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Abstract: Sepsis is an organ failure disease caused by an infection acquired in an intensive care
unit (ICU), which leads to a high mortality rate. Developing intelligent monitoring and early warning
systems for sepsis is a key research area in the field of smart healthcare. Early and accurate identifica-
tion of patients at high risk of sepsis can help doctors make the best clinical decisions and reduce the
mortality rate of patients with sepsis. However, the scientific understanding of sepsis remains inade-
quate, leading to slow progress in sepsis research. With the accumulation of electronic medical records
(EMRs) in hospitals, data mining technologies that can identify patient risk patterns from the vast
amount of sepsis-related EMRs and the development of smart surveillance and early warning mod-
els show promise in reducing mortality. Based on the Medical Information Mart for Intensive Care
III, a massive dataset of ICU EMRs published by MIT and Beth Israel Deaconess Medical Center,
we propose a Temporal Convolution Attention Model for Sepsis Clinical Assistant Diagnosis Predic-
tion (TCASP) to predict the incidence of sepsis infection in ICU patients. First, sepsis patient data
is extracted from the EMRs. Then, the incidence of sepsis is predicted based on various physiolog-
ical features of sepsis patients in the ICU. Finally, the TCASP model is utilized to predict the time
of the first sepsis infection in ICU patients. The experiments show that the proposed model achieves
an area under the receiver operating characteristic curve (AUROC) score of 86.9% (an improvement
of 6.4%) and an area under the precision-recall curve (AUPRC) score of 63.9% (an improvement of
3.9%) compared to five state-of-the-art models.
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1. Introduction

In recent years, sepsis, a severe and complex infectious disease, has imposed a tremendous burden
on global healthcare systems. Accurately predicting the occurrence and progression of sepsis is crucial
for timely intervention and treatment, aiming to reduce patient suffering and improve survival rates.
It is one of the leading causes of death for patients in ICUs, characterized by tissue damage, organ
dysfunction, and ultimately death, triggered by infection [1]. Over the past decade, approximately 30
million people worldwide (including 4.2 million newborns and children) have suffered from sepsis,
and approximately 6 million patients have died. The average annual incidence of sepsis is 437 cases
per 100, 000 people [2,3]. Severe sepsis exacerbates multiple organ failure [4], with a mortality rate of
9.7% [5]. Especially in patients with infectious shock symptoms, the mortality rate can increase to over
40% [6]. Studies have shown that for every hour of delay in physicians making diagnostic conclusions,
the mortality rate of patients increases by 7.6% [7]. However, there is currently a lack of an effective
method to address this medical problem. Developing an intelligent diagnostic early warning model to
identify the risk of contracting sepsis and recommend timely therapeutic measures would significantly
reduce the risk of patient death.

Predicting the incidence of sepsis is a rigorous scientific challenge in medical diagnosis. It requires
empirical analysis and experience summary based on real patient EMRs to provide data sources for
subsequent clinical assistant diagnosis and treatment evaluation. Despite the widespread application of
artificial intelligence techniques in the field of smart healthcare [8–10], in real-world medical scenarios,
EMR data is complex in structure, and diagnostic information carries a high degree of uncertainty.
Therefore, current existing methods still face challenges in accurately predicting the onset of sepsis
and cannot be widely applied for clinical assistant diagnosis.

The main challenge in accurately predicting the incidence of sepsis in ICU patients based on EMRs
includes the following two aspects. First, the presence of numerous time-series features in EMRs
complicates modeling, analysis, and clinical application. Time-series features in EMRs are crucial
for early warning sepsis surveillance. However, the uncertainty of physiological data and laboratory
test results at specific time intervals complicates modeling and analysis. Existing methods often utilize
data from a single time point, disregarding the time-series nature of the data. Although recurrent neural
network (RNN) technologies are commonly used for modeling time-series data [11], the RNN structure
can suffer from issues like gradient disappearance and gradient explosion, particularly when dealing
with longer time intervals, resulting in poor prediction outcomes. Therefore, it is necessary to construct
a sepsis prediction model that incorporates time-series features for clinical assistant diagnosis.

Second, there were numerous missing values in the EMRs. The problem of missing data is pri-
marily due to doctors’ failure to record specific patient information or data corruption caused by other
reasons. However, the issue of missing values in the data may also be caused by the variability of
practice guidelines in daily medical management. For example, for patients with stable conditions,
their respiratory rate, heart rate, body temperature, and other physiological signs are usually recorded
every 3 to 4 hours. However, for patients in the ICU, these signs must be recorded every hour [12].
These variations in data collection intervals contribute to missing values in the EMRs, which further
complicates the prediction of sepsis incidence.

Traditionally, researchers have adopted the method of deleting or averaging to solve the problem
of missing data. However, these methods do not consider the uncertainty of medical data, which may
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lead to severe prediction bias or invalid diagnostic conclusions.

In this study, we propose a temporal convolution attention model for sepsis clinical assistant diag-
nosis prediction (TCASP). The contributions of this study are summarized as follows:

1) We propose the TCASP model, which inputs multivariate time-series features into a temporal
convolutional network (TCN) and combines the attention mechanism. Based on the TCASP model,
we solved the modeling and clinical application problems of time-series data in a sepsis prediction
model so that the physiological sign data and laboratory test results of patients’ time-series nature can
be fully mined and applied. The TCASP model effectively improved the prediction accuracy of sepsis
and reduced the mortality of patients with sepsis.

