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Abstract: The Internet of Things (IoT), driven by wireless communication and other technologies,
is gradually entering our lives and promoting the transformation of society from “informatization” to
“intelligence”. Certificateless signature (CLS) eliminates the characteristic of certificate management,
making it an effective method for verifying large-scale data in the IoT environment. Nevertheless,
hash functions are regarded as ideal random oracles in the security proofs of most CLS schemes,
which cannot guarantee the security of CLS schemes in reality. In response to this problem, Shim
devised a CLS scheme without random oracles in the standard model and declared it to be provably
secure. Unfortunately, in this paper, we cryptanalyze Shim’s CLS scheme and demonstrate that it
is not resistant to public key replacement attacks from a Type I attacker. Furthermore, to further
improve the security of the Shim CLS scheme and avoid the single-point failure of the KGC and
the signature forgery initiated, we propose a blockchain-based CLS scheme without a random oracle.
Finally, we evaluate the comprehensive performance, and while maintaining the computational and
communication performance of the Shim scheme, we resist both Type I and Type II attackers, as well
as signature forgery initiated against public parameters.
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1. Introduction

The Internet of Things (IoT) connects items through sensors, controllers, and other devices to
facilitate information exchange and communication in various application areas [1], such as
environmental protection, intelligent transportation, public safety, food traceability, industrial
monitoring, personal health, and intelligence collection. For example, smart transportation closely
matches people, vehicles, and roads to improve traffic efficiency, ensure traffic safety, improve the
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traffic environment, and increase energy efficiency [2]. In environmental protection, it improves
resource utilization, achieves energy saving and emission reduction [3]. However, with the increasing
number of devices in the IoT, ensuring integrity verification and identity authentication among a large
number of devices has become a critical and realistic issue [4].

To achieve effective authentication of the large amount of data transmitted in the IoT, ensuring data
integrity, non-repudiation, and source identity authentication [5], Certificateless Signatures (CLS) is a
commonly used solution, that avoids multiple algorithm parallel implementation to reduce efficiency
[6]. In CLS, the user’s signature key is created by combining a partial private key generated by the Key
Generation Center (KGC) with the user’s own secret key. Due to the independent operations of KGC
and users, the CLS scheme effectively solves the problems of public key management and key custody.
However, the design of CLS leads to it facing two types of attackers [7].

1). Type I attacker A1: This is a type of attacker who impersonates a dishonest user. Specifically,
A1 can be qualified to have the user’s secret key to initiate a public key replacement (PKR) attack,
but the user’s private key is kept secret to A1.

2). Type II attacker A2: Malicious KGC is portrayed as this type of attacker. Specifically, A2 has all
the functionality of KGC and launches a malicious-but-passive KGC (MBPK) attack. However,
A2 is prohibited from holding the user’s secret key or replacing the user’s public key.

To ensure the security of IoT devices, it is necessary to prevent these two types of attacks in the IoT
environment.

IoT has gradually been combined with blockchain to address IoT security issues [8, 9]. The
distributed nature of blockchain ensures that the data stored on the chain cannot be tampered with,
thus solving trust issues and ensuring data security [10]. Therefore, in CLS, the user’s partial private
key is created through a blockchain smart contract, which avoids forgery attacks launched by
attackers using public parameters.

The remainder of this paper is arranged as follows. Some preliminary knowledge related to our
CLS scheme is presented in Section 3. Section 4 describes and cryptographically analyzes Shim’s
scheme [11]. Section 5 depicts the improved CLS scheme, and Section 6 analyzes its safety and
effectiveness. Section 7 performs an analysis and comparison of the performance of the proposed
scheme. Finally, the conclusion of this paper is summarized in Section 8.

2. Related work

Since the introduction of the concept of CLS by Ai-Riyami and Paterson [12], plenty of CLS
schemes [13–15] have been designed. Existing CLS schemes can be broadly categorized into two
types: under the random oracle model and under the standard model without the random oracle.
While it is common and convenient to use the random oracle model to establish security proofs, it
does not guarantee that the scheme will remain secure in the real world [16]. Hence, proving security
in the standard model has become necessary. Most CLS schemes abstract cryptographic hash
functions as ideal random oracles. However, such CLS schemes may have security vulnerabilities in
practice. Therefore, designing a CLS scheme that does not rely on random oracles is more practical
for authenticating IoT data integrity [17].

