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Abstract: Health education plays an important role in cultivating people’s awareness of participating
in physical exercise. In this paper, a new differential equation model is established to dynamically
demonstrate the different impact of mass communication and interpersonal communication in health
education on people’s participation in physical exercise. Theoretical analysis shows that health
education does not affect the system threshold, but individual participation does. The combination of
the two leads to different equilibria and affects the stability of equilibria. When mass communication,
interpersonal communication and individual participation satisfy different conditions, the system will
obtain different positive equilibrium with different number of sports population. If the interpersonal
transmission rate of information is bigger, there is a positive equilibrium with a large number of sports
population in the system. Sensitivity and optimal design analysis show some interesting results. First,
increasing interpersonal communication and mass communication can both increase the number of
conscious non-sports population and sports population. For increasing the number of conscious non-
sports population, the effect of mass communication is better than that of interpersonal communication.
For increasing the number of sports population, the effect of interpersonal communication is better than
that of mass communication. However, individual participation has the best effect on increasing the
sports population. Second, increasing the daily fixed amount of new information will be more helpful
for media information dissemination. Finally, the three control measures need to be implemented
simultaneously for a period of time at first, and then health education and participation of sports people
need to be implemented periodically in order to maximize the sports population.
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1. Introduction

A large number of studies have clarified the relationship between physical exercise and health. In
2013, the World Health Organization (WHO) estimated that physical inactivity causes an average of 3.2
million deaths each year [1]. Since the late 1980s, WHO has cooperated extensively with international
sports organizations such as the International Olympic Committee in the field of mass sports. The
World Health Organization’s efforts to promote mass participation in physical activity and combat
risks to human health reflect that health is not only the work of the sports sector alone, but also the
common work of the whole society.

The development of sports population is highly dependent on health information dissemination and
individual participation. With the extensive development of the internet and mass media, all kinds of
health education have had a profound impact on people’s life and behavior, because they can provide
public health information that affects risk cognition and health behavior. Therefore, the study of health
education and individual participation on the increase of sports population is of great significance.

Health education is an information dissemination and exchange activity carried out by human
society around health problems. As a branch of communication, health education has attracted
extensive attention because of its close relationship with personal life and great social influence.
Wakefield et al. [2] believe that mass media campaigns can produce positive changes or prevent
negative changes in health-related behaviors in a wide range of people, but some longer-term and
more adequately funded media activities are needed to enable people to have full access to media
information. Abroms et al. [3] studied the impact of mass media on the change of public behavior
from the perspective of ecology, and believed that the intervention of mass media has direct and
indirect effects. Based on social cognitive theory, Bandura [4] found that the belief in self-efficacy can
affect the basic process of individual behavior change, including whether people consider changing
their health habits, and how to maintain the changed behavior habits. To sum up, people who acquire
the awareness of physical exercise through health education, coupled with the drive of sports people,
will increase their possibility to become sports people. At the same time, the provision of health
information should ensure sustainability.

In 2015, the fifth plenary session of the 18th central committee of China elevated healthy China into
a national strategy. Around this strategy, the Chinese government issued a series of policy documents,
and the mass media carried out extensive and in-depth publicity of relevant information. In recent years,
with the continuous deepening of China’s sports publicity, the general public’s awareness of sports and
fitness has been enhanced. The number of people who regularly participate in physical exercise in
China has been increasing year by year, and the number of people who participate in physical exercise
has increased from 410 million to 440 million during 2016 to 2020 (Figure 1(a)). At the same time, it
also promotes the mastery of health knowledge and improves the level of health literacy (Figure 1(b)).
With the enhancement of health awareness, people are no longer satisfied with the ”disease-free” state,
and are more willing to make efforts for health and participate in physical exercise. Here, the criteria
for determining the sports population are: (1) frequency of physical activity more than 3 times per
week (including 3 times); (2) more than 30 minutes of physical activity each time; (3) each physical
activity intensity above medium.
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(a) (b)

Figure 1. (a) Changes in the number of people who regularly take part in physical exercise
from 2016 to 2020. (b) Health literacy of Chinese residents from 2015 to 2021. Data source:
Public data, compiled by the People’s Data Research Institute [5].

Many scholars have also discussed how to improve the influence of mass participation in physical
exercise and health through communication. [6] showed that people who used mass media more
frequently were more inclined to take physical exercise to maintain a healthy lifestyle, which in turn
directly improved the health level of the population. [7] believed that Chinese sports should give full
play to the leading role of the government in the process of sports publicity in the process of
becoming a sports power. [8] proposed to take improving scientific fitness literacy as the goal,
comprehensively apply mass communication, organizational communication, interpersonal
communication and other methods, and carried out various forms of health communication activities
by building national fitness demonstration area. However, it is worth studying how to use mass
communication and interpersonal communication in the process of taking various measures to
increase the sports population.

Many human behaviors and phenomena, such as the spread of information among people, the
imitation and learning of each other’s behaviors, are not static and independent, and there are often
complex dynamic mechanisms behind them. There are already a number of research methods. For
example, computational social science researchers have proposed various computational models to
explain the mechanisms and possible influencing factors of these phenomena through the modeling
and simulation method [9]. In additional, social dynamics also can be studied using statistical physics.
Based on the kinetic theory of active particles, statistical physics has proven to be a fruitful
framework to describe phenomena outside the realm of traditional physics [10–17]. Using
mathematical model has also become a powerful method to analyze and solve practical
problems [18–21]. Many scholars have done in-depth research in the field of the dynamics of the
impact of health education on disease transmission. They establish the dynamic model of the impact
of media information on disease transmission from different angles. In 2008, Cui et al. [18] found that
when the threshold is greater than 1 and the influence of media is strong enough, multiple positive
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equilibria appear in the dynamic model. Agaba et al. [22] and Samanta et al. [23] divided the
susceptible into two categories with different levels of consciousness and showed that the speed of
implementing the awareness plan had a substantial impact on the system. Xiao et al. [21] proposed a
classic mathematical model with media coverage and found that the media impact although does not
affect the threshold, but media effect does not destabilize the positive steady-state. In the
reference [24], the growth rate of awareness programs impacting the population is assumed to be
proportional to the number of infective individuals. The model analysis shows that the spread of an
infectious disease can be controlled by using awareness programs but the disease remains positive due
to immigration. Almost none of these models consider both mass and interpersonal communication.

As we know, there are many modes of health education, mainly mass communication and
interpersonal communication. Jin et al. [25] studied the impact of different health education modes on
the health literacy of infectious diseases of different populations in China. The results showed that
health education can significantly improve the health literacy of infectious diseases of different
populations. Urban people are suitable for mass health communication methods such as health
knowledge lectures, while rural people are more suitable for face-to-face interpersonal health
communication methods such as group discussion and learning. Hu et al. [26] found that different
ways of communication had significant difference in the awareness rate and behavioral formation rate.
Those who adopt information late were more affected by interpersonal communication than mass
communication [27]. Mass communication is easy to make people believe the news far from
themselves, and interpersonal communication is easy to make people believe the news close to
themselves [28].

