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Abstract: This paper considers the distributed tracking control problem for a class of nonlinear multi-
agent systems with nonlinearly parameterized control coefficients and inherent nonlinearities. The
essential of multi-agent systems makes it difficult to directly generalize the existing works for single
nonlinearly parameterized systems with uncontrollable unstable linearization to the case in this paper.
To dominate the inherent nonlinearities and nonlinear parametric uncertainties, a powerful distributed
adaptive tracking control is presented by combing the algebra graph theory with the distributed back-
stepping method, which guarantees that all the closed-loop system signals are global bounded while the
range of the tracking error between the follower’s output and the leader’s output can be tuned arbitrarily
small. Finally, a numerical example is provided to verify the validity of the developed methods.
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1. Introduction

Uncertainty is an important consideration when discussing a control system with satisfactory per-
formance [1, 2]. As the most common uncertainty, parametric uncertainty exists in various practical
control problems, for which a large number of integrated theories have been obtained for compensating
this uncertainty over past decades, such as [3–8]. Unlike the parametric uncertainty in nonlinearities,
the case in the control coefficients means that the range of the controller can not be determined.

Cooperative control of multi-agent systems (MASs) with parametric uncertainty has received con-
siderable attention in recent years for constructing distributed controllers to ensure that all agent
reaches consensus on each other (leaderless consensus) or the leader (leader-following consensus)
in [9, 10] and [11–14]. Specifically, the global full-state synchronization of networks of nonidentical
Euler-Lagrange systems with a linear parametrization is achieved in [9]. By employing the Artstein
model reduction method, robust consensus control is completed in [10], where the parametric uncer-
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tainty is illustrated by the uncertain time-varying system matrices with known bound. By the dis-
tributed model reference adaptive control, the consensus problem is investigated for a group of linear
subsystems with unknown parameters in [11]. Especially, the bounds of the unknown parameters are
not required. In [12–14], the backstepping-based consensus tracking control schemes are presented
for parametric strict-feedback systems. However, these results are inapplicable for the case that the
system with inherent nonlinearities, i.e., the system with uncontrollable unstable linearization. To our
knowledge, no investigation is available for distributed tracking control of nonlinear multi-agent sys-
tems with inherent nonlinearities and nonlinear parametric uncertainties both in the control coefficients
and in the system nonlinearities.

This paper is devoted to the powerful compensation for nonlinear parametric uncertainties and to the
distributed adaptive tracking control for a class of nonlinear multi-agent systems with rather inherent
nonlinearities. The generality of the systems and the challenge of the control design distinguishing
this paper from existing techniques are illustrated by that: (1) The nonlinear parametric uncertainties
appear in the control coefficients, which, however, is removed in the related works [12–21]. Besides,
the unknown parameter vector is without known bounds rather than that in [10]. How to skillfully
separate the parametric uncertainty from the control coefficients is an essential step, and how to cancel
the influence of the parametric uncertainty for the control is a significant work. (2) The considered
systems are inherent nonlinearities unlike those in [12–14, 22], which renders us to search for a
powerful tracking control scheme to deal with the inherent nonlinearities. (3) Different from the results
for single systems such as [6, 7, 23, 24], the MASs motivate us to design a distributed tracking control
based on not only the individual dynamics of the systems but also the interconnection pattern among
them. A direct result is more technical Lyapunov function construction and more complex calculation.

In this paper, to compensate the nonlinear parametric uncertainties and realize the tracking aim for
a class of nonlinear MASs, a distributed adaptive tracking control scheme is raised by combing the
algebra graph theory with the distributed integrator backstepping method. Specifically, a parameter
separation technique is adopted first, based on which we separate out the unknown parameter vector
from unknown control coefficients and unknown nonlinearities. Then, on the basis of the algebra graph
theory, we generate a new variable from the tracking error with desirable properties, which uses the
relative state information between the leader and the agents, and is a foundation for the control design
and performance analysis later. Finally, by the distributed integrator backstepping method, we give the
update law to accurate estimate the unknown parameter and the explicit controller for the MASs in an
iterative manner. Note that during the design scheme, the most important is to cancel the effects of the
unknown coefficients and the inherent nonlinearities.

The rest of the paper is organized as follows. Section 2 presents some preliminary knowledge and
the problem formulation. Section 3 provides the distributed tracking controllers. Section 4 summarizes
the verification for the performance of the closed-loop system. Section 5 offers a numerical example,
and Section 6 gives some concluding remarks.

