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Abstract: There are approximately 2.2 billion people around the world with varying degrees of 
visual impairments. Among them, individuals with severe visual impairments predominantly rely on 
hearing and touch to gather external information. At present, there are limited reading materials for 
the visually impaired, mostly in the form of audio or text, which cannot satisfy the needs for the 
visually impaired to comprehend graphical content. Although many scholars have devoted their 
efforts to investigating methods for converting visual images into tactile graphics, tactile graphic 
translation fails to meet the reading needs of visually impaired individuals due to image type 
diversity and limitations in image recognition technology. The primary goal of this paper is to enable 
the visually impaired to gain a greater understanding of the natural sciences by transforming images 
of mathematical functions into an electronic format for the production of tactile graphics. In an effort 
to enhance the accuracy and efficiency of graph element recognition and segmentation of function 
graphs, this paper proposes an MA Mask R-CNN model which utilizes MA ConvNeXt as its 
improved feature extraction backbone network and MA BiFPN as its improved feature fusion 
network. The MA ConvNeXt is a novel feature extraction network proposed in this paper, while the 
MA BiFPN is a novel feature fusion network introduced in this paper. This model combines the 
information of local relations, global relations and different channels to form an attention mechanism 
that is able to establish multiple connections, thus increasing the detection capability of the original 
Mask R-CNN model on slender and multi-type targets by combining a variety of multi-scale features. 
Finally, the experimental results show that MA Mask R-CNN attains an 89.6% mAP value for target 
detection and 72.3% mAP value for target segmentation in the instance segmentation of function 
graphs. This results in a 9% mAP improvement for target detection and 12.8% mAP improvement for 
target segmentation compared to the original Mask R-CNN. 
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1. Introduction 

A survey of the World Health Organization reveals that in 2019, there were about 2.2 billion 
individuals globally with visual impairments [1], and in 2020, the total number of people who were 
completely blind worldwide amounted to approximately 75 million. With impaired visual functions, 
people with severe visual impairments cannot experience the same visual pleasures as those with 
normal vision. 

At present, people with severe visual impairments mostly depend on the auditory and tactile 
senses in order to gain external information. For example, audiobooks can be listened to, as can 
auditory readers and computer screen reading software. Meanwhile, there are texts and tactile 
graphics that can be felt by the fingers. These include paper braille publications and paper tactile 
graphics, as well as Braille e-books, Braille displays and tactile graphic displays [2,3]. 

A survey found that the China Braille Publishing House produces and distributes 
approximately 1000 titles of Braille books and periodicals each year, with a total circulation of 
around 320,000 copies. This averages at about 12,900 titles and 40 copies per publication, which is 
significantly lower than the average number of publications available to those with normal vision [4]. 
At present, the majority of reading materials for visually impaired individuals are either audiobooks 
or braille books. However, these options do not adequately satisfy the need of those with vision 
impairments for perception of images, which must be converted into tactile graphics in order for 
them to be touch-read by the blind. Tactile graphics refers to images which can be perceived through 
touch, composed of convex and concave lines, points and surface textures. Currently, the production 
of tactile graphics is not fully automated, and most of this work is done by hand, requiring a great 
deal of time and labor. Furthermore, the production of tactile graphics requires personnel with 
specialized knowledge to complete. So far, most of this work is done by teachers in schools for the 
visually impaired. Due to varying abilities and experiences in reading tactile maps, different blind 
people require tactile graphics of the same content to be presented in different forms, such as 
different sizes and hierarchical representations. Therefore, in order to reduce the burden on educators, 
enhance the efficiency of the production of tactile graphics and reduce production costs, the 
development of an automated tactile graphics creation method with the help of computer technology 
is of great significance. 

The most critical aspect of creating books for the visually impaired is to make them electronic, 
as electronic books can be easily accessed by the visually impaired in the form of multimedia or 
tactile graphics. Currently, various scientists and organizations have devoted their attention to the 
conversion of printed books into electronic books (printed books, abbreviated as e-books). The 
Digital Accessible Information System (DAISY) alliance [5], a joint effort of European and 
American countries, aims to provide a universally accessible solution for people with Dyslexia to 
access digital audiobooks. The specifications necessary for creating DAISY files include 1) text files 
(.html or .xml) prepared in HTML (Hypertext Markup Language) or XML (Extensive Markup 
Language), 2) audio files (.mp3, .wav, etc.), 3) text and voice synchronization file (.smil) and 4) 
image files in scalable vector graphics (SVG) format written in XML [6–8]. At present, the 
production of digital audiobooks based on DAISY standards has been widely accepted by countries 
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around the world. Furthermore, the Electronic Publication (EPUB) [9] standard set by the 
International Digital Publishing Forum (IDPF) is compatible with DAISY standards in terms of 
document and image preservation. Consequently, during the electronic conversion of scientific 
publications, images need to be converted from the Dot Image format to SVG format. Nevertheless, at 
the moment, paper images can only be saved as bitmaps by scanning, and bitmaps cannot be 
automatically converted to SVG. 

 

Figure 1. Basic steps of book digitization. 

Taking the mathematics textbook in Figure 1 as an illustration, the basic steps of book 
digitization are as follows: First, the separation of text content (including mathematical expressions) 
and graphs can be accomplished using the text-graph separation technology proposed by P. P. Rege et 
al. [10], the end-to-end trainable neural network proposed by P. Lyu et al. [11] or the character region 
awareness technology proposed by Y. Baek et al. [12]. Second, the recognition and digitization of text 
content can be achieved through the use of optical character recognition (OCR) [13] technology. The 
development of OCR technology has reached a high level of maturity, and existing technologies such 
as Tesseract OCR [14] and East [15] make this task easier. The mathematical expressions within the 
text can be recognized and digitized with InftyReader [16], which is developed by the InftyProject [17]. 
In addition, deep neural networks with sequence-level training proposed by Z. Wang et al. [18] can 
also be utilized for this purpose. Both of these techniques can translate the original mathematical 
expressions in the textual content of books into formats such as LaTeX and MathML. Lastly, the 
segregated graphs need to be identified and digitized. Currently, although the ImageCaption [19] 
method such as the end-to-end transformer based model proposed by Y. Wang et al. [20] can achieve 
semantic description of images, it is primarily applied for describing daily actions. Upon examining 
Figure 1, it is evident that the function graphs comprise coordinate axes and quadratic functions. 
Currently, there is no available technology to recognize and convert the graph elements into SVG format 
for digitizing function graphs. 

During the electronic conversion of graphs, there are a series of research methods [21–24] that 
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can digitize function graphs; however, these methods require that the graphs meet certain criteria. 
For instance, the graphs must be confined to a specific area (delineated by the x and y axes). A. 
Balaji et al. [25] analyzed the labeled area through the connected component and fitted the labeled 
area through the minimum surrounding rectangle, but they only managed to extract the bar graph in 
the chart. Some scholars, such as J. Chen et al. [26], recognize and redraw function graphs using 
pattern recognition and save them as SVG. However, the recognition accuracy is low, and it does not 
have real-time processing capabilities. On one hand, graph acquisition generally introduces noise; on 
the other, the feature learning abilities of the respective methods may not be sufficient. When 
compared to traditional graph recognition methods, deep learning models are able to automatically 
learn the features of the training data, and they possess stronger feature learning abilities, which in 
turn results in a better performance when using deep learning models for graph recognition. J. Staker 
et al. [27] successfully applied the deep learning method to recognize the visual representation of 
chemical molecular structures. Likewise, M. Oldenhof et al. [28] were also able to identify optical 
patterns of compounds using a deep learning model. 

