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Abstract: Target threat assessment is a critical aspect of information warfare and can offer valuable
auxiliary support to combat command decision-making. Aiming to address the shortcomings of three
decision-making methods in air combat target assessment, such as the inability to effectively han-
dle uncertain situation information and quantitatively rank the decision-making targets according to
their importance, a dynamic intuitionistic fuzzy decision model based on the improved GRA-TOPSIS
method and three-way decisions is proposed. First, the target attribute weight is obtained by cosine
intuitionistic fuzzy entropy algorithm; then, a novel intuitionistic fuzzy distance measure is introduced,
and grey incidence analysis and TOPSIS are used to build the conditional probability for three-way de-
cisions that fully utilize the existing information and reflect the consistency of dynamic change trend;
finally, the comprehensive loss function matrix is constructed and the threat classification results are
obtained using the decision rules. The example analysis shows that the proposed method can not
only effectively handle complex battlefield situations and dynamic uncertain information, but it can
also classify targets, improving the effectiveness and rationality of decision-making and providing a
reference basis for scientific command decision-making.
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1. Introduction

In modern combat, large-scale, intelligent weapons equipment and systems are becoming increas-
ingly vital, and intelligent decision-making has become the core of the battle. Threat assessment (TA)
is a critical element in military decisions. With the advancement of battle theory and enhanced com-
bat equipment, troops’ combat effectiveness has dramatically improved, defining modern warfare as
adversarial and timely [1]. As a result, it establishes more stringent criteria for enemy target threat
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assessment procedures. Threat assessment forecasts the threat level of enemy targets based on infor-
mation fusion and aids in battlefield command and decision-making [2]. Therefore, intelligent threat
assessment in air combat has significant research implications as well as vast application prospects.

Recently, threat assessment methods have mainly included multi-attribute decision theory [3, 4],
intuitionistic fuzzy sets (IFS) [5–7], grey theory [8–10], Bayesian network [11, 12], technique for or-
dering preference by similarity to an ideal solution (TOPSIS) [13, 14], adaptive network based fuzzy
inference inference system (ANFIS) [15,16] and so on. A threat assessment model with respect to small
data sets based on a Bayesian network was proposed [11]. The model was obtained by the modeling
method based on the improved Bayesian Information Criterion (BIC) score. The intelligent situation
awareness (SA) modeling method was based on the Fuzzy Grey Cognitive Map (FGCM) [17], which
can better deal with complex battlefield situations and handle uncertain information. A threat assess-
ment model of attribute reduction and back propagation (BP) neural network [18] was established to
assess and judge threat degree of the target. The assessment method based on Grey Relational Analysis
(GRA)-TOPSIS was proposed in [19]. An improved adaptive network was proposed in [1] based on
fuzzy inference system model. Although the above methods can effectively carry out threat assess-
ment, they still have the following problems: Bayesian network and neural network methods need a
lot of prior information, which makes it difficult to meet the dynamic and real-time characteristics of
threat assessment; the fuzzy cognitive map model cannot solve the uncertainty problem of experts in
the initial setting of the model; grey theory relies on expert experience and there are many subjective
factors.

With the uncertainty and variability of battlefield situation information, threat assessment needs to
effectively handle dynamic battlefield environments. Many scholars have studied threat assessment in a
fuzzy decision-making environment. Intuitive fuzzy sets [20] can more accurately represent uncertain
information. The method based on IFS and multi-attribute decision theory has been widely used in
threat assessment problems [21–24]. However, this method still has limitations: Traditional threat
assessment methods often only rank threat targets, requiring decision-makers to further judge threat
levels and choose priority combat targets, making it difficult to deal with complex and ever-changing
environments. Moreover, a target is either accepted or rejected in two-way decision-making method,
which can easily result in erroneous judgments. Yao et al. [25,26] proposed three-way decisions, which
can give reasonable explanations to three regions of rough sets and linked them with three decision
actions. Applying three-way decision-making (TWD) to multi-attribute decision-making (MADM)
problems can effectively handle uncertain information and better classify targets.