Although most differential equation models are currently used in the study of epidemic
transmission, more and more other professions are using this differential model to carry out research
work, including some disciplines in the field of sociology. For example, there are many references in
physical [29–32]. In information communication, there are also studies on establishing mathematical
models [33, 34]. In the reference [32], authors established a mathematical model to analysis how to
improve the participation of college students in physical exercise by maximizing the number of
students in the third categories. The results showed that it is important to strengthen students’
awareness of physical exercise and encourage those who often participate in physical exercise to
actively participate in and lead those who do not often participate in physical exercise. However their
work didn’t consider health education. Hence, we want to examine the role of mass communication,
interpersonal dissemination of health information and individual participation in the growth of the
sports population using a mathematical model. Although information dissemination is similar in
physical exercise as it is in disease transmission, the modes of communication considered in the
existing disease models either only consider mass communication or interpersonal communication
without comprehensive consideration. Therefore, this paper establishes a new mathematical model
with health information as the medium, considering interpersonal communication, mass
communication and individual participation simultaneously.

The paper is organized as follows. In Section 2 we establish a new model with health education and
individual participation. The dynamical analysis for the model is studied in Section 3. This section
includes threshold condition, existence and stability of the equilibria. In Section 4, sensitivity analysis
of parameters is presented. Section 5 is optimal design. Some numerical simulations and discussions
are presented in Section 6 and Section 7.
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2. Modeling

In this model, the local people are divided into those who regularly take part in physical exercise
(i.e. sports population) recorded as P(t) and those who do not (i.e. non-sports population), and those
who do not regularly take part in physical exercise are further divided into conscious non-sports
population and unconscious non-sports population population, which are recorded as S m(t) and S (t)
respectively. Due to various reasons some sports people may remove to the other region and become
R(t). Because conscious non-sports population S m(t) have the consciousness to take part in physical
exercise, they will occasionally take part in physical exercise, but the frequency is very small. The
unconscious non-sports people hardly exercise, and they are the main people the sports people want to
pull together. The amount of media information is recorded as M(t). As we know, the dissemination
of information about physical exercise can be divided into mass communication and interpersonal
communication. Since interpersonal communication is linear [28], hS (t)S m(t) represents unconscious
non-sports people to become conscious non-sports people because of information dissemination
between conscious non-sports population and unconscious non-sports population. cS (t)M(t)
represents mass communication of information for unconscious non-sports population. Of course,
conscious non-sports population can also become unconscious non-sports population due to forgetting
information. This part is denoted as qS m(t). Conversely, sports population P(t) can affect not only
unconscious non-sports population S (t) but also conscious non-sports population S m(t) to take part in
physical exercise. Led by sports population, the conversion rate of unconscious non-sports population
to sports population is β. Because conscious non-sports population are already aware of physical
exercise, there is relatively little exposure to them by sports population. Then the conversion rate of
conscious non-sports population to sports population is θβ with 0 < θ < 1. Death rate of people is µ
and removal rate of sports population is γ because of the lack of local sports equipment. The removed
portion of sports people will not help non sports people. The new increment of information includes
daily routine health publicity reports M0 and the amount of media publicity information proportional
to the number of sports population mP(t). The dissipation rate of information is recorded as d. Then
the model is as the following

dS
dt
= B − βS (t)P(t) − cS (t)M(t) + qS m(t) − hS (t)S m(t) − µS (t),

dS m

dt
= cS (t)M(t) + hS (t)S m(t) − θβS m(t)P(t) − qS m(t) − µS m(t),

dP
dt
= βS (t)P(t) + θβS m(t)P(t) − γP(t) − µP(t),

dM
dt
= M0 + mP(t) − dM(t),

dR
dt
= γP(t).

(2.1)

All the parameters are listed in Table 1.
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Table 1. Parameters.

Parameters Description
B Recruitment rate of human
β Conversion rate
θ Discount on the conversion rate
γ Removal rate of sports population
µ Death rate of people
c Acceptance rate of mass communication
q Disappearance rate of consciousness
h Acceptance rate of interpersonal communication
d Dissipation rate of information
m Recruitment rate of information
M0 Daily routine publicity and reporting information

Our aim was to study different effects of mass communication (parameter c), interpersonal
communication (parameter h) and individual participation (parameter β) on the dynamic behavior of
disease transmission with health education.

3. Dynamics of the model

Because the variable R(t) has no impact on the variables in other compartments, in the qualitative
analysis process of the model, we simplified the model as follows:

dS
dt
= B − βS (t)P(t) − cS (t)M(t) + qS m(t) − hS (t)S m(t) − µS (t),

dS m

dt
= cS (t)M(t) + hS (t)S m(t) − θβS m(t)P(t) − qS m(t) − µS m(t),

dP
dt
= βS (t)P(t) + θβS m(t)P(t) − γP(t) − µP(t),

dM
dt
= M0 + mP(t) − dM(t).

(3.1)

It is easy to see that for system (3.1) all trajectories in the positive cone enter or stay inside the
region

Ω = {(S (t), S m(t), P(t),M(t)) | S (t), S m(t), P(t),M(t) ≥ 0, S (t), S m(t), P(t) ≤
B
µ
,

M0

d
≤ M(t) ≤

mB
dµ
}.

That means that Ω is a positively invariant set of system (3.1).
According to the biological significance, it is easy to obtain two thresholds for the two types of

non-sports population:

R0 =
βB

µ(µ + γ)
, R0θ =

θβB
µ(µ + γ)

.

Obviously, R0θ < R0 because 0 < θ < 1. This means the threshold of conversion in conscious people
class is less than that in unconscious people class.
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3.1. Existence of equilibria

First, let the right hand of the third equation of (3.1) be equal to 0, one can get

S (t) + θS m(t) =
µ + γ

β
or P(t) = 0.

If P(t) = 0, by equating the right-hand side of the forth equation of (3.1) to zero, we can obtain
M0 = M0

d . Combining the first three equations, we can get S m(t) = B
µ
− S (t) and S (t) is the solution of

the following quadratic equation:

f (S ) ≜ hS 2 − (q + µ + cM0 +
hB
µ

)S + (q + µ)
B
µ
= 0.

Note that f (0) > 0 and f ( B
µ
) = −cM0 B

µ
< 0, It is known from the intermediate value theorem that

there is a unique positive solution S 0 =
q+µ+cM0+ hB

µ −
√
∆1

2h that conforms to the meaning of the problem.
Here, ∆1 = (q + µ + cM0 + hB

µ
)2 −

4hB(q+µ)
µ
> 0 and it is easy to verify that S 0 < B

µ
. Hence, the system

(3.1) always has a boundary equilibrium E0 = (S 0, S 0
m, 0,M

0) with

S 0
m =

B
µ
− S 0,

S 0 =
q + µ + cM0 + hB

µ
−
√
∆1

2h
,

M0 =
M0

d
.

If S (t) + θS m(t) = µ+γ
β

, we can obtain that M(t) = m
d P(t) + M0

d and

P(t) =
1
µ + γ

[B −
µ(µ + γ)
β

− µ(1 − θ)S m(t)].