2) We model the covariance of the EMRs and use the multitask Gaussian process (MGP) to gen-
erate a continuous function fitting for irregular sample data to fill in the missing values in the EMRs,
effectively solved the uncertainty of the data in the prediction of sepsis.

3) We conducted numerous experiments on the international open source real EMRs dataset
MIMIC-III. Experiments have shown that the TCASP model is superior to traditional machine learning
and deep learning models in terms of prediction accuracy, effectiveness, and stability.

The remainder of this paper is organized as follows. In Section 2, we present related work. Section
3 focuses on the methodology and discusses the details of the TCASP model. Section 4 presents
the results of our empirical evaluation of TCASP using the MIMIC-III dataset. Finally, we discuss
concluding remarks and research directions in Section 5.

2. Related work

2.1. Algorithm for early detection of sepsis

In recent years, various methods have been proposed for detecting sepsis in ICU [13–17]. These
methods have been selectively compared to the simple clinical scoring criterion known as systemic
inflammatory response syndrome (SIRS) [18]. However, the SIRS clinical scoring criterion does not
provide the capability for continuous assessment of sepsis risk. In addition to SIRS, sequential organ
failure assessment (SOFA) score [19] and modified early warning score (MEWS) [20] are commonly
used in clinical practice. These methods involve manual tabulation and analysis of patients’ vital signs
and laboratory results to generate risk scores and have been validated for sepsis detection in multiple
studies [21–23]. However, the effectiveness of these scoring systems is limited, partly because they
do not consider the temporal trends in patient data and correlations between measurements. Henry et
al. [24] introduced a targeted real-time warning score system called TEWScore for predicting septic
shock. Horng et al. [25] developed automated triggers using machine learning techniques in the triage
process of the emergency department to support clinical decision-making for sepsis. Nemati et al. [26]
proposed an interpretable machine learning model aimed at improving the predictive accuracy of sepsis
and providing explanations for the prediction results. Although these machine learning methods have
demonstrated superior predictive performance compared to existing simple clinical approaches, they
have not adequately addressed the issue of long time-series features in clinical medical data.
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2.2. Time series prediction

Time series prediction is a method that utilizes historical data of past observations to predict future
time points or intervals, and it finds wide applications in various fields [27–29]. Within the context of
time series and sequential data modeling, recurrent neural networks (RNNs) have been recognized as
commonly used approaches due to their powerful predictive capabilities and ability to capture variable-
length observations and long-term temporal dependencies. Several RNN-based architectures have been
developed for sepsis prediction in longitudinal medical records, where comprehensive medical records
of the same patient at different time points are considered. For instance, Kam et al. [11] leveraged
the commonly used LSTM architecture in deep learning to learn sequential patterns from medical
data, thereby enhancing feature extraction performance and applying it to sepsis onset prediction. Lin
et al. [30] proposed a convolutional-LSTM model that combines static and dynamic information for
early diagnosis and prediction of sepsis. Baral et al. [31] introduced an enhanced bidirectional LSTM
network for early prediction of cardiac arrest in sepsis patients. Rafiei et al. [32] presented a novel
technique called smart sepsis predictor (SSP) to forecast sepsis onset in ICU patients. Saqib et al. [33]
combined traditional machine learning techniques with LSTM to enable early prediction of sepsis
in electronic medical records. However, the long-term temporal dependencies inherent in the RNN
structure can lead to the vanishing or exploding gradient problems, which subsequently degrade the
predictive performance of RNN models.

2.3. Attention-based neural networks

Bahdanau et al. [34] first applied the attention mechanism to natural language processing to achieve
simultaneous alignment and translation, solving a potential problem of the previous use of the en-
coder–decoder architecture in machine translation, that is, the information is compressed in a fixed-
length vector that cannot correspond to long sentences. With the continuous development of attention
mechanisms, various models incorporating attention have been proposed and applied in the health-
care field. By focusing limited attention on crucial information, attention mechanisms can save re-
sources and rapidly acquire the most effective information. Consequently, it has been demonstrated
that attention mechanisms significantly enhance model performance. For example, Choi et al. [35]
proposed a reverse temporal attention model (RETAIN), which generates attention weights through
a reverse recurrent network for detecting important clinical variables; Usama et al. [36] proposed a
self-attention-based recurrent convolutional neural network (RCNN) model for assisting disease di-
agnosis by automatically learning advanced semantic features from clinical text using bidirectional
recurrent connections in convolutions. However, the mentioned model utilized an RNN architecture
that is slow to train and suffers from the vanishing gradient problem. Lan et al. [37] introduced an
end-to-end computational model based on graph attention network for lncRNA-disease association
prediction (GANLDA). Lin et al. [38] proposed a hierarchical attention temporal convolutional net-
work (HA-TCN) architecture for diagnosing myotonic dystrophy from grip force time-series data, but
such methods for disease prediction only focus on time points and do not consider different features.
The attention-based mechanism of the TCASP proposed in this study can address these problems.
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3. Methods

3.1. Problem definition

Let the set of ICU patients H = {h1, h2, · · · , hn}, ht = {Zt|tempk, heartratek, spo2k, · · · }, and the
feature vector Zt represent the ICU monitoring information, such as “body temperature”, “heart rate”
and “pulse oximetry”, of ICU patient h at time point t. The patient’s stay in ICU is a continuous time

interval T , T = {t1, t2, · · · , t j}. Subsequently, we let Zc =
j⋃

t=1
Zt denote the multivariate time series

features vector Z of patient c at all time points during hospitalization. The problem of sepsis prediction
can be formalized as follows: given the multivariate time-series features vector Z of T in ICU patient
h during hospitalization, the decision goal is to calculate the probability ph =TCASP(h,T,Z) of sepsis
in patient h through the TCASP model.
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Figure 1. Overall framework of TCASP.