To fully utilize uncertain situation information and obtain more objective and reasonable evaluation
results, we propose a dynamic threat assessment method based on the improved GRA-TOPSIS and
three-way decisions. There are three main contributions of our work:

1) The cosine intuitionistic fuzzy entropy is introduced to calculate weights of target attributes,
combined with a dynamic data fusion method to generate time series weights for dynamic matching of
attribute parameters and weights.

2) A new intuitionistic fuzzy distance measure is used to calculate the distance between intuitionistic
fuzzy numbers, and grey incidence analysis and TOPSIS are used to build the conditional probability
for TWD.

3) Three-way decisions under the MADM model are used to classify threats against aerial targets.
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2. Related works

2.1. Three-way decisions

TWD have been extensively studied to solve realistic MADM problems since they can minimize de-
cision risks by adding the non-commitment option [27,28]. The improved TOPSIS method, combined
with entropy weights, was used for optimal granularity selection [29]. A novel intuitionistic fuzzy
(IF) large-scale group decision-making (LSGDM) method was constructed based on adjustable multi-
granularity (MG)-IF probabilistic rough sets (PRSs) and the evidence reasoning (ER) method [30].
A new TWD model based on prospect theory (PT) on multi-scale information systems (MS-ISs) was
revealed for pursuing MADM problems [31]. The intuitionistic fuzzy TOPSIS method [32] was used
to obtain the conditional probability for the target and intuitionistic fuzzy evaluation value to construct
the decision threshold for each target. However, the above threat assessment methods cannot make full
use of uncertain situation information, the determination of conditional probability obtained has certain
subjectivity and limitations, and it is difficult to get perfect results when dealing with the problem of
“poor information”.

2.2. Intuitionistic fuzzy multi-attribute decision making

IFMADM has been widely used as an extension of MADM under intuitionistic fuzzy informa-
tion [21]. For the assessment of target attribute values with unknown intervals and weights, a Quantum
Bee Group Threat Assessment Method for Intuitive Vague Multi-Attribute Decision (IFMADM) with
Optimized Attribute Weighting was proposed [22]. To address the uncertainty and imprecision of ex-
perts’ opinions, an improved hierarchical fuzzy TOPSIS method was used to aggregate the factors that
affect the exposure rates of buildings in the two different scenarios [23]. A new intuitionistic fuzzy
decision-making model was developed based on decision field theory [24]. The model stresses the
contrasts regarding competition and influence of each attribute in different schemes in order to provide
a dynamic evolution of preferences for various schemes and obtain optimum results.

2.3. Target threat assessment

Threat assessment is an essential part of modern warfare. With battlefield environments and situa-
tion information becoming more dynamic and uncertain, many scholars have studied threat assessment
in a fuzzy intuitionistic environment. Jin et al. [33] proposed an intuitionistic fuzzy TOPSIS model and
a multi-criteria optimization compromise decision-making (VIKOR) model with variable weights for
static attribute and dynamic attribute threat assessment, but only the current situation was considered,
and the dynamic threat assessment could not be conducted. The TOPSIS ranking method [34] based
on improved relative entropy was proposed to dynamically evaluate incoming targets, but the method
can only rank threats and cannot achieve threat classification. Thus, we study threat assessment in the
IFMADM environment based on the current trend.
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3. Preliminaries of intuitionistic fuzzy set and three-way decision

Definition 1 [35] Let X be a finite universal set. An intuitionistic fuzzy set (IFS) A in X can be
mathematically described as

A= {⟨x, µA (x) , νA (x)⟩|x ∈ X} (3.1)

where µA (x) , νA (x) : X → [0, 1] are the membership and non-membership degrees of element x in X
belonging to A, and conditions of 0 ≤ µA (x)+νA (x) ≤ 1 and x ∈ X are met; πA (x) = 1−µA (x)−νA (x),
which shows the hesitation degree and uncertainty of element x, and the condition of πA (x) ∈ [0, 1] is
met.

Definition 2 [25, 26] Based on minimum risk Bayesian theory, Yao proposed decision-theoretic
rough sets which are composed of 2 states and 3 actions. Given two states Ω = {C,¬C}, which mean a
target belongs to C or not. Let A =

{
ap, aB, aN

}
be actions set,and ap, aB, aN describe x ∈ POS (C) , x ∈

BND(X), x ∈ NEG (C) respectively. For the above two states and three actions, Table 1 shows the
loss functions of TWD. The {λPP, λBP, λNP} and {λPN , λBN , λNN} describe the loss function of ap, aB, aN

respectively, when the target belongs to C and ¬C. In addition, Pr (C| [x]) and Pr (¬C| [x]) represent
conditional probabilities when targets belong to C and ¬C respectively.