Many computer vision tasks today incorporate deep learning techniques. Deep learning has 
found widespread application across industries, leveraging its high adaptability, powerful feature 
learning capabilities, ability to handle large-scale data and efficiency. Thus, building upon these 
strengths, this paper takes a deep learning approach to tackle the instance segmentation of function 
graphs. In terms of feature extraction in deep learning, the Transformer network proposed by A. 
Vaswani et al. [29] quickly dominated the field of natural language processing as soon as it was 
introduced. With subsequent applications of Transformer and its improved models such as ViT 
proposed by A. Dosovitskiy et al. [30] and Swin Transformer proposed by Z. Liu et al. [31] in the 
computer vision domain, networks with Transformer as the backbone have emerged as popular 
directions, surpassing traditional convolution-based networks in various tasks and achieving 
state-of-the-art rankings. However, the emergence of ConvNeXt has shifted scholars’ attention back 
to convolutional networks. Z. Liu et al. [32] demonstrated through experiments that ConvNeXt 
outperforms Swin Transformer and achieves state-of-the-art performance in various image 
processing tasks with lower computational requirements. Regarding function graphs, compared to 
Transformers, ConvNeXt leverages the local connectivity and weight sharing properties of 
convolutional operations, enabling better capture of spatial information and local features, thereby 
enhancing feature representation capabilities. In terms of feature fusion in deep learning, BiFPN [33] 
employs a simple and efficient network structure that addresses the limitations of information 
propagation and loss in traditional fusion networks while maintaining low computational and storage 
costs. For function graphs, a multi-scale feature fusion approach in BiFPN offers translational and 
scale invariance, improving robustness and generalization to object deformations of the model, 
occlusions and scale variations. Based on the analysis above, this paper explores improvements using 
ConvNeXt and BiFPN as the base models. 

This paper proposes an improved instance segmentation model based on Mask R-CNN [34], 
which leverages the benefits of convolution and self-attention and effectively improves the accuracy 
of the model in detecting and segmenting graph elements in function graphs. The contributions of 
this paper are summarized as follows: 

1) For feature extraction, ConvNeXt is used as the base model. By adding an attention module 
made up of local detail features, remote information features and channel information features to the 
ConvNeXt block module, the improved ConvNeXt is called MA ConvNeXt in this paper. MA 
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ConvNeXt is able to amplify its ability to extract local information, global information and varied 
channel feature information. 

2) For feature fusion, this paper proposes a new model by adding an Atrous Spatial Pyramid 
Pooling (ASPP) [35] module and Residual Feature Augmentation (RFA) [36] module to BiFPN, which 
is called MA BiFPN. The proposed model can enhance the detection capability at different scales. 

3) In order to improve the segmentation capability of the model, the aspect ratio of the proposed 
candidate anchor boxes in the Region Proposal Network (RPN) layer of the model is modified, and a 
penalty factor is included in the calculation of the Intersection-over-Union (IoU) metric in order to 
create a margin space in the target detection box. 

4) The MA Mask R-CNN model is proposed to detect and segment 13 kinds of subdivided 
mathematical function graphs, reaching a detection accuracy of 89.6% and mask segmentation mAP 
score of 72.3%. Through multiple comparison tests, it has been proven that MA Mask R-CNN performs 
better in terms of category average accuracy and mask segmentation quality of function graphs. 

The remaining organization of this paper is as follows. Section 2 introduces the specific 
structure of the original Mask R-CNN model. Section 3 describes the improved network structure 
proposed in this paper. It also details the specific improvements and loss functions of this network in 
comparison to the original Mask R-CNN model. These improvements include feature extraction, 
feature fusion, region proposal network and mask segmentation methods. Section 4 reports on the 
datasets used, as well as the comparative experimental results and corresponding analyses of each 
model on the dataset. Finally, Section 5 summarizes the work of this paper and outlines future 
directions and key points. 

2. Original model 

 

Figure 2. The original Mask R-CNN model. 

Mask R-CNN is a model, after adding branches for predicting target segmentation mask, based 
on Faster R-CNN [37]. Since it was proposed, it has achieved good results in object detection and 
segmentation. It is a classic model in the instance segmentation task. Figure 2 shows the overall 
framework of Mask R-CNN. The steps are as follows: 1) The original image is input to Residual 
Network (ResNet) [38], which is a feature extraction network to generate feature maps. 2) The 
feature maps of the four stages in the feature extraction network are input to the Feature Pyramid 
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Networks (FPN) [39], which are feature fusion networks to obtain new feature maps that combine 
high-level feature maps with low-level feature maps. 3) Input the feature maps generated by FPN 
into RPN and RoI Align. Anchor boxes and anchor confidence of feature maps are obtained in RPN, 
and Non-Maximum Suppression (NMS) is used to eliminate anchor boxes with low confidence. 
Since anchor sizes generated in RPN are inconsistent, different sizes of anchor are mapped into 
fixed area sizes in RoI Align. 4) After the above steps, the feature maps fixed by RoI Align are 
input into the Fully Convolutional Layer (FCL) and Fully Convolutional Network (FCN). 
Bounding box and class confidence of the target instance are output after FCL, and mask of the 
target instance is output after FCN. 

3. Improved model 

3.1. Overall architecture of MA Mask R-CNN 

MA Mask R-CNN is an improved model based on Mask R-CNN. In MA Mask R-CNN, ResNet 
feature extraction network of Mask R-CNN is replaced by MA ConvNeXt network, and MA BiFPN 
is used to replace the original FPN in feature fusion network. The mask segmentation strategy is 
replaced by the original FCN with PointRend [40]. The frame diagram of the overall model is shown 
in Figure 3. 

 

Figure 3. The overall framework of the MA Mask R-CNN model for graph detection and 
segmentation of mathematical functions proposed in this study. 

The process of the MA Mask R-CNN model is as follows: 1) Input mathematical function graph 
into the model, enter the feature extraction network, which is MA ConvNeXt, and generate 
corresponding feature maps according to the four feature extraction stages in MA ConvNeXt. 
Compared with the original model ConvNeXt, MA ConvNeXt added an additional attention module 
with local, global and channel information at the same time, so that the generated feature maps have 
more advanced semantic information and positioning capabilities. 2) Input the feature maps 
generated by MA ConvNeXt into MA BiFPN, which is a feature fusion network. In order to enhance 
the feature fusion network’s recognition ability in slender targets and multi-scale information fusion 
ability, an RFA module is added to the original BiFPN after the top-level semantic information of the 
top-to-bottom branch. ASPP modules are added to the input feature maps of the top-to-bottom and 
bottom-to-top branches. 3) Adjust RPN. In RPN, in order to make the detection box not completely 
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close to the target, appropriately increase the size proportion of the anchor box, and add a penalty 
factor to IoU to obtain a more suitable detection box and enhance the segmentation effect. The 
foreground and background are classified according to the adjusted RPN, and a regression operation 
is carried out on the bounding box. After the NMS removes the Anchor box with low confidence, the 
proposed region is finally generated. 4) Put the proposed region into ROI to output the feature map 
of the same size, and conduct the regression classification of the graph element, so as to generate the 
final prediction box and segmentation mask. In the mask branch, PointRend is used instead of FCN 
to obtain a smoother and finer pixel mask. 