2. Preliminary knowledge and problem formulation

This paper aims to the distribute tracking control design for a class of high-order nonlinear MASs.
In this section, we will give the specific MASs structure and problem formulation. Before that, we
first introduce some graph theories and technical lemmas which are foundational for understanding the
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MASs and play an important role for the control design of this paper.

2.1. Graph theory and technical lemmas

Let a weighted digraph of order n be G = (ν, ε, A), where the set of nodes, the set of arcs and a
weighted adjacency matrix are respectively defined as ν = {1, 2, . . . , n}, ε ⊂ ν × ν and A = (ai j)n×n with
nonnegative elements. The agent j directly sends information to agent i is represented by ( j, i) ∈ ε, in
which case, j is called the parent of i, while i is called the child of j. Ni = { j ∈ ε : ( j, i) ∈ ε, i , j}
denotes the set of neighbors of vertex x. aii > 0 if node j is a neighbor of i, and otherwise, aii = 0. If
node i has neither parent nor child, it is called an isolated node, and if it has no parents but children,
then the node is called a source. Denote the sets composed by all sources and isolated nodes in ν as
νs = { j ∈ ν

∣∣∣N j = ∅,∅ is the empty set}. To avoid the trivial cases, ν − νs , ∅ is always assumed
in this paper. A sequence (i1, i2), (i2, i3), . . . , (ik−1, ik) of edges is called a directed path from node i1 to
ik. A directed tree is a digraph that every node (except the root) has exactly one parent and the root
is a source. A spanning tree of G is a directed tree with the node set being ν and the edge set being a
subset of ε. The diagonal matrix D = diag(κ1, κ2, . . . , κn) is the degree matrix with κi =

∑
j∈Ni

ai j. The
Laplacian of a weighted digraph G is defined as L = D − A.

In this paper, we consider a MAS with N agents and a leader (labeled by 0), which is depicted as
Ḡ = (ν̄, ε̄) with ν̄ = {0, 1, 2, . . . , n} and ε̄ ⊂ ν̄ × ν̄. If (0, i) ∈ ε̄, then 0 ∈ Ni. B = diag(b1, b2, . . . , bN)
is the leader adjacency matrix associated with Ḡ, where bi > 0 if node 0 is a neighbor of i, and bi = 0
otherwise.

We next cite two lemmas which are frequently used in the later sections. In fact, the proofs of the
two lemmas can be found in [25] and [23] with detailed proof, respectively.

Lemma 2.1. If p > 0, q > 0 and c > 0, then for ∀x, y ∈ R,

|x|p|y|q ≤ c|x|p+q +
q

p+q

(
p

c(p+q)

) p
q
|y|p+q. (2.1)

Furthermore, if p ∈ Rodd
≥1 =

{m1
m2

∣∣∣m1 and m2 are odd positive integers and m1 ≥ m2
}
, then

|xp − yp| ≤ p|x − y|
(
xp−1 + yp−1). (2.2)

Lemma 2.2. For any real-valued continuous function f (x, y) with x ∈ Rm and y ∈ Rn, there exist
smooth scalar functions a(x) ≥ 1 and b(y) ≥ 1, such that

| f (x, y)| ≤ a(x)b(y). (2.3)

Notably, Lemma 2.2 provides an effective coupling of a parameter separation technique, which
plays an important role to cope with unknown control coefficients and unknown system nonlinearities
as shown later.

2.2. Problem formulation

This paper consider the tracking problem of the following nonlinear MASs with N followers and
one leader (labeled by 0), and the i-th agent being described as:

ẋi j = di j(x̄i j, θi)xpi j

i, j+1 + fi j(x̄i j, θi), 1 ≤ j ≤ ni − 1,
ẋi,ni = di,ni(xi, θi)u

pi,ni
i + fi,ni(xi, θi)

yi = xi1,

(2.4)
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where x̄i j = (xi1, xi2, . . . , xi j)T ∈ R j; xi = (xi1, xi2, . . . , xi,ni)
T ∈ Rni is the system state of the i-th agent

with the initial condition xi(0); ui ∈ R and yi ∈ R are the control input and system output of the i-th
agent, respectively; pi j ∈ Rodd

≥1 are known numbers while θi ∈ Rm and di j’s are unknown; the system
nonlinearities fi j’s are smooth with satisfying fi j(0, . . . , 0, θi) = 0. The leader’s output is denoted by y0.
Particularly, di j’s have known signs, and without loss of generality, assume that di j’s are positive..

System (2.4) is necessarily to be investigated, which is displayed in two aspects: (i) as mentioned in
[23], nonlinear parameterization can be found in various practical control problems such as biochemi-
cal processes and machines with friction; (ii) there is very few results available about nonlinear MASs
control due to the complex of the system structure, let alone those with parametric uncertainty.