To make these variables meaningful, they must meet the following condition

(H) : 0 < S m(t) < µ+γ
θβ

and 0 < S m(t) <
B− µ(µ+γ)β

µ(1−θ) .

This further requires B − µ(µ+γ)
β
> 0, which happens to be the condition R0 > 1.

Through simplification, it can be obtained that S m(t) is the solution satisfying the following
quadratic equation:

F(S m) ≜ A1S 2
m + A2S m + A3 = 0.

Here

A1 = θ[h − (β +
cm
d

)
µ(1 − θ)
µ + γ

],

A2 = θ(β +
cm
d

)
1
µ + γ

[B −
µ(µ + γ)
β

] + (q + µ −
h(µ + γ)
β

+ θ
cM0

d
) +

cmµ(1 − θ)
dβ

,

A3 = −
cm[B − µ(µ+γ)

β
]

dβ
−

cM0

d
µ + γ

β
.
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Under the condition R0 > 1, A3 < 0.
Next, we discuss the existence of positive equilibrium in three cases under the condition R0 > 1.
Case I: h > (β + cm

d )µ(1−θ)
µ+γ

.
In this case, A1 > 0. It is easy to get that F(0) < 0 and

F(
µ + γ

θβ
) = B +

q(µ + γ)
θβ

> 0.

Thus, there is a positive solution between 0 and µ+γ
θβ

. Note that R0θ ≥ 1 is equivalent to µ+γ
θβ
≤

B− µ(µ+γ)β

µ(1−θ)

and there must be R0 > 1. Hence, if R0θ ≥ 1 there has a positive solution S 1
m =

−A2+
√

A2
2−4A1A3

2A1
in (0, µ+γ

θβ
)

that conforms to the condition (H) from the intermediate value theorem.

If R0θ < 1 and R0 > 1, µ+γ
θβ
>

B− µ(µ+γ)β

µ(1−θ) . To make variable S m(t) meaningful, it needs to satisfy

F(
B− µ(µ+γ)β

µ(1−θ) ) ≥ 0. Since

F(
B − µ(µ+γ)

β

µ(1 − θ)
) =

1
1 − θ

{
µ + γ

β
(R0θ − 1)(

h[B − µ(µ+γ)
β

]

µ(1 − θ)
+

cM0

d
) +

q + µ
µ

[B −
µ(µ + γ)
β

]},

F(
B− µ(µ+γ)β

µ(1−θ) ) ≥ 0 is equivalent to

h
1 − θ

(R0θ − 1)(R0 − 1) +
βcM0

(µ + γ)d
(R0θ − 1) +

β(q + µ)
µ + γ

(R0 − 1) ≥ 0,

i.e.,

R0θ ≥ 1 −
(q + µ)(R0 − 1)

h(µ+γ)
β(1−θ) (R0 − 1) + cM0

d

≜ R∗0θ.

Thus, if R∗0θ ≤ R0θ < 1 and R0 > 1, there also has a positive solution S 1
m =

−A2+
√

A2
2−4A1A3

2A1
that

conforms to the condition (H). If R0θ < R∗0θ and R0 > 1, there has not a positive solution. Hence, in the
first case there exists a positive equilibrium E1 = (S 1, S 1

m, P
1,M1) if R0θ ≥ R∗0θ and R0 > 1. There is no

positive equilibrium if R0θ < R∗0θ and R0 > 1. Here

S 1
m =
−A2 +

√
A2

2 − 4A1A3

2A1
,

S 1 =
µ + γ

β
− θS 1

m,

P1 =
1
µ + γ

[B −
µ(µ + γ)
β

− µ(1 − θ)S 1
m],

M1 =
m
d

P1 +
M0

d
.

Case II: h < (β + cm
d )µ(1−θ)

µ+γ
.

In this case, A1 < 0. These two formulas F(0) < 0 and F(µ+γ
θβ

) > 0 also hold. Similar to the
discussion of the first case, we can get the conclusion of the second case. There exists a positive
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equilibrium E2 = (S 2, S 2
m, P

2,M2) if R0θ ≥ R∗0θ and R0 > 1. There is no positive equilibrium if
R0θ < R∗0θ and R0 > 1. Here

S 2
m =
−A2 −

√
A2

2 − 4A1A3

2A1
,

S 2 =
µ + γ

β
− θS 2

m,

P2 =
1
µ + γ

[B −
µ(µ + γ)
β

− µ(1 − θ)S 2
m],

M2 =
m
d

P2 +
M0

d
.

Case III: h = (β + cm
d )µ(1−θ)

µ+γ
.

In this case, A1 = 0 and F(S m) ≜ A2S m + A3 = 0. Note that A3 < 0 under the condition R0 > 1.
Thus, to make variable S m(t) meaningful, it needs to satisfy A2 > 0, i.e.

h <
β

µ + γ
[
µθ

β
(β +

cm
d

)(R0 − 1) + q + µ + θ
cM0

d
+
µ(1 − θ)cm
βd

].

Substituting h = (β + cm
d )µ(1−θ)

µ+γ
into the above formula,

R0θ > 1 −
β

µ(β + cm
d )

[q + µ + θ
cM0

d
+
µ(1 − θ)cm
βd

] ≜ R∗∗∗0θ .

Next, we need to verify that S m = −
A3
A2
< min(µ+γ

θβ
,

B− µ(µ+γ)β

µ(1−θ) ). First, the following inequality holds
under the condition R0 > 1,

µ + γ

θβ
− (−

A3

A2
) = θβ[B −

µ(µ + γ)
β

] + (µ + γ)(q + µθ) > 0,

which means S m = −
A3
A2
< µ+γ
θβ

.

If R0θ ≥ 1, µ+γ
θβ
≤

B− µ(µ+γ)β

µ(1−θ) , and then min(µ+γ
θβ
,

B− µ(µ+γ)β

µ(1−θ) ) = µ+γ

θβ
. Thus, S m = −

A3
A2
< min(µ+γ

θβ
,

B− µ(µ+γ)β

µ(1−θ) )
holds if R0θ ≥ 1.

If R0θ < 1, we need to verify S m = −
A3
A2
<

B− µ(µ+γ)β

µ(1−θ) , which is equivalent to

µ(β + cm
d )

β
(R0θ − 1)(R0 − 1) + (q + µ)(R0 − 1) +

cM0

d
(R0θ − 1) > 0,

i.e.,

R0θ > 1 −
(q + µ)(R0 − 1)

µ(β+ cm
d )
β

(R0 − 1) + cM0
d

≜ R∗∗0θ.

In fact, R∗0θ = R∗∗0θ when h = (β + cm
d )µ(1−θ)

µ+γ
. Note that

R∗∗0θ − R∗∗∗0θ = [θ
cM0

d
+
µ(1 − θ)cm
βd

](R0 − 1) +
β

µ(β + cm
d )

[q + µ + θ
cM0

d
+
µ(1 − θ)cm
βd

]
cm
d
.
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R0 > 1 ensures that R∗∗0θ > R∗∗∗0θ is established. Hence, in the third case there exists a positive equilibrium
E3 = (S 3, S 3

m, P
3,M3) if R0θ > R∗∗0θ and R0 > 1. There is no positive equilibrium if R0θ ≤ R∗∗0θ and R0 > 1.