3.2. MA ConvNeXt network for feature extraction 

In the aspect of a feature extraction network, an improved network named MA ConvNeXt based 
on ConvNeXt is proposed in this study. The overall network structure of MA ConvNeXt is shown in 
Figure 4. The ConvNeXt-T network is selected as the foundation network. Compared to Transformer 
based networks, ConvNeXt does not require complex operations such as block merging, sliding 
windows and relative location indexing, thus providing superior performance and less computation. 
ConvNeXt uses Transformer network for reference in network structure design, and it uses the 
methods in convolution network for replacement and optimization. The components of the MA 
ConvNeXt network constructed in this study are mainly the convolution layer, which is called MA 
ConvNeXt Block. MA ConvNeXt Block is the core part of feature extraction network, which is 
responsible for extracting features of mathematical function graphs. In order to deepen the network 
to obtain better and more features, the stacking times of the four MA ConvNeXt Block layers are 
set to (3, 3, 9, 3) according to the original ConvNeXt-T network structure. In MA ConvNeXt, first, 
a 4 × 4 convolution kernel with step size set to 4 is used for the convolution operation, and then layer 
normalization is carried out to initially refine features and improve the distribution of features in 
feature map. After the above processing, feature maps are input into the MA ConvNeXt Block for 
attentional multi-scale feature extraction. 

 

Figure 4. MA ConvNeXt feature extraction overall network structure. 

The general structure of the MA ConvNeXt Block is shown in Figure 5(a). In MA ConvNeXt 
Block, first, a Dw Conv is carried out on the features. In order to make effective use of the 
information of different layers in the same spatial position, the processed features continue to be 
input to Pw Conv after layer normalization (LN), which generates a new feature map by weighted 
combination of the input independent feature maps in the depth direction. The above methods greatly 
reduce the amount of computation and parameters and can make the network deeper with the same 
parameters. The feature maps are then input into the Attention module by introducing nonlinear 
properties through activation functions. 



8 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12772–12801. 

 

(a) Structure of MA ConvNeXt Block. 

 

(b) Attention module; The Attention module in (a), where K is the size of the convolution 
kernel, P is the padding, and G is the grouping. Dw Conv is depthwise convolution, and 
Pw Conv is pointwise convolution. Asym Conv is asymmetric convolution. 

Figure 5. MA ConvNeXt Block structure drawing and detailed Attention structure. 

In this study, it is hoped that the Attention module is able to get local attention as well as good 
remote information. In general, local attention can be completed by small convolution kernels, while 
remote information can only be completed by large convolution kernels except for the self-attention 
mechanism. However, the self-attention mechanism destroys the two-dimensional property of graphs, 
and large convolution kernels require a large amount of computation. In order to avoid the respective 
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shortcomings of the self-attention mechanism and the large nuclear convolution, the Attention 
module in the MA ConvNeXt Block is shown in Figure 5(b). The Attention module can be expressed 
by Eqs (1) and (2). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑣 Dw Conv 𝐴𝑠𝑦𝑚 𝐶𝑜𝑛𝑣 𝐹 ⊕ 𝐴𝑠𝑦𝑚 𝐶𝑜𝑛𝑣 𝐹 1  

𝑂𝑢𝑡𝑝𝑢𝑡 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ⊗ 𝐹 2  

where 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈  ℝ denotes attention, and its value denotes the importance of different 
features. 𝐹 ∈ ℝ denotes input feature maps. 𝐴𝑠𝑦𝑚 𝐶𝑜𝑛𝑣  denotes asymmetric convolution 
with a convolution kernel of size 3 1. 𝐴𝑠𝑦𝑚 𝐶𝑜𝑛𝑣  denotes asymmetric convolution with a 
convolution kernel of size 1 3 . ⊕  denotes element-wise addition. ⊗  denotes an 
element-wise product. 

The operation steps of the Attention module are as follows: First, the features are input into the 
asymmetric convolution [41]. An ordinary  3 3  convolution is replaced by an asymmetric 
convolution of feature maps whose kernels are (3,1) and (1,3), respectively. This method reduces the 
amount of computation and can not only enhance the feature extraction of slender objects such as 
mathematical function graphs but also make up for the information loss caused by the following Dw 
Conv dilation rate of 3. Second, separate BN operations are carried out before the fusion of two 
asymmetric convolution branch feature maps to avoid unifying BN and weakening the feature maps 
between different convolutions. Then, by using the convolution of 7 7 large kernel Dw Conv with 
a dilatation rate of 3 and a 1 1 Pw Conv, the fused features after BN operation can obtain better 
remote information and receptive field. Finally, the result of the previous step is used as the weight 
of the original different feature maps, so as to play the role of attention. 

Algorithm 1: MA ConvNeXt 
Input: Input feature 𝑋. 
Output: Output feature 𝐹 . 

1  Initialize 𝐼𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 3; 
2  Initialize Stacking Counts 𝑁 3,3,9,3 , 𝐷𝑖𝑚𝑠 96,192,384,768 ; 
3  𝑋 𝐶𝑜𝑛𝑣 𝐼𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝐷𝑖𝑚𝑠 0 , 𝐾𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 4, 𝑆𝑡𝑟𝑖𝑑𝑒 4 𝑋 ; 
4  𝑋 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝐷𝑖𝑚𝑠 0 𝑋 ; 
5  for 𝑖 0 to 𝑙𝑒𝑛 𝑁 1 do 
6     for 𝑗 0 to 𝑁 𝑖  do 
7         Set  𝑋 𝑋 
8         Set 𝑋 𝐷𝑤𝐶𝑜𝑛𝑣 𝐷𝑖𝑚𝑠 𝑖 , 𝐾𝑒𝑟𝑛𝑒𝑙 7, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 3 𝑋 ; 
9         Set 𝑋 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝐷𝑖𝑚𝑠 𝑖 𝑋 ; 
10        Set 𝑋 𝑃𝑤𝐶𝑜𝑛𝑣 𝐷𝑖𝑚𝑠 𝑖 , 4 ∗ 𝐷𝑖𝑚𝑠 𝑖 𝑋 ; 
11        Set 𝑋 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐺𝐸𝐿𝑈 𝑋 ; 
12        Set 𝑋 𝐷𝑟𝑜𝑝𝑃𝑎𝑡ℎ 𝐷𝑟𝑜𝑝𝑂𝑢𝑡 𝑋 ; 
13        Set 𝑋 𝑋 𝑋; 
14    End 
15    Set 𝐹 𝑋; 
16    Return 𝐹 . 
17    Set 𝑋 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 𝐹 ; 
End 
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The input features pass through the Attention module and output the features with attention into 
the final part of the MA ConvNeXt Block. In order to prevent model overfitting and improve 
generalization ability, DropOut and DropPath layers are added at the end of MA ConvNeXt Block. 
Both work similarly. DropOut deactivates neurons at a certain rate, while DropPath deactivates the 
master branch structure at a certain rate. To integrate with the preceding content and provide a 
comprehensive and intuitive presentation of MA ConvNeXt, Algorithm 1 also provides the 
pseudocode of MA ConvNeXt. 

3.3. MA BiFPN network for feature fusion 

The MA BiFPN feature fusion network is proposed based on the BiFPN network. Mask R-CNN 
uses FPN as a feature fusion network. FPN has the following defects in feature information fusion: 1) 
There is information loss in the process of adjacent scale feature fusion: semantic information loss 
caused by fewer channels in the process of fusion from high-level to low-level. 2) Because of the 
top-to-bottom or bottom-to-top structure of FPN, it pays more attention to the feature maps of adjacent 
layers, so the feature maps of the high-level layer cannot be directly transferred to the lower layer but 
must pass through the layers, which will lead to the loss of high-level semantic information. 3) The 
characteristic information of each scale is inconsistent. 

