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Abstract: Purpose: Coronary microvascular dysfunction (CMD) is emerging as an important cause of 
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myocardial ischemia, but there is a lack of a non-invasive method for reliable early detection of CMD. 
Aim: To develop an electrocardiogram (ECG)-based machine learning algorithm for CMD detection 
that will lay the groundwork for patient-specific non-invasive early detection of CMD. Methods: 
Vectorcardiography (VCG) was calculated from each 10-second ECG of CMD patients and healthy 
controls. Sample entropy (SampEn), approximate entropy (ApEn), and complexity index (CI) derived 
from multiscale entropy were extracted from ST-T segments of each lead in ECGs and VCGs. The 
most effective entropy subset was determined using the sequential backward selection algorithm under 
the intra-patient and inter-patient schemes, separately. Then, the corresponding optimal model was 
selected from eight machine learning models for each entropy feature based on five-fold cross-
validations. Finally, the classification performance of SampEn-based, ApEn-based, and CI-based 
models was comprehensively evaluated and tested on a testing dataset to investigate the best one under 
each scheme. Results: ApEn-based SVM model was validated as the optimal one under the intra-patient 
scheme, with all testing evaluation metrics over 0.8. Similarly, ApEn-based SVM model was selected 
as the best one under the intra-patient scheme, with major evaluation metrics over 0.8. Conclusions: 
Entropies derived from ECGs and VCGs can effectively detect CMD under both intra-patient and 
inter-patient schemes. Our proposed models may provide the possibility of an ECG-based tool for non-
invasive detection of CMD. 

Keywords: coronary microvascular dysfunction (CMD); myocardial ischemia; entropy; machine 
learning; electrocardiogram (ECG); vectorcardiogram (VCG) 
 

1. Introduction  

Clinically, myocardial ischemia refers to a condition in which the perfusion of heart muscle is 
insufficient, resulting in the reduction of oxygen supply to the heart, abnormal myocardial energy 
metabolism, and abnormal work of the heart [1]. It can increase cardiovascular events including 
sudden cardiac death and acute myocardial infarction [2−4], contributes 16% to the world’s total 
deaths, and has been considered as the leading cause of mortality. Obstructive coronary artery disease 
(CAD), defined as severe stenosis in any epicardial coronary arteries (diameter ~ 5 mm) determined 
via coronary angiography (CAG, diameter severity [DS] ≥ 50%) or a fractional flow reserve (FFR 
< 0.8) [5], had been quantitatively investigated and well established as a main etiology of myocardial 
ischemia. However, up to 70% of patients undergoing CAG do not have obstructive CAD [6]. Patients 
with symptoms and signs of ischemic heart disease (IHD) but found to have nonobstructive coronary 
arteries (INOCA) are increasingly recognized [7]. Coronary microvascular dysfunction (CMD) has 
been recognized as a major cause of INOCA by the latest European Society of Cardiology 
guidelines [8,9]. Since the coronary microvasculature (diameter < 500 μm) has remained elusive to 
conventional medical images [10], the clinical significance of CMD has not been fully understood [11].  

CMD refers to impaired blood flow in the coronary microcirculation [11,12]. CMD can be caused 
by structural or functional abnormalities in the coronary microcirculation, resulting in an inefficacy 
increase of myocardial blood supply in response to an increased myocardial oxygen demand or 
coronary microvascular spasm [8,13] and eventually leading to myocardial ischemia. Patients with 
CMD have higher risks of poor prognosis, re-hospitalization, adverse cardiovascular events, and 
mortality [9,14]. Recently, the functional assessment or detection of CMD has gained much 
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popularity due to the substantial proportion of patients developing symptoms and signs of myocardial 
ischemia, in spite of the absence of obstructive CAD, or after the well-established treatment of 
obstructive CAD [5]. The prevalence of CMD has reported to be 50 to 65% of angina patients with 
INOCA [14], and more than 50% in patients with obstructive CAD [15]. CMD is common but easy 
to be ignored [16]. Therefore, making an early and accurate diagnosis of CMD plays an increasingly 
critical role in clinical practice. However, the natural course of CMD tends to be relatively long and 
asymptomatic, making early diagnosis difficult [17], and there is no reliable noninvasive test available. 

Currently, the gold standard of diagnostic criteria for CMD is the invasive measurement of index 
of microcirculatory resistance (IMR) and FFR [6,18−20]. They are not applicable for the early 
detection of CMD, given that only a minority of inpatient with acute chest pain meets the clinical 
threshold that requires invasive testing. Besides the invasive measurement of IMR, methods have been 
developed for the non-invasive evaluation of cardiac microcirculation, including Doppler 
echocardiography, stress cardiac magnetic resonance imaging, and computational fluid simulation [13]. 
However, these techniques are not applied as an accessible tool for early detection of CMD in daily 
clinical practice due to their radiation, high cost, invasiveness, and complicated operation [21]. Since 
the 2010s, coronary microcirculatory dysfunction has been focused on as a main etiology of 
myocardial ischemia [20]. There is an increasing clinical demand for a non-invasive, accessible, and 
cost-efficient tool to recognize patients with a high likelihood of CMD who may subsequently be 
referred for invasive detection and further diagnosis [22]. 

