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Abstract: Outbreaks of infectious diseases pose significant threats to human life, and countries around 
the world need to implement more precise prevention and control measures to contain the spread of 
viruses. In this study, we propose a spatial-temporal diffusion model of infectious diseases under a 
discrete grid, based on the time series prediction of infectious diseases, to model the diffusion process 
of viruses in population. This model uses the estimated outbreak origin as the center of transmission, 
employing a tree-like structure of daily human travel to generalize the process of viral spread within 
the population. By incorporating diverse data, it simulates the congregation of people, thus quantifying 
the flow weights between grids for population movement. The model is validated with some Chinese 
cities with COVID-19 outbreaks, and the results show that the outbreak point estimation method could 
better estimate the virus transmission center of the epidemic. The estimated location of the outbreak 
point in Xi’an was only 0.965 km different from the actual one, and the results were more satisfactory. 
The spatiotemporal diffusion model for infectious diseases simulates daily newly infected areas, which 
effectively cover the actual patient infection zones on the same day. During the mid-stage of viral 
transmission, the coverage rate can increase to over 90%, compared to related research, this method 
has improved simulation accuracy by approximately 18%. This study can provide technical support 
for epidemic prevention and control, and assist decision-makers in developing more scientific and 
efficient epidemic prevention and control policies. 
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1. Introduction  

A novel coronavirus called SARS-CoV-2 (COVID-19) has had a severe global public health and 
economic impact since its outbreak in late 2019 [1]. The pandemic has spread rapidly across the globe 
in a short period of time, resulting in millions of infections. Governments have taken a series of 
emergency measures to deal with the outbreak [2], such as lockdowns, travel restrictions, quarantines, 
and social distancing. However, virus mutations, uneven vaccination rates, and varying implementation 
effects of public health policies have allowed the outbreak to persist. 

To further improve public health policies and reduce the harm caused by the virus to humans, 
many scholars have conducted research on COVID-19 through mathematical modeling approaches. In 
the early stages of the COVID-19 outbreak, most studies utilized patient data from affected countries 
or regions to estimate epidemiological parameters of the virus, such as the basic reproduction 
number [3−5] and the incubation period [6,7]. Building upon this foundation, traditional and modified 
dynamic models were employed to predict the potential scale of the virus, further supporting epidemic 
prevention and control efforts [8−12]. However, these studies typically treated the epidemic areas as a 
whole, neglecting the impact of regional heterogeneity on viral transmission. In reality, the spread of 
infectious diseases is influenced by a complex interplay of external factors, including subjective factors 
(preventive measures and population mobility) and objective factors (geographical environment and 
population distribution). As a result, these studies could only depict the temporal sequence of changes 
in the infectious disease but could not provide better assistance for epidemic prevention and control. 
As early as 2005, Keeling and Eames [13] delved into the role of network models in describing the 
spread of infectious diseases, emphasizing the impact of individual contact patterns on viral 
transmission. Similarly, Christakis and Fowler [14] utilized social network models to anticipate and 
detect disease outbreaks. Additionally, some studies [15,16], considering both positive and negative 
factors within the network, have explored the influence of network models on the dynamics of 
epidemic propagation. Therefore, in subsequent studies on the transmission of COVID-19, some 
researchers [17−19] have introduced social network analysis models. These models aim to explore the 
impact of population movement on virus spread and to predict the course of the epidemic at the level 
of individual contact. Social network models simulate small urban clusters (such as schools, businesses, 
and areas surrounding city centers), but experiments typically involve random movement simulations 
based on hypothetical points within a spatial context. These simulations only incorporate the mobility 
characteristics of certain urban areas and population groups, lacking the integration of spatiotemporal 
big data of urban geography. Consequently, there is still a significant discrepancy between the 
simulated urban distribution and population movement patterns and the actual situation. As our 
understanding of the virus deepens, some scholars have conducted research on spatial evolution 
prediction [20], infection area identification [21], risk indicator assessment [22−24], spatial anomaly 
detection [25], and spatiotemporal visualization [26,27]. However, most of these studies are conducted 
at the provincial level or higher, lacking research on the transmission of infectious diseases within 
urban areas. In order to simulate the epidemic development within cities, some studies have utilized 
multi-agent models to construct urban population mobility by leveraging fine-grained data to 
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simulate the interaction process among the urban population [28]; these data include mobile phone 
location data [29,30] and public transportation card data [31]. However, due to the complexity of 
population mobility, the simulated population movement process exhibits significant errors compared 
to actual data. Moreover, most of these studies are based on simulations in developed regions. The 
applicability of these models to underdeveloped areas remains questionable, as obtaining fine-
grained data may be hindered by outdated equipment. This issue inevitably reduces the universality of 
the models. 

Therefore, in light of the aforementioned issues, to better assist governments and public health 
departments in formulating more efficient epidemic prevention and control strategies, this study 
proposes a spatiotemporal diffusion model for infectious diseases based on population living 
characteristics. The main contributions of this paper are as follows: 

1) By conducting a fine-grained discrete grid division of the research area, we can achieve a more 
refined simulation of the virus propagation process within the city. 

2) Utilizing patients’ trajectory data, we have estimated the approximate location of virus outbreak 
points, addressing the issue of unclear outbreak locations due to population mobility. This provides a 
methodological foundation for other studies. 

3) By employing multi-source data in place of population observation data, we have resolved the 
issue of data ambiguity in underdeveloped areas caused by inadequate facilities, thus enhancing the 
universality of the model. 

The remainder of this paper is organized as follows. In Section 2, we introduce the data sources 
used in the study and the proposed methodology. In Section 3, we provide validation and analysis of 
the experimental results. Section 4 discusses the virus outbreak points and the spatial diffusion of the 
virus. Finally, in Section 5, we summarize the contents of this research. 

2. Data and methods 

2.1. Data collection 

1) Social environment data 
The social environment data primarily consist of population distribution, man-made surface, 

nighttime lighting, transportation station, and road network traffic data. Notably, man-made surface 
data can be derived from land use data. These datasets, to a certain extent, represent the spatial 
aggregation characteristics of human mobility and daily life. The sources of the relevant data are 
presented in Table 1. 