 

Figure 6. Structure of feature fusion network MA BiFPN. 

BiFPN builds a bottom-to-top path based on FPN to better retain the low-level feature 
information and adds extra weight to each input to learn the importance of each feature. BiFPN goes 
on to add residual joins, remove nodes with only one input edge and do weight fusion and iterate the 
entire fusion network three times. BiFPN increases the residual connection to enhance the 
representation of features. BiFPN removing the node with a single input edge is because the node 
with single input variable does not have feature fusion and has less information and low contribution. 
BiFPN adds a weight for each scale feature map to reflect the scale contribution. Equation (3) shows 
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the weighted fusion calculation method. 

𝑂𝑢𝑡𝑝𝑢𝑡  
𝑊

𝑒 ∑ 𝑊
∙ 𝐼𝑛𝑝𝑢𝑡 3  

where 𝑊  is the learnable weight, 𝑒 is the set smaller learning rate, and the final 𝑂𝑢𝑡𝑝𝑢𝑡 value is 
between 0 and 1. 

The BiFPN has the above improvements, but it still has not solved the problems of poor 
semantic information fusion effect in non-adjacent layers and information loss caused by multi-scale 
information transmission. Therefore, this study proposes an improved feature fusion network, which 
is called MA BiFPN, and the specific structure is shown in Figure 6, where 𝑆 , 𝑆 , 𝑆  and 𝑆  are 
output features of the four stages in MA ConvNeXt, respectively. 

In order to avoid the information loss caused by the reduction of the number of channels when 
the highest-level feature map is transmitted to the feature fusion network and to strengthen the 
contextual information compatible with other layers, this study replaces the path of passing the 𝑆  
feature map of the highest-level feature extraction network to 𝑃  and 𝑁  with the RFA module. 

The structure of the RFA module is shown in Figure 7. Using ratio-invariant adaptive pooling 
on the 𝑆  layer generates multi-scale feature maps. A 1 1 convolution is used to generate the 
output feature with a channel number of 256, which is then up-sampled to the same scale by bilinear 
interpolation. The Adaptive Spatial Fusion module is used to adaptively combine these contextual 
features to reduce the blurring effect caused by the interpolation. The Adaptive Spatial Fusion 
module assigns weights to each feature map and then aggregates these contextual features into a new 
feature map, as shown in Eq (4) for the weighted feature fusion computation of the Adaptive Spatial 
Fusion module. 

𝑂  𝛼 ∙ 𝑖𝑛 → 𝛽 ∙ 𝑖𝑛 → 𝛾 ∙ 𝑖𝑛 → 4  

where 𝑂   denotes the feature vector at (i, j) of the l-th layer. 𝛼 , 𝛽 , 𝛾  denote the remaining 

three layers’ learnable weights (i.e., contribution degree) on the feature maps. 𝑖𝑛 →  denotes the 

feature vector generated at (i, j) of the l-th layer after the feature map is resized from the n-th layer. 
The newly generated feature map is then combined with the 𝑆  feature map in the following feature 
fusion network and propagated to the lower-level feature maps for fusion, and it is then processed by 
the ASPP module and combined with the 𝑁  feature map to generate the 𝑁  feature map. 
Equations (5) and (6) illustrate the feature fusion process of the improved MA BiFPN at layer 𝑁 . 

𝑃 𝐶𝑜𝑛𝑣
𝑊 ∙ 𝑆 𝑊 ∙ 𝑅𝑒𝑠𝑖𝑧𝑒 𝑅𝐹𝐴 𝑆

𝑊 𝑊 𝑒
 5  

𝑁 𝐶𝑜𝑛𝑣
𝑊 ∙ 𝑆 𝑊 ∙ 𝐴𝑆𝑃𝑃 𝑃 𝑊 ∙ 𝑅𝑒𝑠𝑖𝑧𝑒 𝑁

𝑊 𝑊 𝑊 𝑒
6  

where 𝑊  and 𝑊  are all learnable parameters, and e is the learning rate. 𝑅𝑒𝑠𝑖𝑧𝑒 𝑅𝐹𝐴 𝑆  
indicates that after processing by the 𝑅𝐹𝐴 module, 𝑆  is upsampled and scaled to the same size as 
𝑃 . 𝑃  denotes the intermediate feature map at level 3 on the top-to-bottom path, and 𝑅𝑒𝑠𝑖𝑧𝑒 𝑁  
indicates the scaling of the output feature of 𝑁  to the same size as 𝑁 . 
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Figure 7. Structure of RFA module. 

 

Figure 8. Structure of ASPP. 

Continuing from the previous part, the feature 𝑁  is obtained by weighting the pooled feature 
𝑁  and the feature 𝑆  after passing through the RFA and ASPP modules. Equations (7)–(10) present 
the feature fusion process of the highest-level feature N4 in the improved MA BiFPN. 

𝑅 , , 𝑅𝑜𝑖𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑃𝑜𝑜𝑙 𝑆  7  

𝑍 𝐴𝑆𝐹 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 𝑅 , ,  8  
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𝑍
1
4

𝑓 𝑍  9  

𝑁 𝐶𝑜𝑛𝑣
𝑤 ∙ 𝑍 𝑤 ∙ 𝑅𝑒𝑠𝑖𝑧𝑒 𝑁

𝑤 𝑤 𝑒
 10  

where 𝑅𝑜𝑖𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑃𝑜𝑜𝑙  denotes Ratio-invariant Adaptive Pooling, 𝑅 , ,  denotes the three 
multi-scale features generated by applying Ratio-invariant Adaptive Pooling to 𝑆 , 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 
denotes the bilinear interpolation method, 𝐴𝑆𝐹 denotes the Adaptive Spatial Fusion module, 𝑍 
denotes the weighted feature obtained by 𝐴𝑆𝐹 , 𝑚  denotes the number of convolutions with 
different parameters in the ASPP module, 𝑓  denotes the convolution operation with different 
parameter settings in the ASPP module, 𝑍  denotes the feature obtained by applying the ASPP 
module to 𝑍, 𝑤  are learnable parameters, e is the learning rate, and 𝑅𝑒𝑠𝑖𝑧𝑒 𝑁  indicates the 
down-sampling of feature 𝑁  to the same scale as feature 𝑆 . 

When obtaining and extracting features of each layer, FPN only uses convolution whose 
convolution kernel is 1 1 to reduce the number of channels, greatly reducing the feature content 
of each scale. Therefore, in this study, ASPP is replaced with the path of feature transfer at each layer 
of feature fusion. In the BiFPN of three iterations, multi-scale feature maps are passed through ASPP 
to the next bottom-to-top or top-to-bottom fusion path. The concrete structure of ASPP is shown in 
Figure 8, where Rate stands for dilation rate. The input feature map is obtained by 4 parallel 
convolution branches with different dilation rates, and the multi-scale feature maps generated by the 
input feature map are merged at the end. ASPP can enhance the receptive field of feature fusion and 
enhance the extraction ability of the overall information, which is conducive to improving the final 
feature maps obtained by each branch of the feature fusion network. To integrate with the preceding 
content and provide a comprehensive and intuitive presentation of MA BiFPN, Algorithm 2 also 
provides the pseudocode of MA BiFPN. 