In comparison, electrocardiogram (ECG)-based analysis is easy-to-use, low-cost, without the 
requirement of expertise or expensive devices. CMD can lead to ischemic ECG changes [22,23], which 
provides the possibility of ECG-based non-invasive detection of CMD. Specially, standard deviation 
of normal R-R intervals (SDNN) < 100 ms [24], ischemic ST-segment changes [25,26], the 
prolongation of the heart rate-corrected QT interval [27,28], and variations in T wave [22,27] have 
been validated as indicators of CMD in patients with INOCA. Sara et al. extracted three features from 
T wave and developed a linear discriminant classifier which yielded the sensitivity and specificity 
of 65.9 and 67.7% in detecting CMD [22]. These studies preliminarily validated the effectiveness of 
ECG-based features in detecting CMD, which provides the possibility of computer-aided CMD 
detection method using machine learning algorithm. Nevertheless, there are very few computer-aided 
diagnostic algorithms based on ECG-based features for CMD detection, given that previous studies 
mainly focused on detecting obstructive CAD [29].  

Entropy is a common measure of complexity of time series [30]. Myocardial ischemia-induced 
variations in waveform and frequency components at certain ECG segments can be reflected in the 
changes of its entropy. Sample entropy (SampEn), approximate entropy (ApEn), and multiscale 
entropy (MSE) have been extracted from heart rate variability [31], ST-segments [32], or filtered 12-
lead ECGs [33] for evaluating the changes of complexity in ECGs from patients with obstructive 
CAD [34]. However, the performances of these entropies in detecting CMD are yet to be explored. 
Therefore, we aim to investigate whether SampEn, ApEn, and MSE extracted from beat-to-beat ST-
T segments of each lead in ECG and vectorcardiography (VCG) could reliably detect CMD, and 
develop an ECG-based CMD detection algorithm which will lay the groundwork for patient-specific, 
early, and non-invasive detection of CMD by comparing different entropy subsets and machine 
learning models. 



13064 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 13061−13085. 

2. Materials and methods 

Our work contains five parts: data collection, signal preprocessing, feature extraction, feature 
selection, and model evaluation and testing, as shown in Figure 1. Firstly, 12-lead ECGs from CMD 
patients and healthy controls were collected and these from healthy controls were split into 10-
second (10 s) segments. After 10 s ECGs were cleansed and denoised, VCGs were synthesized 
from 12-lead ECGs mathematically. The ST-wave onset and T-wave offset were located on VCGs and 
ECGs employing a squeeze and regional approach respectively. Three entropy features, i.e., SampEn, 
ApEn, and MSE-derived complexity index (CI), were extracted from the time series obtained by 
splicing ST-T segments of each lead in ECGs and VCGs beat by beat. Subsequently, the most effective 
subset of each entropy feature for each model was determined using the sequential backward selection 
(SBS) algorithm under the intra-patient and inter-patient schemes. Under each scheme, eight different 
machine learning models for each entropy feature were comprehensively evaluated on a five-fold 
cross-validation method on the training-validation datasets at the very first place, and then tested on 
the corresponding testing datasets for every scenario. Finally, the best model for CMD detection was 
investigated from the three entropy-based models (i.e., SampEn-based, ApEn-based, and CI-based) 
under each scheme. 

 

Figure 1. The schematic diagram of our proposed algorithms. 

2.1. Data collection 

In our study, ECGs and the clinical characteristics of 177 subjects in two cohorts were collected. 
Regard to positive samples, 99 10 s, 12-lead resting ECG recordings of 70 patients with CMD were 
obtained from the Second Affiliated Hospital of Zhejiang University, Zhejiang, China, from June 2019 
to September 2022 with approval from the local ethics committee for sharing and analyzing 
retrospective anonymised patient data with informed consent form waived.  

Inclusion criteria were described as follows: 1) existence of stable or chronic symptoms of 
myocardial ischemia; 2) presence of coronary stenosis assessed by CAG but a FFR > 0.8; 3) presence 
of symptoms of chest pain or tightness but no obvious evidence of myocardial ischemia; 4) presence 
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of objective evidence of myocardial ischemia. 
Exclusion criteria applied to the study population were given by: 1) existence of unsuccessful 

measurement of FFR or IMR; 2) presence of myocardial infarction in the target vessel within 72 hours; 
3) existence of isotonic creatinine > 150 µmol/L, glomerular filtration rate < 45 mL/kg/m2, or left 
ventricular ejection fraction < 30%; 4) existence of the following diseases: bundle branch blocks, atrial 
fibrillation, left ventricular hypertrophy, congestive heart failure, pulmonary arterial hypertension, or 
heart valve disease. 

CMD was diagnosed according to the standardized diagnostic criteria proposed by COVADIS 
(Coronary Vasomotor Disorders International Study Group): IMR ≥ 25 in the absence of overt 
obstructive CAD (FFR  >  0.80) [12,35], as illustrated in Figure 3. FFR and IMR were measured in the 
usual fashion by employing a coronary guidewire (St. Jude Medical Inc., PressureWireCertus, C12008) 
placed in target artery during CAG [35].  

 

Figure 2. The flowchart of diagnosing CMD. 

