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Abstract: Traffic congestion is a major issue in urban traffic networks. Both congestion charging and 
subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this 
paper constructs a typical transit network consisting of three travel tools in four common travel modes. 
Travelers’ values of time affect their choice of transportation in the congestion network, thus a 
stochastic user equilibrium model is established by considering travelers’ heterogenous values of time 
to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle 
flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy 
policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion 
charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for 
ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public 
buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges 
of the dual-modal transport. The combination of no subsidy for public buses and charging for both 
private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic 
congestion. Although the combination of charging for private cars and subsidizing public buses does 
not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study 
can provide quantitative decision support for the government to ease traffic congestion and improve 
government revenue. 
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1. Introduction 

Traffic congestion is one looming or urgent issue which most metropolitan areas around the world 
are facing [1–3]. According to a report from the Texas Transportation Institute, from 1982 to 2007, 
traffic congestion cost Americans $87.2 billion (in constant 2007 dollars) annually [4]. In 2010, 
traffic congestion costs for the United States reached $101 billion, including nearly two billion 
gallons of wasted fuel and 4.8 billion hours of travel delay [5]. The Texas Transportation Institute 
estimated that in 2011 urban Americans traveled about 5.5 billion additional hours and purchased an 
extra 2.9 billion gallons of fuel as a result of congestion [6]. In 2017, the estimated total economic costs 
due to congestion in Britain, Germany and the United States were $461 billion [7]. In addition, congestion 
has been worsening for many reasons, including the increasing demand for vehicles due to population 
growth and economic activity [8–10], physical capacity lagged behind demand growth [10,11] and low 
vehicle occupancy rate [12]. Therefore, searching for proper methods to alleviate traffic congestion to 
the greatest extent is a great challenge and is high on government agendas. In literature, two of the most 
popular ways to deal with congestion that have been suggested are congestion pricing and giving priority 
to public transportation [13]. 

Congestion charging is growing in popularity as one effective way to mitigate traffic congestion, 
which is to a certain extent advocated by economists [2,3,11,14]. The essential idea of congestion 
pricing or congestion charging is the use of a price mechanism to make users conscious of the costs 
that they impose upon one another when consuming during peak demand, and that they should pay for the 
additional congestion they create [15]. In practice, congestion charging has been successfully implemented 
in many metropolises, such as Singapore1 , London, Stockholm2 , Gothenburg and Milan [2,4,18–20]. 
However, congestion charging does not guarantee its efficiency for all types of cities as there need to 
be some specific attributes of the city to make better utilization of road charging [21]. 

Spurring the usage of the public transport system is another effective means to ease traffic 
congestion. Governments all over the world provide different forms of transport-related subsidies to 
encourage travelers to shift from private cars to public transport [6,22,23]. Ridesharing, as a 
complement to public transport [24], recently has emerged in many cities with the growth and 
acceptance of the sharing economy, the popularity of mobile internet technology as well as the 
application of innovative technologies. Emerging ridesharing platforms, e.g., Uber in the United States, 
Didi in China and Grab in Singapore, have facilitated the adoption of ridesharing by reducing the 
matching/meeting friction between drivers and riders [25]. Ridesharing, in the sense of carpooling, 
allows riders to travel with less expense by sharing a ride with peer passengers [26]. Ridesharing 
subsidies have the potential to improve social welfare and reduce congestion. However, providing too 
many subsidies to ridesharing users may increase congestion levels [27]. Thus, charging for it might 
relieve traffic congestion instead. 

Public buses have a relatively higher occupancy rate than private and ridesharing cars. Many 
countries advocate charging for private and ridesharing cars and subsidizing buses. For example, 18% 

 
1 Singapore implements congestion pricing scheme [16]. 
2 Stockholm implements urban congestion charge, after Singapore and London, and the second city using a time-
differentiated scheme, after Singapore [17]. 
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of the funds generated from congestion charging in the San Francisco Bay Area is used to subsidize 
bus transportation [6]. The city of Chicago introduced a tiered congestion surcharge on ride-sourcing 
trips to subsidize public transit [28]. 

There are many studies on congestion charging and public transportation in urban road networks, and 
some consider both congestion charging and public transportation subsidy [6,29–31]. The research on the 
impact of shared vehicles on traffic congestion is mainly based on ridesharing compensation [32–34]. Few 
studies focus on congestion charging for ridesharing cars, and those focusing on all the three elements 
simultaneously are fewer. 

Therefore, this paper constructs a typical transit network with these three travel tools in four 
travel modes (only taking the private car, only taking the ridesharing car, transferring from the 
private car to the public bus, and transferring from the ridesharing car to the public bus). The 
congestion charging could be divided into four categories: no congestion charging, congestion 
charging for the private car, congestion charging for the ridesharing car, congestion charging for 
both; and subsidy could also be divided into four categories: no subsidy, subsidy for transferring 
from a private car to a public bus, subsidy for transferring from a ridesharing car to a public bus, 
subsidy for both. Thus, the four charging modes and four subsidy modes could be combined into 16 
management policy combinations. 