Algorithm 2: MA BiFPN
Input: Feature 𝑆 , 𝑆 , 𝑆 , 𝑆 ; 
Output: Fused Feature 𝑁 , 𝑁 , 𝑁 , 𝑁 ; 

1  Initialize 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 3; 
2  Initialize 𝑙𝑒𝑣𝑒𝑙4 𝑆 , 𝑙𝑒𝑣𝑒𝑙3 𝑆 , 𝑙𝑒𝑣𝑒𝑙2 𝑆 , 𝑙𝑒𝑣𝑒𝑙1 𝑆 ; 
3  for 𝑖 0 to 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1 do 
4      Set 𝑇 𝑅𝐹𝐴 𝑙𝑒𝑣𝑒𝑙4 ; 
5      Set 𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑇, 𝑆 ; 
6      Set 𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 𝑃 , 𝑆 ; 
7      Set 𝐷 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 𝑃 , 𝑆 ; 
8      Set 𝑁 𝐴𝑆𝑃𝑃 𝐷 ; 
9      Set 𝑁 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 𝑁 , 𝐴𝑆𝑃𝑃 𝑃 , 𝑙𝑒𝑣𝑒𝑙2 ; 
10     Set 𝑁 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 𝑁 , 𝐴𝑆𝑃𝑃 𝑃 , 𝑙𝑒𝑣𝑒𝑙3 ; 
11     Set 𝑁 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 𝑁 , 𝐴𝑆𝑃𝑃 𝑇 ; 
12     Set 𝑙𝑒𝑣𝑒𝑙4 𝑁 , 𝑙𝑒𝑣𝑒𝑙3 𝑁 , 𝑙𝑒𝑣𝑒𝑙2 𝑁 , 𝑙𝑒𝑣𝑒𝑙1 𝑁 ; 
13 End 
14 Return 𝑁 , 𝑁 , 𝑁 , 𝑁 . 
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3.4. Improved region proposal network 

After the MA BiFPN feature fusion network, four multi-scale fusion feature maps are obtained. 
These are then fed into the RPN for bounding box regression. The bounding box regression of the 
RPN is a rough result, and it is easy to lose information for the segmentation task. Common RPN 
judges candidate boxes by the IoU values of bounding boxes and candidate boxes (in target detection, 
it is the IoU of prediction box and ground truth box; and in segmentation, it is the IoU of prediction 
mask and ground truth mask). The IoU is calculated as Eq (11). 

𝐼𝑜𝑈
𝐵 ∩ 𝐺
𝐵 ∪ 𝐺

11  

where 𝐵  is the candidate box, and 𝐺  is the ground truth box. 
As can be seen from the equation, if the candidate box is too large, the IoU value will be too 

small and will be discarded. However, the candidate box which is larger than the ground truth box 
can contain the segmented object more comprehensively and keep more background area to reduce 
the information loss which may be discarded by the candidate box which is close to the edge. 
Therefore, in the model of this study, the selection of anchor candidate box increases by about 5%, 
and the penalty factor 𝜆 𝐺 𝐵 ∩ 𝐺  is added for IoU to punish the candidate box for not 
covering the target region. The improved IoU calculation equation is shown in (12). 

𝐼𝑜𝑈
𝐵 ∩ 𝐺

𝐵 ∪ 𝐺 𝜆 𝐺 𝐵 ∩ 𝐺
12  

where 𝜆 denotes the learned penalty intensity parameter, and 𝐺 𝐵 ∩ 𝐺  denotes the spatial 
gap between the candidate box and the ground truth box. 

The improved RPN retains a certain amount of elastic space for the selected candidate boxes, 
providing better proposal regions for subsequent segmentation. 

3.5. Mask segmentation method 

Figure 9 shows the segmentation strategy of the Mask branch selected by MA Mask R-CNN. 
MA Mask R-CNN uses PointRend to replace the FCN in traditional Mask R-CNN for mask 
segmentation. PointRend innovatively introduces the rendering idea of computer graphics and 
regards the graph as the discretization expression of the real target. Therefore, the segmentation 
problem can be regarded as the prediction of the area occupied by a real target in the discretized 
graph. Compared with the prediction after sampling to the same size as the input graph on the FCN, 
PointRend is predicted directly after multiple pooled downsampling. PointRend consists of three 
main components: Point Selection, Point-wise and Point head. Point Selection: Among rough 
segmentation feature maps, difficult points with poor segmentation effect are selected; Point-wise: 
By combining Fine-grained features and Coarse features, point-wise feature maps are constructed in 
selected difficult points. Point head: A simple MLP network is trained to perform point-by-point 
segmentation prediction for selected difficult points’ features, and the re-predicted results are 
replaced with the original coarse predicted results. PointRend uses the above method to reduce the 
information loss caused by continuous upsampling, and because it is more aimed at the goal of fewer 
difficult points than the whole mask pixel points, it can not only achieve accurate segmentation and 
smooth segmentation edge but also greatly save the consumption of computing resources. 
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Figure 9. The segmentation strategy used by the mask branch. 

3.6. Loss function 

In this study, loss function 𝐿 can be expressed as the sum of loss 𝐿  at RPN stage, the final 
classification loss of the model, bounding box regression loss 𝐿  and mask branch loss 𝐿  loss, 
as shown in Eq (13). 

𝐿  𝐿 𝐿 𝐿 13  

In Eq (13), 𝐿  is composed of classification loss and bounding box regression loss at RPN 
stage, as shown in Eqs (14)–(17). 

𝐿 𝑝 , 𝑟
1

𝑁
𝐿 𝑝 , 𝑝∗ 𝜆

1
𝑁

𝑝∗𝐿 𝑟 , 𝑟∗ 14  

𝐿 𝑝 , 𝑝∗ 𝑙𝑜𝑔 𝑝∗𝑝   1  𝑝∗ 1  𝑝 15  

𝐿 𝑟 , 𝑟∗ 𝑠𝑚𝑜𝑜𝑡ℎ 𝑟 𝑟∗ 16  

𝑠𝑚𝑜𝑜𝑡ℎ 𝑥
0.5𝑥        𝑖𝑓 |𝑥| 1

|𝑥| 0.5  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
17  

where 𝑝  denotes the probability that the i-th anchor is predicted to be a true label, and the value of 
𝑝∗ denotes the current positive and negative samples, which is 1 when the calculated samples are 
positive and 0 when the calculated samples are negative. 𝑟  denotes the bounding box regression 
parameter predicting the i-th anchor, and 𝑟∗ denotes the ground truth corresponding to the i-th 
anchor. 𝑁  indicates the number of all samples in a batch, and 𝑁  indicates the number of 
anchor locations. 𝜆 is the balance parameter set. ∑ 𝐿 𝑝 , 𝑝∗  denotes classification loss, and 
∑ 𝑝∗𝐿 𝑟 , 𝑟∗  denotes bounding box return loss. 𝐿  uses Softmax Cross Entropy loss function 
and 𝐿  uses 𝑠𝑚𝑜𝑜𝑡ℎ  loss function. 
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In Eq (13), 𝐿 is composed of classification loss and bounding box regression loss in the final 
prediction stage of the model, as shown in Eq (18). 