Finally, patients with CMD were selected whilst patients with CAD were ruled out, as shown in 
Figure 3. Totally, 99 10 s, 12-lead ECGs (sampling rate: 500 Hz; resolution: 16-bit with 4 μV/LSB) 
were recorded utilizing a commercially available electrocardiograph (Netherlands Philips Electronics 
Co. LTD, PageWriter TC30). The clinical characteristics of CMD patients are listed in Table 1. 
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Figure 3. Comparison of CAG between two patients with CAD and CMD. (A) A patient 
with CAD. There is a coronary stenosis 60% in distal left circumflex artery with FFR < 0.8 
and IMR < 25. (B) A patient with CMD. There is a coronary stenosis 40% in left anterior 
descending artery with IMR > 25 and FFR > 0.8. 

Table 1. Clinical characteristics of patients with CMD. 

Characteristics Value* 
Age, years 67.29 ± 9.23 
Female, n (%) 26/70 
Hypertension, n (%) 32/70 
Diabetes mellitus, n (%) 22/70 
Heart rate, bpm 70.24 ± 12.87 
Systolic blood pressure, mmHg 130.82 ± 15.34 
Diastolic blood Pressure, mmHg 73.43 ± 10.45 
Smoking history, n (%) 12/70 
Family history of CAD, n (%) 12/70 

*The categorical data are provided as numbers and percentages, and all of numerical variables are afforded in the form 
mean ± standard deviation for normally distributed data. 

Regarding negative samples, 107 12-lead ECGs (duration: 10≥ seconds; sampling rate: 500 Hz; 
resolution: 16-bit with 1 mV/LSB) were collected from 107 healthy controls (age: 36.3 ± 15.1 years, 73 
females and 34 males) of China Physiological Signal Challenge in 2018 database [36]. 

2.2. Signal preprocessing 

After ECGs from healthy controls were segmented into 10 s ones, data cleansing was 
implemented to guarantee the quality of ECG signals. Low-quality ECGs resulted from the shedding 
of the leads or/and poor attachment between the lead and body surface were eliminated, as illustrated 
in Figure 4. After data cleansing, in total, 301 10 s, 12-lead ECGs (99 CMD, 202 controls) were finally 
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selected for further analysis. 

 

Figure 4. Examples of low-quality ECGs. (A) Leads V1 and V2 have poor attachment to 
the body surface. (B) The lead avF is shed. 

Then, the baseline drift and low-frequency fluctuations were removed using two moving median 
filters connected in cascade (with length 1.2 and 0.6 seconds respectively) to maximally avoid the 
deformation of ST segment in comparison with the classical high-pass filter. The output of first median 
filter was fed into the second one. High-frequency power-line interference and electromyogram noise 
were eliminated employing discrete wavelet transform (DWT). In detail, Coif4 determined as a 
wavelet basis function was adopted to decompose noise-containing ECGs up to four levels [37]. After 
the elimination of noise by an adaptive threshold, the processed signals were transformed back by 
utilizing the inverse of DWT [37].  

Subsequently, all 10 s, 12-lead ECGs were standardized utilizing the clinical standard gain [37,38] 
and then transformed into VCGs [39], as shown in Figure 5(C−F). 
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− − − 

 = − − − − 
 − − − − − −  ,

 
[ ]1 2 3 4 5 6F I II V V V V V V= ; I, II, V1, V2, V3, V4, V5, and V6 are leads of ECG; Vx, Vy, 

and Vz are leads of VCG. 
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Figure 5. ECG, ST-T segment, and VCG. (A) ECG for a healthy control. (B) ST-T 
segment for a healthy control. (C) VCG for a healthy control. (D) ECG for a patient with 
CMD. (E) ST-T segment for a patient with CMD. (F) VCG for a patient with CMD. 

Ultimately, the ST-segment onset and T-wave offset were simultaneously marked on the VCGs 
and ECGs employing a hybrid approach [40] to obtain ST-T segments for calculating entropies, as 
shown in Figure 5(B−E). ST-wave onsets were located using a squeeze algorithm, and T-wave offsets 
using a regional approach [40]. 
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2.3. Entropy feature extraction 

Sample entropy (SampEn), approximate entropy (ApEn), and multiscale entropy (MSE) have been 
demonstrated to be electrocardiographic indictors for evaluating the changes of complexity in ECGs 
from patients with obstructive CAD [33,34]. Similarly, SampEn, ApEn, and MSE-derived CI were 
calculated from ST-T segments of each VCG and ECG lead to assess the changes of complexity in 
ECGs induced by CMD. 

For each lead in VCGs or ECGs, its time series, i.e., { ( )} (1), (2), ..., ( )t l t t t L= was obtained by 

splicing ST-T segments beat by beat and standardized as follows: 

 
( )( ) t lt l μ

σ
−=                                        (2) 

where L presents the length of the time series;
 

σ  and μ  are the standard deviation and mean value 
of the time series. 

2.3.1. SampEn 

SampEn is defined as the negative natural logarithm of a conditional probability [30] and 
calculated to measure the complexity of beat-to-beat ST-T segment in this work. For each VCG and 

ECG lead, SampEn ( , , , , , , , , , , 1, 2, 3, 4, 5, 6i x y zS i V V V I II III avR avL avF V V V V V V=  ) was calculated from the 

time series, i.e., { ( )} (1), (2), ..., ( )t l t t t L=  as follows [37,41]: 

1( )( , , ) ln
( )

m

mSampEn L m ψ εε
ψ ε

+

= −
                            (3) 

where ( )mψ ε  and 1( )mψ ε+
 are the average probability that two vectors coincide for m  and 1m +  

points, respectively; ε   denotes the tolerance for accepting matches, and m  refers to embedded 
dimension [30].  