Table 1. The relative loss functions of three-way decisions.

C ¬C
ap λpp λPN

aB λBP λBN

aN λNP λNN

4. Threat assessment method

The method can fully utilize uncertain battlefield information and apply three-way decisions to
multi-target dynamic threat assessment. Figure 1 shows the assessment process of the improved GRA-
TOPSIS method and three-way decisions. A specific description of the method is given in the pseu-
docode below.

4.1. Dynamic data fusion

The battlefield situation is dynamic. Gathering multi-time information is a vital step in conducting
a comprehensive and reasonable threat assessment of aerial targets. The closer to the current moment,
the more significant the target information is. Therefore, we can calculate the series weight vector η =
(η1, η2, ..., ηk) of k times by using the inverse form of the Poisson distribution. Through the weighted
aggregation of threat assessment information at each time by the intuitionistic fuzzy weighted average
(IFWA) operator, a comprehensive intuitionistic fuzzy decision matrix R can be obtained:

R =
(〈
µi j, νi j

〉)
m×n

(4.1)

where
〈
µi j, νi j

〉
=

〈
1 −

K∏
k=1

(
1 − µi j (tk)

)ηk
,

K∏
k=1
νi j(tk)ηk

〉
and t = {t1, t2, ..., tk} is a set of moments.
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Algorithm 1: The multi-target dynamic threat assessment algorithm
input : The multi-time information data D
output: The ranking and classification of targets

1 Calculate weighted dynamic decision matrix Z and attribute weights W by Eqs (4.1)– (4.5);
2 Calculate positive and negative ideal solutions Z+, Z- by Eqs (4.6) and (4.7);
3 for zi ∈ Z do
4 Calculate the normalized distance between the target and positive, negative ideal solutions

d+i , d−i by Eqs (4.8)– (4.10) and (4.13);
5 Calculate the normalized positive and negative grey correlation degrees ε+i , ε−i by

Eqs (4.11), (4.12) and (4.14);
6 Calculate the positive and negative comprehensive similarities cs (zi, z+), cs (zi, z−) by

Eqs (4.15) and (4.16);
7 Calculate the conditional probability of target Pr (C| [x]) by Eqs (4.17) and (4.18);
8 end
9 for zi ∈ Z do

10 Calculate the comprehensive loss function matrix λi by Eqs (4.19) and (4.20);
11 Calculate decision thresholds α, β by Eqs (4.21) and (4.22);
12 if Pr (C| [x]) ≥ α then X ∈ POS (C) ;
13 if Pr (C| [x]) ≤ β then X ∈ NEG (C);
14 else X ∈ BND (C);
15 end
16 Rank the targets according to Pr (C| [x]) and classify targets ;

Figure 1. The assessment process of the proposed method.
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4.2. Attribute weight determination based on cosine intuitionistic fuzzy entropy

The calculation of objective attribute weights is a key problem in MADM. The larger the intuition-
istic fuzzy entropy, the fuzzier the information given by attributes for judgment; the lower the effec-
tiveness of the evaluation information and the lower the corresponding attribute weight. Thus,weights
of target attributes can be calculated according to cosine intuitionistic fuzzy entropy. The specific steps
are as follows:

1) Calculate the cosine intuitionistic fuzzy entropy [36] E j of the target attribute:

E j =
1
n

n∑
i=1

cos

(
µi j − νi j

) (
1 − πi j

)
2

π (4.2)

where π describes the hesitation degree and uncertainty of the element.
2) A nonlinear programming model for target attribute weights is established by:

min
m∑

j=1

(
w j

)2
×E j

s.t.
m∑

j=1

w j = 1

(4.3)

where W j describes the weight of attribute j.
3) Calculate the target attribute weights. The Lagrange function is expressed as:

L (w, λ) =
m∑

j=1

(
w j

)2
· E j + 2λ

 m∑
j=1

w j − 1

 (4.4)

where λ is Lagrange factor;
Finally, the target attribute weights are obtained by:

w j =

(
E j

)−1

m∑
j=1

(
E j

)−1
(4.5)

4.3. Conditional probability estimation based on the improved GRA-TOPSIS method

The intuitionistic fuzzy TOPSIS method [32] is used to calculate the conditional probabilities of
targets, but it is difficult to get perfect results when dealing with the problem of “poor information”.
Since the grey correlation analysis can not only make full use of the existing information but also reflect
the consistency of dynamic change trend [37], and effectively deal with “poor information”, we can
use the improved GRA-TOPSIS method to calculate conditional probabilities of threat targets. There
are main calculation steps:

1) Determining the positive and negative ideal solutions

Z+ =
(
Z+1 ,Z

+
2 , ...,Z

+
n
)
=
(〈
µ+1 , ν

+
1
〉
,
〈
µ+2 , ν

+
2
〉
, ...,
〈
µ+n , ν

+
n
〉)

(4.6)
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Z− =
(
Z−1 ,Z

−
2 , ...,Z

−
n
)
=
(〈
µ−1 , ν

−
1
〉
,
〈
µ−2 , ν

−
2
〉
, ...,
〈
µ−n , ν

−
n
〉)

(4.7)

2) Calculating the distance of intuitionistic fuzzy numbers
We introduce a novel distance measure method to obtain the distance of intuitionistic fuzzy numbers

to effectively reflect the characteristics of intuitionistic fuzzy information. The distance measure [38]
of two intuitionistic fuzzy numbers α = (µα, να) , β =

(
µβ, νβ

)
is expressed as:

d (α, β) =

√(
µ̃α − µ̃β

)
+
(
ν̃α − ν̃β

)
2

(4.8)

where µ̃α = µα
(
1 + 2

3πα (1 + πα)
)
, ν̃α = να

(
1 + 2

3πα (1 + πα)
)
, µ̃β = µβ

(
1 + 2

3πβ
(
1 + πβ

))
, ν̃β =

νβ
(
1 + 2

3πβ
(
1 + πβ

))
.

The distances between targets and positive,negative ideal solutions are calculated by:

d
(
zi, z+
)
=

n∑
j=1

w jd
(
zi j, z+

)
(4.9)

d
(
zi, z−
)
=

n∑
j=1

w jd
(
zi j, z−

)
(4.10)

3) Calculating the grey correlation degree
The distance measure only represents the relationship between the target and the ideal solution

in position and cannot reflect the difference in trend. So, we can use the positive and negative grey
correlation degrees ε (zi, z+), ε (zi, z−) to represent change trend of the indicator series. We can calculate
the grey correlation degree:

ε
(
zi, z+
)
=

n∑
j=1

w j

min
i

min
j

d
(
zi j, z+

)
+ εmax

i
max

j
d
(
zi j, z+

)
d
(
zi j, z+

)
+ εmax

i
max

j
d
(
zi j, z+

) (4.11)

ε
(
zi, z−
)
=

n∑
j=1

w j

min
i

min
j

d
(
zi j, z−

)
+ εmax

i
max

j
d
(
zi j, z−

)
d
(
zi j, z−

)
+ εmax

i
max

j
d
(
zi j, z−

) (4.12)

where ε is the discrimination coefficient, ε ∈ [0, 1], generally taken as ε = 0.5.
4) Calculating the conditional probability
The distance and grey correlation degree are normalized as follows:

d+i =
d (zi, z+)√

n∑
i=1

(d (zi, z+))2

, d−i =
d (zi, z−)√

n∑
i=1

(d (zi, z−))2

(4.13)

ε+i =
ε (zi, z+)√

n∑
i=1

(ε (zi, z+))2

, ε−i =
ε (zi, z−)√

n∑
i=1

(ε (zi, z−))2

(4.14)
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The bigger d−i and ε+i , the closer the target is to the positive ideal solution. Conversely, the bigger
d+i and ε−i , the closer it is to the negative one. So, the following hybrid formulas are established
by combining the distance measure and grey correlation degree to obtain the positive and negative
comprehensive similarities cs (zi, z+), cs (zi, z−).