Table 1. The information of collected social environment data. 

Variables Year Precision Data sources 
Population distribution data 2020 100 m https://www.wor ldpop.org/ 
Land use data 2018 30 m http://data.ess.tsinghua.edu.cn 
Night lighting data 2018 130 m http://59.175.109.173:8888/ 
Traffic station data 2021 \ https://download.geofabrik.de 
Road network traffic data 2021 \ https://download.geofabrik.de 



13089 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 13086−13112. 

2) City point-of-interest(POI) data 
City POI data is a concentrated representation of local culture, population density, and lifestyle, 

directly reflecting the spatial distribution of urban infrastructure and the primary areas where people 
gather for activities. The data is sourced from Gaode Map and was updated in November 2021. It has 
been re-categorized into seven groups based on their relevance to people’s daily lives, including 
Business Offices, Shopping & Dining, Medical & Education, Financial Services, Residential 
Communities, Leisure & Entertainment, and Life Services. 

3) Epidemic data 
This study gathered epidemic data from Wuhan, Xi’an, Shanghai, and Hong Kong, which were 

officially released by each respective city. The specific data sources and time ranges are displayed in 
Table 2. 

Table 2. Time range and sources of epidemic data. 

City Date Data sources 
Wuhan 2019/12/8/~2020/4/15 http://wjw.wuhan.gov.cn/ztzl_28/fk/tzgg/ 
Xi’an 2021/12/9/~2022/1/20 http://xawjw.xa.gov.cn/ztzl/fyfk/gzdt/ 
Shanghai 2022/3/1~2022/5/11 https://wsjkw.sh.gov.cn/yqtb/ 
Hong Kong 2022/3/1~2022/3/21 https://www.chp.gov.hk/sc/ 

4) Spatial distribution data of patients 
The patient spatial distribution data consists of the spatial flow trajectory data for the day the 

patient was detected and the preceding days. Different infection statuses across cities result in varying 
pressure for epidemic prevention, which indirectly leads to differences in the level of detail in the 
published patient spatial distribution data. Due to the initial outbreak of the epidemic in Wuhan, early-
stage patient spatial distribution data was incomplete. Consequently, this study collected images of 
selected community outbreak announcements published by relevant public accounts related to life in 
Wuhan, and compiled patient data for Wuhan based on these images. The patient spatial distribution 
data for the remaining cities was officially published, with the time range consistent with the epidemic 
data. The data sources are presented in Table 3. 

Table 3. Patient spatial distribution data sources. 

City Data sources 
Wuhan / 
Xi’an https://weibo.com/huashangbao 
Shanghai https://wsjkw.sh.gov.cn/yqtb/ 
Hong Kong https://data.gov.hk/sc-data/dataset/ 

2.2. Methods 

2.2.1. Infectious disease dynamics model 

To represent the progression of infectious diseases in time series, this study employed the 
SEAIR model to predict infection cases within cities. The model was proposed by Okuonghae and 
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Omame [32] based on the classical compartmental model, which assumes a completely random 
distribution of the population within the study area and does not consider population in-migration and 
out-migration. The total population (N) in the infected area is categorized into susceptible population 
(S), exposed population (E), asymptomatic infected population (A), symptomatic infected population 
(I), isolated population (ID), and recovered population (R), as demonstrated in Eqs (1)−(7). Therefore, 
at time t, N(t) = S(t) + E(t) + A(t) + I(t) + ID(t) + R(t). The flowchart of the SEAIR infectious disease 
model is illustrated in Figure 1, and the model parameters are referenced from relevant literature [32] 
as shown in Table 4. 

 

Figure 1. The flow chart of the SEAIR infectious disease model. 
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where β is the effective transmission rate, α is the modification parameter for the reduction in the 
transmission rate of asymptomatic infected individuals relative to symptomatic infected individuals, σ 
is the probability of conversion of latent state to infected state, ν is the proportion of asymptomatic 
infected individuals, γ is the recovery rate of the infected population, d is the lethality of disease, and 
θ and φ are the detection rates of asymptomatic and symptomatic infected individuals, respectively. 
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Table 4. Values of parameters in the model. 

Parameter Reference Range 
E Fitted Estimated 
A Fitted Estimated 
I Fitted Estimated 
β Fitted Estimated 
θ  Fitted/day Estimated 
ϕ  Fitted /day Estimated 
α 0.5/day [0,1]/day 
ν 0.5/day [0,1]/day 
σ 0.19231/day [1/14,1/3]/day 
γC 0.06667/day [1/30,1/3]/day 
γA = γI 0.13978/day [1/30,1/3]/day 
dc = dI 0.015/day [0.001,0.1]/day 

2.2.2. Estimation methodology for infectious disease outbreak points, accounting for virus latency 
and population movement 

The identification of virus outbreak points is important for effective control of the source of 
infection, cutting off the transmission route, and the scientific formulation of prevention and control 
measures. First, the SEAIR model was used to predict the number of new infections per day, and the 
mean(μ) and standard deviation(σ) of the predicted data were calculated. Second, assuming that the 
number of new infections per day conforms to a Gaussian distribution, the epidemic phase is divided 
according to the 3sigma criterion, with the left breakpoint noted as T0(μ-3σ), and it is argued that after 
T0 days, the movement of population increases the randomness of virus transmission, which interferes 
with the precise location of the outbreak site. Third, using the viral incubation period (t0 = 14, 14 days 
were taken as the incubation period of the COVID-19) as the time window, the spatial distribution data 
of patients with a time range of [T0-t0, T0] days were selected(T0-t0 = 0 if T0-t0 < 0) and subjected the 
data to an Albers equal area conic projection. The division schematic is shown in Figure 2. As the first 
law of geography posits, the closer one is to an epidemic point, the greater the probability of infection. 
Consequently, individuals predicted to be infected are likely to display a clustered distribution around 
these points. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm 
is particularly suited for this task, given its ability to identify clusters of arbitrary shapes without 
needing prior knowledge of the number of existing clusters [33]. Therefore, we adopted the DBSCAN 
algorithm to cluster the spatial distribution data of the patients after projection. The clustering 
outcomes of this algorithm are determined by the values of two parameters: Epsilon, which denotes 
the search radius, and MinPts, which signifies the minimum number of neighboring points within this 
radius. For our analysis, we set the Epsilon value to correspond to the typical daily living radius of the 
population [34], and MinPts was set as 1. Finally, the divided maximum data set is processed to find 
the center of gravity, which is considered as the outbreak point of the current round. 
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Figure 2. Schematic diagram of the epidemic curve division. 