In this work, the value of ε was set to 0.1, and that of m was set to 2 [30,37]. 

2.3.2. ApEn 

In our work, ApEn ( , , , , , , , , , , 1, 2, 3, 4, 5, 6i x y zA i V V V I II III avR avL avF V V V V V V=  ) of time series

{ ( )} (1), (2), ..., ( )t l t t t L=  of each lead in ECGs and VCGs were calculated [30,41]. 

Firstly, the vectors (1),..., ( 1)m mT T L m− +  and 1 1(1),..., ( )m mT T L m+ + − with a dimension of m
and 1m +  were formed to be ( ) { ( ), ( 1),..., ( 1)},1 1mT z t z t z t z m z L m= + + − ≤ ≤ − +  and 

1( ) { ( ), ( 1),..., ( )},1mT z t z t z t z m z L m+ = + + ≤ ≤ − . 
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Then, the distances between any ( )mT z  and ( )mT p , and between any 1( )mT z+  and 1( )mT p+  were 
defined as: 

 
[ ]

0 1
( ), ( ) max ( ( ) ( ) ),1 , 1m m q m

D T z T p t z q t p q z p L m
≤ ≤ −

= + − + ≤ ≤ − +
             (4) 

[ ]1 1 0
( ), ( ) max( ( ) ( ) ),1 ,m m q m

D T z T p t z q t p q z p L m+ + ≤ ≤
= + − + ≤ ≤ −

             (5) 

Subsequently, ( )m
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where ( )m
zu ε  denotes the number that the distance between any vector ( )mT z  and vector ( )mT p  is 

within ε , and similarly 1( )m
zu ε+  is the number that the distance between any vector 1( )mT z+  and 

vector 1( )mT p+  is within ε . ε  denotes the tolerance for accepting matches [30].  
1
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where ( )mθ ε   is the average probability that two any vectors coincide for 1m +   points, and 
1( )mθ ε+  is the average probability that two any vectors coincide for 1m +  points. 
Ultimately, ApEn was calculated as follows: 

1( , ) ( ) ( )m mApEn mε θ ε θ ε+= −                           (10) 

In this work, the value of ε  was set to 0.1 and that of m was set to 2 [30,37]. 

2.3.3. CI 

MSE builds on SampEn algorithm by integrating a coarse-graining procedure and provides insight 
into the point-to-point fluctuation across multiple time scales [42]. The kth coarse-grained time series 

for each time scale of τ ,
( ) ( ) ( ) ( ){ }1 2, , , py y y yτ τ τ τ= , was defined as [42]: 

( ) 1

( 1) 1

1 ( ),1
k

k
l k

Ly t l k
ττ

ττ τ
−

= − +
= ≤ ≤∑

                          
(11) 



13071 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 13061−13085. 

where Lp
τ

= , τ is the time scale of interest, L is the length of the time series, and ( )t k  is a data 

point in the time series, i.e., { ( )} (1), (2), ..., ( )t l t t t L= , of each ECG and VCG lead. 

SampEn algorithm was employed to obtain an entropy value at each time scale.  

( )( )( , , ) , , ,1MSE m SampEn y m Mττ ε ε τ= ≤ ≤
                     (12) 

where M  is the maximum time scale; the value of ε  was set to 0.1 and that of m set to 2 [30,37]. 
A major concern when employing MSE algorithm is to guarantee that the data length of the coarse-

grained time series is long enough at the maximum time scale for the reason that too short time series 
at any time scale associates with inconsistent probabilities from SampEn. More than 200 data points 
per time scale has been recommended to elicit consistent SampEn values [43]. Since the data length of 
time series is between 900 and 1200, the maximum time scale was set to 3. The values of τ were set 
to 1, 2, 3 [30,43]. 

Once all parameters and MSE have been determined, the area under the MSE vs. time scale curve, 
entitled as CI [42] of ECGs’ and VCGs’ ST-T segments were calculated as follows: 

1
( )

M
CI MSE

τ
τ

=
=∑

                                  (13) 

where ( )MSE τ  is the MSE value at time scale factor of τ . 

2.4. CMD detection using machine learning models 

2.4.1. The proposed models 

Eight common machine learning models [29] i.e., support vector machine (SVM), multilayer 
perceptron (MLP), gradient boosting [44], bagging ensemble (Bagging), random forest, ada boost, 
decision tree, and K-nearest neighbors (KNN) were conducted to distinguish between healthy controls 
and patients with CMD in this work. All machine learning models were implemented in Python 3.7 
employing open-source libraries: Scikit-learn (0.20.1, http://scikit-learn.org/stable).  

The entropy subsets selected by utilizing the SBS algorithm were fed into each framework to 
identify the subjects (i.e., CMD patients vs. healthy controls). Regard to the model design, SampEn-
based model denoted each framework fed with VCGs’ and ECGs’ SampEn only. Similarly, ApEn-based 
and CI-based models presented respectively the frameworks utilizing ApEn and CI only. 