In addition, travelers’ choice of travel modes depends on the trade-off between travel time 
and cost, since travelers may bear different costs on the same route if they choose different travel 
modes. Consequently, travelers’ values of time (VOT) pose a significant influence on their 
decisions [35,36]. Commonly, travelers are heterogeneous in their VOT due to their socioeconomic 
characteristics and trip purpose [37]. Although some studies assume that all travelers are 
homogeneous [6,29,31], other studies have found that heterogeneity in travel mode and departure 
timing selection is crucial. Ignoring preference heterogeneity may cause a biased estimation of policy 
impacts [38]. Hence, preference heterogeneity is key to the travel mode. 

Thus, a stochastic user equilibrium model is established by considering travelers’ heterogenous 
values of time to evaluate the changes in network traffic flow and revenue caused by the 
implementation of different management policy combinations. This paper seeks to answer the 
following questions: 1) Does congestion charging or subsidy policy ease traffic congestion, and which 
one plays a dominant role? 2) Which kind of management policy combinations can bring more 
government revenue? 3) Should there be a congestion charge for private cars and/or ridesharing cars? 
4) Should there be a subsidy for passengers who transfers private and/or ridesharing to public buses? 

The rest of the paper is organized as follows: Section 2 reviews the literature on congestion 
charging and subsidy on the equilibrium network; Section 3 establishes a stochastic user equilibrium 
model to describe the transit problem; Section 4 conducts numerical experiments and quantitatively 
explores the effects of different management policy combinations on vehicle flow and revenue; The 
effects of three optimal management policy combinations on different travel modes are presented in 
Section 5; Section 6 concludes the paper and discusses future research. 

2. Literature review 

The research content of this paper mainly involves three aspects: congestion charging, public 
transportation and ridesharing. Given the importance and complexity of congestion charging, many 
governments and scholars have been committed to maximally easing traffic congestion. The theoretical 
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concept of congestion pricing was initiated by Pigou (1920), further developed by Nie and Liu [14] 
and Chen and Yang [15]. Many studies focus on the topics of step tolling, user heterogeneity, and 
tradable credit schemes. Some studies explore congestion pricing with the heterogeneity of travelers’ 
value of time, etc. [39–42]. Research on public transportation focuses on optimizing public 
transportation pricing and services to alleviate traffic congestion. Yoshida [43] studied the influence 
of queuing rules at transit stops on mass-transit policies. Monchambert and de Palma [44] explored the 
two-way implication between punctuality level of public transport and customer public transport use 
via a bi-modal competitive system. To circumvent the Downs-Thomson paradox appearing in a 
competitive highway/transit system, Wang et al. [45] designed the transit subsidy policies from either 
government funding or road toll revenue. Yang and Tang [46] proposed a fare-reward scheme for 
easing rail transit peak-hour congestion with homogeneous commuters. As for heterogeneous 
commuters, Tang et al. [47] further proposed an incentive-based hybrid fare scheme. In recent years, 
more and more studies focus on the impact of ridesharing on traffic congestion. The impact of 
static ridesharing cars on traffic congestion was studied separately by Xu et al. [48] and Alisoltani 
et al. [49]. And some studies explored the potential of subsidizing ridesharing users, drivers, so as 
to reduce traffic congestion [27,32–34]. 

Based on the research above, different management policies (congestion charging policy and/or 
subsidy policy) were further studied on the equilibrium network with various travel modes. For 
example, Yang et al. [29] investigated the relationship among the auto toll, transit fare and subsidy 
scheme at a bi-modal network level, and linked road pricing and public transport provision via the use 
of congestion charge revenue to subsidize or improve transit services for an optimal modal split. Liu 
et al. [30] studied a Pareto-improving and revenue-neutral congestion pricing scheme on a simple two-
mode network consisting of highway and transit with a different value of time distributions. Nie and 
Liu [15] considered a static congestion pricing model in which travelers choose a mode from driving 
on the highway or taking public transit, to minimize a combination of travel time, operating cost and 
toll and examine the effects of individuals’ value of time on the policy of congestion pricing. Basso 
and Jara-Diaz [31] modeled and analyzed optimal prices and design of transport services in a bi-modal 
context, and optimized the congestion toll, the transit fare (i.e., the level of subsidies) and transit 
frequency. Chen and Nozick [6] developed a bi-level optimization model for identifying an optimal zonal 
pricing scheme to incentivize the expanded use of transit to stem congestion. Bagloee and Sarvi [50] 
employed a solution method to assign the toll or subsidy to each road, which is based on augmenting 
the travel time of roads up to the level where the traffic volumes do not exceed some target rates. 
Lucinda and Moita [51] combined a structural econometric model with a simulation algorithm to 
estimate an optimal congestion tax, and investigated commuters’ willingness to switch to public 
transport. Sun and Szeto [52] proposed a logit-based multi-class ridesharing user equilibrium 
assignment framework that can incorporate different policy measures (e.g., car restrictions, cordon 
tolling and subsidization). Song et al. [27] proposed a simulation-based optimization framework to 
explore the potential of subsidizing ridesharing users, drivers and riders, which further could improve 
social welfare and reduce congestion. A detailed comparison of these literature in three perspectives 
(i.e., management policy, travel mode and user heterogeneity) is shown in Table 1. 