In recent years, CLS schemes without random oracles have attracted a great deal of attention from
researchers. The first CLS scheme without random oracles was proposed by Liu et al. [18], but it was
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found to be vulnerable to MBPK attacks [19]. Subsequently, Yuan et al. [20] designed a CLS scheme
that addressed MBPK attacks, but it was found to be vulnerable to PKR attacks [21]. Yu et al. [22]
proposed another efficient CLS scheme, but it still could not resist MBPK and PKR attacks. To address
the security issues in the Yu scheme [22], Yuan and Wang [23] proposed an improved scheme, but it is
still not secure and can be vulnerable to MBPK attacks.

Also, Shim [11] devised a CLS scheme that did not require random oracles and proved that its
security only depended on computing the unsolvability of the Diffie-Hellman (CDH) problem.
Nevertheless, in this paper, we demonstrate that it is insecure against PKR attacks. A summary of our
main work is given below.

1). We present an attack method against Shim’s scheme [11]. Specifically, by substituting the user’s
public key, the legitimate signature of any desired message can be generated by A1.

2). To remedy the security flaws of Shim’s scheme [11], we present a blockchain-based CLS
scheme without random oracles. Especially, our enhanced scheme utilizes the smart contract of
the blockchain to represent the traditional KGC, which avoids the single-point failure of the
KGC and the signature forgery initiated by the attacker with the help of public parameters.

3). We formally analyze the security of the improved scheme to show its ability to resist MBPK and
PKR attacks.

4). We compare the performance of the improved solution with that of Shim’s scheme [11] to
illustrate the practical feasibility of our scheme.

3. Preliminaries

Table 1. Caption of the table.

Symbols Description
G1, G2 Two elliptic curve groups
p A prime number
g A generator of group G1, G2

Z∗p A galois field
ID The idntity of the user
m The message to be signed
Hu, Hm Two secure hash functions
msk The system master key
(psk(1), psk(2)) The private key
(pk(1), pk(2)) The public key
σ The signature on m

Table 1 shows the symbols used in this article. We choose two cyclic groups G1 and G2 and require
their orders to be the same prime p. Next, we pick a generator g of G1 and a bilinear map e : G1×G1 →

G2 satisfying the following conditions.

• Bilinear: For any t1, t1 ∈ Z∗p, e(gt1 , gt2) = e(g, g)t1t2 .
• Non-degenerate: e(g, g) , 1.
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• Computable: e(gt1 , gt2) can be calculated efficiently.

In addition, (p,G1,G2, g, e) is commonly referred to as the bilinear group.
Several mathematical problems used in this article are described below, and they are difficult to

solve in polynomial time.

• CDH problem: A triple (g, ga, gb) is known, where the unknown values a, b ∈ Z∗p, and the CDH
problem is to calculate gab.
• Inverse-CDH problem: Given a tuple (g, ga), calculate g−a, where a ∈ Z∗p.
• Discrete logarithm (DL) problem: A tuple (g, ga) is known and the DL problem is to compute

a ∈ Z∗p.

4. Attacks on Shim’s CLS scheme

4.1. Review of Shim’s CLS scheme

The construction of Shim’s CLS scheme [11] is briefly described below.

• Setup: KGC executes the following to produce system parameters.

1). Select the bilinear group (p,G1,G2, g, e) according to the selected security parameter ϑ.
2). Choose α ∈ Z∗p and calculate g1 = gα.
3). Choose g2, g3 ∈ G1 and calculate Z = e(g1, g2).
4). Pick u

′

, û1, · · · , ûnu from G1 and set Û = (û1, · · · , ûnu). Note that nu is the byte length of the
user identity.

5). Pick m
′

, m̂1, · · · , m̂nm from G1 and set M̂ = (m̂1, · · · , m̂nm), where nm is the byte length of the
message to be signed.

6). Select two collision-resistant hash functions Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ →
{0, 1}nm .

7). Keep the master key msk = gα2 secretly.
8). Broadcast params = (p,G1, g, g1,G2, e, g2,Z, g3, u

′

,m
′

, Û, M̂,Hu,Hm).

• Partial-Private-Key-Extract: Based on the user’s identity ID, the user’s partial private key
parkeyID is produced by KGC.

1). Calculate u = Hu(ID).
2). Define the ith bit of u to be u[i], and assign the set of indices that satisfy u[i] = 1 to be

U ⊂ {1, · · · , nu}.
3). Define Ũ = u

′ ∏
i∈U

ûi as part of partial private key.