2.4.2. Entropy feature selection 

Feature selection is widely implemented to determine the optimal feature subset from a large 
initial set of features thus improving generalization of the machine learning model and reducing the 
computational demand. To achieve the most effective entropy subset, SBS algorithm [45,46] has been 
conducted, as presented in Figure 6. 
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Figure 6. The flowchart of the SBS algorithm for determining the optimal entropy feature 
subset. (A) The entropy elimination technique. (B) The selection of the optimal entropy 
subset. The SBS algorithm was conducted on SampEn, ApEn, and CI separately; where the 
initial entropies consist of all the features from 12 ECG and 3 VCG leads. In each iteration 
step, the candidate subset (each with n-1 elements) was selected from n subsets of the parent 
set with n elements. The selected candidate subset was the parent set in the next iteration. 

First, a collection of candidate entropy subset for each model was created on the training-
validation dataset, as illustrated in Figure 6A. For each algorithm, a baseline model was constructed 
using each entropy feature separately, i.e., 15 SampEn, 15 ApEn, or 15 CI calculated from ST-T 
segments of 3-lead VCGs and 12-lead ECGs. The iteration variable n was initially set as 15. Each 
subset with n-1 entropies was trained and evaluated by employing a five-fold cross-validation to select 
the one with the highest average F1 score, which takes into account precision and recall, and is not 
sensitive to the class-imbalance [47] into next iteration where subsets with n-2 entropies derived from 
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the selected n-1 element subset were evaluated and compared similarly. The iteration continued until 
n = 1. Finally, 15 candidate subsets with different numbers of entropies (i.e., 1, 2,…, 15) were selected 
by the iterative SBS algorithm. 

Second, the optimal entropy subset, which had maximal five-fold cross-validation average F1 
score, was identified from the SBS-generated collection of the candidate entropy subsets achieved 
above, as illustrated in Figure 6B. 

Finally, the optimal entropy subset was separately determined from the total 15 SampEn for 
each SampEn-based model. Similarly, optimal entropy subsets for ApEn-based and CI-based models 
were determined. 

2.5. Experimental methodology for model evaluation and testing 

The utility of the constructed models was evaluated by accuracy, specificity, sensitivity, and F1 
score [37]. Additionally, the geometric mean (G-mean) and an area under the curve for 
precision/recall (PR-AUC) were considered as evaluation metrics. The geometric mean (G-mean) is 
the geometric mean of sensitivity and specificity [48]. PR-AUC is a metric commonly used in highly 
imbalanced datasets [49]. 

Both intra-patient and inter-patient schemes were implemented to verify the effectiveness of 
our proposed modes. Under the intra-patient scheme, positive and negative ECGs were randomly 
split in 80% for training and validation, and 20% for testing at the same time. Regarding the inter-
patient scheme, patients were randomly separated in the proportion of 4:1 for training-validation and 
testing, and the corresponding ECGs formed the training-validation and testing datasets. Under both 
scheme, a five-fold cross-validation approach was adopted in the training-validation dataset to 
optimize model parameters and check evaluation metrics (i.e., sensitivity, accuracy, specificity, F1 
score, G-mean, and PR-AUC) on the training-validation dataset for each model at the very first place. 
Then, each trained model was tested on the testing dataset to check whether the selected model always 
performed best under each scheme for every scenario. 

In this work, the signal preprocessing and feature extraction were developed utilizing MATLAB 
(R2021; The MathWorks Inc. Natick, USA). All machine learning models were established, evaluated, 
and tested in Python 3.7 as well as feature selection. 

3. Results 

3.1. Intra-patient scheme 

The evaluation metrics of SampEn-based, ApEn-based, and CI-based models on the validation 
dataset are illustrated in first, second, and third columns of Figure 7 respectively. It can be observed 
from the first column that SVM model outperforms other ApEn-based models in response to the major 
evaluation metrics. Therefore, SVM was determined as the candidate one for SampEn-based model. 
Similarly, MLP and SVM models were selected as the candidates for SampEn-based and CI-based 
models respectively. As listed in Table 2, the testing evaluation metrics of ApEn-based SVM model 
are higher than those of other ApEn-based models. Similarly, SampEn-based MLP and CI-based 
SVM models provide the highest the testing evaluation metrics across all SampEn-based and CI-
based ones respectively. 
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Figure 7. The comparison of the classification performance between different models under 
the intra-patient scheme. (A) Accuracy of ApEn-based models. (B) Specificity of ApEn-
based models. (C) Sensitivity of ApEn-based models. (D) F1 score of ApEn-based models. 
(E) PR-AUC of ApEn-based models. (F) G-mean of ApEn-based models. (G) Accuracy of 
SampEn-based models. (H) Specificity of SampEn -based models. (I) Sensitivity of SampEn 
-based models. (J) F1 score of SampEn-based models. (K) PR-AUC of SampEn-based 
models. (L) G-mean of SampEn -based models. (M) Accuracy of CI-based models. (N) 
Specificity of CI-based models. (O) Sensitivity of CI-based models. (P) F1 score of CI-based 
models. (Q) PR-AUC of CI-based models. (S) G-mean of CI-based models. GB: Gradient 
Boost; Bag: Bagging; RF: Random Forest; Ab: Ada boost; DT: Decision Tree. G-mean: 
geometric mean; PR-AUC: an area under the curve for precision/recall. 
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highest evaluation metrics on the validation dataset, as shown in Figure 7. Furthermore, the 
classification performances of the three candidate models on the testing dataset present that ApEn-
based SVM model is superior to the other two models (i.e., SampEn-based MLP and CI-based SVM 
models) with all evaluation metrics higher than 0.8, as listed in Table 2. Thus, ApEn-based SVM model 
was validated as the optimal one in detecting CMD under the intra-patient scheme. 