Obviously, the impacts of congestion charging and public transportation subsidy simultaneously 
on traffic congestion are extensively explored, while congestion charging for ridesharing cars is 
sometimes ignored. And, research on ridesharing is increasing with the development of sharing 
economy, which ignores the roles of public bus. 
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Research on user heterogeneity has been increasing in recent years. Considering the preference 
heterogeneity of different travelers can better guide decision-making. Therefore, based on user 
heterogeneity, this paper considers congestion charging, ridesharing and subsidy strategies 
simultaneously, and explores the impact of different travel modes on traffic congestion. 

Table 1. Comparison of literature about different management policies on the equilibrium 
network with various travel modes. 

Literatures 
Management policies Travel tools

User 
heterogeneity

Congestion 
charging 

Subsidy
Private 
car

Public 
bus

Ride-
sharing 

Yang et al. [29] √ √ √ √ × × 

Liu et al. [30] √ √ √ √ × √ 

Nie and Liu [15] √ × √ √ × √ 

Basso and Jara-Diaz [31] √ √ √ √ × × 

Chen and Nozick [6] √ √ √ √ × × 

Bagloee and Sarvi [50] √ √ √ × × × 

Lucinda and Moita [51] √ √ √ √ × √ 

Sun and Szeto [52] √ √ √ × √ √ 

Song et al. [27] √ √ √ × √ √ 

this paper √ √ √ √ √ √ 

3. Modeling 

3.1. Network representation 

A transit network G = (V, E) consists of a node set V and an edge set E. The node set V includes 
the origin, destination and transit point. Each element in the edge set E connects two consecutive nodes. 
A travel mode is any path that a traveler follows on the transit network G from the origin to the 
destination by one or more travel tools, including the private car, the ride-sharing car and the public 
bus [53,54]. A detailed explanation is presented by a typical network with three nodes (origin, 
destination and transit point) and two edges (Ea, Eb), as shown in Figure 1. Travel tools on the edge Ea 
only include the private and ride-sharing car, and those on the edge Eb contain the private car, the ride-
sharing car and the public bus. Four travel modes from the origin to the destination are as follows: 
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Figure 1. A network with four common travel modes. 

Travel mode 1: a traveler travels straight by the private car from the origin to the destination. 
Travel mode 2: a traveler travels straight by the ridesharing car from the origin to the destination. 
Travel mode 3: a traveler travels along the edge Ea from the origin to the transit point by the private 

car, and then along the edge Eb from the transit point to the destination by the public 
bus. 

Travel mode 4: a traveler travels along the edge Ea from the origin to the transit point by the ridesharing 
car, and then along the edge Eb to the destination by the public bus. 

3.2. Travel time 

A common quantitative measure of travel time in transportation literature and practice is the U.S. 
Bureau of Public Roads (BPR) formulation [55,56] which is continuously differentiable and strictly 
monotone [22]. Its mathematical expression is as follows: 

0[ ( ) ]j
j j

j

v
t t

H
                                                                (1) 

where jt  denotes travel time on the edge jE ,  ,j a b ; 0
jt  is the free flow travel time on the edge jE ; 

jH  denotes capacity for the edge jE ; ,   and   are parameters with no structural information3; jv  

denotes vehicle flow on the edge jE . Equation (1) describes the coupling of the assumption with the 

dependence between travel time and flow. 
The vehicle flow jv  on the edge jE  is the sum of the flows of all travel modes going through 

the edge jE  for all travel modes. In particular, for the transit network in Figure 1, the vehicle flow 

av  only includes the private car flow in travel mode 1 and 3, and the ridesharing car flow in travel 

mode 2 and 4; while the vehicle flow bv  contains the private car flow in travel mode 1, the ridesharing 

car flow in travel mode 2, and the bus flow in travel mode 3 and 4. Note that, when travelers on multiple 
travel modes select the public bus on the same edge, the bus flow is only recorded once. Consequently, 

 
3 Generally assume that 1, 0.15    and 4  , according to Liu and Meng [22], Zhao et al. [56], Manzo et 

al. [57], Almotahari and Yazici [58], Novak et al. [59]. 
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the vehicle flow jv  can be expressed as 
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where jf  denotes passenger flow of the i-th travel mode; , 1j i   if the edge jE  is part of the i-th 

travel mode connecting the origin and destination, otherwise, , 0j i  ; busv  is the bus flow, which is a 

fixed value, only determined by frequency of public buses and is irrelevant to the passenger flow; bus  

denotes the size ratio between public buses and cars4. In Eq (2), ,j i  is the average occupancy rate of 

the car used on the edge jE  of the i-th travel mode, which converts the flow-volume from passenger 

unit to corresponding vehicle unit, 
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where priv  and ride  are the average occupancy rates of the private and ridesharing cars, respectively. 