Here

S 3
m = −

A3

A2
,

S 3 =
µ + γ

β
− θS 3

m,

P3 =
1
µ + γ

[B −
µ(µ + γ)
β

− µ(1 − θ)S 3
m],

M3 =
m
d

P3 +
M0

d
.

In summary, the result about equilibrium existence of the system (3.1) is in Theorem 3.1.

Theorem 3.1. For the system (3.1), there always exists a boundary equilibrium E0 = (S 0, S 0
m, 0,M

0).
If R0 ≤ 1, there is no positive equilibria. If R0 > 1, positive equilibria are as follows:
(1) When h > (β + cm

d )µ(1−θ)
µ+γ

, there exists a positive equilibrium E1 = (S 1, S 1
m, P

1,M1) if and only if
R0θ ≥ R∗0θ.
(2) When h < (β + cm

d )µ(1−θ)
µ+γ

, there exists a positive equilibrium E2 = (S 2, S 2
m, P

2,M2) if and only if
R0θ ≥ R∗0θ.
(3) When h = (β + cm

d )µ(1−θ)
µ+γ

, there exists a positive equilibrium E3 = (S 3, S 3
m, P

3,M3) if and only if
R0θ > R∗∗0θ.

Remark 3.2. From the above three cases it can be seen that
(1) The existence of positive equilibrium is related to both R0 and R0θ.
(2) The number of sports population is different in the above three cases, which depends on the
parameters h, c and β. This shows that the impact of mass communication, interpersonal
communication and individual participation on the increase of sports population is important.
(3) Even if R0 > 1, the value of R0θ can be very small when the value of θ is very small. To increase
R0θ we can increase θ. This means that we need to increase the role of sports people in promoting
conscious non-sports people.

3.2. Stability of equilibria

3.2.1. Local stability

Now we study the stability of equilibria. It is easy to calculate that the characteristic roots about
E0 are λ1 = −d, λ2 = −µ, λ3 = −(cM0 + hS 0

m − hS 0 + q + µ) and λ4 = βS 0 + θβS 0
m − µ − γ. From

S 0
m =

B
µ
− S 0, λ3 = −(cM0 + hB

µ
− 2hS 0 + q + µ). Substituting S 0 =

q+µ+cM0+ hB
µ −
√
∆1

2h , λ3 = −
√
∆1 < 0.

Through simplification,

λ4 = βS 0 + θβS 0
m − µ − γ = (1 − θ)βS 0 + (R0θ − 1)(µ + γ).

It is easy to see that λ4 > 0 if R0θ > 1. If R0θ < 1, we know 1 − R0θ > 0 and can rewrite

λ4 = (1 − θ)βS 0 − (1 − R0θ)(µ + γ).
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Thus, λ4 < 0 if and only if R0θ < 1 − (1−θ)βS 0

µ+γ
≜ Rs

0θ, Then, the real parts of all eigenvalues of E0 are
negative if and only if R0θ < Rs

0θ. Hence, the local stability of the boundary equilibrium E0 is following:

Theorem 3.3. The boundary equilibrium E0 of the system (3.1) is locally asymptotically stable if
R0θ < Rs

0θ and unstable if R0θ > Rs
0θ.

Next the local stability of positive equilibrium Ei(i = 1, 2, 3) is carried under the condition of the
existence.

Theorem 3.4. The positive equilibrium Ei of the system (3.1) is locally asymptotically stability if
h ≤ qβ

µ+γ
.

Proof. The Jacobian matrix corresponding to the positive equilibrium Ei of the system (3.1) is

J(Ei) =


−βPi − cMi − hS i

m − µ q − hS i −βS i −cS i

cMi + hS i
m hS i − θβPi − q − µ −θβS i

m cS i

βPi θβPi βS i + θβS i
m − γ − µ 0

0 0 m −d

 .

The corresponding characteristic equation is

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0,

where

B1 = (θβPi + q + µ − hS i) + (βPi + cMi + hS i
m + µ) + d,

B2 = 2(βPi + cMi + hS i
m + µ + d)(θβPi + q + µ − hS i) + d(βPi + cMi + hS i

m + µ)
+ βPiβS i + θβPiθβS i

m − (cMi + hS i
m)(−q + hS i),

B3 = 2d(βPi + cMi + hS i
m + µ)(θβP

i + q + µ − hS i) + θβPiβS i(cMi + hS i
m)

− βPiθβS i
m(−q + hS i) + βPiβS i(θβPi + q + µ − hS i) + dβPiβS i

+ θβPiθβS i
m(βPi + cMi + hS i

m + µ) + dθβPiθβS i
m − d(cMi + hS i

m)(−q + hS i),
B4 = dθβPiβS i(cMi + hS i

m) − dβPiθβS i
m(−q + hS i) + θβPiθβS i

m(βPi + cMi + hS i
m + µ).

From S i + θS i
m =

µ+γ

β
, S i ≤

µ+γ

β
. If h ≤ qβ

µ+γ
, it can lead to q − hS i ≥ 0. Then B1 > 0, B2 > 0, B3 >

0, B4 > 0.
Let

H1 = B1,H2 =

∣∣∣∣∣∣ B1 B3

1 B2

∣∣∣∣∣∣ ,H3 =

∣∣∣∣∣∣∣∣∣
B1 B3 0
1 B2 B4

0 B1 B3

∣∣∣∣∣∣∣∣∣ ,H4 = B4H3.
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Under the condition h ≤ qβ
µ+γ

, we can calculate

H1 = B1 = (θβPi + q + µ − hS i) + (βPi + cMi + hS i
m + µ) + d > 0,

H2 = B1B2 − B3 = [(θβPi + q + µ − hS i) + (βPi + cMi + hS i
m + µ) + d]

[2d(θβPi + q + µ − hS i) + θβPiθβS i
m + (cMi + hS i

m)(q − hS i)]
+βPiβS i[2(θβPi + µ) + (q − hS i) + d] + θβPiθβS i

m[(βPi + µ) + d]
+d(cMi + hS i

m)(q − hS i) > 0,
H3 = B3H2 − B2

1B4 = [(θβPi + q + µ − hS i) + (βPi + cMi + hS i
m + µ) + d]

[2d(βPi + cMi + hS i
m + µ)(θβP

i + q + µ − hS i) + d(βPiβS i + q − hS i)
+d(θβPiθβS i

m + (cMi + hS i
m)(q − hS i))][θβPiθβS i

m + (cMi + hS i
m)(q − hS i)]

+βPiβS i(θβPi + µ) + θβPiθβS i
m[(θβPi + µ) + d] + d(cMi + hS i

m)(q − hS i) > 0,
H4 = B4H3 > 0.

According to the Routh-Hurtwitz criterion, the real parts of all eigenvalues of Ei are negative. Then,
Ei is locally asymptotically stable if h ≤ qβ

µ+γ
under the condition of the existence. □

3.2.2. Global stability

Next we prove global stability of the boundary equilibrium E0.