Table 2. Comparisons of the testing evaluation metrics of ApEn-based, SampEn-based, 
and CI-based models under the intra-patient scheme. 

Models Accuracy Specificity Sensitivity F1 score PR-AUC G-mean 
ApEn-based SVM 0.898 0.925 0.842 0.842 0.868 0.883 
ApEn-based MLP 0.881 0.925 0.789 0.811 0.845 0.855 
ApEn-based Gradient Boost 0.729 0.750 0.684 0.619 0.676 0.716 
ApEn-based Bagging 0.881 0.950 0.737 0.800 0.848 0.837 
ApEn-based Random Forest 0.847 0.950 0.632 0.727 0.804 0.775 
ApEn-based Ada Boost 0.814 0.900 0.632 0.686 0.750 0.754 
ApEn-based Decision Tree 0.847 0.900 0.737 0.757 0.800 0.814 
ApEn-based KNN 0.831 0.925 0.632 0.706 0.775 0.764 
SampEn-based SVM 0.831 0.825 0.842 0.762 0.794 0.833 
SampEn-based MLP 0.881 0.925 0.789 0.811 0.845 0.855 
SampEn-based Gradient Boost 0.814 0.850 0.737 0.718 0.761 0.791 
SampEn-based Bagging 0.847 0.900 0.737 0.757 0.800 0.814 
SampEn-based Random Forest 0.814 0.875 0.684 0.703 0.754 0.774 
SampEn-based Ada Boost 0.847 0.900 0.737 0.757 0.800 0.814 
SampEn-based Decision Tree 0.746 0.750 0.737 0.651 0.702 0.743 
SampEn-based KNN 0.712 0.825 0.476 0.514 0.603 0.625 
CI-based SVM 0.847 0.875 0.789 0.769 0.804 0.831 
CI-based MLP 0.831 0.875 0.737 0.737 0.779 0.803 
CI-based Gradient Boost 0.746 0.775 0.684 0.634 0.688 0.728 
CI-based Bagging 0.780 0.825 0.684 0.667 0.718 0.751 
CI-based Random Forest 0.814 0.875 0.684 0.703 0.754 0.773 
CI-based Ada Boost 0.746 0.800 0.632 0.615 0.675 0.711 
CI-based Decision Tree 0.746 0.750 0.737 0.651 0.702 0.743 
CI-based KNN 0.712 0.825 0.474 0.514 0.603 0.625 

Note: Best performance for ApEn-based, SampEn-based, and CI-based models is highlighted in bold. 

3.2. Inter-patient scheme 

Figure 8 illustrates the comparisons of evaluation metrics among ApEn-based, SampEn-based, 
and CI-based models on the validation dataset for detecting CMD. From the first column, SVM model 
yields the highest classification performance across all ApEn-based models. Therefore, it was verified 
as the candidate one for ApEn-based model. Similarly, Bagging and SVM models were determined as 
the candidates for ApEn-based and CI-based models respectively. Regard to the classification 
performances on the testing dataset, ApEn-based SVM model outperforms other ApEn-based ones, as 
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listed in Table 3. Similarly, SampEn-based Bagging and CI-based SVM models perform best across all 
SampEn-based and CI-based ones respectively. 

 

Figure 8. The comparison of classification capability between different models under the 
inter-patient scheme. (A) Accuracy of ApEn-based models. (B) Specificity of ApEn-based 
models. (C) Sensitivity of ApEn-based models. (D) F1 score of ApEn-based models. (E) 
PR-AUC of ApEn-based models. (F) G-mean of ApEn-based models. (G) Accuracy of 
SampEn-based models. (H) Specificity of SampEn -based models. (I) Sensitivity of 
SampEn -based models. (J) F1 score of SampEn-based models. (K) PR-AUC of SampEn-
based models. (L) G-mean of SampEn -based models. (M) Accuracy of CI-based models. 
(N) Specificity of CI-based models. (O) Sensitivity of CI-based models. (P) F1 score of 
CI-based models. (Q) PR-AUC of CI-based models. (S) G-mean of CI-based models. GB: 
Gradient Boost; Bag: Bagging; RF: Random Forest; Ab: Ada boost; DT: Decision Tree. G-
mean: geometric mean; PR-AUC: an area under the curve for precision/recall. 
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Then, the classification performances of SampEn-based Bagging, ApEn-based SVM, and CI-
based SVM models were compared to select the optimal one. It can be observed from Figure 8 that 
ApEn-based SVM model has superiority to the other two models except the sensitivity for SampEn-
based Bagging model. Moreover, the comparisons of the three candidate models on the testing dataset 
demonstrate that ApEn-based SVM model has all testing evaluation metrics higher than SampEn-based 
Bagging and CI-based SVM models, as listed in Table 3. Hence, ApEn-based SVM model was verified 
as the optimal one for CMD detection under the inter-patient scheme. 