4). Randomly select ru ∈ Z∗p, then calculate psk(1) = gα2 · Ũ
ru and psk(2) = gru .

5). Set parkeyID = (psk(1), psk(2)) as ID’s partial private key.

• User-Key-Generation: Assuming that ID is the identity of the user, the user performs the
following actions.

1). Select x, τ ∈ Z∗p at random and set its secret key uskID = (x, τ).
2). Calculate pk(1) = gτ and pk(2) = gx.
3). Set upkID = (pk(1), pk(2)) as its public key.
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• CL-Sign: For a message m, the user whose identity is ID performs the following signature steps.

1). Calculate m̃ = Hm(m, ID, upkID).
2). Define the ith bit of m̃ to be m̃[i], and assign the set of indices that satisfy m̃[i] = 1 to be

M ⊂ {1, · · · , nm}.
3). Define M̃ = m

′ ∏
i∈M

m̂i as part of signature.

4). Pick k, r ∈ Z∗p randomly, then calculate σ1 =
[
psk(1) · Ũr · gx

3 · M̃
k
]τ−1

=[
gα2 · Ũ

r+ru · gx
3 · M̃

k
]τ−1

, σ2 = gr · psk(2) = gr+ru and σ3 = gk.
5). Set m’s signature as σ = (σ1, σ2, σ3).

• CL-Vfy: For a signature σ = (σ1, σ2, σ3) on m from a user with ID, the verifier checks as
follows.

1). Calculate u = Hu(ID).
2). Based on ID’s public key upkID, calculate m̃ = Hm(m, ID, upkID).
3). Verify the following equation:

e(pk(1), σ1) = Z · e(g3, pk(2)) · e(Ũ, σ2) · e(M̃, σ3) (4.1)

4). If Eq (4.1) holds, σ is valid; otherwise, σ is invalid.

4.2. Weakness of Shim’s CLS scheme

Shim [11] claims that their CLS scheme is secure against MBPK and PKR attacks. Nevertheless, we
indicate that their scheme is not resistant to PKR attacks launched by Type I attackers. Type I attacker
A1 represents a malicious signer. The identity of the attacked user is assumed to be ID∗, although A1

does not know the partial private key of ID∗, it can forge a valid signature for any message m∗ , m by
replacing ID∗’s public key. This allows the forged message to pass signature verification. The forgery
attack launched by A1 is described in detail as follows.

1). A1 picks x∗ ∈ Z∗p at random and calculates pk(2∗) = gx∗
1 .

2). A1 sets pk(1∗) = g1.
3). A1 assigns upk∗ID = (pk(1∗), pk(2∗)) as ID∗’s public key.
4). A1 calculates m̃∗ = Hm(m∗, ID∗, upk∗ID).
5). A1 defines the ith bit of m̃∗ to be m̃∗[i], and assign the set of indices that satisfy m̃∗[i] = 1 to be

M∗ ⊂ {1, · · · , nm}. Similarly, A1 defines U∗ ⊂ {1, · · · , nu}, where u∗ = Hu(ID∗).
6). A1 defines Ũ∗ = u

′ ∏
i∈U∗

ûi and M̃∗ = m
′ ∏

i∈M∗
m̂i

7). A1 picks k∗, r∗ ∈ Z∗p at random and calculates σ∗1 = g2 · ˜(U∗)r∗
· gx∗

3 ·
˜(M∗)k∗ , σ∗2 = gr∗

1 and σ∗3 = gk∗
1 .

8). A1 sets a forged signature σ∗ = (σ∗1, σ
∗
2, σ

∗
3) on m∗.

The following equation shows that the signature σ∗ = (σ∗1, σ
∗
2, σ

∗
3) forged by A1 is valid on m∗ under

ID∗ with upk∗ID.

e(pk(1∗), σ∗1) = e
(
g2 · ˜(U∗)r∗

· gx∗
3 ·

˜(M∗)k∗
, g1

)
= e (g1, g2) e

(
˜(U∗)r∗
, g1

)
e
(
gx∗

3 , g1

)
e
(

˜(M∗)k∗
, g1

)
(4.2)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12718–12730.