2.2.3. Quantitative analysis of the spatio-temporal aggregation characteristics of crowd activities 

Spatial aggregation of crowds refers to a phenomenon where individuals actively or passively 
gather in specific areas due to their living needs. Quantitative analysis of spatial aggregation can reveal 
population interactions between different regions and provide guidance on the spatio-temporal 
trajectories of infectious disease spread and the extent of transmission. This study utilizes 11 types of 
data as quantitative indicators for analyzing spatial aggregation, which can be broadly classified into 
two main categories: social environment data and POI data. 

First, an Albers equal area conic projection was performed on the 11 types of data using the 
WGS-84 coordinate system. Second, the resolution of the data was standardized by resampling or 
regional statistics. The distance of daily population activities is used as a parameter for kernel density 
analysis, which describes the intensity of daily life for the population. Third, the weights corresponding 
to each data type were calculated using the Analytic Hierarchy Process based on their relative 
importance, and the results are displayed in Table 5. Spatial overlay analysis of the data, based on the 
weights, was used to obtain the population life intensity weight matrix. The overall framework is 
shown in Figure 3. Finally, artificial surface data was employed to simulate the actual living areas of 
crowds, with the assumption that if the artificial surface area in the grid is small, the crowd activity 
within is considered low and the grid can be disregarded. To improve simulation accuracy, we set the 
threshold value for the minimum artificial surface area as 150 m × 150 m and removed grids with 
artificial surface areas smaller than the threshold value. 

Table 5. Evaluation factor weighting value. 

Factor A B C D E F G H I J K weight 
A 1 1/9 1/7 1/3 1/5 1/9 1/5 1/9 1/8 1/10 1/7 3/250 
B 9 1 3 7 5 13/10 5 2/3 3 1/2 3 157/1000 
C 7 1/3 1 3 2 1/3 2 1/3 1/2 1/3 5/6 31/500 
D 3 1/7 1/3 1 1/2 1/5 1/2 1/7 1/5 1/7 1/3 3/125 
E 5 1/5 1/2 2 1 1/3 5/3 1/5 1/3 1/5 1/2 41/1000 
F 9 10/13 3 5 3 1 3 2/3 2 2/3 3 127/1000 
G 5 1/5 1/2 2 3/5 1/3 1 1/5 1/3 1/5 1/2 19/500 

Continued on next page
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Factor A B C D E F G H I J K weight 
H 9 3/2 3 7 5 3/2 5 1 17/10 5/6 3 171/1000 
I 8 1/3 2 5 3 1/2 3 10/17 1 2/5 1/3 93/1000 
J 10 2 3 7 5 3/2 5 6/5 5/2 1 2 24/125 
K 7 1/3 6/5 3 2 1/3 2 1/3 3 1/2 1 83/1000 

Note: Factors A−J are financial services, catering and shopping, medical education, business offices, residential quarters, 
leisure and entertainment, life services, transportation stations, road network, population density and night lights. 
Consistency check: CR = CI/RI = 0.041/1.520 = 0.027 < 0.1. 

 

Figure 3. Framework diagram of the analysis of population life aggregation under the 
influence of multiple factors. 

2.2.4. Spatial-temporal diffusion models of infectious diseases 

Regional and virus species differences make the mode of transmission, transmission route and 
transmission capacity of infectious diseases vary somewhat, but they usually start from places close to 
the transmission route and gradually spread to surrounding areas (free state of transmission without 
human intervention) [35]. Figure 4 illustrates the spatial-temporal transmission pattern of infectious 
diseases under the life characteristics of the population. The figure uses a large scale dashed grid to 
generalize the area of the virus outbreak, with each grid considered as a whole, and the red grid 
indicates areas of infection due to the entry of an external infected population. The light blue grid 
indicates the area where the infection is caused by the input of infected patients in the red grid. This 
mode of transmission can be called ‘jump spread’, and usually this case requires the introduction of a 
large amount of patient spatial distribution data and refined population spatial migration data, which 
are difficult to obtain, so this model does not consider this case for the time being.  

First, based on the mode of virus transmission, this study generalizes the spread of infectious 
diseases in a population using a tree structure of population lifestyles, where the spread radius can be 
expressed as the product of the population’s living distance and the time of virus outbreak. Second, the 
administrative area is gridded using the daily life range of the population as a distance parameter, and 
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each grid is considered as a whole, and the odds of infection within the grid are considered to be the 
same, and the interaction between the grids is quantified by the population density weight matrix. From 
the spatial transmission pattern of close contact with infectious diseases, it is clear that when the 
population movement in the infected area is not completely confined, the number of newly infected 
patients in a sub-region at t + 1 is influenced by the number of infected patients in that area and 
surrounding areas at t. Among them, patients in the infected area were most likely to be in contact with 
each other and infected with people in the surrounding 8 areas, but a variety of factors, such as crowd 
activity and distribution of facilities, led to different levels of infection in the areas of mutual contact. 
The specific representation is shown in the square blue area in Figure 4, where the depth of the color 
represents different levels of infection status. Third, in order to be able to more scientifically represent 
the daily infection area, assuming that the infection probability events conform to a Gaussian 
distribution, the actual daily infection area is filtered according to the 3sigma criterion and the weights 
corresponding to the daily suspected infection grid. Meanwhile, in order to be able to better quantify 
the probability of transmission of infectious diseases between regions, the weights of the actual 
infection grid are normalized, and the number of infections to be assigned in the infection grid is 
calculated based on the processed weights. Finally, the number of infections assigned to the grid is 
rounded down, where the rounded remainder is considered as an error and passed down to ensure that 
the number of infections assigned remains consistent with the predicted results. 

 

Figure 4. Spatial-temporal patterns of infectious disease transmission in the context of 
population lifestyle characteristics. 