Notably, unknown parameter vector θi exists both in the system coefficients and the nonlinearities,
which means that serious nonlinear parameter uncertainties are allowed in the considered system. This
makes system (2.4) essentially different from the systems considered in [14] and [16] with known
control coefficients, and challenges the distributed control design of this paper.

This paper is devoted to design a distributed adaptive controller ui for agent i to guarantee the
globally bounded signals of all the closed-loop system with adjustable |δi(t)| = |yi(t) − y0(t)| being
arbitrarily small.

In what follows, we make the following assumptions on system (2.4):

Assumption 2.1. d11 = d21 = . . . = dN1 and p11 = p21 = . . . = pN1 = 1.

Assumption 2.2. For j = 2, . . . , ni and i = 1, . . . ,N, there exist smooth functions di j(x̄i j) such that

0 < di j(x̄i j) ≤ di j(x̄i j, θi).

Assumption 2.3. The leader’s output y0(t) ∈ R and ẏ0(t) are bounded, and there are available for the
i-th agent satisfying 0 ∈ Ni(i = 1, . . . ,N).

Assumption 2.4. The leader is the root of a spanning tree in Ḡ.

pi1 = 1 in Assumptions 2.1 is satisfied in a class of mechanical systems as stated in [16], which means
that system (2.4) is of practical value. d11 = d21 = . . . = dN1, as shown in the following control design,
plays an important role to guarantee that x∗i2 is well-defined. Assumptions 2.3 and 2.4 are in common
with the assumptions in [16] for designing the distributed tracking control of nonlinear MASs. By
Assumption 2.4, we can furthermore arrive at

∑N
s=1 ais + bi > 0 and L + B being positive stable as

shown in [16] and [26], respectively. Besides, as shown in Assumption 2.2, the upper bound of di j is
unknown, which means that the upper bound of di j should be replaced in other forms for the control
design later if necessary. Inspired by Lemma 2.2, unknown control coefficients can be parameterized,
that is, there are functions ψi j(x̄i j) ≥ 1 and ϱi(θi) ≥ 1 such that

di j(x̄i j, θi) ≤ ψi j(x̄i j)ϱi(θi). (2.5)

Similarly, there exist functions ϕi j(x̄i j) ≥ 1 and ρi(θi) ≥ 1 such that

| fi j(x̄i j, θi)| ≤ ϕi j(x̄i j)ρi(θi). (2.6)
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3. Distributed adaptive tracking control

This and the next sections will solve the control problem described above. A distributed tracking
control and the update law for estimating the unknown parameter vectors are provided in this section,
and then the control aim in the next section. Motivated by [16], we first introduce a coordinate trans-
formation, by which the output tracking error of agent i is alternated into the other variable. Then we
present a distributed adaptive tracking control for system (2.4) in this section.

Make a coordinate transformation:

ξi1 =
∑N

s=1 ais(yi − ys) + bi(yi − y0),
ξi, j = xi, j − x∗i, j, j = 2, . . . , ni,

x∗i2 = −
1
λi

(
ki1 + εi + Φi1Θ̂ + Ψi1

)
ξi1 +

1
λi

∑N
s=1 aisx∗s2,

x∗i j = −
(

1
di, j−1

) 1
pi, j−1
(
ki, j−1+Φi, j−1Θ̂i+Ψi, j−1+Φ̄i, j−1+Ψ̄i, j−1+

∑N
s=1 βs j−3,i

) 1
pi, j−1 ξi, j−1, j = 3, . . . , ni.

(3.1)

Then, from the definition of ξi1, we can see that ξ1 = (L + B)δ where ξ1 = [ξ11, ξ21, . . . , ξN1]T and
δ = [δ1, . . . , δN]T. Since that L + B is positive stable as previously stated, it is invertible and therefore,
δ = (L + B)−1ξ1. This implies that we can transform the proof of globally bounded for δ into that of ξ1.