Theorem 3.5. If R0 <
1

1+θ , the boundary equilibrium E0 of the system (3.1) is globally asymptotically
stable.

Proof. Let us construct the following Lyapunov function

V(S , S m, P,M) = P(t).

Then, the total derivative of the function V(S , S m, P,M) along the solution of the system (3.1) can
be solved as follow

dV(S , S m, P,M)
dt

= βS (t)P(t) + θβS m(t)P(t) − γP(t) − µP(t).

From S (t) < B
µ

and S m(t) < B
µ
, it is easy to get

dV(S ,S m,P,M)
dt < (β B

µ
+ θβ B

µ
− γ − µ)P(t)

= [ (1+θ)βB
µ
− γ − µ]P(t)

=
P(t)
µ+γ

[(1 + θ)R0 − 1].

Then, we have dV(S ,S m,P,M)
dt < 0 if R0 <

1
1+θ . In accordance with the LaSalle invariant set principle,

the disease-free equilibrium E0 of the system (3.1) is globally asymptotically stable if R0 <
1

1+θ . □

For the global stability of positive equilibrium Ei(i = 1, 2, 3), we have the following theorem.

Theorem 3.6. If h ≤ qβ
µ+γ

, the positive equilibrium Ei of the system (3.1) is globally asymptotically
stable.
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Proof. Let us construct the following Lyapunov function

V(S , S m, P,M) =
1
2

(S − S i + S m − S i
m + P − Pi)2 + a(P − Pi − Piln

P
Pi ),

here a is an undetermined coefficient. Then, the total derivative of the function V(S , S m, P,M) along
the solution of the system (3.1) can be solved as follow

dV(S ,S m,P,M)
dt = (S − S i + S m − S i

m + P − Pi)(Ṡ + Ṡ m + Ṗ) + a(1 − Pi

P )Ṗ
= (S − S i + S m − S i

m + P − Pi)[B − µS − µS m − (µ + γ)P]
+a(1 − Pi

P )[βS P − βS iPi + θβS mP − θβS i
mPi − (µ + γ)P + (µ + γ)Pi].

From
B − βS iPi − cS iMi + qS i

m − hS iS i
m − µS

i = 0,
cS iMi + hS iS i

m − θβS
i
mPi − qS i

m − µS
i
m = 0,

βS iPi + θβS i
mPi − (µ + γ)Pi = 0,

we can get

dV(S ,S m,P,M)
dt = (S − S i + S m − S i

m + P − Pi)[−µ(S − S i) − µ(S m − S i
m) − (µ + γ)(P − Pi)]

−a (µ+γ)(P−Pi)2

P + aβ(S − S i)(P − Pi) + aθβ(S m − S i
m)(P − Pi)

+aβS
i

P (P − Pi)2 + a θβS
i
m

P (P − Pi)2

= −µ(S − S i)2 − µ(S m − S i
m)2 − (µ + γ)(P − Pi)2 − 2µ(S − S i)(S m − S i

m)
−(2µ + γ)(S − S i)(P − Pi) − (2µ + γ)(S m − S i

m)(P − Pi)
−a (µ+γ)(P−Pi)2

P + aβ(S − S i)(P − Pi) + aθβ(S m − S i
m)(P − Pi)

+aβS
i

P (P − Pi)2 + a θβS
i
m

P (P − Pi)2

< −µ[(S − S i) + (S m − S i
m)]2 − (µ + γ)(P − Pi)2

+[aβ − (2µ + γ)](S − S i)(P − Pi) + [aβ − (2µ + γ)](S m − S i
m)(P − Pi)

−a[(µ + γ) − βS i − θβS i
m] (P−Pi)2

P .

Set aβ − (2µ + γ) = 0, one has a = 2µ+γ
β

and since S i + θS i
m =

µ+γ

β
, we have

dV(S ,S m,P,M)
dt < −µ[(S − S i) + (S m − S i

m)]2 − (µ + γ)(P − Pi)2

−
2µ+γ
β

[(µ + γ) − βS i − θβS i
m] (P−Pi)2

P

< −µ[(S − S i) + (S m − S i
m)]2 − (µ + γ)(P − Pi)2 < 0.

Then, we have V̇ < 0 under the existence condition of Ei. Furthermore, dV
dt = 0 if and only if

S = S i, S m = S i
m, P = Pi. According to the LaSalle invariant set principle, the positive equilibrium Ei

of the system (3.1) is globally asymptotically stable. □

4. Sensitivity analysis

The sensitivity index can help us understand the sensitive parameters of the system. These indexes
can be positive or negative. The absolute value of the index indicates the strength of the relationship,
and the positive and negative properties of the index indicate positive and negative correlation. Now,
we will use PRCC method to investigate the sensitivity of parameters on the positive equilibrium, and
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the threshold R0,R0θ of the system. Table 2 lists the range of model parameters. Table 3 provides the
PRCC values of different parameters on R0, R0θ and various state variables of the positive equilibrium
of the system.

Table 2. Ranges for parameters of model (3.1).

Parameter Description Range Sources

B Recruitment rate of human 1–300 [35]
β Conversion rate 0.0001–0.1 [32]
c Acceptance rate of mass communication 0–0.1 [36]
q Disappearance rate of consciousness of non-sports population 0.5–0.67 [37]
h Acceptance rate of interpersonal communication 0–0.1 [36]
µ Death rate of people 0.003–0.009 [35]
θ Discount on the conversion rate 0–0.8 /

γ Removal rate of sports population 0.01–0.3 [32, 38]
M0 Daily routine publicity and reporting information 1–100 [39]
m Response parameters of media information to sports population 0-0.1 [39]
d Dissipation rate of information 0–0.1 [39]

Table 3. Sensitivity to R0, R0θ and the positive equilibria of the system.

Parameter Sensitivity(R0) Sensitivity(R0θ) Sensitivity(S m) Sensitivity(P) Sensitivity(M)

B 0.3255 0.3401 −0.1321 0.3213 0.0949
β 0.8865 0.8850 -0.1953 0.8542 0.1773
c \ \ 0.1660 −0.0143 −0.0400
q \ \ −0.1237 0.1110 0.0401
h \ \ 0.0218 −0.0565 −0.0428
µ −0.4038 −0.4503 −0.0177 −0.1442 −0.1625
θ \ 0.1152 −0.2106 0.0705 −0.1960
γ −0.8873 −0.8988 −0.2554 −0.5554 −0.0057
M0 \ \ 0.1665 0.0323 0.9938
m \ \ 0.1062 0.1062 −0.0251
d \ \ −0.2708 0.1471 −0.1992

Table 3 and Figure 2(a) suggest that the magnitude of R0 and R0θ increase with increase in the
values of parameters B and β as these parameters possess positive indices with R0 and R0θ. β reflects
the degree of participation of all individuals in physical exercise. To increase R0 and R0θ, we need
to increase individual participation. Meanwhile, θ has a positive correlation with R0θ. This means
that the greater the influence of sports people on conscious non-sports people, the greater the value
of R0θ, there will be positive equilibria with sports population. This is consistent with our theoretical
analysis results.. Similarly, the parameters having negative correlation with R0 and R0θ are µ and γ. We
can’t control death. However we can improve local sports facilities and reduce the movement of sports
people out.
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Figure 2. The significance analysis diagram of parameters to (a) R0,R0θ (b) S m, (c) P and (d)
M.