Therefore, the vehicle flow av  and bv  in this paper can be written as follows: 
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3.3. Travel cost 

To construct travel cost, travelers’ heterogenous values of time (VOT) is introduced firstly, i.e., 
different travelers value travel time differently, depending on their income levels or travel purposes. 
From an economic perspective, travel cost could be measured in the monetary unit and measurement 
is more appropriate when it comes to different time values [60]. Thus, the travel time can be converted 
from time-based value into uniform monetary value. Therefore, the travel cost of the i-th travel mode 

iTC  including time cost, monetary cost, congestion charge and subsidy, can be expressed as 

,( ) ( )i j j i i i i i
j

TC t w MC CC S                                               (5) 

where iMC  , iCC   and iS   denote the monetary cost (e.g., extra fuel cost and faster depreciation of 

vehicles), the congestion charge for the private car and/or ridesharing car, and the subsidy for 
transferring from cars to public buses in the i-th travel mode, respectively; iw  denotes waiting time of 

the i-th travel mode, and  

 
4 Because the size of the public bus is larger than that of the private or ridesharing car, each bus occupies more flow 
than a car. 
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where ridew  and busw  are the waiting time of the ridesharing car and the public bus, respectively; 

   is the VOT, which is a stochastic variable. It is usually assumed to follow a log-normal 
distribution [15,61]. The probability density function of the stochastic variable    is continuously 
differentiable and expressed as 
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where m  is the scale parameter,   is the shape parameter and   is the location parameter. Note that, 
ln m  and   are not the mean and variance of the random variable   whose mean and variance are 

2ln /2me     and 
2 22ln( 1) me e  , respectively. Its cumulative distribution function is 
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where ( )erf   is the error function defined by 
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0

2
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                                                           (9) 

3.4. Choice function 

The choice probability that the travel cost of the i-th travel mode iTC  is less than that of any other 

travel mode (given  ) is 

( , | )i i lP Pr TC TC l i                                                  (10) 

The passenger flow of the i-th travel mode if  can be written as 

i if q P                                                                  (11) 

where q  is trip rate between the origin and the destination. Equation (11) characterizes the stochastic 

user equilibrium condition. After summing both sides of Eq (11), we get 

i
i

f q                                                                 (12) 

which satisfies the flow conservation constraint. 
In summary, a stochastic user equilibrium model is composed of Eqs (1)–(12). 
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4. Numerical experiments 

A series of numerical experiments were performed to explore how congestion charging and 
subsidy policies affect the vehicle flow on each edge and the revenue (the total congestion charge 
minus the total subsidy) when the network reached equilibrium. First, four congestion charging 
policies, four subsidy policies and parameters required in numerical experiments are listed. Then, 
results from the experiments are presented in detail. Finally, we analyze and summarize the results. 

4.1. Management policies and parameters 

To explore a more effective approach for alleviating traffic congestion, numerical experiments were 
carried out in two dimensions, i.e., congestion charging and subsidy. Congestion charging policies 
considered in this paper include: A) no congestion charging, B) congestion charging for the private car, 
C) congestion charging for the ridesharing car, D) congestion charging for both the private car and the 
ridesharing car. Subsidy policies include: I) no subsidy, II) subsidies for travelers transferring from the 
private car to the public bus, III) subsidies for travelers transferring from the ridesharing car to the public 
bus, IV) subsidies for travelers transferring from all cars to the public bus. Four charging modes and four 
subsidy modes are combined into 16 forms, abbreviated to A-I to D-IV. 16 different management policy 
combinations would be numerically analyzed. 

Table 2. Common parameters under any management policy combination. 