12723

= Z · e
(
Ũ∗, gr∗

1

)
· e

(
gx∗

1 , g3

)
e
(
M̃∗, gk∗

1

)
= Z · e

(
g3, pk(2∗)

)
· e

(
Ũ∗, σ∗2

)
· e

(
M̃∗, σ∗3

)
From Eq (4.2), it can be seen that A1 forged a valid signature. That is A1’s PKR attack is successful.

Hence, Shim’s CLS scheme [11] is not resistant to Type I attackers. In the IoT environment, a malicious
signer can achieve identity authentication and pass forged messages through this method.

5. Blockchain-based CLS scheme without random oracles

Based on Shim’s CLS scheme [11], we construct an improved CLS scheme using blockchain
technology.

5.1. System model

The system model of our CLS scheme is depicted in Figure 1, involving four entities: the
administrator, the smart contract-based KGC (SC-KGC), the user and the verifier.

Figure 1. System model of the improved CLS scheme.

• Administrator: The administrator is primarily responsible for maintaining the blockchain
network and initializing the system parameters.
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• SC-KGC: This smart contract, deployed on the blockchain, mainly issues the user’s partial
private key and stores system parameters on the blockchain.
• User: Each user generates its public and private key, resulting in the certificateless signature of

the message.
• Verifier: The verifier mainly verifies the validity of the signature generated by the user on the

basis of the system parameters.

5.2. Improved CLS scheme

The proposed scheme is described in detail below.

• Setup: After receiving (p,G1,G2, g, e) sent by the administrator, SC-KGC executes as follows.

1. SC-KGC selects α ∈ Z∗p randomly and calculate g1 = gα.
2. SC-KGC selects g2 ∈ G1 and calculate Z = e(g1, g2).
3. SC-KGC stores the master key msk = gα2 secretly.
4. In the same way as the Setup algorithm in the Shim’s scheme [11], SC-KGC generates the

system parameters params = (p,G1, g, g1,G2, e, g2,Z, u
′

,m
′

, Û, M̂,Hu,Hm)and broadcasts
them on the blockchain.

• Partial-Private-Key-Extract: For the identity ID submitted by the user, SC-KGC executes as
follows.

1). Similar to Shim’s scheme [11], SC-KGC calculates ID’s partial private key
parkeyID = (psk(1), psk(2)) and secretly transmits it to the user, where psk(1) = gα2 ·

(
Ũ

)ru
.

2). SC-KGC uploads psk(2) = gru to the blockchain.

• User-Key-Generation: Assuming that ID is the identity of the user, the user performs the
following actions.

1). Select τ ∈ Z∗p at random and set its secret key uskID = τ.
2). Calculate pk(1) = gτ and pk(2) = Ũτ.
3). Set upkID = (pk(1), pk(2)) as ID’s public key .

• CL-Sign: For a message m, the user whose identity is ID performs the following steps.

1). Calculate m̃ = Hm(m, ID, upkID).
2). Define the ith bit of m̃ to be m̃[i], and assign the set of indices that satisfy m̃[i] = 1 to be

M ⊂ {1, · · · , nm}.
3). Define M̃ = m

′ ∏
i∈M

m̂i as part of signature.

4). Pick k, r ∈ Z∗p at random, then calculate σ2 = gr · psk(2) = gr+ru and σ3 = gk.

5). Calculate σ1 =
[
psk(1) · Ũr · M̃k

]τ−1

=

[
gα2 ·

(
Ũ

)r+ru
· M̃k

]τ−1

.
6). Set the signature of m as σ = (σ1, σ2, σ3).

• CL-Vfy: For a signature σ = (σ1, σ2, σ3) on m from a user with ID, the verifier checks as
follows.

1). Calculate u = Hu(ID).
2). Based on ID’s public key upkID, calculate m̃ = Hm(m, ID, upkID).
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3). Verify the following equations:

e(g, pk(2)) = e(Ũ, pk(1)) (5.1)

e(pk(1), σ1) = Z · e(Ũ, σ2) · e(M̃, σ3) (5.2)

4). If both Eqs (5.1) and (5.2) hold, the verifier accepts σ; otherwise, σ is rejected.

Correctness: Equation (5.1) is correct since

e(g, pk(2)) = e
(
g, Ũτ

)
= e

(
Ũ, gτ

)
= e

(
Ũ, pk(1)

)
. (5.3)

Equation (5.2) is correct since

e(pk(1), σ1) = e
(
gτ,

[
gα2 ·

(
Ũ

)r+ru
· M̃k

]τ−1)
= e

(
g, gα2 ·

(
Ũ

)r+ru
· M̃k

)
(5.4)

= Z · e(Ũ, σ2) · e(M̃, σ3).