cs
(
zi, z−
)
= ηd−i + (1 − η)ε+i (4.15)

cs
(
zi, z+
)
= ηd+i + (1 − η)ε−i (4.16)

where η ∈ [0, 1] is the preference coefficient for distance and grey incidence degree in decision-making.
According to the TOPSIS decision method, comprehensive relative degree of position and shape simi-
larity between the threat target and we can obtain the positive ideal solution:

Rc (Ti) =
cs (zi, z−)

cs (zi, z+) + cs (zi, z−)
(4.17)

Noticeably, Rc (Ti) describes the probability that the target Ti belongs to a positive ideal solution
state and 1 − Rc (Ti) describes the probability that the target Ti belongs to a negative one. Thus, the
conditional probability of TWD can be expressed as:

Pr (C| [x]) = Rc (Ti) (4.18)

4.4. Threat classification based on three-way decisions

1) Constructing the loss function matrix
The target attributes are intuitionistic fuzzy numbers. So, the loss function matrix of each target

based on each attribute can be expressed as:

λ
(
zi j

)
=


λ

i j
PP

λ
i j
BP

λ
i j
NP

λ
i j
PN

λ
i j
BN

λ
i j
NN

 =

0

σd
(
zi j, z

j
min

)
d
(
zi j, z

j
min

)
d
(
zi j, z j

max

)
σd
(
zi j, z j

max

)
0

 (4.19)

where σ is the risk avoidance coefficient and 0 ≤ σ < 0.5. The more fully the battlefield situation
information is perceived, the greater the value.

2) Determining the comprehensive loss function matrix
We can gather multiple attributes of the target Ti and build the comprehensive loss function matrix

as follows:

λi =



∑
j

w jλ
i j
PP∑

j

w jλ
i j
BP∑

j

w jλ
i j
NP

∑
j

w jλ
i j
PN∑

j

w jλ
i j
BN∑

j

w jλ
i j
NN


(4.20)
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3) Calculating the decision thresholds
According to comprehensive loss function matrix, the decision thresholds can be obtained by:

αi =

(1 − σ)
∑

j
w jd
(
zi j, z

j
max

)
(1 − σ)

∑
j

w jd
(
zi j, z

j
max

)
+
∑

j
σw jd

(
zi j, z

j
min

) (4.21)

βi =

∑
j
σw jd

(
zi j, z

j
max

)
∑

j
σw jd

(
zi j, z

j
max

)
+ (1 − σ)

∑
j

w jd
(
zi j, z

j
min

) (4.22)

4) Classifying the targets
After obtaining the categories of threat level, the corresponding tactic for each level can be provided,

as shown in Table 2.
If Pr (C| [x]) ≥ α, X ∈ POS (C), which indicates that the target is a necessary strike target; if

β < Pr (C| [x]) < α, X ∈ BND(C), which indicates that the necessity of strike cannot be determined
and further observation is needed for decision analysis; in addition, x ∈ NEG(C), which indicates that
the target is an unnecessary strike target.

Table 2. Three rules for threat assessment.

Conditional probability Categories Tactic
Pr (C| [x]) ≥ α POS(C): threat level attacking
β < Pr (C| [x]) < α BND(C): potential threat level further observation
β ≥ Pr (C| [x]) NEG(C): non-threat level no attacking

5. Example of air target threat assessment

We assume that there are four enemy targets T = {T1,T2,T3,T4}. A = {A1, A2, A3, A4} denotes four
threat factors: combat capability, speed, distance and angle, of which the first two are benefit attributes
and the last two are cost attributes. Three consecutive moments t = {t1, t2, t3} are selected for threat
assessment, of which t3 is the current moment. Table 3 shows the multi-time information data of the
target [32].

According to Eq (4.1), we can fuse dynamic data to obtain weighted dynamic decision matrix:

Z =


(0.7655, 0.1150)(0.6834, 0.1620)(0.6628, 0.2127)(0.7747, 0.1522)
(0.8357, 0.1084)(0.7164, 0.1620)(0.7117, 0.1280)(0.8617, 0.0691)
(0.7563, 0.2127)(0.7540, 0.1458)(0.7550, 0.2068)(0.7188, 0.1598)
(0.7193, 0.1835)(0.6994, 0.2026)(0.6935, 0.1899)(0.6928, 0.1644)

 (5.1)

According to Eqs (4.2)–(4.5), we can obtain the attribute weights of each time and comprehensive
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objective:
w (t1) = (0.2484, 0.2351, 0.2005, 0.3161) ,
w (t2) = (0.2592, 0.2215, 0.2431, 0.2762) ,
w (t3) = (0.2821, 0.2348, 0.2297, 0.2535) ,

w = (0.2703, 0.2321, 0.2268, 0.2708) .