3. Results 

3.1. Estimation of early outbreak points of infectious diseases 

3.1.1. Impact of epidemic data prediction accuracy on outbreak site location 

In this subsection, using Shanghai as an example and maintaining consistent prevention and 
control measures, the daily number of new infections in Shanghai was predicted using 10 days (2022/3/1 
to 2022/3/10), 15 days (2022/3/1 to 2022/3/15), 20 days (2022/3/1 to 2022/3/20), and 40 days (2022/3/1 
to 2022/4/9) of epidemic data, respectively. A visualization comparing the various predicted data with 
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the actual data is presented in Figure 5. The optimal parameters of the SEAIR model for different 
prediction data are provided in Table 6.  

Table 6. Optimal parameters of Shanghai SEAIR model with different time fitted data. 

Days E A I β θ φ 
10 3248.9970 66.7767 106.812 0.9033 0.0167 0.0307 
15 2519.5694 31.2486 63.4667 0.9123 0.0637 1.79E-07 
20 1902.192 125.7379 281.2181 0.9999 0.0667 0.0017 
40 3445.1567 606.9305 954.0432 0.9984 0.0258 0.0081 

 

Figure 5. Forecast curves of the epidemic in Shanghai under different time fitting data. 

As shown in Figure 5, the accuracy of the prediction results gradually increases with the expansion 
of the fitted data. This is because epidemic prediction inherently carries significant uncertainty, and 
any change in government decisions can cause fluctuations in the epidemic. However, as the fitted data 
increases, the more it reflects the current epidemic development trend, resulting in prediction results 
that better align with the actual situation. 

Table 7 presents the calculated values of μ, σ, and T0 derived from the projected data. However, 
since the spatial distribution data of patients in Shanghai is only available from March 6, 2022, it is 
not possible to estimate the outbreak point for the projected data with a T0 value of less than 6. 

Table 7. Parameters of Shanghai epidemic curve delineation at different times of fitted data. 

Days μ σ T0 
10 25.81 7.13 5 
15 30.49 7.30 9 
20 35.56 7.55 13 
40 43.43 9.20 16 

Figure 6 shows a comparison of the estimated outbreak points (subsequently referred to as 
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estimated outbreak points A, B, and C) using 15-, 20-, and 40-day forecast data with the officially 
announced outbreak point (Huating Hotel, Xuhui District, Shanghai). As seen in the figure, the inferred 
outbreak point A is southwest of the official outbreak point and is located at the junction of Xuhui 
District and Minhang District, with a distance of 5.922 km between them. The inferred outbreak points 
B and C are both situated within the Xuhui District of Shanghai, 3.508 and 2.767 km away from the 
official outbreak point, respectively. 

 

Figure 6. Estimated outbreak points in Shanghai under the fitted data of different times. 

Points A and B are far from the actual outbreak site, primarily because the predicted number of 
infections for both differs significantly from the actual numbers, and the calculated T0 is small. This, 
combined with the virus latency period, delays the time when infected patients are detected, which in 
turn affects the accuracy of the extrapolation of the site. Simultaneously, Shanghai officials did not 
publish data on the spatial distribution of patients before March 5, 2022, making the amount of data 
used in the extrapolation of points A and B limited and not a good representation of the spatial 
distribution of patients. 

Compared to points A and B, outbreak point C is closer to the actual location, but there is still a 
gap of nearly 3 km. This is mainly because the spatial distribution data of patients published in 
Shanghai represents the patients’ residence information. However, Shanghai, as an international city, 
has a massive flow of people and complex crowd activity trajectories. The location of residence is only 
one of many locations where patients move, which does not accurately reflect the spatial distribution 
trend of patients. Nevertheless, due to epidemic prevention pressure, it is still possible to extrapolate 
the outbreak point using the patients’ residence information. As a result, outbreak point C can represent 
the location of the early outbreak point in Shanghai. 

In summary, the higher the accuracy of the predicted data, the more consistent the delineated T0 
is with the actual situation, and the value of T0 directly affects the range of patient spatial distribution 
data used. This, in turn, impacts the location of the inferred outbreak point. Although the longer the 
epidemic fit data, the better the accuracy of the inferred outbreak points, epidemic prevention and 
control work is urgent, and outbreak points A and B can also play an auxiliary role in decision-making 
for the early epidemic prevention and control efforts. 
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3.1.2. Estimation of outbreak points of the COVID-19 in different cities  

This subsection uses Xi’an, Shanghai, and Hong Kong, where large-scale virus outbreaks have 
occurred, as examples to verify the applicability of the outbreak point projection method proposed in 
this paper. Outbreak point C from Subsection 3.1.1 is used as the extrapolated outbreak point for 
Shanghai. Since the epidemic in Xi’an was over at the time of the experiment, the SEAIR model was 
used to fit the daily number of new infections in Xi’an. Meanwhile, the daily number of new infections 
in Hong Kong was predicted, with the optimal parameters of the model shown in Table 8. The results 
of the comparison between the fitted or predicted number of new infections and the actual number of 
new infections are displayed in Figure 7. 

Table 8. SEAIR model optimal parameters. 

City E A I β θ φ 
Xi’an 499.9991 77.2899 104.3007 1 0.0374 0.0262 
Hong Kong 510.8527 43.8375 74.1575 1 0.0186 0.0469 

 

Figure 7. Comparison curve between predicted and actual number of new infections per 
day in Xi’an and Hong Kong. 

Table 9 presents the calculated values of μ, σ, and T0 derived from the predicted data for Xi’an 
and Hong Kong. The T0 value of Xi’an is 6, which is much smaller than t0. This is large because Xi’an 
implemented physical prevention and control measures earlier and increased detection of infected 
individuals, which reduced the risk of people being infected from the transmission route and 
significantly shortened the duration of the epidemic, thus leading to a smaller T0 value. The T0 values 
in both Shanghai and Hong Kong were greater than t0, which was due to the late adoption of preventive 
and control measures in both cities and the low surveillance and detection of the infected population, 
resulting in a long incubation period of the virus in the early stage. 

Table 9. Urban epidemic curve delineation parameters. 