𝐿 𝑝, 𝑔, 𝑟 , 𝑣 𝐿 𝑝, 𝑔 𝜆 𝑔 1 𝐿 𝑟 , 𝑣 18  

where 𝑝 denotes the softmax probability distribution predicted by classifier 𝑝 𝑝 , … , 𝑝 . 𝑔 
denotes the real category label of the corresponding target, and 𝑟  denotes the regression parameter 
of the corresponding category g predicted by the corresponding bounding box regressor 

𝑟 , 𝑟 , 𝑟 , 𝑟 . 𝑣 denotes the bounding box regression parameter corresponding to the real target 

𝑣 , 𝑣 , 𝑣 , 𝑣 . 𝐿  still uses Softmax Cross Entropy loss function, while 𝐿  uses 𝑠𝑚𝑜𝑜𝑡ℎ  
loss function. 𝐿 𝑝, 𝑔  denotes classification loss, and 𝜆 𝑔 1 𝐿 𝑟 , 𝑣  denotes bounding 
box regression loss.  

𝐿  in Eq (13) adopts the Binary Cross Entropy loss function on the Mask branch: 

𝐿
1

𝑚
1 𝑦 ∗ 𝑙𝑜𝑔 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 1 𝑦 ∗ 𝑙𝑜𝑔 1 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 19  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥
1

1 𝑒
20  

where 1  means 1 when the k-th channel corresponds to the true category of the target, and 0 
otherwise. 𝑥 denotes the output value at the current position, and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥  denotes the result of 
transforming the output 𝑥 through a sigmoid function. 𝑦 indicates the label value of the mask at 
the current location, which is 0 or 1. 𝑚 denotes the size of the feature map. 

4. Experiments 

4.1. Experimental data and experimental environment 

 

 

Figure 10. Part of the dataset is displayed. 
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The mathematical function graphs in the experiment come from the real book [42] function 
graphs and self-made high-quality function graphs, for a total of 1200. Some graph examples are 
shown in Figure 10. Each graph is composed of multiple graph elements, including horizontal axis, 
vertical axis, straight line, quadratic function curve, cubic function curve, sine function curve 
(contains sine, cosine, where the phase difference between sine and cosine is ), arcsine function 

curve (contains arcsine and arccosine, which are the inverse functions of sine and cosine), tan 
function curve, arctan function curve, exponential function curve, logarithmic function curve, 
composite function curve (free curve) and circle. For the labeling information such as equation and 
point coordinates in the function graph, the density method used in the paper of J. Chen et al. [26] is 
used to separate the information from the function entity, and only the function entity is retained. 

In terms of processing, the graph is preprocessed first, including graph enhancement, flipping 
and size scaling. Second, Labelme software is used to annotate the graph elements in the graph. 
Polygon annotation method is used to annotate the contents, including the location and category 
information of graph elements. The corresponding graph elements annotation information is saved in 
JSON files. Then, the graph dataset is divided into the training set and the test set according to the 
ratio of 9:1. 

The experimental environment of the computer was as follows: Intel Core i9-12900K 2.4–5.2 
GHz CPU, 16 G RAM, Windows 10 64-bit operating system, Nvidia RTX 3090 Ti-24G, Python 3.7 
and PyCharm 2022 as the programming platform. 

Table 1. The main training parameters. 

Define Parameter Annotation 

IMAGE_MAX_DIM 1200 Picture size 

IMAGE_MIN_DIM 400 Picture size 

LEARNING_RATE 0.0001 Learning rate 

NUM_CLASSES 13 Category 

EPOCHS 150 Epochs  

BATCH SIZE 8 Batch size 

WEIGHT_DECAY 0.05 Weight decay 

Table 1 shows the main training parameters used for the models in the experimental section of 
this study. To ensure the reliability and fairness of the experiments, this study maintains consistency 
in the main training parameters. In Table 1, the values for LEARNING_RATE and 
WEIGHT_DECAY are set based on empirical values. While LEARNING_RATE and 
WEIGHT_DECAY are empirical values, they have been proven effective through experimentation. 
In this experiment, a warm-up strategy was applied for the learning rate during the first 10 epochs, 
followed by the use of the Adam optimizer in subsequent epochs. These methods allowed for a 
smaller initial learning rate. Warm-up is a learning rate scheduling strategy that starts with a smaller 
learning rate in the initial training phase and gradually increases it to help the model converge better. 
The Adam optimizer combines momentum and adaptive learning rate adjustment methods, 
automatically adjusting the learning rate based on the gradients of the parameters. 
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WEIGHT_DECAY is used to prevent overfitting by adding a regularization term to the loss function. 
BATCH SIZE refers to the number of samples selected for each training iteration. In general, a larger 
BATCH SIZE is preferred as long as it does not lead to overgeneralization. However, in this 
experiment, the maximum BATCH SIZE is limited to 8 due to the available GPU memory. EPOCHS 
refers to the process of training the model using all the samples in the training dataset once. In this 
study, after conducting multiple experiments, it is observed that the total loss of each model starts to 
stabilize after reaching 150 epochs, showing no significant changes. Therefore, EPOCHS is set to 150. 

4.2. Experimental results and analysis 

The mathematical function graph data collected consists of the function graphs sampled from 
real books and the high-quality function graphs made by ourselves. In this section, the effectiveness 
of the proposed MA Mask R-CNN is demonstrated through experiments. The contents are presented 
in Tables 2 and 3. The categories of graph elements are as follows: C1 represents the horizontal axis, 
C2 represents the vertical axis, C3 represents a straight line, C4 represents a quadratic function, C5 
represents a cubic function, C6 represents an exponential function, C7 represents a logarithmic 
function, C8 represents a sine function, C9 represents an arcsine function, C10 represents a tan 
function, C11 represents an arctan function, C12 represents a composite function, and C13 represents 
a circle. Tables 2 and 3 show the comparison between the model proposed in this study and other 
mainstream instance segmentation model algorithms. Among them, the evaluation index is mAP with 
IoU set at 0.75. Figures 11 and 12 show the visualization of results of Tables 2 and 3, respectively. 
Then, the mAP values of each model on mathematical function graphs target detection and 
segmentation are respectively shown in Tables 2 and 3, in which Mask R-CNN is the original model, 
YOLACT++ [43], PANET [44] and BlendMask [45] are classic models of instance segmentation, 
and Mask Dino [46] is the state-of-the-art instance segmentation model. 

Table 2. mAP of each model on mathematical function graphs target detection. 

Model mAP (%) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

Mask R-CNN 78.6 84.3 81.5 84.5 82.6 76.3 78.5 75.8 79.5 80.2 78.1 76.1 63.5 80.4 

YOLACT++ 72.0 76.2 74.2 71.6 70.3 77.6 72.1 69.4 65.8 74.2 71.8 70.1 64.1 79.1 

PANET 80.3 86.7 84.9 86.5 83.1 78.2 79.4 77.1 81.1 81.9 79.4 78.3 65.5 81.4 

BlendMask 82.2 87.1 87.5 86.9 87.1 82.3 80.6 77.5 81.3 83.9 80.1 81.2 69.4 84.1 

Mask Dino 83.6 87.9 88.1 87.3 86.6 82.6 81.4 78.9 83.2 85.1 80.5 83.8 74.7 88.9 

MA Mask R-CNN (ours) 85.7 91.7 91.3 91.5 87.3 83.4 82.8 80.2 84.5 86.2 81.3 84.9 80.9 88.1 

The calculation method of the evaluation index mAP (mean Average Precision) in Table 2 is 
as follows: 

Step 1: The region selection algorithm is used to get the candidate box. The IoU between each 
candidate box and the ground truth box is calculated. By comparing the IoU value and the given IoU 
threshold, the samples are classified as positive and negative samples, and a test set similar to that in 
the classification is obtained. 
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Step 2: The test set of Step 1 is used to calculate the score of positive samples through the 
classifier, and the positive and negative samples are classified by comparing the score value with the 
given score threshold. 