We propose the TCASP for sepsis diagnosis prediction, as shown in Figure 1. The model comprises
four parts: a multivariate time-series feature vector Z input module, a temporal convolutional network
module, an attention mechanism module, and a prediction module. The overall prediction process is
as follows: first, the multivariate time series features of patients were obtained and input into the time
convolutional network for feature learning; then, the extracted features are assigned different weights
according to the feature channel attention and the time channel attention; finally, the probability of
sepsis infection in this patient is derived using the softmax activation function.
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Figure 2. Multitask Gaussian process (MGP).

3.2. Multitask Gaussian process

Our proposed model uses an MGP [39] to preprocess the data. This method can handle irregular
sampling frequencies, as shown in Figure 2. The MGP draws from the posterior distribution of a
given observation at uniformly spaced grid times (hourly). More precisely, given irregularly sampled
observations of i (value and time) {yi, ti}, for uniformly spaced query times xi, the MGP plots a potential
time series zi based on the posterior distribution P(zi|yi, ti, xi, θ) , as shown in Eq (3.1). The processed
zi is used as the input to the temporal convolutional network.

zi ∼ N(µ(zi),Σ(zi); θ) (3.1)

Mean µ(zi), and covariance Σ(zi) are, respectively:

µ(zi) = (KD ⊗ KXiTi)(KD ⊗ KTi + D ⊗ I)−1yi (3.2)

Σ(zi) = (KD ⊗ KXi) − (KD ⊗ KXiTi)(KD ⊗ KTi + D ⊗ I)−1(KD ⊗ KTiXi) (3.3)

where KXiTi is the correlation matrix between the uniformly spaced data query xi and the data fitting
ti, whereas denotes the correlation between xi and itself. KD is the task similarity kernel matrix whose
KD

d,d′ at position (d, d′) denotes the similarity tasks (i.e., time-series channels) d and d′. Here, ⊗ denotes
the tensor product, KTi denotes the specific Ti correlation matrix between all observed times encoun-
tered by patient i, and D is the diagonal matrix satisfying the pertask noise variance of Ddd = σ

2
d ,

with i is the unit matrix. The posterior mean µ(zi) also depends on the observation yi. We collect the
parameters of the MGP in θ = {KD, σ2

d|
D
d=1, l} , where l denotes the length scale of the kernel function.

3.3. Temporal convolutional network module

In the TCASP model, The multivariate time series feature vector Zt of ICU patients was processed
by MGP to obtain Zi, which was input into the time convolutional network. The temporal convolu-
tional network adds a dilated causal convolution based on a one-dimensional convolution. The causal
convolution ensures that the output of the model at time t depends only on the information at t and the
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moments before t and does not depend on the information after time t to prevent future information
leakage. The dilated causal convolution is illustrated in Figure 3.

d=1

d=2

d=4

Figure 3. Dilated causal convolution.

For one-dimensional input sequence x ∈ Rn and a filter f : {0, 1, · · · , k − 1} → R, the dilated
convolution operation F on element s of the sequence is defined as

F(s) = (x ∗d f )(s) =
k∑

i=0

f (i) · xs−d·i (3.4)

where d is the expansion factor, k is the filter size, xs−d·i represents the input sequence data, and input
the sequence data {x0, x1, · · · , xt} that need to be learned into the cause-and-effect extended convolution
learning feature Ftr, and it can be seen from Figure 3 that when the number of neural network layers
is large enough, the temporal convolutional network can learn all the input feature data and produce
highly accurate prediction results.

Meanwhile, in order to avoid network degradation in the deep model, the temporal convolutional
network adds residual connections between the convolutional layers. The output result of conversion
F and the input x of this module are added together as the output result Ftr = Activation(x + F(x)) of
the residual block, and the feature Ftr learned by the residual block is corrected.

3.4. Attention mechanism module

3.4.1. Feature channel attention

Medical datasets contain monitoring data of multiple patient physiological features that reflect
changes in patient physiological features, but not all physiological features extracted by temporal con-
volutional networks are associated with sepsis. Therefore, this study proposes using feature channel
attention to address this issue.

If the transformation in the temporal convolutional network is U = Ftr(X) , Ftr is denoted as a
feature, if X is an input, then X ∈ RT×N ; if X is the output result of the intermediate layer, then
X ∈ RT×N×C′ . To facilitate the model description, this study used the output result X ∈ RT×N×C′ of the
middle layer, and the operation of X as an input was similar to its operation as an output of the middle
layer. U ∈ RT×N×C′ , where T is the sequence length, N is the number of vital sign measurement terms,
C′ and C and are the number of channels.

First, 1× 1 convolution is used in the original convolution result U to obtain the life feature channel
attention m, as shown in Eq (3.5).
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m = V1×1 ∗ U (3.5)

where m ∈ RT×N is the learned feature attention, V1×1 is a convolution kernel, U ∈ RT×N×C′ is a
transform in TCN, and ∗ is a convolution operation.