City μ σ T0 
Xi’an 21.63 5.35 6 
Hong Kong 50.04 6.68 30 
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Figure 8 shows a comparison of the projected outbreak sites and actual locations for Shanghai, 
Xi’an, and Hong Kong. The officially announced outbreak site in Xi’an is the family compound of 
Chang’an University in Yanta District, and the outbreak site in Hong Kong is Kwai Chung Village in 
Kwai Tsing District. The distance between the estimated outbreak site and the actual outbreak site in 
Xi’an was 0.965 km, which is very close to each other, and the result is satisfactory. The main reason 
for this is that the spatial distribution data published in Xi’an was more detailed, including the main 
activity trajectories of patients in recent days, which could better reflect the degree of aggregation of 
patients in space. The aggregation of early infected patients was strongly correlated with the outbreak 
site. At the same time, strict control measures shortened the time of virus transmission in the population 
and reduced the interference of outlier sites due to crowd movement in estimating the location of 
outbreak sites. 

The extrapolated results for Shanghai and Hong Kong are poorer compared to Xi’an, with 
distance values of 2.767 and 6.151 km between them and the actual outbreak location, respectively. 
The reasons for this situation in the two cities can be summarized in two ways: 1) the pressure of 
epidemic prevention in the two cities and the coarse information on the trajectories of the patients 
counted, which obscured the connection between the spatial location of the patients and the outbreak 
sites; 2) both cities did not implement strict precautionary measures, which allowed a large amount of 
time for the virus to spread in the population. Moreover, as cosmopolitan cities with dense crowds and 
high pedestrian flow, the virus spreads relatively fast in space, increasing the possibility of bias in the 
extrapolation results. 

 

Figure 8. Projected outbreak point versus actual outbreak point for Shanghai, Xi’an and Hong Kong. 

3.2. Simulation of spatial-temporal diffusion of infectious diseases 

In the experiment, the Wuhan City Huainan Seafood Market was used as the initial outbreak point 
of the COVID-19 in Wuhan City, and the spatial-temporal diffusion process of the COVID-19 in Wuhan 
City from December 8, 2019 to April 5, 2020 was simulated, and the results are shown in Figure 10 and 
Table 10. To reflect the applicability of this diffusion model, this subsection also simulates the spatial-
temporal diffusion process of COVID-19 in Shanghai and Hong Kong, and the results are shown in 
Figures 10 and 11, but mainly elaborates on the experimental results for Wuhan city. 
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Figure 9 illustrates the hotspot map of the spread of the COVID-19 in Wuhan at different time 
periods, and it can be seen that the COVID-19 has an obvious spatial aggregation. Table 10 gives the 
percentage of infected grids in Wuhan under different time periods, which correspond to each other in 
Figure 10. At the beginning of the outbreak, due to the lack of knowledge about the virus, a larger 
number of infected individuals were not counted, making the predicted number of infections less 
accurate, and the simulated infection grid was mainly concentrated near the outbreak site. With the 
spread of the virus in the population, scattered cases emerged in other areas of Wuhan, such as when 
the virus spread to day 20 (2019/12/27), infected areas appeared in and around the junction of Jiang’an, 
Jianghan, Qiaokou, and Wuchang districts. On day 40 (2020/1/16), infected patients also appeared in 
areas far from the outbreak site, such as Huangpi District, Xinzhou District and Hannan District, and 
the outbreak began to show a multi-point outbreak. 

Due to the late intervention of human control measures, the virus spread among the population 
on a large scale and a “city closure” policy was adopted in Wuhan on day 47 (January 23, 2020). 
The strict “city closure” measures, while significantly reducing the movement of people and the 
spread of the virus, did not have an immediate and critical impact, as there were already large 
numbers of undetected infected people at the community level due to the prolonged spread of the 
virus. When the epidemic developed to day 50 (2020/01/26), the epidemic in Wuhan showed a 
comprehensive multi-point outbreak with increasingly obvious spatial spread effects, in which the 
number of infected grids surged to 1019, accounting for 16.02% of the total number of grids. By 
the 65th day of the outbreak development (2020/02/10), human prevention and control measures have 
come into play and the outbreak has reached an inflection point, with the number of new infections 
peaking daily and the spatial spread of the virus beginning to slow down, but the number of grids 
with serious infections is still increasing, and the mode of infection at this time is mainly community 
infection. On the 80th day of the epidemic development (2020/02/25), the number of grids with 
patients reached a maximum of 1936, accounting for 30.45% of the total number of grids. The 
epidemic was better controlled at this time, and the spatial aggregation effect of the epidemic became 
more obvious, showing a trend of gradual spread from urban areas to surrounding areas. Subsequently, 
under the effect of human prevention and control measures, the number of new infections per day in 
Wuhan continued to decrease, and the spread of the epidemic gradually leveled off, with the 
number of grids with patients not increasing and only the grids with more severe infections in 
some areas slowly increasing. Until the 120th day (2020/04/05), the epidemic was completely 
controlled in Wuhan, with 1936 total infected grids, accounting for 30.45% of the total grid data. 
Among them, 750 grids were at the level of primary infection (1~18), 661 grids were at the level of 
secondary infection (19~33), 379 grids were at the level of tertiary infection (34~50), and 146 grids 
were at the level of quaternary infection (51~76). 
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Figure 9. Spatial-temporal dispersal hotspot map of COVID-19 outbreak in Wuhan. 
COVID-19 in Wuhan was divided into three transmission stages (early, middle, and late) 
and five infection levels (0, 1~18, 19~33, 34~50, and 51~76) for presentation. Each row 
in the figure corresponds to a transmission stage, and considering the relatively small 
number of infections in the early stage of the epidemic and the strong randomness of the 
spread, and the relatively constant number of infected areas in the late stage, mainly the 
change of the number of infections in the infected areas, they are all displayed at an interval 
of 10 days; the number of infections in the middle stage is higher (73% of the total number 
of infections), and the change of the spread results is more obvious, so they are displayed 
at an interval of 5 days. 

Table 10. Statistical table of grids with different levels of infection in Wuhan (total 6359). 