6. Security proof

Similar to Shim’s CLS scheme [11], the improved CLS is proven to be secure by exploiting the
security game between the attacker and the challenger. If the CDH problem is intractable in polynomial
time, our improved CLS scheme is resistant to PKR attacks from Type I attackers.

Let A1 be a Type I attacker who forges a legitimate signature of our CLS scheme with probability
ε1. Then, a challenger C1 can successfully solve the CDH problem using A1’s forged signature. C1 is
assigned a CDH instance (g, ga, gb), and needs to interact with A1 as follows in order to compute gab.

System initialization: Assume that the number of partial private key queries initiated by A1 is Cpar

and the number of signature queries is Cs. C1 initializes the following system parameters.

1). Set lu = 2(Cpar +Cs) to satisfy lu(nu + 1) ≤ p.
2). Set lm = 2Cs to satisfy lm(nm + 1) ≤ p.
3). Choose two values ku and km in [0, nu] and [0, nm], respectively.
4). Select nu + 1 integers x̂, x̂1, · · · , x̂nu from [0, lu).
5). Select nm + 1 integers ẑ, ẑ1, · · · , ẑnm from [0, lm).
6). Select nu + nm + 2 integers ŷ, ŵ, ŷ1, · · · , ŷnu , ŵ1, · · · , ŵnm from [0, p).
7). For u = Hu(ID), define functions F(u) = x̂ − kulu +

∑
i∈U

x̂i and J(u) = ỹ +
∑
i∈U

ŷi.

8). For m̃ = Hm(m, ID, upkID), define two functions: K(m̃) = z̃ − kmlm +
∑

i∈M
z̃i and L(m̃) = w̃ +

∑
i∈M

w̃i.

9). Set g1 = ga, g2 = gb, u
′

= gx̂−kulu
2 gŷ, ûi = gx̂i

2 gŷi , m
′

= gẑ−kmlm
2 gŵ, m̂ j = gẑ j

2 gŵ j , where i ∈ [1, nu] and
j ∈ [1, nm].
Note that A1 and C1 cannot know the system master key ga

2 = gab. Furthermore, the following two
equations hold:

Ũ = gF(ũ)
2 gJ(ũ), M̃ = gK(m̃)

2 gL(m̃) (6.1)
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10). Send system parameter params to A1.

Create-User-Queries: C1 creates a list LU with an initial value of null. When A1 requests IDi’s
public key, C1 passes upki to A1 if LU contains a tuple of IDi. Otherwise, C1 executes as follows.

1). Pick τi ∈ Z∗p at random and calculate IDi’s secret key uskIDi = τi.
2). Calculate ui = Hu(IDi).
3). Define the set of indices that satisfy ui[ j] = 1 to be Ui ⊂ {1, · · · , nu}.
4). Define Ũi = u

′ ∏
j∈Ui

û j.

5). Calculate pk(1)
i = gτi and pk(2)

i = Ũτii .
6). Set IDi’s public key upkIDi = (pk(1)

i , pk(2)
i ).

7). If F(ui) = 0modp, set parkeyIDi = (psk(1)
i , psk(2)

i ) = (⊥,⊥); otherwise, select rui ∈ Z∗p, and then

calculate psk(1)
i = g

−J(ui)
F(ui)

1 · Ũ
rui
i and psk(2)

i = g
−1

F(ui)

1 · grui .
8). Add a tuple (IDi, uskIDi , upkIDi , psk(1)

i , psk(2)
i ) in LU .

9). Transmit upki to A1.

Partial-private-key-Queries: When A1 asks for IDi’s partial private key, C1 looks up the tuple
(IDi, uskIDi , upkIDi , psk(1)

i , psk(2)
i ) in LU and passes parkeyIDi = (psk(1)

i , psk(2)
i ) to A1.

Secret-value-Queries: When A1 asks for IDi’s secret value, C1 looks up the tuple (IDi, uskIDi ,
upkIDi , psk(1)

i , psk(2)
i ) in LU and passes uskIDi to A1.

Replace-public-key-Queries: When A1 wants to replace IDi’s public key with upk∗IDi
, C1 replaces

upkIDi with upk∗IDi
in the list LU .