Parameter Symbol Value 

Free flow travel time on the edge Ea 
0
at  30 

Free flow travel time on the edge Eb 
0
bt  90 

Capacity for the edge Ea aH   100 

Capacity for the edge Eb bH  80 

Parameters in the BPR function 

   1 
  0.15 
  4 

Waiting time of the ridesharing car rcw   2 

Waiting time of the public bus pbw  10 

Average occupancy rate of the private car pc   1 

Average occupancy rate of the ridesharing car rc  2.5 

Bus flow pbv  1/6 

Size ratio between bus and car pb  2 

Scale parameter of the log-normal distribution m  1.5 

Shape parameter of the log-normal distribution   1 

Location parameter of the log-normal distribution   0 

Total number of travelers C  100 

Common parameters under any management policy combination are shown in Table 2. The 
monetary cost of the private car on the edge Ea and Eb were set to 25 and 75, respectively, and the 
monetary cost of the public bus on the edge Eb was set to 3. Suppose that the monetary cost of the 
ridesharing car was 80% of the private car. For the private or ridesharing car, the congestion charge 
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was 10% of its monetary cost. When travelers transferring from the private or ridesharing car to the 
public bus were subsidized, the subsidy was set to 5; when travelers transferring from all cars to the 
public bus were subsidized, the subsidy was set to 2.5. Specific parameters under each management 
policy combination, including the monetary cost, the congestion charge and the subsidy in four travel 
modes, were calculated and are summarized in Table 3. 

Table 3. Specific parameters under each management policy combination. 

Management 
policy 
combination 

Mode 1 Mode 2 Mode 3 Mode 4
Monetary 
cost 

Congestion 
charge 

Subsidy 
Monetary 
cost 

Congestion 
charge

Subsidy
Monetary 
cost

Congestion 
charge

Subsidy 
Monetary 
cost 

Congestion 
charge 

Subsidy

A-I 100 0 0 80 0 0 28 0 0 23 0 0

B-I 100 10 0 80 0 0 28 2.5 0 23 0 0

C-I 100 0 0 80 8 0 28 0 0 23 2 0

D-I 100 10 0 80 8 0 28 2.5 0 23 2 0

A-II 100 0 0 80 0 0 28 0 5 23 0 0

B-II 100 10 0 80 0 0 28 2.5 5 23 0 0

C-II 100 0 0 80 8 0 28 0 5 23 2 0

D-II 100 10 0 80 8 0 28 2.5 5 23 2 0

A-III 100 0 0 80 0 0 28 0 0 23 0 5

B-III 100 10 0 80 0 0 28 2.5 0 23 0 5

C-III 100 0 0 80 8 0 28 0 0 23 2 5

D-III 100 10 0 80 8 0 28 2.5 0 23 2 5

A-IV 100 0 0 80 0 0 28 0 2.5 23 0 2.5

B-IV 100 10 0 80 0 0 28 2.5 2.5 23 0 2.5

C-IV 100 0 0 80 8 0 28 0 2.5 23 2 2.5

D-IV 100 10 0 80 8 0 28 2.5 2.5 23 2 2.5

4.2. Experiments 

Grid search was implemented for each management policy combination. Only one group of 
equilibrium passenger flows was found, and any group of passenger flows converged to this 
equilibrium group over multiple iterations. Under 16 different management policy combinations, the 
passenger flow of four travel modes, the vehicle flow on each edge, the total congestion charge and 
subsidy, and the revenue of the equilibrium network are summarized in Table 4. Next, the results are 
analyzed and summarized from the perspective of the vehicle flow and the revenue. 

Table 4. Experiments under different management policy combinations. 

Policy combination 
Passenger flow Vehicle flow Total congestion 

charge 

Total 

subsidy 
Revenue 

Mode 1 Mode 2 Mode 3 Mode4 Ea Eb

A-I 67 11 14 8 88.60 71.73 0 0 0

B-I 50 29 8 13 74.80 61.93 520 0 520

C-I 76 0 19 5 97.00 76.33 10 0 10

D-I 64 12 15 9 87.40 69.13 791.5 0 791.5

A-II 67 9 24 0 94.60 70.93 0 120 -120

Continued on next page 
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Policy combination 
Passenger flow Vehicle flow Total congestion 