Date Infected Grid 
(%) 

Grid of 1−18 
patients (%) 

Grid of 19−33 
patients (%) 

Grid of 34−50 
patients (%) 

Grid of 51−76 
patients (%) 

2019/12/08 1(0.02) 1(0.02) 0(0.00) 0(0.00) 0(0.00) 
2019/12/17 1(0.02) 1(0.02) 0(0.00) 0(0.00) 0(0.00) 
2019/12/27 9(0.14) 9(0.14) 0(0.00) 0(0.00) 0(0.00) 
2020/01/06 59(0.93) 59(0.93) 0(0.00) 0(0.00) 0(0.00) 
2020/01/16 279(4.39) 279(4.39) 0(0.00) 0(0.00) 0(0.00) 
2020/01/26 1019(16.02) 1019(16.02) 0(0.00) 0(0.00) 0(0.00) 
2020/01/31 1593(25.05) 1593(25.05) 0(0.00) 0(0.00) 0(0.00) 
2020/02/05 1858(29.22) 1856(29.19) 2(0.03) 0(0.00) 0(0.00) 

Continued on next page
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Date Infected Grid 
(%) 

Grid of 1−18 
patients (%) 

Grid of 19−33 
patients (%) 

Grid of 34−50 
patients (%) 

Grid of 51−76 
patients (%) 

2020/02/15 1931(30.37) 1084(17.05) 589(9.26) 246(3.87) 12(0.19) 
2020/02/25 1936(30.45) 803(12.63) 664(10.44) 372(5.85) 97(1.53) 
2020/03/06 1936(30.45) 780(12.27) 651(10.24) 388(6.10) 117(1.84) 
2020/03/16 1936(30.45) 768(12.08) 657(10.33) 385(6.05) 126(1.98) 
2020/03/26 1936(30.45) 762(11.98) 656(10.32) 386(6.07) 132(2.08) 
2020/04/05 1936(30.45) 750(11.79) 661(10.39) 379(5.96) 146(2.30) 

Figure 10 shows the spatial and temporal spread of COVID-19 in Shanghai and Hong Kong. From 
the figure, it can be seen that the infected areas in both Shanghai and Hong Kong have obvious spatial 
aggregation, mainly concentrated in the central area of the city and gradually spreading to the 
surrounding areas. The more seriously infected areas in Shanghai are mainly in Jing’an, Huangpu, 
Changning and Xuhui districts, and are spreading to other urban areas. The more seriously infected 
areas in Hong Kong are mainly the Sham Shui Po district, Yau Tsim Mong district and Kowloon City 
district, but due to the special geographical conditions of Hong Kong, making its infected areas more 
scattered compared to Shanghai, the middle and late stages of the spread, the Tuen Mun district, Yuen 
Long district and North District also appeared infected areas one after another. As of the last day of 
the simulation, 27.86% of the total grids were infected in Shanghai and 34.89% of the total grids were 
infected in Hong Kong, which is close to the percentage of infected grids in Wuhan. 

 

Figure 10. Spatial-temporal spread of the COVID-19 outbreak in Shanghai. 
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Figure 11. Spatial-temporal spread of the COVID-19 outbreak in Hong Kong. 

3.3. Validation of model simulation results 

To verify the soundness and validity of the spatial-temporal spread model of infectious diseases 
proposed in this study, the experimental results are validated in this section using the collected data on 
the spatial distribution of patients in Wuhan, Shanghai and Hong Kong. In this paper, we compare the 
validation results of Wuhan City with the results of Feng et al. [20]. To ensure the reasonableness of 
the comparison results, we keep the validation method (Estimated coverage of infected areas by 
actually infected communities) and validation area (Wuhan downtown area) of Wuhan city consistent 
with Feng et al’s study, and the results are shown in Figure 12. Since Feng et al’s validation method 
does not take into account the impact on the validation accuracy when the epidemic prediction results 
differ from the actual infection situation, i.e., when there is a rebound in the epidemic and the number 
of infected patients increases, there is a possibility that the estimated infection area is fully covered by 
patients. Therefore, in order to improve the rationality of the accuracy verification method, another 
accuracy verification method is designed in this paper. First, the collected spatial distribution data of 
patients are correlated with the simulation area in time and space. Second, according to the simulated 
daily new infection areas, the number of patients in these areas was counted. Finally, the proportion of 
these points to the total number of points for the day is calculated, and the proportion value is used as 
the validation accuracy value of the day’s extrapolation results. This validation method was used to 
validate the accuracy of the epidemic simulation areas in Shanghai and Hong Kong, and the results are 
shown in Figure 13. 

Figure 12 shows the accuracy verification of the spatial-temporal dispersion simulation results 
of this study’s method compared with Feng et al’s method for Wuhan City, from February 4, 2020 to 
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February 21, 2020. In terms of coverage accuracy, the method proposed in this study is better than Feng 
et al’s method, and the average coverage accuracy of this method for infected cells in Wuhan is 91.03%, 
which is 18.31% higher than Feng et al’s study (72.72%). Although Feng et al uses relatively fine-
grained cell phone positioning data to reflect the status of population interactions in different spaces, 
it is limited by the total amount of data, which only accounts for 27% of the total population of 
Wuhan city, and is an estimation under small sample data. In terms of applicability, the simulation 
results of this paper are not limited by detailed observation data and can be simulated for areas 
outside the central city of Wuhan. 

 

Figure 12. Comparative spatial and temporal diffusion results of COVID-19 in Wuhan. 

Figure 13 (blue) shows the graph of the validation results of the spatial and temporal spread 
accuracy of the epidemic in Hong Kong from January 28, 2022 to March 21, 2022. Since the official 
data on the spatial distribution of patients in Hong Kong were published as a list of buildings visited 
by patients in the previous 14 days, the 14-day cumulative infected patients and areas were used in the 
precision validation of Hong Kong. However, this will inevitably have an impact on the overall 
accuracy of the model. 

Figure 13 (red) shows the graph of the validation results of the spatial and temporal spread 
accuracy of the epidemic in Shanghai from March 6, 2022 to May 11, 2022, from which it can be seen 
that the validation accuracy in Shanghai shows a trend of first increasing and then decreasing. From 
the beginning of the epidemic to March 12, 2022, the average precision was only 13.9% and grew 
slowly, mainly because in the pre-epidemic period, there were fewer infected patients and the 
randomness of distribution was high, making it difficult to model the infected area at this time. 