The feature channel attention and convolution results are then multiplied simultaneously as the
result x̄c output , as shown in Eq (3.6):

x̄c = m · uc (3.6)

The size of the feature channel attention matrix is similar to that of the original convolution result,
and the feature channel attention matrix is multiplied by the results under different channels as the
result output.

Where X̄ = {x̄1, x̄2, · · · , x̄c}, uc is the convolution result U under the cth channel.

3.4.2. Time channel attention

Considering the interrelationship between channels, Hu et al. [40] introduced a novel structural
unit- squeeze-and-excitation (SE) module in a CNN. The time channel attention proposed in this study
is inspired by this approach. The ordinary channel attention mechanism is applied to the time interval,
and the time channel attention is denoted as the time-SE module.

For narrative convenience, this subsection uses X as the output of the intermediate layer and X
as the input for the analogous case. V = {v1, v2, · · · , vc} denotes the convolution kernel used in the
convolution, where vc represents the parameters of the cth convolution kernel. The convolution result
is denoted as U = {u1, u2, · · · , uc} , and the convolution result of the cth convolution kernel is.

uc = vc ∗ X (3.7)

From Eq (3.7), it is clear that the transformations in the temporal convolutional network alone
cannot “focus” on the temporal information in the data that is relevant to the prediction task. In this
study, we solve this problem using the temporal channel attention time-SE module.

The time-SE module, shown in Figure 4, is built in two steps: first, the squeeze module is built
to extract the global information on the time “channel”; second, the excitation module calculates and
reassigns the attention mechanism to the corresponding time interval based on the global information
provided by squeeze.

U

C

T N

exF

scaleF

sqF

Figure 4. Causal dilation convolution.
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Squeeze module: This module compresses the information of the convolution result of a temporal
convolutional network in a time interval into a time descriptor. The time descriptor was implemented
by considering the global average pooling operation to generate time-dependent statistics. Formally,
a statistic z ∈ Rc is implemented by compressing U in the dimension N × C . The tth element of z is
computed by Eq (3.8):

zt = Fsq(vt) =
1

N ×C

H∑
i=1

H∑
i=1

vt(i, j) (3.8)

where zt is the output of the squeeze module and, vt is the convolution result at time t.
Excitation module: This module uses the squeeze module to obtain global information, calculate

the attention of the time channel, and allocate different “importance” to different time intervals. To
apply the gating mechanism to the excitation module, a formal calculation of this operation is shown
in Eq (3.9):

s = Fex(z,W) = σ(g(z,W)) = σ(w2σ(W1z)) (3.9)

where σ refers to the ReLU activation function, W1 ∈ R
1
r ×T , and W2 ∈ R

1
r ×T , and s is the time channel

attention mechanism. To limit the complexity of the model and thus enhance its generalization, two
fully connected layers (FC) are added before the nonlinear transformation, that is, a descending layer
with parameter W1, a ReLU layer, and an ascending layer with parameter W2.

x̃t = Fscale(vt, st) = st · vt (3.10)

where X̃ = {x̃1, x̃2, · · · , x̃t} , st is the time channel attention term assigned to time t and vt ∈ R
N×C is the

result of convolving the data at time t. The time-SE module introduces dynamics in which the inputs
are conditional (changes in time channel attention that occur with different inputs), which improves the
ability of the model to distinguish the features of the data in time.

3.5. Prediction module

The feature channel attention m and time channel attention st are calculated separately on the convo-
lution results, and then multiplied with the convolution result to obtain different attention output results
x̄c and x̃t. The output results under the two-channel attention are summed to obtain the extracted fea-
tures Ft , as shown in Eq (3.11):

Ft = x̄c + x̃t (3.11)

The features Ft are input into the feedforward neural network, and the probability of the onset of
sepsis pt for the patient is derived using the softmax activation function, as shown in Eq (3.12):

pt = so f tmax(Ft) (3.12)

In this study, the cross-entropy loss function is used as the loss function L between the true value
at and the predicted value pt, and the minimization L is used to optimize the input of the patient’s
physiological features, network parameters and to predict the probability of sepsis onset in patients.
The loss function L is calculated as shown in Eq (3.13).
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L = −
N∑

i=1

[(atlogpt) + (1 − at)log(1 − pt)] (3.13)

3.6. TCASP prediction algorithm

The implementation of the temporal convolution attention model for sepsis diagnosis prediction is
presented in Algorithm 1.

Algorithm 1 Algorithm of example
Input: Patient Information H = {h1, h2, · · · , hn}, T = {t1, t2, · · · , t j}, Number of layer L, Residual

blocks B, Training hyperparameters
Output: The probability that the patient has sepsis pt

1: for ht = {Zt|tempk, heartratek, spo2k, · · · } do // input physiological features into TCN
2: F(s) = (x ∗d f )(s) =

∑k
i=0 f (i) · xs−d·i

3: Ftr = Activation(x + F(x))
4: for x̄c = m · uc do // feature channel attention weighted
5: m = V1×1 ∗ U
6: uc = vc ∗ X
7: end for
8: for x̃t = Fscale(vt, st) = st · vt do // time channel attention weighted

9: zt = Fsq(vt) = 1
N×C

H∑
i=1

H∑
i=1

vt(i, j)