In Table 3 and Figure 2(b), we can find d and γ have the strong relationship to the number of
conscious non-sports population S m. B, β, q, θ and µ have different degrees of negative relationship to
the number of conscious non-sports population. Among them, the negative correlation of β, θ
confirms that with the increase of individual participation, there will be more conscious non-sports
people transformed into sports people. The correlation of acceptance rate of interpersonal
communication h is positive because the awareness of self-protection is gradually cultivated when the
unconscious group communicates with the conscious group, so that the conscious group continues to
increase. Meanwhile, the correlation of acceptance rate of mass communication c is positive because
unconscious non-sports population develop into conscious non-sports population when they receive
the opinions of mass communication information. Then the negative correlation of q is due to the fact
that there is a rate of disappearance of consciousness, which makes conscious non-sports population
to unconscious non-sports population. The negative correlation of d means that when the dissipation
rate of media messages is too high, this will lead to a reduction in the number of media messages and,
in turn, a corresponding reduction in the number of conscious non-sports population. The negative
correlation of γ also indicates that the migration of sports people is disadvantageous to non-sports
people.

In Table 3 and Figure 2(c), it is easy to see that β, B, c, h, θ and M0 have different degrees of
positive relationship to the number of sports population P, and the rest of the parameters are
negatively correlated. These shows that increasing mass communication, interpersonal
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communication and individual participation can all increase the number of sports population.
Increasing the dissemination of information about daily physical activity can also increase the
physical population. The migration of sports people is the same disadvantageous to sports population.

In Table 3 and Figure 2(d), the parameters B, β, q, m and M0 have the positive relationship to the
amount of media information M. Additionally, the parameters c, h, µ, θ, γ and d have the negative
relationship to the amount of media information M. Among them, for the positive correlation
interpretation of M0 and m, this is because daily routine publicity and reporting information and the
response of media to the number of sports population are the main reasons for the generation of media
information.

According to the analysis of the above sensitivity results, we have discovered the strong importance
of parameters c, h and β for the increase of sports population. What measures should people take to
achieve optimum effect in actual operation? In order to study this problem, the next section will study
the optimal design.

5. Optimal design

In this section, we use an optimal control approach to study sports population taking into account the
effect of health education. Assume that the total population is denoted by N(t) = S (t) + S m(t) + P(t).
In order to reduce the cost of implementing control technology and to achieve the lowest cost, it is
necessary to find time-dependent control strategies. Most of control strategies used in daily life are
considering continuous control strategies. This problem is a typical optimal control problem. In fact,
sports institutions need to maintain a high level of strategies in order to increase sports population,
which has a high economic cost, so we need to find a time-dependent control strategy. The measures
about health education we take are: (a) to increase the publicity of mass communication (parameter
c), (b) to carry out active interpersonal communication (parameter h), (c) to strengthen the impact of
sports population on conscious non-sports population (parameter β). Therefore, we introduce three
time-dependent control functions u1, u2, u3. Considering the above assumptions, the control problem
of the system (3.1) with health education effect is given by the following equation.

dS (t)
dt = B − [1 + u3(t)]βS (t)P(t) − [1 + u1(t)]cS (t)M(t) + qS m(t) − [1 + u2(t)]hS (t)S m(t) − µS (t),

dS m(t)
dt = [1 + u1(t)]cS (t)M(t) + [1 + u2(t)]hS (t)S m(t) − [1 + u3(t)]θβS m(t)P(t) − qS m(t) − µS m(t),

dP(t)
dt = [1 + u3(t)]βS (t)P(t) + [1 + u3(t)]θβS m(t)P(t) − γP(t) − µP(t),

dM(t)
dt = M0 + mP(t) − dM(t).

(5.1)
The parameter descriptions are as described previously. Assume that the set of control variables is

U = {(u1(t), u2(t), u3(t)) : [0, tend]→ R3|ui(t) is a Lebesgue measure on [0, 1], i = 1, 2, 3}.

This means that all control variables are bounded and Lebesgue measurable. Here, u1(t) represents
the increase in mass communication publicity coverage that leads unconsciously non-sports
individuals to value media messages, u2(t) represents the active interpersonal communication
campaign that promotes communication among people to make the unconscious non-sports people
more receptive to take part in physical exercise, and u3(t) represents the increase about driving effect
of sports people on non-sports people.
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The objective of our optimal control problem is to maximum the number of sports population and
minimum the cost of implementing a control strategy by using optimal control variables. Therefore, we
use bounded and Lebesgue measurable control variables and define the objective function as follows:

J(u1(t), u2(t), u3(t)) = min{
∫ tend

0
(−z1P(t) + z2N(t) + z3M(t) +

3∑
i=1

ciu2
i (t))dt}, (5.2)

where z1, z2, z3, c1, c2, c3 are all positive constants. Among these constants, z1 represents the weight of
sports population, z2 represents the cost of national investment in physical exercise, and z3 represents
the cost of media information campaigns of health education. c1,c2,c3 denote the weight constants of
increasing the number of media messages in mass communication, active interpersonal
communication campaigns in society, and increasing the enthusiasm of individuals to participate in
physical exercise driven by sports people, respectively. Meanwhile, we assume that the cost is
proportional to the quadratic form of the three control functions. The objective of the optimal control
problem is to find the optimal control variables (u∗1(t), u∗2(t), u∗3(t)) such that

J(u∗1(t), u∗2(t), u∗3(t)) = min
(u1(t),u2(t),u3(t))∈U

{J(u1(t), u2(t), u3(t))|(u1(t), u2(t), u3(t)) ∈ U}.

The existence of optimal control in system (3.1) can be obtained.

Theorem 5.1. There exists an optimal control of the system u∗(t) = (u∗1(t), u∗2(t), u∗3(t)) ∈ U, such that

J(u∗1(t), u∗2(t), u∗3(t)) = min
(u1(t),u2(t),u3(t))∈U

{J(u1(t), u2(t), u3(t))|(u1(t), u2(t), u3(t)) ∈ U},

subject to the control system (5.1).

Proof. By the results in the above theorem, we prove the existence of optimal control with the control
and state variables are both non-negative. In this minimization problem, the necessary convexity of
the objective function in u1(t), u2(t), u3(t) is satisfied. Meanwhile, u1(t), u2(t), u3(t) all belong to the
control set U. The optimal control system is bounded, which determines the compactness required for
the existence of the optimal control. Moreover, for the objective function (5.2) the product function
−z1P(t)+ z2N(t)+ z3M(t)+

∑3
i=1 ciu2

i (t) is convex on the control set U. Furthermore, we can obtain that
there exists a constant ρ > 1 and positive numbers ω1, ω2 such that

J(u1(t), u2(t), u3(t)) ≥ ω1(|u1(t)|2 + |u2(t)|2 + |u3(t)|2)
ρ
2 − ω2.