After the emergence of the epidemic, Shanghai did not take strict epidemic prevention and control 
measures, which led to a large number of infected people at the social level, while the model in this 
paper is based on the spatial correlation of population activities between regions, which is more 
suitable for simulating the transmission process of infectious diseases with a long transmission time. 
Therefore, after this, the simulation accuracy of the model for infected regions gradually increased, 
and by the end of March, the model accuracy grew to more than 70%. 

As we entered April, Shanghai gradually imposed controls on various regions, but the physical 
prevention and control measures were delayed in taking effect because of the late intervention of the 
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controls. The virus transmitted in Shanghai belongs to the Omicron BA.2 mutant strain [36], which is 
highly insidious, making a large number of latent people in the population, and because of the high 
number of infected patients, the medical burden is too great, and the population can only be tested for 
nucleic acid centrally in separate communities, which undoubtedly does not increase the possibility of 
cross-infection between communities. Therefore, due to the above-mentioned situation, the role of 
physical prevention and control measures is greatly weakened, and in a way, the higher number of 
infected patients in April in Shanghai can still be considered as being infected in a state of free 
transmission of the virus, which is in line with the diffusion conditions suitable for our model. 
Therefore, the simulation accuracy of this model for April in Shanghai has been slowly increasing. 

After May, the number of infected persons at the social level in Shanghai gradually decreased, 
and physical prevention and control measures had come into play. At this time, the newly infected 
persons were no longer infected in the state of free transmission of the virus but were mostly infected 
within families or communities, and the present model was not applicable to this infection pattern, thus 
leading to a sharp decrease in the accuracy of the model. Among them, the predicted data of new 
patients after April 22 differed significantly from the actual ones, which also contributed to the 
decrease in the model accuracy. 

 

Figure 13. Accuracy of COVID-19 spatial-temporal dispersion results for Shanghai 
and Hong Kong (starting date of March 6, 2022 for Shanghai and January 28, 2022 for 
Hong Kong). 

4. Discussion 

The transmission process of infectious diseases has obvious spatial and temporal evolution 
patterns, which not only reflect the process of infected people recovering under the action of 
autoimmunity or external drugs, or withdrawing from transmission due to death from infection but 
also reflect the spatial interaction characteristics of susceptible and infected people and their spatial 
distribution information [37,38]. It is very important to master the transmission pattern of more 
infectious diseases, and simulate and reveal the spatial and temporal development trend of infectious 
diseases, which can identify the transmission pattern of infectious diseases and discover the high 
infection area. 
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4.1. Exploration of false information affecting outbreak point projection result 

In this study, we propose an outbreak estimation method that takes into account the virus 
incubation period and population mobility. This method combines infectious disease dynamics models 
with modern spatial data analysis techniques, providing a novel and effective perspective for the 
formulation of public health and epidemic control strategies. However, any model and algorithm have 
certain limitations and uncertainties, whether constrained by data quality and integrity or influenced 
by the actual application environment. These factors may cause deviations in prediction results and 
increase the instability of the model. Therefore, in order to enhance the application value of the 
outbreak estimation method proposed in this paper in the future epidemic response, we deeply explore 
the false information that affects the estimation results of the method. Specifically, we will focus on 
analyzing the impacts possibly brought by four aspects: the prediction error of the prediction model, 
the difference in the virus incubation period, the influence of population mobility, and the quality of 
patient spatial distribution data. 

In the outbreak point estimation method proposed in this paper, we chose the SEAIR model to 
predict the number of people infected with the virus and divided the number of infected people 
according to the 3sigma rule to determine the T0 point. However, different accuracies of prediction 
results may lead to differences in the T0 point, further affecting the accuracy of outbreak point 
estimation. In the experimental section of Subsection 3.1.1, we have already conducted a thorough 
analysis of this. The SEAIR model does indeed perform outstandingly in epidemiological prediction, 
with multiple parameters used in the model to simulate the actual transmission of infectious diseases. 
However, whether it’s the SEAIR model or other infectious disease dynamic models, they all describe 
the complex virus transmission and evolution mechanism in the form of mathematical differential 
equations. This mathematical description method to some extent neglects the randomness and 
complexity in reality. For example, the prediction results of the model largely depend on the quality 
and representativeness of the training data. If the training data changes, such as an increase in training 
data, the prediction accuracy of the model will also change accordingly. 

Secondly, in our method, we use the incubation period of the infectious disease as the time 
window for data selection. The size of the time window directly affects the range of selected data, thus 
influencing the spatial distribution pattern of the infected individuals, and further impacting the 
clustering results. In this study, we chose 14 days as the incubation period for COVID-19, aiming for 
a more conservative strategy when estimating the outbreak point. We subsequently performed 
experimental analyses of the outbreak points in different regions, which validated the reasonableness 
of our method. However, we must recognize that the incubation period of the virus is not constant. It 
may be affected by various factors, such as differences in strains, environmental changes, etc., which 
might cause variations in the incubation period of the virus in different regions. These differences 
could affect the predictive accuracy of our method when dealing with specific situations. Therefore, 
we need to consider this possibility when using this method and adjust the incubation period when 
necessary to adapt to the constantly changing real-world conditions. 

On the other hand, population mobility also has an impact on the estimation results. Since the 
spread of the virus mainly depends on humans as carriers, and the transportation network of modern 
society is complex and efficient, the mobility of the population is greatly enhanced. This means that in 
the early stages of the outbreak, the spatial distribution of infected individuals might be quite scattered 
and may not easily exhibit significant aggregation. As the virus spreads further, the influence of 
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population mobility on the outbreak will become more complex and uncertain, which could lead to 
changes in the spatial aggregation of patients and consequently lead to a shift in the estimated location 
of the outbreak point. In our method, we assume that the epidemic curve follows a normal distribution, 
and the T0 point is determined according to the 3sigma rule, which tries to minimize the impact of 
population mobility on the spread of the epidemic, in order to improve the accuracy of outbreak point 
estimation. However, we must clearly understand that the effects of population mobility are very 
complex and cannot be entirely eliminated through statistical methods. 