charge 

Total 

subsidy 
Revenue 

Mode 1 Mode 2 Mode 3 Mode4 Ea Eb

B-II 50 27 19 4 81.40 61.13 547.5 95 452.5

C-II 74 0 26 0 100.00 74.33 0 130 -130

D-II 64 10 25 1 93.40 68.33 784.5 125 659.5

A-III 67 11 5 17 83.20 71.73 0 85 -85

B-III 50 29 0 21 70.00 61.93 500 105 395

C-III 76 0 11 13 92.20 76.33 26 65 -39

D-III 64 12 6 18 82.00 69.13 787 90 697

A-IV 67 10 15 8 89.20 71.33 0 57.5 -57.5

B-IV 50 28 9 13 75.40 61.53 522.5 55 467.5

C-IV 75 0 20 5 97.00 75.33 10 62.5 -52.5

D-IV 64 11 16 9 88.00 68.73 786 62.5 723.5

4.3. Analysis of the vehicle flow 

First of all, the vehicle flow on each edge was grouped by the congestion charging policy as 
shown in Figure 2, and the effects of subsidy policies on the vehicle flow were compared and analyzed. 
In Figure 2, light-colored bars represent the vehicle flow on the edge Ea; dark-colored bars represent 
the vehicle flow on the edge Eb; bars with the same color represent the vehicle flow under the same 
congestion charging policy; bars with the same hatching (pattern filled polygons) represent the vehicle 
flow under the same subsidy policy. In each group (bars with the same color), the difference in lengths 
of light-colored bars is obvious. By comparing the lengths of the light-colored bars in each group, we 
found that bar III is the shortest, followed by bar I, then bar IV, and lastly bar II. In other words, the 
priority order of the subsidy policy on controlling the vehicle flow of the edge Ea is III > I > IV > II. 
Consequently, the subsidy policy III (subsidy for travelers transferring from the ridesharing car to the 
public bus) is the most effective approach to control the traffic flow on the edge Ea. Not all subsidies 
can reduce the traffic flow on the edge Ea because the subsidy policy I outperforms both the subsidy 
policy II and IV. That is to say, no subsidy outperforms the subsidy for travelers transferring from the 
private car to the public bus or from all cars to the public bus. While the difference in lengths of dark-
colored bars is slight compared with light-colored bars. Based on the comparison of the lengths of the 
dark-colored bars in each group, bar II is the shortest, followed by IV and lastly bar I and bar III which 
are the longest and isometric. Thus, the priority order of the subsidy policy on controlling the vehicle 
flow of the edge Eb is II > IV > I = III, which is exactly the opposite of that of the edge Ea. 

Another interesting finding is that for any congestion charging policy, the vehicle flow on the 
edge Eb under both the subsidy policy I and III is equivalent. In order to explain the reason why the 
vehicle flows of these two subsidy policies are equal, their passenger flows are displayed in Table 5. 
From Table 5, it is clear that for any congestion charging policy the only difference between the subsidy 
policy I and III is the passenger flow choice between travel modes 3 and 4, and the decrease of the 
passenger flow choice of travel mode 3 is equal to the increase of that of travel mode 4. Therefore, 
when travelers transferring from the ridesharing car to the public bus are subsidized, some travelers 
will give up travel mode 3 and choose travel mode 4, but travelers who prefer travel mode 1 or 2 are 
not interested in this subsidy policy. 
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Figure 2. Comparison of the vehicle flows grouped by the congestion charging policy. 

Table 5. Comparison of the subsidy policy I and III. 

Policy combination 
Passenger flow

Vehicle flow on Eb 
Mode 1 Mode 2 Mode 3 Mode 4

A-I 67 11 14 8 71.73 

A-III 67 11 5 17 71.73 

B-I 50 29 8 13 61.93 

B-III 50 29 0 21 61.93 

C-I 76 0 19 5 76.33 

C-III 76 0 11 13 76.33 

D-I 64 12 15 9 69.13 

D-III 64 12 6 18 69.13 

The vehicle flow on each edge was grouped by the subsidy policy as shown in Figure 3, and the 
effects of congestion charging policies on the vehicle flow were compared and analyzed. For either 
light-colored bars or dark-colored bars, in each group with the same hatching, bar B is the shortest, 
followed by bar D then bar A and lastly bar C. In other words, the priority orders of the congestion 
charging policy on controlling the vehicle flow on both two edges (Ea and Eb) are B > D > A > C. 
Therefore, the congestion charging policy B (congestion charging for the private car) is the most 
effective approach to control the traffic flow. Besides, not all congestion charging policies are better 
than no congestion charging, such as C < A. 
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Figure 3. Comparison of the vehicle flows grouped by the subsidy policy. 

In summary, 1) the optimal management policy combination to control the traffic flow on the 
edge Ea is B-III, i.e., congestion charging for the private car and subsidies for travelers transferring 
from the ridesharing car to the public bus; 2) the optimal management policy combination to control 
the traffic flow on the edge Eb is B-II, i.e., congestion charging for the private car and subsidies for 
travelers transferring from the private car to the public bus. 

4.4. Analysis for the revenue 

 

Figure 4. Comparison of the revenues grouped by the congestion charging policy. 

The effects of congestion charging and subsidy policies on the revenue were analyzed. Results of 
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the revenue grouped by the congestion charging policy are shown in Figure 4 and results of the revenue 
grouped by the subsidy policy are shown in Figure 5. In Figure 4, in each group with the same hatching, 
bar D is the longest, followed by bar B, but the remaining two bars are disordered. The revenue under 
the congestion charging policy D is the highest. Although the revenue under the congestion charging 
policy B is second, and it is also impressive. In Figure 5, in each group with the same color, bar I is 
the longest, but the other three bars are disordered. No subsidy can obtain more revenue than the other 
three subsidy policies, which is consistent with common sense. 

 

Figure 5. Comparison of the revenues grouped by the subsidy policy. 