(5.2)

Table 3. Threat information of targets at different times.

t T A1 A2 A3 A4

T1 (0.76,0.10) (0.68,0.15) (0.75,0.15) (0.80,0.15)
t1 T2 (0.80,0.15) (0.70,0.15) (0.60,0.20) (0.90,0.10)

T3 (0.78,0.15) (0.72,0.13) (0.65,0.15) (0.75,0.15)
T4 (0.65,0.28) (0.80,0.20) (0.55,0.30) (0.80,0.11)
T1 (0.78,0.10) (0.65,0.20) (0.70,0.20) (0.80,0.11)

t2 T2 (0.83,0.10) (0.65,0.20) (0.70,0.15) (0.85,0.10)
T3 (0.75,0.20) (0.85,0.15) (0.82,0.18) (0.73,0.19)
T4 (0.70,0.20) (0.64,0.21) (0.76,0.15) (0.75,0.15)
T1 (0.76,0.13) (0.70,0.15) (0.60,0.25) (0.75,0.18)

t3 T2 (0.85,0.10) (0.75,0.15) (0.75,0.10) (0.85,0.05)
T3 (0.75,0.25) (0.70,0.15) (0.75,0.25) (0.70,0.15)
T4 (0.75,0.15) (0.68,0.20) (0.70,0.18) (0.60,0.20)

According to Eqs (4.6) and (4.7), we can obtain positive and negative ideal solutions of target set:

R+ = (< 0.8357, 0.1084 >< 0.7540, 0.1458 >< 0.6628, 0.2127 >< 0.6928, 0.1644 >),
R− = (< 0.7193, 0.2127 >< 0.6834, 0.2026 >< 0.7550, 0.1280 >< 0.8617, 0.0691 >).

(5.3)

According to Eqs (4.8)–(4.10) and (4.13), we can obtain the normalized distance from targets to
positive and negative ideal solutions:

d+ = (0.2926, 0.6653, 0.4518, 0.5173), d− = (0.6298, 0.3561, 0.5154, 0.4592). (5.4)

According to Eqs (4.11), (4.12) and (4.14), we can obtain the normalized positive and negative grey
correlation degree of targets:

ε+ = (0.5396, 0.4596, 0.5154, 0.4816), ε− = (0.3990, 0.5902, 0.4677, 0.5231). (5.5)

According to Eqs (4.15)–(4.18), we can obtain the conditional probabilities: [ 0.6284 0.3938 0.5285
0.4749].

Obviously, the threat ranking of targets is T1 > T3 > T4 > T2. Based on decision rules, the classifi-
cation results of three-way decisions can be obtained: POS (A) = {T1}, BND(A) = {T3,T4},NEG(A) =
{T2}.
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Table 4. Conditional probabilities and synthetic thresholds of TWD.

threshold T1 T2 T3 T4

α 0.5314 0.5643 0.5456 0.5519
β 0.4315 0.4644 0.4456 0.4519
Pr(A|T ) 0.6284 0.3938 0.5285 0.4749

According to Eqs (4.19)–(4.22), we can calculate the thresholds of TWD. Combining the condi-
tional probabilities of targets, the results are shown in Table 4. Hence, we should give priority to
attacking or intervening in target T1, not attack T2 first and obtain more information for T3,T4.

Figure 2. Influence of risk avoidance coefficient on the comprehensive threshold.
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Figure 3. Influence of risk avoidance coefficient on threat classification.

We set up δ = 0.05–0.5. The influence of the risk avoidance coefficient on the comprehensive thresh-
old is shown in Figure 2 and the impact on threat classification is shown in Figure 3. It can be seen that
with δ increasing, α gradually reduces, β gradually increases, the positive and negative regions become
larger, the boundary regions gradually shrink or even become empty, and the classification results be-
come clearer. Compared with the method in reference [32] and the GRA method, the effectiveness and
advantages of the proposed method can be described. Figure 4 shows the result.