Signature-Queries: When A1 requests a query for messages m j and IDi, C1 looks up the tuple
(IDi, uskIDi , upkIDi , psk(1)

i , psk(2)
i ) in LU and calculates m̃ j = Hm(m j, IDi, upkIDi).

1). If F(ui) , 0 mod p, C1 invokes the CL-Sign algorithm and passes the calculated signature to A1.
2). If F(ui) = 0 mod p and K(m̃ j) , 0 mod p, C1 picks k, r ∈ Z∗p randomly, then calculates σi2 = gr

and g
−1

K(m̃ j)

1 · gk. Next, C1 calculates

σi1 =

Ũr · g
L(m̃ j)
K(m̃ j)

1 · M̃k

τ−1
i

. (6.2)

Finally, C1 returns (σi1, σi2, σi3) to A1.
3). Otherwise, C1 terminates the game.

Forgery: A1 forge a valid signature σ∗ = (σ∗1, σ
∗
2, σ

∗
3) on a message m∗ under an identity ID∗, where

u∗ = Hu(ID∗) and m̃∗ = Hm(m∗, ID∗, upkID∗). If F(u∗) = 0 mod p and K(m̃∗) = 0 mod p, C1 calculates
a solution of the given CDH problem:

gab =

(
σ∗1

)τ∗(
σ∗2

)J(u∗)(
σ∗3

)L(m∗) (6.3)

Similar to Shim’s scheme, the probability that C1 successfully computes the CDH solution is

ε1 ·
1

16 ·Cs · (Cpar +Cs) · (nu + 1) · (nm + 1)
. (6.4)
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If the CDH problem is intractable in polynomial time, our improved CLS scheme is resistant to
MBPK attacks from Type II attackers.

7. Performance comparison

Table 2 shows the security analysis comparison with similar CLS schemes [11, 18, 19, 22] without
random oracles, where the symbols ✓ and × represent the scheme’s ability or inability to resist such
attackers. Obviously, the improved CLS scheme can resist Type I and Type II attackers, making it more
suitable for the IoT environment.

Table 2. Comparison of security with similar standard model CLS schemes.

Scheme Type I attacker Type II attacker
Scheme [11] × ✓
Scheme [18] ✓ ×

Scheme [19] × ✓
Scheme [22] × ×

Our scheme ✓ ✓

In the CL-Vf algorithm of the improved scheme, e(g, pk(2)), Z and e(Ũ, pk(1)) can be pre-computed
since they are independent of the signed message. Hence, our enhanced scheme inherits the
performance of Shim’s scheme [11] for computing and communication. Table 3 shows the
computational and communication costs obtained from the analysis of the Shim scheme [11] and our
proposed improved scheme, where Tp and Tm represent the execution of bilinear mapping and
point-scalar multiplication operations, and |G1| represents the byte length of elements in G1.

Table 3. Comparison of communication and computational costs.

Scheme CL-Sig CL-Vf Signature length
Scheme [11] 5Tm 3Tp 3|G1|

Our scheme 5Tm 3Tp 3|G1|

We used pbc 0.5.14 library [24] and A-type elliptic curve parameters for computations and evaluated
the average execution time of cryptographic operations. The experimental environment was Ubuntu
22.04.2 LTS system with Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz. The time required for bilinear
pairing and point scalar multiplication was calculated to be 3.21 milliseconds and 1.15 milliseconds,
respectively. Figure 2 shows the required running time for signers and verifiers, which is suitable for
device time consumption in the IoT environment.
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Figure 2. Computational overhead for the signer and the verifier.

8. Conclusions

To address the issues of data integrity verification and identity authentication in the IoT
environment, we chose the CLS method. Shim [11] designed a CLS scheme without random oracles
and demonstrated its security in the standard model. In this article, we provide an attack against
Shim’s scheme [11] and found their scheme to be vulnerable to PKR attacks. In addition, we
proposed an improved scheme to fix the security vulnerabilities of their scheme and combined it with
blockchain to further enhance security. Finally, the analysis results show that our enhanced scheme
achieves stronger security while preserving the performance of the original scheme. Although bilinear
pairing operations consume relatively more time than other operations, this improved scheme still
involves bilinear pairing operations. We plan to reduce the number of bilinear pairing operations for
higher operational efficiency while ensuring security in the future.
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