Besides,noting that H = L + B is invertible, it is not hard to see that
x∗12
...

x∗N2

 = −H−1


1
λ1

(
k11 + ε1 + Φ11Θ̂1 + Ψ11

)
ξ11

...
1
λN

(
kN1 + εN + ΦN1Θ̂N + ΨN1

)
ξN1

 .
Therefore, x∗i2 is well-defined.
It should be mentioned that the virtual control x∗i j, j = 3, . . . , ni is quite different from that in [14]

in the following two aspects: (i) no information of ξi, j−2 is used in this paper, which makes it more

easily to obtain the desired properties as shown later; (2) the cross-terms −σ
∂x∗i, j−1

∂Θ̂i
Θ̂i and

∂x∗i, j−1

∂Θ̂i
Θ̂iτi, j−1

are avoided in this paper, which guarantees the controller structure much more simple.
Then, we present the controller and the update law as:ui = −

(
1

di,ni

) 1
pi,ni
(
ki,ni + Φi,niΘ̂i + Ψi,ni + Φ̄i,ni + Ψ̄i,ni +

∑N
s=1 βsni−2,i

) 1
pi,ni ξi,ni ,

˙̂Θi = τi,ni − riσΘ̂i,
(3.2)

with 
τi,ni = τi,ni−1 + riξ

p0+1
i,ni
Φi,ni ,

βi,ni−2 =
ri
2Φi,ni

∑ni−1
j=2

(
ξ

2(p0−pi j+1)
i j +

(∂x∗i j

∂Θ̂i

)2)
,

k = min1≤i≤N,1≤ j≤ni{
ki j(p0−pi j+2)

g(ϵ) , riσ},

η =
∑N

i=1
∑ni

j=1
(
εi j + µi j

)
+ Nσ

2 Θ
2
i > 0,

(3.3)

while εi,ni , µi,ni are positive design parameters, and Φi,ni and Ψi,ni are continuous functions.
By defining the Lyapunov function

Vni =

N∑
i=1

( ni∑
j=1

1
p0 − pi j + 2

ξ
p0−pi j+2
i j +

1
2ri
Θ̃2

i

)
, (3.4)
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we can obtain
V̇ni ≤ − kVni + η. (3.5)

Remark 3.1. Notably, ignoring the term with Θ̂i, there is no clear difference between the controller
ui in this paper and that in [16]. However, it should be mentioned that the construction of ui here
is much more difficult. In fact, since the different definition of Vi, more terms such as 1

ri
Θ̃i

˙̃Θi and

σξ
p0−pil+1
il

∑N
s=1 rs

∂x∗il
∂Θ̂s
Θ̂s appear at the estimation of V̇i. To achieve V̇ni ≤ −kVni + η, we add the item

−ξ
p0−pil+1
il

∑N
s=1

∂x∗il
∂Θ̂s
τsl from the second step and estimate −σΘ̃iΘ̂i in the last step, which brings numerous

computational difficulties.

Remark 3.2. We have completed the distributed adaptive tracking control by combing the algebra
graph theory with the distributed backstepping method. In fact, the distributed backstepping method is
developed from the traditional backstepping method which means that the two methods are the same
essentially. However, the two methods can be applied to different types of systems and achieve different
control aim.

4. Main results

In this section, we first show the rationality of the distributed adaptive tracking control provided in
the above section. This is verified in a recursive manner.

Step 1. From the definition of ξi1 and (2.4), we have

ξ̇i1 =

N∑
s=1

ais(ẏi − ẏs) + bi(ẏi − ẏ0) = λidi1xi2 + λi fi1 −

N∑
s=1

ais(ds1xs2 + fs1) − biẏ0, (4.1)

where λi =
∑N

s=1 ais + bi > 0 as shown in the Section 2.
Construct a Lyapunov function

V1 =

N∑
i=1

( 1
p0 + 1

ξ
p0+1
i1 +

1
2ri
Θ̃2

i

)
, (4.2)

where p0 = max1≤i≤N,1≤ j≤Ni{pi j}, Θ̃i = Θ̂i−Θi with Θ̂i being the estimate of Θi by agent i to be designed
later, and ri is a positive design constant. Then along (2.4), V1 satisfies

V̇1 =

N∑
i=1

ξ
p0
i1

(
λidi1xi2 + λi fi1 −

N∑
s=1

ais(ds1xs2 + fs1) − biẏ0

)
+

N∑
i=1

1
ri
Θ̃i

˙̃Θi. (4.3)

Noting (2.5), (2.6) and Assumption 2.3, we can deduce by Lemma 2.1 thatξp0
i1 (λi fi1 −

∑N
s=1 ais fs1) ≤ |ξi1|

p0
(
λiϕi1ρi +

∑N
s=1 aisϕs1ρs

)
≤ εi1 + ξ

p0+1
i1 Φi1(ξ1)Θi,

−biẏ0ξ
p0
i1 ≤ µi1 + ξ

p0+1
i1 Ψi1,

(4.4)

where εi1 and µi1 are positive design parameters, Θi is a positive constant depending on θi, Φi1 is a
smooth function depending on ξ1 and εi1, and Ψi1 is a positive constant depending on µi1.
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Besides, from Assumption 2.1, Lemma 2.1 and the definition of ξi2, it follows that