Table 3. Comparisons of the testing evaluation metrics of ApEn-based, SampEn-based, 
and CI-based models under the inter-patient scheme. 

Models Accuracy Specificity Sensitivity F1 score PR-AUC G-mean 
ApEn-based SVM 0.881 0.925 0.789 0.811 0.845 0.855 
ApEn-based MLP 0.814 0.775 0.895 0.756 0.791 0.833 
ApEn-based Gradient Boost 0.797 0.850 0.684 0.684 0.735 0.763 
ApEn-based Bagging 0.864 0.925 0.737 0.778 0.823 0.826 
ApEn-based Random Forest 0.847 0.925 0.684 0.743 0.799 0.796 
ApEn-based Ada Boost 0.847 0.925 0.684 0.743 0.799 0.796 
ApEn-based Decision Tree 0.847 0.925 0.684 0.743 0.799 0.796 
ApEn-based KNN 0.831 0.925 0.632 0.706 0.775 0.764 
SampEn-based SVM 0.847 0.900 0.737 0.757 0.800 0.814 
SampEn-based MLP 0.814 0.850 0.737 0.718 0.761 0.791 
SampEn-based Gradient Boost 0.864 0.900 0.789 0.789 0.823 0.843 
SampEn-based Bagging 0.864 0.925 0.737 0.778 0.823 0.826 
SampEn-based Random Forest 0.864 0.925 0.737 0.778 0.823 0.826 
SampEn-based Ada Boost 0.831 0.925 0.632 0.706 0.775 0.764 
SampEn-based Decision Tree 0.797 0.850 0.684 0.684 0.735 0.763 
SampEn-based KNN 0.814 0.900 0.632 0.686 0.750 0.754 
CI-based SVM 0.831 0.875 0.737 0.737 0.779 0.803 
CI-based MLP 0.729 0.750 0.684 0.619 0.676 0.716 
CI-based Gradient Boost 0.763 0.825 0.632 0.632 0.691 0.722 
CI-based Bagging 0.763 0.825 0.632 0.632 0.691 0.722 
CI-based Random Forest 0.729 0.825 0.526 0.556 0.633 0.659 
CI-based Ada Boost 0.695 0.750 0.579 0.550 0.619 0.659 
CI-based Decision Tree 0.678 0.675 0.684 0.578 0.643 0.680 
CI-based KNN 0.780 0.950 0.421 0.552 0.704 0.632 

Note: Best performance for ApEn-based, SampEn-based, and CI-based models is highlighted in bold. 

4. Discussion 

4.1. Comparison with existing studies 

The ApEn-based SVM models were verified to be the optimal ones for CMD detection, with all 
and major testing evaluation metrics over 0.8 under the intra-patient and inter-patient schemes 
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respectively, indicating the feasibility of entropy-based early detection of CMD using machine 
learning algorithm. 

Obstructive CAD and CMD are recognized as two major causes of myocardial ischemia. Since 
obstructive CAD had been considered as the leading cause of myocardial ischemia, previous studies 
of ECG-based machine learning algorithms mainly focused on obstructive CAD detection [29,50], 
with a lack of in-depth investigation in patients with CMD. An advantage of the ECG-based method 
is its interpretability. Some mathematical models disclosed the pathology of CMD from cell levels. 
Some critical electrophysiological phenomena and parameters, e.g., T wave alternans, can be directly 
reflected on ECG and VCG, providing the possibility of fine-grained classification and stratification 
of CMD [51,52]. To detect CMD non-invasively, electrocardiographic indictors., i.e., SDNN < 100 
ms [24], ischemic ST-T segment changes [22,25−27], and the prolongation of the heart rate-corrected 
QT interval [27,28] have been investigated. Specially, SARA et al. combined three features, i.e., T-
wave area, T Peak-T end, and Y-center of gravity as inputs of a linear discriminant analysis and 
recognized the existence presence of an abnormal coronary flow reserve (CFR) with the highest 
accuracy of 66.5 ± 0.3% and 74 ± 2% for females and males [22]. Since CFR assesses the entire 
coronary bed including both epicardial and microvascular districts, the authors utilized an abnormal 
CFR and DS < 50% as the standard for selecting CMD patients to exclude the influence of obstructive 
CAD. In contrast, IMR used in our work is not influenced by epicardial artery stenosis and can 
accurately reflect the microvascular flow resistance [18,21].  

As far as we known, this is the first machine learning model employing entropy features of ECG 
and VCG to detect CMD based on reliable clinical diagnosis derived from patient specific FFR and 
IMR values. 

4.2. Relationship between CMD and entropy features  

CMD is believed to result from inadequate relaxation of vascular smooth muscle, which mediates 
myocardial ischemia [1]. During myocardial ischemia, the decrease of conduction velocity and the 
duration of action potential lead to the heterogeneous repolarization process [53]. Further, ischemia-
induced repolarization dispersion causes ischemic changes in ECG and VCG signals. Regarding ECG, 
the variations in ST segment include ST-segment depression or elevation, and those in T wave include 
high-tip T wave, biphasic T wave or inverted T wave [51,52], as illustrated in Figure 1. As for VCG, 
the changes exist in the QRS loop, the spatial orientations and magnitude of ST vectors [51,54], the T-
loop morphology, and the T-vector angle [55]. The beat-to-beat variations in T-loop roundness present 
intrinsic measures of beat-to-beat repolarization ability [55]. Therefore, the variations in ST-T 
segments of VCGs and ECGs can be considered as indicators of myocardial ischemia [37,51,55]. 