10: s = Fex(z,W) = σ(g(z,W)) = σ(w2σ(W1z))
11: vt ∈ R

N×C

12: end for
13: end for
14: Ft = x̄c + x̃t // weighted sum of two sets of features
15: pt = so f tmax(Ft) // return to the incidence of sepsis in patients
16: Calculate the cross-entropy loss function L
17: Model optimization, parameter update
18: Return pt // return the optimized result

4. Experiments and results

4.1. Experimental dataset

In this study, we used the EMRs dataset MIMIC-III [41] provided by Beth Israel Deaconess Medical
Center, U.S.A. The MIMIC-III dataset contains information on multiple types of ICUs (surgical care
units, medical care units, trauma surgical care units, neonatal care units, and cardiac care units) and
includes vital signs, medications, laboratory measurements, medical orders, procedure codes, diagnosis
codes, imaging reports, length of stay, and survival data. The longitudinal medical records used for
this study collected data on over 58, 000 visits to 38, 645 adults and 7875 newborns seen at the medical
center between 2001 and 2012. Institutional approval was obtained to use the deidentified data for
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research purposes.

4.2. Data extraction and data preprocessing

4.2.1. Data extraction

Data were extracted from the MIMIC-III dataset according to the latest international consensus
definition of sepsis, which is commonly used to assess the effectiveness of treatment in patients with
suspected infection at risk of sepsis.

First, accurate and timely determination of the time of onset of sepsis is critical. SOFA (as shown
in Table 1) is a scoring system for determining the degree of impairment of major organ function after
a patient is admitted to the ICU ward, and a SOFA score ≥ 2 indicates that the patient is at risk of
suspected sepsis infection. Therefore, in this study, the time of SOFA score ≥ 2 after the patient’s
admission to the ICU was determined as the onset of suspected sepsis infection.

Second, the following criteria were used for patient inclusion in the trial: (1) patients admitted to
the ICU who were older than 18 years, with a high prevalence of sepsis; (2) ICU stay of over 24 h to
ensure sufficient data for analysis, and (3) patients diagnosed with sepsis according to the international
consensus definition. In addition, to ensure that nonseptic patients did not develop sepsis before ICU
admission, the data center for nonseptic patients was required to have no ICD-9 codes associated with
sepsis.

Finally, 24 dynamic features related to sepsis were selected for the experiment (as shown in Table
2). After screening the data, 17, 227 patients were finally selected, including 6769 patients with sepsis
and 10, 458 patients without sepsis.

Table 1. Sequential organ failure assessment.

Score
System Variable 0 1 2 3 4
Respiration PaO2/FiO2, mmHg ≥ 400 < 400 < 300 < 200 < 100

respiratory support Yes Yes
Coagulation Platelets, 109/L ≥ 150 < 150 < 100 < 50 < 20
Liver Bilirubin, µmol/L < 20.5 ≤ 34.1 ≤ 102.5 ≤ 205.1 > 205.2
Cardiovascular MAP, mmHg ≥ 70 < 70

Dopamine, µg/(kg·min) ≤ 5 > 5 > 15
dobutamine, µg/(kg·min) any dose
epinephrine, µg/(kg·min) ≤ 0.1 > 0.1
norepinephrine, µg/(kg·min) ≤ 0.1 > 0.1

Central nervous system Glasgow Coma Scale score 15 13–14 10–12 6–9 < 6
Renal Creatinine, µmol/L < 110 ≤ 176 ≤ 308 ≤ 442 > 442

Urine output, ml/d ≤ 500 ≤ 200

Note: (1) Daily assessment should take the worst daily value; (2) Higher scores indicate a worse
prognosis.
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4.2.2. Data preprocessing

The data obtained after extraction from the MIMIC-III dataset cannot be used directly for sepsis
prediction, and further processing of the experimental data is required.

(1) Filling in missing data values: The typical solutions for missing data are deletion and mean
interpolation; however, considering that medical data have sampling irregularity and uncertainty, there
are certain problems in solving missing medical data using these methods. Therefore, the experiments
used MGP to solve the missing data problem. It generates a continuous function to fit irregular samples
by modeling the data covariance. Because it can easily account for uncertainty and does not require
uniformly sampled data, it is the ideal solution for handling irregularly sampled medical time series.

(2) Data normalization: The prediction results are affected by the units of measurement of each
feature value, for example, 90 ≤ systolic blood pressure ≤ 140, 60 ≤ diastolic blood pressure ≤ 90, 16
≤ respiratory rate ≤ 20. Normalization can limit the data to a certain range, thus eliminating the adverse
effects caused by odd sample data. The normalization of the data accelerates the gradient descent to
obtain the optimal solution and potentially improve accuracy.

Table 2. Dynamic features list of sepsis.

Vital Features Lab Features
Mean blood pressure Platelet Bicarbonate
Respiratory rate Potassium Creatinine
Heart rate Pulse transit time Chloride
Pulse oximetry International normalized ratio Glucose
Systolic blood pressure Prothrombin time Hematocrit
Diastolic blood pressure Sodium Hemoglobin
Body temperature Blood urea nitrogen Lactate

White blood cells Magnesium
Blood gas pH

4.3. Benchmark model and experimental setup

To verify the effectiveness of the proposed TCASP model, five representative models were selected
for comparison experiments:

Logistic regression [42] is a generalized linear regression analysis model that classifies data based
on the available data by creating a regression formula for the classification boundary line.