λidi1ξ
p0
i1
(
xi2 − x∗i2

)
− ξ

p0
i1

N∑
s=1

aisdis
(
xs2 − x∗s2

)
≤ εiξ

p0+1
i1 +

N∑
s=1

ξ
p0+1
s2 , (4.5)

where εi is a positive design parameter.
This, together with (4.3), (4.4) and the distributed virtual controller x∗i2 defined in (3.1), yields

V̇1 ≤ −

N∑
i=1

(
ki1ξ

p0+1
i1 +

(
εi1 + µi1

)
+

1
ri
Θ̃i
( ˙̂Θi − τi1

))
+ N

N∑
i=1

ξ
p0+1
i2 , (4.6)

where ki1’s are some positive design parameters and τi1 = riΦi1ξ
p0+2
i1 .

Step 2. Define

V2 = V1 +

N∑
i=1

1
p0 − pi2 + 2

ξ
p0−pi2+2
i2 . (4.7)

Noting from system (2.4) that ξ̇i2 = di2xpi2
i3 +Fi2−

∂x∗i2
∂Θ̂

˙̂Θ− ∂x∗i2
∂y0

ẏ0 with Fi2 = fi2−
∑N

s=1
∂x∗i2
∂xs1

(
ds1xps1

s2 + fs1
)
,

we have

V̇2 ≤

N∑
i=1

(
− ki1ξ

p0+1
i1 +

1
ri
Θ̃i
( ˙̂Θi − τi1

)
+ di2ξ

p0−pi2+1
i2 xpi2

i3 − ξ
p0−pi2+1
i2

∂x∗i2
∂Θ̂i

˙̂Θi +
(
εi1 + µi1

)
+ ξ

p0−pi2+1
i2 Fi2 − ξ

p0−pi2+1
i2

∂x∗i2
∂y0

ẏ0

)
+ N

N∑
i=1

ξ
p0+1
i2 .

(4.8)

Similar to the deduction of (4.4), it is easy to obtain thatξp0−pi2+1
i2 Fi2 ≤

1
2εi2 + ξ

p0+1
i2 Φi2(ξ2)Θi,

−ξ
p0−pi2+1
i2

∂x∗i2
∂y0

ẏ0 ≤
1
2µi2 + ξ

p0+1
i2 Ψi2(ξ1),

(4.9)

where εi2 and µi2 are positive design parameters while Φi2 and Ψi2 are smooth functions with ξ2 =

(ξT
1 , x12, . . . , xN2)T.
Submit the inequality (4.9) and−

∂x∗i2
∂Θ̂i
τi2ξ

p0−pi2+1
i2 ≤ 1

2εi2 + ξ
p0+1
i2 Φ̄i2(ξ2),

riσ
∂x∗i2
∂Θ̂i
Θ̂iξ

p0−pi2+1
i2 ≤ 1

2µi2 + ξ
p0+1
i2 Ψ̄i2(ξ1)

(4.10)

into (4.8). By x∗i3 in (3.1) with
∑N

s=1 βs0,i = N, τi2 = τi1 + riξ
p0+1
i2 Φi2 and ki2, σ being positive design

constants, and noting that−
di2
di2

1
2µi2

(
∂x∗i2
∂Θ̂ i

τi2

)2
ξ2

i2 ≤
1
2µi2 −

∣∣∣∣ξi2
∂x∗i2
∂Θ̂ i

τi2

∣∣∣∣ ≤ 1
2µi2 + ξi2

∂x∗i2
∂Θ̂i
τi2,

−
di2
di2

1
2εi2

(
riσ

∂x∗i2
∂Θ̂i
Θ̂i

)2
ξ2

i2 ≤
1
2εi2 − riσ

∂x∗i2
∂Θ̂i
Θ̂iξi2,

(4.11)
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there must be

V̇2 ≤

N∑
i=1

(
− ki1ξ

p0+1
i1 − ki2ξ

p0+1
i2 + di2ξ

p0−pi2+1
i2

(
xpi2

i3 −
(
x∗i3
)pi2
)
+
(
τi2 −

˙̂Θi
)∂x∗i2
∂Θ̂i

ξ
p0−pi2+1
i2

−

2∑
j=1

(εi j + µi j) − riσ
∂x∗i2
∂Θ̂i
Θ̂iξ

p0−pi2+1
i2 +

1
ri
Θ̃i
( ˙̂Θi − τi2

))
.