The ischemic variations have been demonstrated to afford detectable morphology variability in 
beat-to-beat ST-T segments, while the morphology shows a consistent pattern in normal subjects [56]. 
CMD can lead to changes in ST segment or/and T wave [22]. The complexity resulting from the 
morphology variations can be measured by entropy. 

For the first time, we observed that CMD-induced complexity changes of beat-to-beat ST-T 
segments can be reliably detected by SampEn, ApEn, and MSE-derived CI (Tables 2 and 3), which 
provided reference for other ECG-based CMD detection algorithms. Specially, ApEn outperforms 
SampEn and CI in detecting CMD under both intra-patient and inter-patient schemes. ApEn values 
extracted from pathologic time series are different from those obtained from free running physiologic 
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systems under healthy condition [57]. In this work, ApEn could be used to effectively measure the 
changed of the complexity induced by CMD. 

4.3. The comparison of different models 

An SVM model has been widely applied in the detection of myocardial ischemia location and 
multiclass myocardial infraction classification [50]. The other seven models also have been applied 
for CAD detection and yield excellent classification performance [29].  

We evaluated and tested these common machine learning models to determine the optimal one 
for CMD detection. Our results present that an SVM model yields the best classification performance 
across all models under both schemes. Moreover, compared with MLP, gradient boosting, Bagging, 
and Ada boost models, an SVM model does not require extensive computational resources to determine 
the classification results. Therefore, it is more accomplishable on wearable devices, given that their 
computational resources are restricted. 

We observed a difference between entropy features in the performance of SVM algorithm in 
detecting CMD. Under the intra-patient scheme, ApEn-based SVM model employing (AI, AII, AavR, 
AavL, AavF, AV4, AV5, AV6, AVx, AVz) was demonstrated to surpass the other models. Under the inter-
patient scheme, ApEn-based SVM model utilizing (AI, AII, AIII, AV4, AV5, AV6, AVx, AVy) provided 
the best performance across all models. The patient-specific algorithm optimization deserves 
further investigation. 

4.4.  Strengths, limitations, and future directions 

The results in this work have demonstrated that SampEn, ApEn, and CI calculated from ST-T 
segments of ECGs and VCGs could be useful features to recognize a patient with CMD for the first 
time. Furthermore, our proposed models afford the possibility of noninvasive and cost-effective 
detection of CMD. It could be easily deployed on conventional ECG acquisition equipment, given that 
VCG can be calculated from 12-lead ECG by employing a Kors transformation matrix [39]. 
Additionally, it is based on the 10 s ECG which has been widely accepted as the first-line diagnostic 
technique in assessing patients with suspected myocardial ischemia due to its non-invasiveness, non-
radiation, and low cost [58]. The data length of the time series consisting of beat-to-beat ST-T segments 
in each lead is between 900 and 1200 and longer than 200 which is suggested for calculating ApEn 
and SampEn [43]. The minimum data length is more than 300 with the maximal time scale factor of 
τ = 3 regarding MSE. The commonly used 10 s ECG is available for calculating reliably the three 
entropy features. Our algorithm meets the clinical needs with no extra workload for operators, given 
that our algorithms are fully automatic. Hence, our results open a new pathway towards non-invasive, 
low-cost, and operator-friendly detection of CMD in various application scenarios using wearable 
ECG sensors. Therefore, the proposed method may provide an approach for large-scale screening of 
CMD in populations, especially in low-resource areas. 

However, some limitations exist in our work. First, the sample size is small, especially the positive 
cases. The sample size is limited by the number of patients diagnosed with CMD who underwent full 
examination. The scarce of CMD patients’ data is a common limitation of existing studies (e.g., 41 
in [24]; 20, in [59]). Especially, the in vivo measurement of IMR is performed invasively by using an 
intravascular guide wire with the injection of saline into coronary artery multiple times and is 
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expensive. Therefore, it is not widely used in clinical practice and only performed for the patients with 
obvious symptoms of CMD, which limited the data size to develop highly reliable algorithms that suit 
different cohorts. Secondly, the positive (i.e., CMD patients) and negative (i.e., healthy controls) 
samples were collected from different cohorts. Hence, the difference in physiological characteristics 
may influence the classification performance. Finally, only ECG-based features were selected as inputs, 
whereas clinical characteristic and other medical images were not integrated in our algorithms. 

In future studies, multicenter large-scale studies can extend the positive sample size and further 
verify our results, optimize the algorithm, and improve the classification performance by considering 
the difference in physiological features among different cohorts. Based on large datasets, the 
combination between ECG-based features and clinic-characteristics could be considered to boost the 
improvement in the classification performance. The fine-grained classification of CMD based on ECG-
VCG features also deserves further exploration.  

5. Conclusions 

In conclusion, SampEn, ApEn, and CI extracted from the beat-to-beat ST-T segment of ECGs and 
VCGs could be useful entropy features to recognize electrocardiographic signatures of CMD under 
both intra-patient and inter-patient schemes. Our proposed models may provide the possibility of an 
ECG-based tool for non-invasive detection of CMD. 
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