Figure 4. The threat assessment results of three methods.

As we can see, the threat values of targets are [0.5856 0.4249 0.5821 0.5685] and the threat rank-
ing result is T1 > T3 > T4 > T2 based on the method in [32]. The threat values of targets are
[0.5749,0.4378,0.5243,0.4793] based on the GRA method. We get the same ranking results, which
verifies the effectiveness of our method. The TOPSIS method only focuses on the difference in ab-
solute distance among targets. The proposed method considers both the difference in distance and
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the difference in sequence curve shape, which can produce more reasonable ranking results. So, the
proposed method has the advantages of these two methods.

Figure 5. Preference coefficient analysis.

As an important parameter, the preference coefficient reflects the preference for distance and grey
correlation, that is, the preference of decision-makers for absolute and trend differences. So, the pref-
erence coefficient can influence conditional probabilities. Assuming that the preference coefficient
changes from 0.00 to 1.00 and the step size is 0.10, Figure 5 shows the change result of the target
threat degree from 0 to 1.

With the increase of the preference coefficient, the threat degrees of target 1 and target 2 gradually
increase, and threat degrees of target 2 and target 4 gradually decrease. The comprehensive closeness
of target 1 and target 3 is directly proportional to the preference of location, and these two targets tend
to the maximum rational solution in distance; the comprehensive closeness of target 2 and target 4 is
in inverse proportion to the preference of location, and these two targets are closer to the positive ideal
solution in shape than in distance. The proposed model can reflect different decision-making schemes
by changing the preference coefficient according to the subjective tendencies of decision-makers. If
the absolute difference is more obvious, a larger preference coefficient can be used; if the trend is more
obvious, a smaller preference coefficient can be used. The battlefield situation is changing rapidly.
The difference between different target threat degrees in a method mainly determines the accuracy of
the method. The more obvious the difference, the more conducive it is to decision-making, what’s
more, the stronger superiority of the method [39]. In order to better reflect the target differentiation,
the superiority of the target i over j is expressed as:

S Dij = (
ζi − ζ j

ζi
) × 100 (5.6)

where ζi and ζ j(i = 1, 2, ...,m; j = 1, 2, ...,m; i , j) are threat values of targets.
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Figure 6. Comparison of the superiorities.

As shown in Figure 6, the average superiority of the method proposed is 1.529 times that of the
method in reference [32] and 1.656 times that of the GRA method. In the process of threat assessment,
the larger the superiority difference, the better the target threat can be distinguished and the threat
ranking and decision-making are more reasonable. So, the method proposed in this article can better
distinguish targets for decision-making.

To further illustrate the dynamic assessment ability of this method in the battlefield situation, the
above simulation example is used to calculate only the data at the current time t3 and the result is
[0.6459 0.3965 0.4384 0.5428], which is ranked as T1 > T4 > T3 > T2. At time t2, if the distance of
target T3 changes from < 0.85, 0.15 > to < 0.10, 0.15 >, the threat ranking of each target obtained by
the dynamic method considering multi-time information is T1 > T4 > T3 > T2 , and the threat degree of
T3 becomes smaller. However, the result obtained only at the current time remains unchanged, which
cannot reflect the impact of distance change. It shows that the method proposed can reflect the dynamic
changes of the battlefield situation and get more reasonable and effective ranking results.

6. Conclusions

To handle the uncertain battlefield situation information, a new threat assessment method based on
TWD is proposed. The multi-time threat assessment data is aggregated, and a cosine intuitionistic
fuzzy entropy is established to calculate attribute weights. The improved intuitionistic fuzzy TOPSIS
method and grey correlation analysis are used to obtain the conditional probability of TWD, with
both the development trend difference of the data and the location difference being considered. The
decision thresholds are obtained based on the comprehensive loss function matrix, and a TWD model
is established for objective classification of targets. The results obtained are closer to the reality of the
battlefield. Our next research work is mainly to explore advanced optimization algorithms to optimize
target dynamic threat assessment.
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