(4.12)

Recursive Step lll (l = 3, . . . , ni − 1). Suppose that the previous l− 1 steps have been completed, that
is, there are the Lyapunov functions

Vl−1 = Vl−2 +

N∑
i=1

1
p0 − pi,l−1 + 2

ξ
p0−pi,l−1+2
i,l−1 (4.13)

to satisfy

V̇l−1 ≤

N∑
i=1

(
−

l−1∑
j=1

ki jξ
p0+1
i j + di,l−1ξ

p0−pi,l−1+1
i,l−1

(
xpi,l−1

il −
(
x∗il
)pi,l−1
)
+

l−1∑
j=1

(
εi j + µi j

)
+

1
ri
Θ̃i
( ˙̂Θi − τi,l−1

)
− riσΘ̂i

l−1∑
j=2

∂x∗i j

∂Θ̂i
ξ

p0−pi j+1
i j + (τi,l−1 −

˙̂Θi)
l−1∑
j=2

∂x∗i j

∂Θ̂i
ξ

p0−pi j+1
i j

)
,

(4.14)

where ki j’s, εi j’s, µi j’s are some positive design constants.
At step l, define

Vl = Vl−1 +

N∑
i=1

1
p0 − pil + 2

ξ
p0−pil+2
il . (4.15)

Then we can conclude from (2.4), (4.14) and the definition Fil = fil −
∑l−1

j=1
∑N

s=1
∂x∗il
∂xs j

(
ds jx

ps j

s, j+1 + fs j
)

that

V̇l ≤

N∑
i=1

(
−

l−1∑
j=1

ki jξ
p0+1
i j + di,l−1ξ

p0−pi,l−1+1
i,l−1

(
xpi,l−1

il −
(
x∗il
)pi,l−1
)
+

1
ri
Θ̃i
( ˙̂Θi − τi,l−1

)
− σ

l−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

rs

∂x∗i j

∂Θ̂s
Θ̂s +

l−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s
(τs,l−1 −

˙̂Θs) +
l−1∑
j=1

(
εi j + µi j

)
+ dilξ

p0−pil+1
il xpil

i,l+1 + ξ
p0−pil+1
il Fil − ξ

p0−pil+1
il

N∑
s=1

∂x∗il
∂Θ̂s

˙̂Θs − ξ
p0−pil+1
il

∂x∗il
∂y0

ẏ0

)
.

(4.16)

Besides, there holds

ξ
p0−pil+1
il Fil ≤

1
4εil +

1
2ξ

p0+1
il Φil(ξl)Θi,

−ξ
p0−pil+1
il

∂x∗il
∂y0

ẏ0 ≤
1
2µil + ξ

p0+1
il Ψil(ξl−1),

di,l−1ξ
p0−pil+1
i,l−1

(
xpi,l−1

il − (x∗il)
pi,l−1
)
≤ 1

2εil +
1
2ξ

p0+1
il Φil(ξl)Θi,

−ξ
p0−pil+1
il

∑N
s=1

∂x∗il
∂Θ̂s
τsl ≤

1
2µil + ξ

p0+1
il Φ̄il(ξl),

σξ
p0−pil+1
il

∑N
s=1 rs

∂x∗il
∂Θ̂s
Θ̂s ≤

1
4εil + ξ

p0+1
il Ψ̄il(ξ2).

(4.17)
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With τil = τi,l−1 + riξ
p0+1
il Φil, and noting

l−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s

(
τs,l−1 − τsl

)
≤

N∑
s=1

rs

2
ξ

p0+1
sl Φsl

l−1∑
j=2

(
ξ

2(p0−pil+1)
i j +

(∂x∗i j

∂Θ̂s

)2)
≜

N∑
s=1

βil−2,sξ
p0+1
sl , (4.18)

we see that by x∗i,l+1 defined above, there holds

V̇l ≤

N∑
i=1

(
−

l∑
j=1

ki jξ
p0+1
i j + dilξ

p0−pil+1
il

(
xpil

i,l+1 −
(
x∗i,l+1
)pil
)
+

1
ri
Θ̃i
( ˙̂Θi − τil

)
− σ

l∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

rs

∂x∗i j

∂Θ̂s
Θ̂s +

l∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s
(τs,l−1 −

˙̂Θs) +
l∑

j=1

(
εi j + µi j

))
.