Since the state variables are bounded, this completes the proof of the existence of optimal control.
□

In order to find the optimal solution, we use Pontryagin’s Maximum Principle. First, to simplify the
above notation, we set

X(t) = (S (t), S m(t), P(t),M(t))T , u(t) = (u1(t), u2(t), u3(t))T , λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)).

Then, the Lagrangian function is

L = −z1P(t) + z2N(t) + z3M(t) + c1u2
1(t) + c2u2

2(t) + c3u2
3(t),
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and we define the Hamiltonian function for this control problem H(t, X(t), u(t), λ(t)) as follows:

H(t, X(t), u(t), λ(t)) = −z1P(t) + z2N(t) + z3M(t) +
3∑

i=1

ciu2
i (t) + λ1

dS
dt
+ λ2

dS m

dt
+ λ3

dP
dt
+ λ4

dM
dt

(5.3)

= −z1P(t) + z2N(t) + z3M(t) + c1u2
1(t) + c2u2

2(t) + c3u2
3(t)

+ λ1{B − [1 + u3(t)]βS (t)P(t) − [1 + u1(t)]cS (t)M(t) + qS m(t) − [1 + u2(t)]hS (t)S m(t) − µS (t)}
+ λ2{[1 + u1(t)]cS (t)M(t) + [1 + u2(t)]hS (t)S m(t) − [1 + u3(t)]θβS m(t)P(t) − qS m(t) − µS m(t)}
+ λ3{[1 + u3(t)]βS (t)P(t) + [1 + u3(t)]θβS m(t)P(t) − γP(t) − µP(t)} + λ4{M0 + mP(t) − dM(t)}.

Therefore, we get
(1) State equations:

X′(t) = Hλ(t, X(t), u(t), λ(t)). (5.4)

(2) Optimal conditions:

0 = Hu(t, X(t), u(t), λ(t)). (5.5)

(3) Adjoint equations:

−λ′(t) = HX(t)(t, X(t), u(t), λ(t)). (5.6)

Now, we apply the above condition to the Hamiltonian function H of (5.3), we get

Theorem 5.2. Let (S ∗(t), S ∗m(t), P∗(t),M∗(t)) be the optimal state solutions of the optimal control
problem (5.1) and (5.2) under the optimal control variables u∗(t). Thus there exist adjoint variables
λ1, λ2, λ3, λ4 satisfying

dλ1(t)
dt = −z2 + µλ1(t) + {[1 + u∗1(t)]cM∗(t) + [1 + u∗2(t)hS ∗m(t)]}[λ1(t) − λ2(t)] + [1 + u∗3(t)]βP∗(t)[λ1(t) + λ3(t)],

dλ2(t)
dt = −z2 + µλ2(t) − {q − [1 + u∗2(t)]hS (t)}[λ1(t) − λ2(t)] + [1 + u∗3(t)]θβP∗(t)[−λ2(t) + λ3(t)],

dλ3(t)
dt = z1 − z2 + (γ + µ)λ3(t) + [1 + u∗3(t)]βS ∗(t)[λ1(t) + λ3(t)] + [1 + u∗3(t)]θβS ∗m(t)[−λ2(t) + λ3(t)] − mλ4(t),

dλ4(t)
dt = −z3 + dλ4(t) + [1 + u∗1(t)]cS ∗(t)[λ1(t) − λ2(t)],

with transversality conditions (boundary conditions)

λ1(tend) = 0, λ2(tend) = 0, λ3(tend) = 0 and λ4(tend) = 0.

In addition, the optimal control is given as follows:
u∗1(t) = max{0,min{ cS ∗(t)M∗(t)[−λ2(t)+λ1(t)]

2c1
, 1}},

u∗2(t) = max{0,min{hS ∗(t)S ∗m(t)[−λ2(t)+λ1(t)]
2c2

, 1}},
u∗3(t) = max{0,min{ θβS

∗
m(t)P∗(t)[−λ3(t)+λ2(t)]+βS ∗(t)P∗(t)[−λ3(t)+λ1(t)]

2c3
, 1}}.
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Proof. To begin with, let (S ∗(t), S ∗m(t), P∗(t),M∗(t)) be the optimal state solutions of the optimal control
problem (5.1) and (5.2) under the optimal control variables u∗(t). The following analysis is performed
at X∗(t) = (S ∗(t), S ∗m(t), P∗(t),M∗(t)). For the adjoint equation (5.6) and the Hamiltonian function (5.3),
we can obtain the partial derivatives of H with respect to S (t), S m(t), P(t),M(t) respectively as follows:

∂H
∂S (t) = z2 + λ1(t){−[1 + u∗3(t)]βP∗(t) − [1 + u∗1(t)]cM∗(t) − [1 + u∗2(t)]hS ∗m(t) − µ}

+λ2(t){[1 + u∗1(t)]cM∗(t) + [1 + u∗2(t)]hS ∗m(t)} + λ3[1 + u∗3(t)]βP∗(t),
∂H
∂S m(t) = z2 + λ1(t){q − [1 + u∗2(t)]hS ∗(t) − µ} + λ2(t){[1 + u∗2(t)]hS ∗(t)

−[1 − u∗3(t)]θβP∗(t) − (q + µ)} + λ3(t)[1 + u∗3(t)]θβP∗(t),
∂H
∂P(t) = −z1 + z2 − λ1(t)[1 + u∗3(t)]βS ∗(t) − λ2(t)[1 + u∗3(t)]θβS ∗m(t)

+λ3(t){[1 + u∗3(t)]βS ∗(t) + [1 + u∗3(t)]θβS ∗m(t) − (γ + µ)} + λ4(t)m,
∂H
∂M(t) = z3 − λ1(t)[1 + u∗1(t)]cS ∗(t) + λ2(t)[1 + u∗1(t)]cS ∗(t) − λ4(t)d.

Then, according to the optimality condition (5.5) and the Hamiltonian function H (5.3), we can
obtain

∂H
∂u1(t) |u(t)=u∗(t) = 2c1u∗1 + cS ∗(t)M∗(t)[λ2(t) − λ1(t)] = 0,
∂H
∂u2(t) |u(t)=u∗(t) = 2c2u∗2 + hS ∗(t)S ∗m(t)[λ2(t) − λ1(t)] = 0,
∂H
∂u3(t) |u(t)=u∗(t) = 2c3u∗3 + θβS

∗
m(t)P∗(t)[−λ2(t) + λ3(t)] + βS ∗(t)P∗(t)[−λ1(t) + λ3(t)] = 0.

This means that optimal control is obtained. The proof is complete. □

6. Numerical simulation

In this section, some numerical simulations are performed to verify the existence of equilibria, the
local stability of the positive equilibrium. An investigation of system (3.1) with the coefficients above
can be conducted via a numerical integration using the standard MATLAB algorithm.

Table 4. Numerical simulation results.