Insight [43] is an early warning algorithm that has been developed for the early detection of septic
infections in clinical settings.

RNN [44] is a type of neural network with short-term memory capacity and are used to process
sequential data.

LSTM [45] network is a type of recurrent neural network after improvement, which can solve
long-distance dependence.

TCN [46] is a network structure capable of processing time-series data and outperforming tradi-
tional neural networks under certain conditions.

In this study, we used TensorFlow 2.0 to implement the TCASP model. All experiments were
conducted on a GPU server with 192G RAM, RTX6000 graphics card, and Ubuntu Server 18.04. The
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dataset was divided into training, validation, and test sets at a ratio of 8 : 1 : 1. The experimental
parameters of the TCASP model are listed in Table 3.

Table 3. Experimental parameters.

Parameter Description Value
Learning rate 0.0005
Batch size 128
Number of epochs 100
Dropout rate 0.05
kernel size 2–6
Residual blocks 2–12
Hidden layers 10–55
L2 regularisation 0–250

4.4. Evaluation metrics

The sepsis prediction problem investigated in this study is essentially a binary classification learning
problem. There are two main types of evaluation metrics for binary classification learning problems:
AUROC and AUPRC. The sepsis prediction aims to identify a patient’s risk of infection as early as
possible, and the larger the area of the AUROC and AUPRC, the better the prediction effect. The
indicators are briefly described as follows:

(1) AUROC: This metric is a randomly selected pair of samples (positive and negative samples) us-
ing a classifier that has been trained to predict a probability value for the positive and negative samples,
respectively. The probability that the probability of the positive sample is greater than the probability
of the negative sample is the AUROC, and the formula is

AUC =
∑

insi∈positiveclass rankinsi −
M×(M+1)

2

M × N
(4.1)

where
∑

insi∈positiveclass denotes the ordinal numbers of positive samples, rankinsi denotes the number of
the ith sample, and M,N denotes the number of positive and negative samples.

(2) AUPRC: The PRC curve is the line formed by the points of accuracy and recall, and is plotted
with accuracy as the vertical axis and recall as the horizontal axis to obtain the recall-accuracy curve,
referred to as the “PR curve”.

In addition to the two evaluation metrics mentioned earlier, decision curve analysis (DCA) and
clinical impact curve (CIC), which are widely used in clinical analysis, are used in this study for com-
parison of logistic, Insight, RNN, LSTM, TCN and TCASP models. The metrics are briefly described
below.

(1) DCA is a simple method for evaluating clinical predictive models, diagnostic tests, and molec-
ular markers. While traditional diagnostic assays, such as sensitivity, specificity, and area under the
ROC curve, only measure the diagnostic accuracy of predictive models and fail to consider the clini-
cal utility of a particular model, the DCA can integrate patient or decision-maker preferences into the
analysis. This concept meets the practical needs of clinical decision making.
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Nb =
tpc
n
−

f pc
n

(
pt

1 − pt
) (4.2)

where Nb is the net benefit, tpc is the true positive count, f pc is the false positive count, n is the total
number, and pt is the threshold probability.

(2) The CIC is a further development of the DCA algorithm, which is used in clinical settings to
assess the predictive accuracy of predictive models.

4.5. Analysis of experimental results

This study aims to identify patients at risk of sepsis infection as early as possible and to minimize
mortality in patients with sepsis. Therefore, the diagnostic accuracy of the TCASP prediction model
is particularly important. Figures 5 shows the comparison of AURPC and AUPRC values for sepsis
onset under different algorithms.

(1) The analysis of the experimental results in Figures 5 shows that within 6 hours before sepsis
onset, the AUROC and AUPRC indexes of the TCASP model continue to rise, indicating that the
probability of sepsis infection of patients increased continuously, with the highest values reaching
86.9% and 63.9%, respectively, which are far higher than those of other prediction models. This
indicates that TCASP is the most suitable model for the early prediction of the first infection of sepsis
in ICU patients. (2) As shown in the time complexity comparison in Table 4, where n is the number
of training samples, t is the sequence length, and d is the vector dimension, the time complexity of
the TCASP model in this study is O(n ∗ d2 + t ∗ d2). The time complexity of logistics is the lowest
among the compared methods, and the time complexity of TCASP is slightly higher than that of TCN.
Therefore, there is a need for continuous optimization in terms of time complexity to improve the
prediction performance of the model.

Figure 5. Comparison of AUROC and AUPRC values for sepsis onset under different algo-
rithms.

Table 4. Time complexity comparison.

Algorithm Logistic Insight RNN LSTM TCN TCASP

Time Complexity O(n ∗ d) O(n ∗ d2) O(n ∗ d + t ∗ d) O(n ∗ d2 + t ∗ d) O(n ∗ d2 + t ∗ d) O(n ∗ d2 + t ∗ d2)
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To verify the effectiveness of MGP in the early diagnosis and prediction of sepsis, we compared five
commonly used methods for handling missing values. According to the experimental results shown in
Table 5, using MGP for missing value imputation yielded excellent results for the subsequent TCASP
model in sepsis early diagnosis and prediction.This is because MGP can utilize the correlations be-
tween multiple tasks (i.e., different features) to impute missing values. By considering information
from multiple features, the imputed values can more accurately reflect the actual condition of the pa-
tients, providing more comprehensive data. Single-task Gaussian process is also a flexible and effective
method for handling missing values, but it is only suitable for imputing missing values in a single fea-
ture and cannot fully leverage the correlations between features. Nearest neighbor interpolation method
can fill in missing values based on the nearest neighboring data points to the missing values, but it may
not be robust enough in the presence of noise or outliers. Mean imputation and median imputation
are simple and common methods that fill in missing values using the mean or median of the entire
feature. These methods can preserve the overall statistical characteristics of the data to some extent but
may overlook the correlations between features. Deleting missing values is the simplest approach, but
it may result in a reduction in the amount of data and introduce bias in predictions.In summary, this
study chose to use MGP to handle missing values in multivariate time series features because it can
better leverage the correlations between features, providing more accurate and comprehensive data.