(4.19)

Step ninini. With the definition Vni , we can arrive at from (2.4), (4.19) for l = ni − 1 and Fi,ni =

fi,ni −
∑ni−1

j=1

∑N
s=1

∂x∗i,ni
∂xs j

(
ds jx

ps j

s, j+1 + fs j
)

that

V̇ni ≤

N∑
i=1

(
−

ni−1∑
j=1

ki jξ
p0+1
i j + di,ni−1ξ

p0−pi,ni−1+1
i,ni−1

(
x

pi,ni−1

i,ni
−
(
x∗i,ni

)pi,ni−1
)
+

1
ri
Θ̃i
( ˙̂Θi − τi,ni−1

)
− σ

ni−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

rs

∂x∗i j

∂Θ̂s
Θ̂s +

ni−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s
(τs,l−1 −

˙̂Θs) +
ni−1∑
j=1

(
εi j + µi j

)
+ di,niξ

p0−pi,ni+1
i,ni

u
pi,ni
i + ξ

p0−pi,ni+1
i,ni

Fi,ni − ξ
p0−pi,ni+1
i,ni

N∑
s=1

∂x∗i,ni

∂Θ̂s

˙̂Θs − ξ
p0−pi,ni+1
i,ni

∂x∗i,ni

∂y0
ẏ0

)
.

(4.20)

In addition, it results from Lemma 2.1, (2.5) and (2.6) that
ξi,ni Fi,ni ≤

1
4εi,ni +

1
2ξ

p0+1
i,ni
Φi,niΘi,

−ξ
p0−pi,ni+1
i,ni

∂x∗i,ni
∂y0

ẏ0 ≤
1
2µi,ni + ξ

p0+1
i,ni
Ψi,ni ,

di,ni−1ξ
p0−pi,ni−1+1
i,ni−1

(
x

pi,ni−1

i,ni
−
(
x∗i,ni

)pi,ni−1
)
≤ 1

2εi,ni +
1
2ξ

p0+1
i,ni
Φi,niΘi.

(4.21)

From the definition of τi,ni and βi,ni−2 in (3.3), it is clear that

ni−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s

(
τs,ni−1 −

˙̂Θs
)
≤

ni−1∑
j=2

ξ
p0−pi j+1
i j

N∑
s=1

∂x∗i j

∂Θ̂s

(
τs,ni −

˙̂Θs
)
+

N∑
s=1

βil−1,sξ
p0+1
sl . (4.22)

Noting 

−ξ
p0−pi,ni+1
i,ni

∑N
s=1

∂x∗i,ni

∂Θ̂s
τs,ns ≤

1
2µi,ni + ξ

po+1
i,ni
Φ̄i,ni ,

σξ
p0−pi,ni+1
i,ni

∑N
s=1 rs

∂x∗i,ni

∂Θ̂s
Θ̂s ≤

1
4εi,ni + +ξ

po+1
i,ni
Ψ̄i,ni ,

ξ
p0−pi j+2
i j ≤ ϵ +

p0−pi j+2
p0+1

(
p0+1
pi j−1ϵ

)− pi j−1
p0−pi j+2

ξ
p0+1
i j ≜ ϵ + g(ϵ)ξp0+1

i j ,

−σΘ̃iΘ̂i ≤ −
σ
2 Θ̃

2
i +

σ
2Θ

2
i ,

(4.23)

we can easily obtain (3.5) by submitting (4.21), (3.2) and (4.22) into (4.20).
Then, we can immediately obtain the main results of this paper, which is summarized into the

following theorem.
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Theorem 4.1. Consider system (2.4) under Assumptions 2.1 and 2.2, while the leader’s output satisfies
Assumption 2.3 and the digraph topology Ḡ satisfies Assumption 2.4. The distributed controller and
the update law defined in (3.2) guarantee that for any initial conditions x0, there are

(i)(i)(i) all the closed-loop system signals xi j, ui and Θ̂i with i = 1, . . . ,N and j = 1, . . . , ni are global
bounded;

(ii)(ii)(ii) the range of the tracking error ∥δ(t)∥ can be tuned arbitrarily small.

Proof. Directly solving (3.5), we have

Vni(t) ≤ e−ktVni(0) +
∫ t

0
e−k(t−τ)ηdτ ≤ e−ktVni(0) +

η

k
(1 − e−kt). (4.24)

From this we can see that, limt→+∞ Vni(t) ≤
η

k . This, together with the definition of Vni , implies that
ξi j’s, Θ̃i’s and Θ̂i’s are global bounded, and so are xi j’s and ui.

On the other hand, from Lemma 2.2 in [27] and (3.5) that a finite time t∗ = 1
k ln |Vni (0)−η/k|

η/k must exist
such that

0 ≤ Vni(t) ≤
2η
k
, ∀t > t∗ ≥ 0. (4.25)

This, together with the definition of Vni and Remark 3.1, implies that

∥δ(t)∥ =
∥ξ1(t)∥

ξmin(L + B)
≤

MVni(t)
ξmin(L + B)

≤
2Mη

kξmin(L + B)
, ∀t > t∗ ≥ 0, (4.26)

where M is a positive constant depending on p0. Therefore, the range of the tracking error ∥δ(t)∥ can
be tuned arbitrarily small.