Parameter value Theorem Figure Result

B = 1, β = 0.002, c = 0.008, q = 0.6, h = 0.01, µ = 0.02,
θ = 0.05, γ = 0.02,M0 = 0.5,m = 0.1, d = 0.05.

Theorem 3.1(1) Figure 3(a) E1 is LAS

B = 1, β = 0.002, c = 0.01, q = 0.6, h = 0.01, µ = 0.02,
θ = 0.05, γ = 0.02,M0 = 0.5,m = 0.1, d = 0.05.

Theorem 3.1(2) Figure 3(b) E2 is LAS

B = 1, β = 0.002, c = 0.0095, q = 0.6, h = 0.01, µ = 0.02,
θ = 0.05, γ = 0.02,M0 = 0.5,m = 0.1, d = 0.05.

Theorem 3.1(3) Figure 3(c) E3 is LAS

B = 2, β = 0.002, c = 0.1, q = 0.65, h = 0.01, µ = 0.008,
θ = 0.5, γ = 0.15,M0 = 0.5,m = 0.01116, d = 0.05.

Theorem 3.3 Figure 3(d) E0 is LAS

B = 2, β = 0.03, c = 0.05, q = 0.65, h = 0.02, µ = 0.004,
θ = 0.005, γ = 0.02,M0 = 2,m = 0.05, d = 0.05.

Theorem 5.1 Figure 4 Optimal control
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In system (3.1), let the parameters satisfy the first set of parameter values in Table 4. At this time
we get h = 0.01 > (β + cm

d )µ(1−θ)
µ+γ
= 0.0086, R0 = 2.5 > 1 and R0θ = 0.1250 > R∗0θ = −1.3497. Based on

Theorem 3.1(1), it is easy to obtain that system (3.1) has a positive equilibrium
E1 = (19.4615, 10.8386, 9.8499, 29.6999) which is locally asymptotically stable and be illustrated by
Figure 3(a).

In system (3.1), let the parameters satisfy the second set of parameter values in Table 4. At this
time we get h = 0.01 < (β + cm

d )µ(1−θ)
µ+γ
= 0.02, R0 = 2.5 > 1 and R0θ = 0.1250 > R∗0θ = −0.8031. Based

on Theorem 3.1(2), it is easy to obtain that system (3.1) has a positive equilibrium
E2 = (19.0397, 19.2311, 5.8646, 21.7293) which is locally asymptotically stable and be illustrated by
Figure 3(b).

In system (3.1), let the parameters satisfy the third set of parameter values in Table 4. At this time
we get h = (β + cm

d )µ(1−θ)
µ+γ
= 0.01, R0 = 2.5 > 1 and R0θ = 0.1250 > R∗∗0θ = −0.1205. Based on Theorem

3.1(3), it is easy to obtain that system (3.1) has a positive equilibrium
E3 = (19.3883, 12.2600, 9.1759, 28.3518) which is locally asymptotically stable and be illustrated by
Figure 3(c).

In system (3.1), let the parameters satisfy the fourth set of parameter values in Table 4. At this time
we get R0θ = 0.1582 < Rs

0θ = 0.4676. Based on Theorem 3.3, it is easy to obtain that system (3.1) has
a boundary equilibrium E0 = (44.3125, 205.4817, 0, 10) which is locally asymptotically stable and be
illustrated by Figure 3(d).
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Figure 3. The temporal solution and phase portrait found by numerical integration of system
(3.1), (a) E1 is LAS, (b) E2 is LAS, (c) E3 is LAS, (d) E0 is LAS.
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In order to show the control measures more clearly, 200 days were selected for numerical simulation
of optimal control. Figure 4(b) depicts the implementation intensity of the three control measures at
different time periods. It is clear that the first 50 days, all three measures u1, u2, u3 are to be carried out
at the same time. We can see a huge increase in the sports population from Figure 4(a). Then the third
measure u3 is suspended for about 15 days, and it can be seen that the growth of sports population was
flat at this time. After that the three control measures u1, u2, u3 are continued for 50 days at the same
time, and Figure 4(a) shows that the sports population surges during this period. Then the first and
second two measures u1, u2 are suspended, and only the third measure u3 is carried out for about 85
days. It can be seen from Figure 4(a) that the sports population grew slowly and showed a downward
trend during this period. At this point, we return to the beginning of the cycle, suspend the third
measure u3 again, and enter the second cycle.

These results suggest that at the very beginning, not only the mass and interpersonal communication
of health education should be implemented, but also the people who regularly participate in physical
exercise should be encouraged to actively encourage non-physical exercise people to participate in
physical exercise. When some of them become sports workers, we can alternately implement health
education and sports promotion measures.
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Figure 4. (a)The changes in the proportion of sports population under different control
measures, respectively. Red line means no control measures, blue line means constant control
measures u1 = u2 = u3 = 0.05, purple line means constant control measures u1 = u2 = u3 =

0.1, green line means optimal control. (b)The optimal control strategy, the solid red line
represents measure u1, the dashed blue line represents measure u2 and the dotted green line
represents measure u3.

7. Discussion

In this paper, the influence of health education with two different forms and individual
participation on physical exercise is mainly reflected in the existence and stability of the equilibrium
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in a differential equation model. Through theoretical analysis, it can be seen that only the threshold
can not determine the existence of positive equilibrium, nor can it determine the number of sports
population. The existence and stability of positive equilibrium is related to mass communication,
interpersonal communication, the increase of physical information and individual participation. These
shows health education and individual participation play very important roles and should be
strengthened.

In addition to some traditional qualitative theoretical analysis results, we have obtained some new
interesting results in the following through sensitivity and optimal control analysis. First, increasing
interpersonal communication and mass communication can both increase the number of conscious
non-sports population and sports population. For increasing the number of conscious non-sports
population, the effect of mass communication is better than that of interpersonal communication. For
increasing the number of sports population, the effect of interpersonal communication is better than
that of mass communication. However, individual participation has the best effect on increasing the
sports population. Second, increasing the daily fixed amount of new information will be more helpful
for media information dissemination. Finally, the three control measures need to be implemented
simultaneously for a period of time at first, and then health education and participation of sports
people need to be implemented periodically in order to maximize the sports population. This
conclusion is also different from previous research results.

In recent years, statistical physics has been proven to be a fruitful framework for describing
phenomena outside the traditional field of physics. Physicists attempt to study collective phenomena
arising from the interaction of individuals as fundamental units in social structure. Summarized a
series of themes, from perspectives, cultural and linguistic dynamics to crowd behavior, hierarchical
formation, human dynamics, and social communication. The connection between these issues and
other more traditional topics in statistical physics has been emphasized. The comparison of model
results with empirical data from social systems was also emphasized. The combination of differential
equations and statistical physics will be our future research direction.

In this model, we only consider the information transmission between non-sports population. In
fact, it is possible for an individual in S (t) to enter P(t) directly under the effect of mass media M(t)
or after communicating with an individual in S m(t). Additionally, if the reason for lack of sports
equipment is too many sports population with limited equipment then it might be better to use −γP2

instead of −γP which is similar to intraspecific competition in ecology. All of these will be our future
research work, with richer research results.
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