eT
w (t) P1L1B0BT

0 LT
1 P1ew (t)

≤2
r∑

j=1

h j (ϑ)eT
w (t) (P1(W j + L1B0V j) + P1L1B0BT

0 LT
1 P1)ew(t) + ūT ū + d̄T

1 d̄1

=Ψa + eT
w(t)Γew(t)

(3.6)

where

Ψa = ūT ū + d̃T
1 d̃1 (3.7)

Γ = 2
r∑

j=1

h j(ϑ)
[
P1(W j + L1B0V j) + P1L1B0BT

0 LT
1 P1

]
(3.8)

Next by using Schur’s complement formula that if Ω j < 0, Ψa > 0 and Γ < 0, the estimation error
system ew(t) is stable and ultimately uniformly bounded.

3.2. Design of non-singular terminal sliding mode controller

In this paper, the TSFDO is used to observe the disturbance generated by elastic modal, and the vari-
able structure method is used to design the sliding mode controller. Finally, the modeled disturbances
are compensated in the designed controller to ensure reliable operation of the system.

Remark 2: In linear sliding mode control, the sliding mode variable is a linear function of the
system state, so the linear sliding mode control method can only make the system state converge
asymptotically. In order to realize the finite time convergence of the system state, this paper proposes
a terminal sliding mode control method. In terminal sliding mode control, the sliding mode variable is
a nonlinear function of the system state.

Select the terminal sliding surface as follows

s(t) = eθ + Nė(k1/k2)
θ (3.9)

where s(t) =
[

s1 s2 s3

]T
is the sliding mode function, N ∈ R3×3 is a reversible positive constant

diagonal matrix. k1 and k2 are odd and positive numbers, and satisfy 1 < k1/k2 < 2.
Remark 3: It can be obtained from the above proof that the disturbance estimation error ew(t) is

stable and bounded. From the definition m(t) = d̄1(t)+ V jew(t), m(t) is a continuous function and it has
an upper bound f .

Define λ = 1/(1 − σ), where σ = ∥∆ρ(t)∥. From the fuzzy disturbance observer equation (3.1), a
compound controller based on terminal sliding mode can be designed as follows

u(t) = −
k2

k1
J1N−1ė(2−k1/k2)

θ − d̂0(t) − f̂ − Φ
s(t)
∥s(t)∥

(3.10)
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where

˙̂f =
k1

k2
βdiag

{
ė

( k1
k2
−1)

θ

}
Ns(t) (3.11)

Φ= − δ + λ̂δ (3.12)

˙̂λ=αδ ∥s (t)∥ (3.13)

J1 = (J − HHT ) (3.14)

d̂0 is the estimation of d0, f̂ is the estimation of f . α and β are two positive adaptive parameters, and

δ =

∥∥∥∥∥−k2

k1
J1N−1ė(2−k1/k2)

θ

∥∥∥∥∥ + ∥∥∥d̂0

∥∥∥ + ∥∥∥ f̂
∥∥∥ + I0 (3.15)

where I0 is a positive constant.
The derivative of the sliding surface s(t) can be written as

ṡ(t) =ėθ +
k1

k2
Nė(k1/k2−1)
θ ëθ

=ėθ +
k1

k2
Nė(k1/k2−1)
θ J−1

1 [u(t) − ∆ρ(t)u(t) + d0(t) + d1(t)]

=ėθ +
k1

k2
Nė(k1/k2−1)
θ J−1

1 (−
k2

k1
J1N−1ė(2−k1/k2)

θ − f̂

− d̂0(t) − Φ
s(t)
∥s(t)∥

− ∆ρ (t) u (t) + d0 (t) + d1 (t))

=
k1

k2
Nė(k1/k2−1)
θ J−1

1 (V jew(t) − f̂ − Φ
s(t)
∥s(t)∥

+ d1(t) − ∆ρ(t)u(t))

(3.16)

Proof: Select the Lyapunov function as:

V2(t) =
1
2

sT (t)J1s(t) +
1

2β
f̃ 2 +

1 − σ
2α
λ̃2(t) (3.17)

where f̃ = f − f̂ , λ̃ = λ − λ̂.
The derivative of V2(t) is calculated as:

V̇2(t) =sT (t)J1 ṡ(t) +
1
β

f̃ (− ˙̂f ) +
1 − σ
α
λ̃ ˙̃λ

=sT (t)
k1

k2
Ndiag

{
ė(k1/k2−1)
θ

}
(V jew(t) − f̂

− Φ
s(t)
∥s(t)∥

+ d1(t) − ∆ρ(t)u(t))