Lastly, the quality of patient spatial distribution data directly influences the estimation results of 
the outbreak point. The spatial distribution data of patients reflect the life trajectory after virus infection, 
demonstrating the spatial distribution of patients. Through clustering analysis of this data, we can 
understand the spatial distribution pattern of the epidemic more clearly. However, the quality of the 
data will directly impact the accuracy of this analysis. If the data’s accuracy and completeness are poor, 
such as the presence of a large number of false reports or omissions, our clustering results may have 
serious bias, leading to errors in the outbreak point estimation. In Subsection 3.1.2 of the paper, the 
estimated outbreak point in Xi’an was more accurate compared to the other two cities. This is largely 
attributed to the more detailed and accurate patient spatial distribution data in Xi’an compared to the 
other two cities. 

In summary, there are numerous types of false information that can affect the estimation of 
outbreak points. Here, we have elucidated four main factors. Although our method may currently be 
influenced by these types of false information, we believe these issues can be resolved through 
continuous research and improvement. This will enhance the accuracy of outbreak point estimations, 
thereby providing better support for public health decision-making. 

4.2. Delineation of outbreak prevention and control areas, with outbreak sites as the center 

In the early days of COVID-19, due to the lack of scientific understanding of the virus, the entire 
city of Wuhan was designated as an epidemic area. This holistic approach to prevention and control 
was undoubtedly the most direct and effective, and was able to control the spread of the virus to a great 
extent. However, as knowledge of the virus increases, if a holistic prevention strategy is still adopted 
for cities with outbreaks, this will undoubtedly cause a more serious economic burden [39] and mental 
stress [40−42] to people. 

In our study, the prevention and control distance was calculated using the standard deviation 
method based on the spatial location data of the patients. Then draw a circle with the outbreak point 
as the center and the prevention and control distance as the radius, and the area covered by the circle 
as the prevention and control area. Finally, the prevention and control areas were divided between 
Xi’an and Shanghai, respectively. Among them, the prevention and control radius of Xi’an is 5.5 km, 
and the prevention and control area is about 95.03 km2; the prevention and control radius of Shanghai 
is 20 km, and the prevention and control area is about 1256.64 km2, and the results are shown in 
Figure 14. From the area of prevention and control, it can be seen that the pressure of prevention and 
control in Xi’an is significantly lower than that in Shanghai, which can also be reflected in the number 
of infected people in the two cities. It can be seen that, in the absence of an effective vaccine, earlier 
intervention in human control measures can limit the spread of the virus and reduce the harm caused 
by infectious diseases, which is consistent with the view of some studies [43,44]. 
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Figure 14. COVID-19 prevention and control area. 

Nevertheless, this study has several limitations. First, the data collected on the spatial distribution 
of patients are not sufficiently granular; for example, Shanghai only published the places of residence 
of infected patients, hiding the impact of crowd movement on the location of outbreak sites. When an 
epidemic outbreak occurs, the relevant epidemic authorities have access to more accurate patient 
information that can solve the problem. Second, the location of the estimated outbreak point is likely 
to be located in a sparsely populated area, such as a woodland, field, etc., and then the accuracy of the 
location is questionable. Therefore, is it possible to add a grid weight constraint to correct the 
estimation results. Finally, the prevention and control area centered on the outbreak point may not 
completely cover the actual epidemic infection area. Whether to expand the prevention and control 
distance or to carry out prevention and control in multiple areas needs to be combined with the local 
epidemic situation. 

4.3. Applicability of the spatial-temporal diffusion model 

Our spatial-temporal diffusion model is based on the spatial correlation of population contact 
between different regions. When effective non-pharmaceutical interventions are applied to cities 
with outbreaks of infectious diseases, such as restricting crowd movements, the spatial interaction 
ability of crowds between sub-regions is greatly reduced. This means that the spatial aggregation 
effect of infectious diseases is smoothed out, and in the short-term diffusion process, the randomness 
of crowd travel activities is relatively large. In the absence of precise crowd travel data, it is difficult 
to describe the actual location of the patient’s disease. Due to the incubation period of the virus, 
before the intervention takes effect, all patients can be considered to be infected during the free 
transmission phase of the virus. When the interventions take effect, the transmission routes of the 
virus are greatly reduced, and at this time, the newly infected patients in each sub-region are more 
often infected within the region, such as family infections and neighborhood infections. This also 
greatly increases the uncertainty of the spatial distribution of patients. Therefore, this model is more 
suitable for simulating the spatial-temporal diffusion process of infectious diseases that spread for 
at least one incubation period. 

Although this model has achieved better simulation results in fine-grained granularity, it is still a 
generalization model from a macroscopic perspective, which is mainly reflected in the fact that the 
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diffusion pattern of the model is simulated according to the tree structure of people’s daily life units, 
while the complex cell type and multi-core structure are more in line with the actual situation [34]. For 
a more realistic range of population activities, the incorporation of data, such as subway travel data 
and cab travel data, is still lacking. These data sources can further simulate the spatial patterns of 
preferential diffusion, convective diffusion, and jump diffusion of infectious diseases, and reduce the 
randomness of the diffusion scale. 

5. Conclusions 

In summary, this paper addresses the basic problem of infectious diseases by proposing a method 
to estimate the outbreak point considering the incubation period of the virus and population mobility. 
This helps address the uncertainty of the early outbreak point of infectious diseases. Additionally, a 
spatial and temporal diffusion model of infectious diseases under the discrete grid is established, 
taking into account the living habits of the population, to address the spatial diffusion process of 
infectious diseases. 

The results show that the outbreak point estimation method can better estimate the area where 
the actual outbreak point is located, and the spatial-temporal diffusion model can also well simulate 
the infectious disease transmission process in a city. Although the current mortality rate caused by 
COVID-19 has decreased [45], every appearance of infectious diseases causes serious harm to human 
life, making scientific and efficient outbreak prevention and control measures essential. 

Our research can significantly help governments and those working in epidemic prevention and 
control by providing insights into the location of infectious disease outbreak points and the process of 
transmission. This allows for the hierarchical deployment of control measures, while reducing the 
consumption of human and material resources, and ultimately stifling the spread of infectious diseases 
as early as possible. 
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