Note that most revenues under the congestion charging policy C were negative, i.e., congestion 
charging for the ridesharing car may not necessarily lead to benefits. To explore this interesting finding, 
the passenger flow, total congestion charge, total subsidy and revenue under the congestion charging 
policy C were compared and the results are shown in Table 6. All passenger flows of travel mode 2 
were zero, and all passenger flows of travel mode 4 were very small, thus the total congestion charge 
was very limited. In addition, some travelers need to be paid certain subsidies, and consequently the 
revenues under the management policy combinations C-II, C-III and C-IV were negative. Therefore, 
when the travelers by the ridesharing car were charged for congestion fees, they would give up travel 
mode 2, and only when a few travelers chose travel mode 4, the revenue was consequently little or 
even negative. 

Table 6. Partial results under the congestion charging policy C. 

Policy combination 
Passenger flow 

Total congestion 
Charge

Total 
subsidy Revenue 

Mode 1 Mode 2 Mode 3 Mode 4  

C-I 76 0 19 5 10 0 10

C-II 74 0 26 0 0 130 -130

C-III 76 0 11 13 26 65 -39

C-IV 75 0 20 5 10 62.5 -52.5
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Thus, the optimal management policy combination to maximize the revenue is D-I, i.e., 
congestion charging for both the private car and the ridesharing car, and no subsidy. 

4.5. Summary 

In terms of vehicle flow control, the priority order of the congestion charging policy on the edge 
Ea and Eb is B > D > A > C; the priority order of the subsidy policy on the edge Ea is III > I > IV > II; 
the priority order of the subsidy policy on the edge Eb is II > IV > I = III. 

In terms of the revenue, congestion charging policies may bring benefits, but may also cause loss. 
Therefore, the choice of appropriate subsidy goal is essential, and the congestion charging policy D is 
the best, followed by B. Subsidy policies can only reduce the revenue, and no subsidy is the best choice. 
When the goal is to minimize the vehicle flow on the edge Ea, the optimal management policy 
combination is B-III, which can effectively alleviate traffic congestion of urban roads without public 
bus transit lines; when the goal is to minimize the vehicle flow on the edge Eb, the optimal management 
policy combination is B-II, which is a useful way to relieve stress in traffic congestion for urban roads 
with public bus transit lines; when the goal is to maximize the revenue, the optimal management policy 
combination is D-I, which can improve government revenue that might be allocated to develop 
transport infrastructures. 

5. Effect on choice of travel modes 

In the previous section, the optimal management policy combinations in three scenarios were 
obtained, i.e., the management policy combination B-III for reducing the vehicle flow on the edge Ea, 
B-II for reducing the vehicle flow on the edge Eb and D-I for increasing the revenue. The combination 
of no congestion charging and no subsidy policy (i.e., A-I) was used as a reference combination, and 
the effect of these three optimal management policy combinations on four travel modes was analyzed. 
According to the model construction in Section 3, the probability density function (pdf of lognormal) 
of travelers’ values of time (VOT)   is plotted, and the passenger flow is used to analyze the impact 
of congestion charging and subsidy strategy on the travel mode choices of passengers with different 
reflections on the value of time. 

First, the transformation caused by the management policy combination B-III to travelers was 
discussed. The difference of the passenger flow between the management policy combinations B-
III and A-I is shown in Figure 6. A total of 31% of travelers would re-select their travel modes. In 
particular, 13% of travelers gave up travel mode 3 and chose travel mode 4; 1% of travelers changed 
from travel mode 3 to 2; 17% of travelers changed from travel mode 1 to 2. The management policy 
combination B-III increased the proportion of travelers who chose travel modes 2 and 4, and reduced 
proportion of travelers who chose travel modes 1 and 3. 

To explore whether the changes of these travelers were mainly affected by the congestion 
charging policy B or the subsidy policy III, this paper only analyzed the impact of the congestion 
charging policy first (i.e., the passenger flows between the management policy combinations A-I and 
B-I were compared), and further analyzed the impact of the subsidy policy (i.e., the passenger flows 
between the management policy combinations B-I and B-III were compared). The results are shown 
in Figure 7. From the management policy combinations A-I to B-I, 5% of travelers changed from 
travel mode 3 to 4, 1% of travelers varied from travel mode 3 to 2, and 17% of travelers changed from 
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travel mode 1 to 2; from the management policy combinations B-I to B-III, only 8% of travelers varied 
from travel mode 3 to 4. Therefore, most traveler changes in travel modes were caused by congestion 
charging for the private car (the congestion charging policy B), and the changes of only 8% of travelers 
were attributed to subsidies for travelers transferring from the ridesharing car to the public bus (i.e., 
the subsidy policy III). 

 

Figure 6. B-III vs A-I. 

 

Figure 7. B-III vs B-I and B-I vs A-I. 