−
1 − σ
α
λ̃ ˙̂λ +

1
β

( f − f̂ (t))(− ˙̂f )
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≤σ
k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥ (
∥∥∥d̂ (t)

∥∥∥
+

∥∥∥∥∥−k1

k2
J1N−1ė(2− k1

k2
)
∥∥∥∥∥ + ∥∥∥ f̂

∥∥∥ + Φ) −
1 − σ
α
λ̃ ˙̃λ

−
k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥Φ
=σ

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥ (δ − I0 + Φ)

−
1 − σ
α
λ̃ ˙̃λ −

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥Φ
=−I0σ

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥
+

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥ λ̃ (1 − σ)

−
1 − σ
α
λ̃α

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥
=−I0σ

k1

k2

∥∥∥sT (t)
∥∥∥ ∥∥∥∥Ndiag

{
ė(k1/k2−1)
θ

}∥∥∥∥ ≤ 0

It is not difficult to seen that the sliding surface s(t) is uniformly bounded and lim
t→∞

V2 (t) = V2 (∞)
holds. According to the Barbalat’s lemma, when t → ∞, then have ∥s (t)∥ → 0. Furthermore, s (t)→ 0.
This completes the proof.

Remark 4: For general terminal sliding control, the sliding surface can be selected as follows:

s1 (t) = ėθ + Nek2/k1
θ (3.18)

where s1(t) is the sliding mode function, N ∈ R3×3 is a positive constant diagonal matrix. k1 and k2 are
positive odd numbers and satisfy k1 > k2. There are some non-linear terms when deriving the sliding
surface, such as k2

k1
Nek2/k1−1
θ ėθ. A non-singular terminal sliding mode method is utilized to avoid this

similar situation in this paper.
Remark 5: In practical engineering applications, adaptive control methods usually add negative

feedback links to ensure reliable and stable closed-loop systems.

˙̂λ= − γ1λ̂ + αδ ∥s (t)∥ (3.19)

˙̂f = −γ2 f̂ +
k1

k2
βdiag

ė
(

k1
k2
−1
)

θ

Ns (t) (3.20)

where γ1 and γ2 are two small positive numbers.
Remark 6: In fact, the chattering problem in a sliding mode variable structure control system must

exist, and the elimination of the chattering eliminates the anti-perturbation and anti-disturbance of the
variable structure control. In order to remove this undesirable phenomenon in sliding mode control,
people usually make corrections to minimize or eliminate chattering. The commonly used methods
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to eliminate tremor include quasi-sliding mode method, dynamic sliding mode method and high-order
sliding mode method [36, 37].

Therefore, it is impossible to completely eliminate the chattering, and it can only weaken it to a
certain extent to some extent. The nonlinear function in Eq (3.10) can be approximated by the nonlinear
function s/(∥s∥+γ3) in practical engineering applications. Therefore, Eq (3.10) can be further rewritten
as:

u(t) = −
k2

k1
J1N−1ė(2−k1/k2)

θ − d̂0(t) − f̂ − Φ
s(t)

s(t) + γ3
(3.21)

4. Simulation examples

Numerical simulations are presented in this section to verify the effectiveness of the proposed
ASMFTC control method. The controller is used in ACS of a flexible satellite. Assume that the
flexible satellite operates at a height of 900 km [25, 27, 31]. The orbit angular rate n0 = 0.0011 rad/s.
The moments of inertia are

J =


5.5 0 0
0 6.14 0
0 0 2.18

 (4.1)

Including sunlight pressure moments, combined with the actual engineering situation, the space
environment disturbance torque can be as follows

T1x(t) = 4.5 × 10−5(3cosn0t + 1.5)

T2y(t) = 4.5 × 10−5(3cosn0t + 1.5sinn0t)

T3z(t) = 4.5 × 10−5(3sinn0t + 1.5)

(4.2)

Take the pitch angle of the flexible satellite as an example of numerical simulation. Since the
low-frequency vibration mode accounts for the main part of the vibration energy of the accessory.
Therefore, this paper only considers the effects of disturbances caused by low-order modes. The first-
order and second-order elastic modes are considered in this paper. Considering in a practical flexible
satellite system, the two elastic modes are n1 = 3.17 and n2 = 7.38. The corresponding damping
are ε1 = 0.001 and ε2 = 0.0016. The coupling matrix is selected as H(t) =

[
1.27806 0.91758

]
.