Thus far, we complete the proof the Theorem 4.1. □

Remark 4.1. As shown in Theorem 4.1, the range of the tracking error ∥δ(t)∥ can be arbitrarily small
instead of converging to the origin or an arbitrarily pre-given small neighborhood of zero such as [16].
Even though, by choosing the design parameters ki j’s, ri’s and σ large enough, we can see from (3.3)
that k is also large enough. This, together with (4.26), keeps the range of the tracking error as small as
expected.

5. A simulation example

Consider the digraph topology Ḡ with a12 = a13 = a21 = a23 = a31 = b3 = 0, a32 = b1 = b2 = 1.
Clearly, the digraph satisfies Assumption 2.4. The i-th agent of the nonlinear MASs with 3 followers
and one leader (labeled by 0) is: 

ẋi1 = di1xpi1
i,1 + fi1,

ẋi2 = di2upi2
i + fi2

yi = xi1,

(5.1)

where pi j = 1, di j = 1, i = 1, . . . , 3, j = 1, 2, f11 = θsinx11, f21 = f31 = f12 = f22 = f32 = 0, θ is an
unknown constant. Apparently, this system satisfies Assumptions 2.1 and 2.2. The leader’s output is
y0 =

1
1+t , which means that Assumption 2.3 is satisfied.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12908–12922.
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Define Θ = θ2. By the design process in Section 3, we can get the distributed controllers as


u1 = −

(
3
2 +

1
2

(∂x∗12
∂x11

x12 −
∂x∗12
∂y0

1
(1+t)2 +

∂x∗12

∂Θ̂
τ
)2
+ 1

2

(∂x∗12
∂x11

sinx11
)2
Θ̂
)
ξ12,

u2 = −
(
2 + 1

2 (∂x∗22
∂x21

x22 −
∂x∗22
∂y0

1
(1+t)2 )2)ξ22,

u3 = −
(3

2 +
1
4 (∂x∗32

∂x31
x32 +

∂x∗32
∂x21

x22 −
∂x∗32
∂y0

1
(1+t)2 )2)ξ32,

(5.2)

and the update law for the unknown parameters as

˙̂Θ = τ − Θ̂, (5.3)

where 

ξ11 = x11 −
1

1+t , ξ21 = x21 −
1

1+t , ξ31 = x31 − x21,

ξ12 = x12 − x∗12, x∗12 = − (1
2Θ̂1 + 2)ξ11,

ξ22 = x22 − x∗22, x∗22 = − 2ξ21,

ξ32 = x32 − x∗32, x∗32 = − 2ξ31 + x∗22,

τ = 1
2ξ

2
11 +

1
4ξ

2
12
(∂x∗12
∂x11

sinx11
)2
.

(5.4)

Choose θ = 1, and the initial conditions x11(0) = 1, x12(0) = −2, x21(0) = −1, x22(0) = −1, x31(0) =
1, x32(0) = −1, θ̂(0) = 0.3. We can obtain Figures 1 and 2, which illustrate that the signals of the
closed-loop system xi j, ui and Θ̂i are global bounded while the range of the tracking errors is arbitrarily
small. Thus, the effectiveness of the distributed adaptive control in this paper for nonlinear multi-agent
systems with nonlinear parametric uncertainties is verified.
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Figure 1. The responses of xi j, ui and Θ̂i.
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Figure 2. The responses of δi.

Remark 5.1. Compared to the simulation example in the related work [16], the distributed controllers
(5.2) is much more powerful since that no unknown parameter is contained in the simulation example in
[16]. Besides, although sharing the same digraph topology and system powers with [14], the structure
of distributed controllers here is much more simple.

6. Concluding remarks

In this paper, a distributed adaptive controller has been developed for the tracking problem of a
class of inherent nonlinear multi-agents systems with serious uncertainties from the control coefficients
and the system nonlinearities. By employing backstepping and adaptive technology for the control
design, we overcome the unstable linearization and the parameter uncertainty in the considered system.
Comparing with the related literature, we provide a different distributed adaptive controller structure
and construct a different Lyapunov function for the analysis. However, this paper doesn’t consider the
case that the control directions (that is, the sign of di j’s) are unknown as in [28] or the nonlinear MASs
is with a stochastic process such as [29], which is our further research.
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