Table 5. Comparison of missing value handling methods.

Model Missing Value Handling AUROC AUPRC
Delete Missing Values 70.5 ± 2.8 50.4 ± 3.0
Mean Imputation 73.1 ± 1.0 53.9 ± 1.7

TCASP Median Imputation 76.8 ± 1.7 56.3 ± 0.9
Nearest Neighbor Interpolation 79.4 ± 2.6 58.6 ± 1.5
Single-task Gaussian Process 81.2 ± 1.2 60.1 ± 1.0
Multi-task Gaussian Process 86.9 ± 0.6 63.9 ± 1.3

4.6. Analysis of ablation study results

In our model, we use an attention mechanism to enhance the selection of multivariate time-series
features in the TCASP model, considering the specificity of medical datasets, which helps improve the
prediction performance of the entire model. We conducted ablation experiments to demonstrate the
effectiveness of the attention mechanism in the model for selecting important features and temporal in-
formation. The TCASP model consists of three parts: temporal convolutional network, feature channel
attention (α), and time channel attention (β), and the entire TCASP model is split with the other three
parts for comparison of the ablation experiments, and the results are shown in Tables 6 and 7.
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Table 6. Area under the ROC curve for the ablation experiment.

Hours before sepsis onset TCASP w/o α TCASP w/o β TCASP w/o attention TCASP
6 h 65.2 ± 2.1 61.1 ± 1.9 57.4 ± 2.6 73.5 ± 0.6
5 h 67.5 ± 1.8 64.2 ± 1.0 60.9 ± 1.7 73.9 ± 1.2
4 h 69.8 ± 0.9 66.0 ± 0.4 62.8 ± 1.2 74.2 ± 0.4
3 h 71.2 ± 1.2 68.3 ± 0.7 64.3 ± 1.0 76.5 ± 1.0
2 h 73.4 ± 0.4 71.2 ± 0.9 69,4 ± 0.8 81.3 ± 0.3
1 h 76.1 ± 0.6 74.9 ± 0.5 72.6 ± 0.5 83.0 ± 0.5
0 h 79.5 ± 0.4 77.4 ± 0.7 74.2 ± 0.6 86.9 ± 0.6

Table 7. Area under the precision-recall curve for the ablation experiment.

Hours before sepsis onset TCASP w/o α TCASP w/o β TCASP w/o attention TCASP
6 h 48.5 ± 1.8 47.7 ± 1.0 45.7 ± 1.5 50.4 ± 2.0
5 h 49.3 ± 1.6 48.4 ± 1.5 47.0 ± 1.3 51.3 ± 1.2
4 h 50.1 ± 1.1 50.2 ± 1.2 49.3 ± 0.9 54.7 ± 1.1
3 h 51.6 ± 1.5 51.3 ± 1.3 50.6 ± 1.7 57.9 ± 1.0
2 h 53.7 ± 1.3 53.3 ± 1.7 51.1 ± 0.9 60.3 ± 1.2
1 h 55.1 ± 1.4 54.7 ± 1.8 52.0 ± 1.0 62.7 ± 0.7
0 h 59.9 ± 1.2 56.7 ± 1.2 54.4 ± 1.3 63.9 ± 1.3

To verify the effect of the attention mechanism on the importance of multivariate time series fea-
tures, we removed the entire attention mechanism module at the input layer of feature extraction. To
verify the effect of time channel attention (β) on the importance of selecting temporal information, we
removed the time channel attention in the attention mechanism module. To verify the effect of the
feature channel attention (α) on the importance of selecting important features, we removed the feature
channel attention in the attention mechanism module.

By analyzing the results of the ablation experiments in Tables 6 and 7, we find that (1) the prediction
performance is optimal when the model has the entire attention mechanism module, indicating that the
attention mechanism significantly influences the model performance. (2) As the results of the ablation
experiments indicate, the prediction performance of the model was significantly reduced by removing
any part of the attention mechanism module. This is because the model does not select important
features and temporal information more accurately after removing two-channel attention. (3) The
ablation experiments show that as the number of patients in the EMRs increases, the patient data also
increases exponentially. If important patient information is not extracted for the patient, it will bring a
huge computational overhead to patient condition prediction and auxiliary diagnosis. The experiments
in this study verify the effectiveness of the attention mechanism module in the TCASP model, which
is beneficial for improving prediction performance.

4.7. Analysis of clinical trial results

In actual clinical diagnosis, we predict whether a patient has sepsis using the patient’s physiological
features, and no matter which feature value is selected as the threshold, we will encounter false posi-
tives and negatives, that is, misdiagnosis and underdiagnosis, sometimes avoiding false positives will
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benefit the patient the most, and sometimes it is more desirable to avoid false negatives, and to attempt
to avoid these two situations, decision curves are commonly used. Figure 6 shows the decision curve
analysis of the six prediction models. The x-axis represents the threshold probability of critical care
outcomes, and the y-axis represents the net benefit.