Selecting the following Gaussian function as the membership function of the T-S fuzzy system:

A1
1 =

exp(−(z1−1.5)2

2σ2
1

)

exp(−(z1−1.5)2

2σ2
1

) + exp(−(z1−1)2

2σ2
2

)

A2
1 =

exp(−(z1−1)2

2σ2
2

)

exp(−(z1−1.5)2

2σ2
1

) + exp(−(z1−1)2

2σ2
2

)
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The nonlinear disturbance in Eq (2.3) can be described as:

W1 =

[
−1 2
−5 0

]
,W2 =

[
0 −6
4 0

]

V1 =
[

4 0
]
,V2 =

[
3 0

]
where σ2

1 = 0.5, σ2
2 = 1.

Selecting N = 5, k1 = 5, k2 = 3, I0 = 0.5, α = β = 1, γ1 = γ2 = γ3 = 1. From Theorem 1, the gain
of the TSFDO is

L1 =

[
0 1.54 × 10−3

0 2.35 × 10−4

]
Since the vibration generated by the flexible appendages mainly comes from the low-frequency

vibration mode, the first-order and second-order elastic modes of the flexible appendages are shown in
Figures 3 and 4, respectively. From the definition of d0(t) in Eq (2.3), the responses of the disturbance
d0(t) and its estimation are demonstrated in Figure 5. From Figure 6, it shows the estimation error of the
disturbance d0(t). From Figures 5 and 6, it can be seen that the T-S fuzzy disturbance observer proposed
in this paper can effectively estimate the nonlinear disturbance generated by the flexible appendages.
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First order elastic mode

Figure 3. The responses of the first order elastic mode.

From Figure 7, it demonstrates the control torque under Eq (3.10). It can be seen from Figure 7 that
the control torque remains stable after the system fails. However, the control input of the system still
has chattering and the chattering is still very large. Therefore, the quasi-sliding mode method is used
to reduce chattering as shown in Figure 8. As can be seen from Figure 8, the control input chattering
of the system is greatly reduced under the control method of Eq (3.21).

In Figures 9 and 10, the loss of actuator effectiveness is assumed to occur at 20th second with failure
factors 0.4, 0.8 and 1.0, respectively. From Figures 9 and 10, it can show the responses of the pitch
angle and pitch angular rate under different failure factors. The solid line represents the curve of failure
factor 0.4, dash line is the curve of failure factor 0.8, and dot line is curve of failure factor 1.0. From
Figures 9 and 10, it can be seen that the proposed ASMFTC control method has has an anti-disturbance
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and fault accommodation ability. The curve of failure factor 1.0 can still maintain high accuracy after
20th second, meanwhile the curves of failure factors 0.8 and 0.4 are not as good as the counterpart of
1.0. Among these, the control accuracy of failure factor 0.4 is the worst. In other words, the smaller
the failure factor, the worse the stability and fault accommodation accuracy of the system. It can be
seen that the the responses of pitch angle and pitch angle rate under the two methods in Figures 11
and 12, with the proposed control method (ASMFTC), both pitch angle and pitch angular rate can be
stabilized quickly, and the anti-disturbance of the system performance is better.
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Figure 4. The responses of the second order elastic mode.
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Figure 5. Disturbance and its estimation.

5. Conclusions

In this paper, the problem of anti-disturbance control for a flexible satellite subject to actuator partial
failure and multiple disturbances have been investigated. An ASMFTC approach based on TSFDO is
presented for ACS with actuator partial fault, environmental disturbance torque and elastic modal.
Firstly, the TSFM technology is applied to describe elastic modal, where the modeled disturbance is
not restricted to be a linear exogenous system. Secondly, a flexible satellite rather than a rigid one
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Figure 6. Disturbance estimation error.
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Figure 7. The responses of control torque under Eq (3.10).
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Figure 8. The responses of control torque under Eq (3.21).
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Figure 9. The responses of pitch angle.
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Figure 10. The responses of pitch angle rate.
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Figure 11. The responses of pitch angle under the two methods.
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Figure 12. The responses of pitch angle rate under the two methods.

subject to multiple disturbances is considered. Thirdly, the composite fault tolerant controller consists
of TSFDO and an ASMFTC. Numerical simulations show that the designed controller can effectively
improve the attitude control performance of flexible satellites, and have certain engineering practical
value.
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