Step 3: The accuracy rate and recall rate of the current category are calculated according to the 
results of Step 2. 

Step 4: The AP value of each class is calculated, and the mAP is calculated according to the AP 
value of all the classes obtained. 

As for the mAP in Table 3, one only needs to replace the IoU calculation target in Step 1 above 
with candidate mask and ground truth mask. 

 

Figure 11. Object detection mAP of each method on each function class. 

Combining Table 2 and Figure 11, it can be found that the target detection mAP of the model 
proposed in this study has been improved to varying degrees in each category. Especially, the target 
detection mAP of the C12 category (composite function) has been significantly improved. By 
introducing the attention module of local information and remote information, and strengthening 
the fusion of high-level and low-level information in the feature fusion stage, the MA Mask 
R-CNN model can effectively improve the detection ability of complex mathematical function 
graph recognition. 

Furthermore, it can be observed that the model proposed in this study performs better than Mask 
Dino in all categories except for C13. There are several reasons for this: In the dataset used in this 
study, when annotating C13 (circle), a polygon annotation is used along the edge of the circle, and 
the entire solid circle is labeled as C13. Unlike other categories, C13 is not a thin line but a solid 
shape. Mask Dino has a significant advantage in handling non-elongated objects like C13. Therefore, 
the model proposed in this study is relatively weaker in the C13 category compared to Mask Dino. It 
is important to consider the specific characteristics and challenges posed by different object categories 
when evaluating the performance of models. While our model may not outperform Mask Dino in the C13 
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category due to the nature of the annotations, it demonstrates superior performance in other categories. 

Table 3. mAP of each model on mathematical function graphs segmentation. 

Model mAP(%) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

Mask R-CNN 64.1 73.1 71.6 65.3 73.6 70.5 56.5 54.3 30.5 66.7 56.2 60.8 76.2 77.5 

YOLACT++ 59.4 67.1 66.8 68.2 65.3 65.1 57.4 55.1 32.6 60.6 51.6 58.1 50.8 73.9 

PANET 66.5 75.3 72.1 69.6 75.6 71.1 58.1 56.2 35.8 69.8 58.4 63.1 78.1 80.8 

BlendMask 69.4 75.8 71.9 74.6 76.1 74.2 61.3 62.1 46.7 73.8 61.5 65.2 77.8 81.1 

Mask Dino 71.2 76.1 73.2 76.9 76.1 74.7 61.8 63.1 58.6 74.9 61.9 67.3 78.1 83.1 

MA Mask R-CNN (ours) 72.3 77.4 75.4 78.1 76.9 75.8 62.1 63.4 62.7 75.8 63.3 68.5 78.1 82.7 

 

Figure 12. mAP of each category in segmentation branch. 

Combined with Table 3 and Figure 12, it can be found that the model proposed in this study has 
different enhancement degrees of segmentation mAP in each category. Among them, the 
improvement of our proposed model compared to the state-of-the-art instance segmentation model, 
Mask Dino, is limited in categories such as exponential functions C6, logarithmic functions C7, and 
composite functions C12. Additionally, the improvement in category C13 is slightly inferior to that 
of Mask Dino. Potential reasons are as follows: Mask Dino has an advantage in detecting the C13 
category. Furthermore, its utilization of query embeddings for performing dot products on 
high-resolution pixel embedding maps enables the prediction of a set of binary masks. This approach 
proves particularly effective for the C13 category, which exhibits fixed geometric shapes without 
elongation. It allows for a better understanding of the shape information of the target and generates 
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masks that are more compatible with the shape of C13. Therefore, Mask Dino still maintains a 
certain advantage in functionally segmenting images of the C13 category. In some cases, C6 and C7 
have high morphological similarity, and the feature difference is not obvious. However, due to the 
particularity of the category, C12 has no fixed morphological rules, and some entities easily have 
similarities with other categories, relying more on the supplement of datasets, so it may be due to 
insufficient training samples and the graph elements of some training samples extending to the edge 
of the image, which affects the segmentation. Due to the wide range of independent variables of sine 
function, more features, and higher requirement for continuity than other categories in samples, the 
remote information acquisition capability of models is also higher, resulting in limited improvement 
of all preceding models on C8 (sine function). However, our model has obvious improvement in this 
category, and the reasons are as follows: The improvement of branch detection effect, the expansion 
of the anchor frame ratio in the RPN layer and the addition of penalty factor to the IoU make the 
candidate frame more accurate and bring some elastic space. Benefiting from the foundation of the 
above gain, the PointRend of segmentation based on graph rendering ideas can better improve the 
segmentation accuracy and generate high-quality segmentation masks. 

The backbone network of Mask R-CNN, YOLACT++, PANET, BlendMask and Mask Dino in 
Tables 2 and 3 is ResNet101. By comparison, the MA Mask R-CNN model proposed in this study is 
significantly improved in both target detection mAP and segmentation mAP. Compared with the 
original Mask R-CNN, there are increases by 9% in the mAP of target detection and by 12.8% in the 
mAP of segmentation. Moreover, it also has certain advantages over Mask Dino. MA Mask R-CNN 
model improved on the mAP but failed to achieve the desired result. The reasons are as follows: 1) 
The convolution of a common fixed grid position can only extract the features of a rectangular box, 
which lacks geometric transformation ability and cannot better obtain the features of function graphs. 
2) Insufficient dataset samples resulted in insufficient features learned by the model. 3) The noise of 
the dataset is too small, which makes the anti-interference ability of the model insufficient. 

Table 4. Ablation results. 

Model Params Det_mAP (%) Seg_mAP (%) GFLOPs FPS (f/s) 

Mask R-CNN 43.9 M 78.6 64.1 251.4 5.4 

+MA ConvNeXt 51.3 M 81.8(+3.2) 66.8(+2.7) 271.1 4.9 

+MA BiFPN 60.8 M 85.1(+3.3) 68.6(+1.8) 296.2 4.6 

+RPN improvement 61.2 M 85.7(+0.6) 69.7(+1.1) 296.2 4.6 

+PointRend 61.2 M 85.7(+0.0) 72.3(+2.6) 296.2 4.6 

Table 4 shows the ablation experimental results of this study, in which Params denotes the 
number of parameters contained in the model (unit: MB), abbreviated as M in the table. Det mAP 
denotes the mAP for object detection, and Seg mAP denotes the mAP for segmentation. GFLOPs are 
billion floating-point operations per second and are used to measure the complexity of a model. FPS 
denotes the number of graphs the model can process per second. Table 5 displays the runtime of each 
model mentioned in the experimental section of this study, in which Time denotes the duration from 
when the input data undergoes preprocessing and is fed into the model to start the timer, until the 
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model generates the output results and the timer stops. According to the analysis of Table 4, 
compared with the original Mask R-CNN, the model proposed in this study has significantly 
improved the mAP of target detection and the mAP of instance segmentation. According to the 
analysis of Tables 4 and 5, compared with the original Mask R-CNN and Mask Dino, the accuracy of 
the model proposed in this study is improved at the cost of less speed loss. Therefore, the ablation 
results prove the effectiveness of the improved model in this study.  

Table 5. Runtime of each model 

 Mask R-CNN YOLACT++ PANET BlendMask Mask Dino MA Mask R-CNN (ours) 

Time (s) 2.16 1.27 2.29 2.37 2.49 2.63 

 

Figure 13. Different CAM visualization results of Grad-CAM [47] on Mask R-CNN, 
PANET, Blend Mask, MA Mask R-CNN (ours) are used to compare the attention of 
different models to graphs. 