As shown in Figure 6, we can see that the TCASP model has the highest net benefit, while the
Logistic regression model has the lowest net benefit. This is because the Logistic regression model
has stricter requirements for features, needing them to satisfy the assumptions of linearity and inde-
pendence. If there are non-linear features or highly correlated features in the sepsis prediction task,
the Logistic regression model may not effectively utilize this information, thereby affecting the perfor-
mance of net benefit. At the same time, as the threshold probability increases, the net benefit of the
TCN model gradually decreases. This is due to the local nature of convolutional operations, which
may pose challenges for TCN in handling long-term dependencies. In the sepsis prediction task, long-
term temporal dependencies may be crucial for accurate predictions. The TCASP model effectively
addresses both of these issues by combining temporal and feature attention mechanisms, achieving the
best net benefit in the DCA curve. If the risk of a patient hi suffering from sepsis is recorded as pi,
and when pi reaches the corresponding threshold, it is regarded to be positive, which means that the
doctor can refer to the DCA index to take corresponding treatment measures in advance for patients
suspected to be infected with sepsis; this will not only predict the probability that the patient may suf-
fer from sepsis so that the patient’s condition can be controlled early but also reduce the probability of
misdiagnosis and avoid causing double losses to the patient’s mental and property.
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Figure 6. Decision curve analysis of six prediction models.

The CIC visualization of the TCASP model is shown in Figure 7. In the CIC, the x-axis indicates
the threshold probability of critical care outcomes, and the y-axis indicates the number of high risk
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individuals. The red curve indicates the number of people classified as positive (high risk population)
by the TCASP model at each threshold, and the blue curve indicates the number of true positives
(actual occurrence of the high risk population) at each threshold.

As shown in Figure 7, according to the CIC analysis results, when the threshold exceeds 50%,
the TCASP model identifies a number of individuals as high-risk sepsis patients that highly matches
the actual number of high-risk sepsis patients. This indicates that the TCASP model has high pre-
dictive accuracy at high thresholds, meaning that the model tends to classify individuals with higher
probabilities as high-risk patients. At the same time, the model’s positive predictions match the ac-
tual number of positives, which means that at high thresholds, the model can effectively identify true
high-risk patients, thus providing good clinical utility. This is crucial for the early diagnosis and inter-
vention of sepsis, as it helps doctors better identify high-risk patients and take appropriate treatment
measures promptly. However, it is important to note that for lower threshold probabilities, the model’s
predictions may have some errors, meaning that the model may miss some true high-risk individuals.
Therefore, in practical applications, doctors and clinical decision-makers need to balance the trade-off
between accuracy and missed diagnosis rate and choose an appropriate threshold based on specific
circumstances.

Figure 7. Clinical impact curve of the TCASP model.
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5. Conclusions

We proposed the TCASP model comprehensively considered the uncertainty of EMRs and used
the multitask Gaussian process to tackle the missing data. We introduced a dual channel attention
mechanism, which enables the model to ”independently” select relevant features, and solve the problem
of difficulty in focusing on important features and time information owing to the huge and complex
EMRs. The TCASP model can focus on the time-series information and predict the time of first sepsis
infection in ICU patients.

However, the TCASP model also has some shortcomings: (1) Although introducing the time chan-
nel attention mechanism in the model can focus on time information, which can improve the effect of
feature learning, it also improves the time complexity. (2) The experimental data in this study came
only from an internationally open dataset. In this dataset, the proportion of male patients was relatively
high, and the number of white patients was relatively high, which may have led to a potential demo-
graphic bias. (3) Our dataset analysis may be insufficient, leading to some key feature variables not
being included in the TCASP model.

In future studies, we aim to further improve the model to enable it to identify high risk sepsis patients
more comprehensively, accurately, and promptly. We aim to further improve the TCASP model, reduce
the time complexity, provide technical support for clinical assistant diagnosis, personalized diagnosis,
and treatment of sepsis, and improve the level of smart medical services.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments. This research was
funded by the Northwest Normal University Major Research Project Incubation Program, China (No.
NWNU-LKZD2021-06).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. M. S. Hari, G. S. Phillips, M. L. Levy, C. W. Seymour, V. X. Liu, C. S. Deutschman, et al.,
Developing a new definition and assessing new clinical criteria for septic shock: For the third
international consensus definitions for sepsis and septic shock (sepsis-3), JAMA, 315 (2016), 775–
787. https://doi.org/10.1001/jama.2016.0289

2. C. Fleischmann-Struzek, D. M. Goldfarb, P. Schlattmann, L. J. Schlapbach, K. Reinhart,
N. Kissoon, The global burden of paediatric and neonatal sepsis: A systematic review, Lancet
Respir. Med., 6 (2018), 223–230. https://doi.org/10.1016/S2213-2600(18)30063-8

3. C. Fleischmann, D. O. Thomas-Rueddel, M. Hartmann, C. S. Hartog, T. Welte, S. Heublein,
et al., Hospital incidence and mortality rates of sepsis: An analysis of hospital episode
(DRG) statistics in germany from 2007 to 2013, Deutsch. Ärzteblatt Int., 113 (2016), 159.
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