Second, the changes which the management policy combination B-II brought were analyzed in a 
similar way and the results are shown in Figures 8 and 9. According to these two figures, 17% of 
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travelers varied from travel mode 1 to 2 due to congestion charging for the private car (i.e., the 
congestion charging policy B); 4% of travelers changed from travel mode 4 to 3, 1% of travelers gave 
up travel mode 2 and chose travel mode 3, and these changes were caused by subsidies for travelers 
transferring from the private car to the public bus (i.e., the subsidy policy II). Overall, the management 
policy combination B-II increased the proportion of travelers who chose travel modes 2 and 3, and 
reduced proportion of travelers who chose travel modes 1 and 4. 

 

Figure 8. B-II vs A-I. 

 

Figure 9. B-II vs B-I and B-I vs A-I. 

Finally, we analyzed the transformation of travel modes caused by the management policy 
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combination D-I, and the results are shown in Figure 10. Based on the comparison of the management 
policy combinations D-I and A-I, 1% of travelers with lower VOT changed from travel mode 3 to 4; 2% 
of travelers gave up travel mode 2 and chose travel mode 3; 3% of travelers with higher VOT varied 
from travel mode 1 to 2. These changes in travel modes were caused by congestion charging for all 
cars (i.e., the congestion charging policy D). Although only 6% of travelers changed their travel modes, 
the management policy combination D-I can improve the revenue to a large extent. 

 

Figure 10. D-I vs A-I. 

6. Conclusions 

This paper establishes a stochastic user equilibrium model considering travelers’ heterogenous 
values of time. Four charging modes and four subsidy modes are combined into 16 management policy 
combinations. The effects of different policy combinations on the traffic flow and revenue are explored 
by numerical experiments. Our main conclusions are as follows: 

1) Charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging 
for ridesharing cars cannot reduce traffic flow, which might even cause traffic congestion; subsidizing 
public buses cannot reduce traffic flow, but it can alleviate traffic congestion by coordinating the traffic 
flow on both edges of the bimodal transport. 

2) Obviously, charging for all cars and no subsidy is the best combination to improve government 
revenue. But this is not the best way to relieve traffic congestion. The combination of congestion 
charging for the private car and subsidies for travelers transferring from the ridesharing car to the 
public bus can minimize the vehicle flow on urban roads without public bus transit lines; the 
combination of congestion charging for the private car and subsidies for travelers transferring from the 
private car to the public bus can minimize the vehicle flow on urban roads with public bus transit lines. 
Although the two management policy combinations do not bring the most revenue, their revenues are 
also considerable. 

3) Charging for private cars makes more travelers change their travel modes from private cars to 
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ridesharing cars, which would reduce traffic flow and alleviate traffic congestion. The effect of 
charging for ridesharing cars on reducing traffic flow is worse than that of no charging. Therefore, in 
this paper, private cars should be charged, and ridesharing cars should not be charged.  

4) Subsidizing passengers who transfer from private and/or ridesharing car to public buses leads 
some travelers to change their travel modes and reduces traffic flow. The effect is not as good as 
charging for private cars, but better than charging for ridesharing cars. Therefore, subsidizing public 
transportation should be considered. 

Proper management policy combination not only can promote efficient use of urban 
transportation systems, mitigate urban traffic congestion, save a large amount of travel time and reduce 
CO2 emissions, but also has the advantage that it does not require costly new transportation 
infrastructure construction and generates revenues which are used for investments in essential 
transportation infrastructure, such as expanding the road capacity, providing better maintenance and 
improving public transport. In addition, it reveals more transparently how part of the revenues 
obtained from congestion pricing are distributed to subsidize travelers, improve the equity in the 
traffic system [29] and reduce the motoring public’s opposition to congestion charge [62]. 

Therefore, this paper can provide quantitative decision support for the government (such as the 
Ministry of Transport) and help them choose the appropriate policy combination according to urban 
development planning or current demand. For instance, at the early stages of urban transport 
development, which requires enormous capital to develop road infrastructure, the combination of 
congestion charging for all cars and no subsidy (policy D-I) may be more appropriate; when congestion 
often happens on roads without public bus transit lines, the combination of congestion charging for the 
private car and subsidies for travelers transferring from the ridesharing car to the public bus (policy B-
III) is preferred; when congestion occurs on roads with public bus transit lines, the combination of 
congestion charging for the private car and subsidies for travelers transferring from the private car to 
the public bus (policy B-II) is most worth considering. 

In the future, travel modes could be enriched and more combinations could be generated, which 
would take into consideration public buses, private cars-ridesharing cars and make further complex 
comparison. Additionally, the exploration of CO2 emissions could be incorporated in different modes, 
which might contribute to low carbon development. Lastly, more realistic data (e.g., urban road 
network and population density) could be collected to perform empirical research.  
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