This section does not compare YOLACT++ because it only has a clear advantage in speed. 
CAM (Class Activation Mapping) is a common visualization tool for attention mapping. By 
analyzing Figure 13, it can be found that compared with Mask R-CNN, PANET and Blend Mask 
models, MA Mask R-CNN can pay more attention to target graphs in various mathematical function 
graphs. In addition, compared with Mask Dino, MA Mask R-CNN only pays less attention to circle. 
So, MA Mask R-CNN has better performance in mathematical function graphs, which proves that 
this model is effective in improving local attention and remote information. 
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(a) Original graphs (composed of coordinate axes, logarithmic function, arcsine function and circle) 

      

(b) Mask R-CNN     (c) PANET 

 

(d) Blend Mask 

Continued on next page 
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  (e) Mask Dino     (e) MA Mask R-CNN(Ours) 

Figure 14. Instance segmentation effect of Mask R-CNN, PANET, Blend Mask, Mask 
Dino, MA Mask R-CNN (ours). 

Figure 14 shows the instance segmentation results of the four models on the test graph. In order 
to better display the recognition and segmentation effect of each model on the function graph in 
Figure 14, the segmentation instances of each model in the original Figure 14 are extracted 
separately in Figure 15. In Figure 15(b)–(f), the red line denotes the solid part of the logarithmic 
function, the blue line denotes the solid part of the arcsine function, the green line denotes the solid part 
of the circle, and the black line denotes the solid part of the coordinate axis. Among them, each first 
image in Figure 15(b)–(f) denotes the logarithmic function divided by the model from Figure 15(a), the 
second image in Figure 15(b)–(f) denotes the arcsine function entity divided by Figure 15(a), the 
third image in Figure 15(b)–(f) denotes the circle divided by the Figure 15(a), and the fourth image 
in Figure 15(b)–(f) denotes the remaining part of the model after removing the entity divided by the 
first three graphs from Figure 15(a). The following is an analysis of the instance segmentation results 
of the four models refined in Figure 15 (the four models are similar in the segmentation effect of the 
axes, so the analysis is not carried out): 1) The logarithmic function and arcsine function entities 
extracted by the original Mask R-CNN segmentation in Figure 15(b) are too few, with poor 
continuity. Although a complete circle is divided through the mask of the circle, part of the 
coordinate axis and the entity of the arcsine function are also incorrectly divided. Through the analysis 
of the fourth image in Figure 15(b), it can be found that the instances that Mask R-CNN can extract are 
limited, the features of the residual instances are not fully utilized, and the segmentation effect of the 
junctions of different instances is poor. 2) The segmentation effect of PANET in Figure 15(c) is slightly 
improved. By analyzing the fourth image in Figure 15(c), it can be found that there is still a large 
amount of entity information that has not been utilized. 3) In Figure 15(d), the logarithmic function 
and arcsine function entities extracted by Blend Mask have been significantly improved. The 
interference of the arcsine function instance can be removed in the circle segmentation, but the 
partial axis entity intersecting with the circle boundary is still incorrectly segmented. By analyzing 
the fourth image in Figure 15(d), it can be found that the Blend Mask has obtained more entity 
information than the previous two models, but the utilization rate of entity information still cannot 
meet the requirements. 4) In Figure 15(e), it can be observed that Mask Dino exhibits further 
improvement in extracting various function entities compared to Blend Mask. The function entities 
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become more complete, but there are still instances where the logarithmic function and arcsine 
function suffer from mutual occlusion with other functions, resulting in the inability to generate 
masks for the occluded portions. However, Mask Dino shows the most significant improvement in 
segmenting circle function entities by eliminating the interference caused by neighboring function 
entities and coordinate axes, resulting in a segmented mask that only contains the circular function. 
Analyzing the fourth image in Figure 15(e), it can be noticed that Mask Dino has a higher utilization 
rate of function entity information compared to the previous three models. However, there is still 
room for improvement. 5) In Figure 15(f), the logarithmic function and arcsine function entities 
segmented by MA Mask R-CNN (ours) appear to be the most complete and continuous. Additionally, 
its performance on circle is nearly comparable to Mask Dino, as it effectively eliminates the 
interference from other function entities when segmenting the circle. Moreover, it successfully 
avoids segmenting the coordinate axis entities at the intersection with the circle as part of the circle’s 
mask. By analyzing the fourth image in Figure 15(f), it can be found that MA Mask R-CNN (ours) 
has the least remaining entities after removing each segmentation instance, indicating that this model 
makes the best use of the instance information of each function graph. From the above, it can be 
found that the model proposed in this study can significantly improve the function instance 
segmentation effect by strengthening the multi-scale fusion of local information and global 
information and adopting the mask segmentation method, which can generate higher-quality and 
smoother results. This model can generate more complete and more continuous masks on the 
function graphs, and the masks can be generated correctly at the classifications of different 
function categories. 

 

(a) Original graph (composed of coordinate axes, logarithmic function, arcsine function 
and circle). 

 

(b) Mask R-CNN segments the function instance of the original graph according to the 
mask of each function generated. 

Continued on next page 
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(c) PANET segments the function instance of the original graph according to the mask of 
each function generated. 

 

(d) Blend Mask segments the function instance of the original graph according to the 
mask of each function generated. 

 

(e) Mask Dino segments the function instance of the original graph according to the mask 
of each function generated. 

 

(f) MA Mask R-CNN (ours) segments the function instance of the original graph 
according to the mask of each function generated. 

Figure 15. Breakdown diagram of instance segmentation effect of Mask R-CNN, 
PANET, Blend Mask, MA Mask R-CNN (ours) on Figure 15(a). 
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5. Conclusions and prospect 

In this paper, MA Mask R-CNN is proposed to improve the detection and segmentation 
capabilities of the original Mask R-CNN model for mathematical function graphs. Improvements 
include the following: 1) adding an attention module with a combination of local and remote 
information, using ConvNeXt as a baseline; 2) taking BiFPN as the baseline, adding RFA and ASPP 
modules to strengthen the fusion of multi-scale information at high and low layers of BiFPN; 3) 
adding penalty factor to IoU in RPN stage, allowing candidate anchor box to have a certain 
redundancy, so that the detection box can better contain categories and enhance the segmentation 
effect; 4) adopting PointRend mask segmentation strategy, according to the rendering angle of 
computer graphs, making the segmentation results smoother and more complete. Moreover, 
experimental results show that MA Mask R-CNN is better than other models in case segmentation of 
function graphs. 

In the following directions, we will continue to improve the work of mathematical function 
graph instance segmentation technology in the production of tactile graphics: 

1) Improve the detection speed of the model and continue to reduce the parameters. Pruning the 
model allows the model to be lightweight and quickly applied to different scenarios. 

2) Expand the dataset and optimize the distribution of the dataset. The classification of the 
dataset can still be optimized. The generalization ability of the model is gradually strengthened by 
expanding the well-distributed dataset. 

3) Adding Deformable convolution [48] to enhance the geometric transformation ability of the 
model, so that the model can extract more function image features. 

4) After segmenting the function graph, the mask is skeletonized, and the resulting subdivision 
mask is redrawn through fitting. Finally, the fitted mathematical function graph is saved in SVG 
format, providing a foundation for the subsequent production of tactile graphics. 
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