
Geosci. Model Dev., 16, 3565–3579, 2023
https://doi.org/10.5194/gmd-16-3565-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

PySubdiv 1.0: open-source geological modeling and reconstruction
by non-manifold subdivision surfaces
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Computational Geoscience and Reservoir Engineering Department, RWTH Aachen University, 52062 Aachen, Germany

Correspondence: Mohammad Moulaeifard (mohammad.moulaeifard@cgre.rwth-aachen.de)

Received: 22 July 2022 – Discussion started: 8 August 2022
Revised: 20 April 2023 – Accepted: 15 May 2023 – Published: 28 June 2023

Abstract. Sealed geological models are commonly used as
an input to process simulations, for example, in hydrogeo-
logical or geomechanical studies. Creating these meshes of-
ten requires tedious manual work, and it is therefore diffi-
cult to adjust a once-created model. In this work, we pro-
pose a flexible framework to create and interact with ge-
ological models using explicit surface representations. The
essence of the work lies in the determination of the con-
trol mesh and the definition of semi-sharp-crease values,
which, in combination, enable the representation of complex
structural settings with a low number of control points. We
achieve this flexibility through the adaptation of recent al-
gorithms from the field of computer graphics to the specific
requirements of geological modeling, specifically the rep-
resentation of non-manifold topologies and sharp features.
We combine the method with a particle swarm optimization
(PSO) approach to enable the automatic optimization of ver-
tex position and crease sharpness values. The result of this
work is implemented in an open-source software (PySubdiv)
for reconstructing geological structures while resulting in a
model which is (1) sealed/watertight, (2) controllable with a
control mesh and (3) topologically similar to the input geo-
logical structure. Also, the reconstructed model may include
a lower number of vertices compared to the input geologi-
cal structure, which results in reducing the cost of modeling
and simulation. In addition to enabling a manual adjustment
of sealed geological models, the algorithm also provides a
method for the integration of explicit surface representations
in inverse frameworks and the consideration of uncertainties.

1 Introduction

Parametric surface-based representation is one of the major
approaches to the surface representation of geological ob-
jects (De Kemp, 1999; De Paor, 1996; Farin and Hamann,
1997). Several studies considered a surface-based approach
in geological modeling since the outstanding features of the
structure, e.g., heterogeneity, are explicitly demonstrated by
the surfaces of the boundary without depending on grid cells
(Moulaeifard et al., 2023; Jacquemyn et al., 2019). It is worth
mentioning that Jacquemyn et al. (2019) comprehensively
investigate the advantages of surface-based modeling com-
pared to grid-based representation. Botsch et al. (2010) con-
sider NURBS (non-uniform rational B splines) and subdivi-
sion surfaces as two major methods of parametric surface-
based representation for generating controllable free-form
surfaces. Subdivision surfaces convert an initial mesh (con-
trol mesh) to a smooth mesh by successive refinements un-
til the final mesh is sufficiently fine. The final smooth mesh
is a controllable free-form surface which can be controlled
easily by the control points (vertices of the initial mesh). Al-
though both NURBS and subdivision surfaces produce con-
trollable free-form surfaces, subdivision surfaces give free-
dom from topological limitations, whereas NURBS under-
scores the smooth manipulation of the model (Cashman,
2010).

Previous studies of geological modeling have dealt with
NURBS (Börner et al., 2015; Jacquemyn et al., 2019;
Paluszny et al., 2007). However, NURBS surfaces suffer
from two limitations: (1) for generating a model with com-
plex topology, several NURBS patches have to be stitched
together, which leads to difficulty in modeling, and (2) mod-
ification of NURBS surfaces is challenging in the complex
cases since NURBS surfaces are based on grid structures

Published by Copernicus Publications on behalf of the European Geosciences Union.



3566 M. Moulaeifard et al.: PySubdiv 1.0

Figure 1. A common example of a non-manifold topology in geo-
logical modeling; multiple faces share one edge. Non-manifold ver-
tices (green) and edge (red).

(Botsch et al., 2010; DeRose et al., 1998; Sederberg et al.,
2008).

Although extensive research has been carried out on ex-
ploiting NURBS for geological and reservoir modeling, re-
searchers have not considered subdivision surfaces in much
detail. Lévy and Mallet (1999) and Mallet (2002) investi-
gate the subdivision surface method, which exploits discrete
smooth interpolation (DSI) as the refinement scheme at each
iteration. In their approach, all vertices (except the control
vertices) are free to move in each iteration since DSI is a
discrete fairing method. Although their work deserves ap-
preciation, they mention that the formal proof of the con-
vergence of the series of recursively refined meshes is an
open question; however, it can be observed experimentally.
Also, they do not investigate the compatibility of subdivi-
sion surfaces for the structures with non-manifold topologies,
which is broadly observed in complex geological and reser-
voir modeling, e.g., connection between faults and horizons,
channel intersection and hierarchically layered structures. In
this paper, we focus on the non-manifold subdivision sur-
face method based on the Loop algorithm, in which the con-
vergence of the series of refined meshes is formally proved
(Loop, 1987).

One of the typical examples of non-manifold surfaces in
geological modeling is where several faces of the mesh share
one edge (Fig. 1). Representations of non-manifold struc-
tures require complex algorithms (Rossignac and Cardoze,
1999). The lack of supporting non-manifold surfaces is one
of the limitations of classical subdivision surfaces. Ying and
Zorin (2001) modified the subdivision surface algorithm and
made it compatible with the non-manifold topology which is
implemented in the core of PySubdiv.

Classic subdivision surface algorithms tend to generate
smooth surfaces. However, complex geological structures
inherently consist of creases and corners (e.g., sharp fault
bend), which require modified subdivision algorithms. Sub-
division surfaces with the semi-sharp-crease approach gen-
erate creases on the mesh by increasing the resistance of the
vertices to the smoothing procedure. In practice, the resis-
tance of the vertices can be created by applying the crease
sharpness value to the edges consisting of the respective ver-
tices. The higher the crease sharpness value of the edge is,
the sharper the creases on the structure. It is worth mention-
ing that PySubdiv exploits the semi-sharp creases for a bet-
ter representation of the creases of complex geological struc-
tures.

Furthermore, the subdivision surfaces are used for recon-
struction by fitting smooth surfaces to mesh or dense point
cloud data (Ma et al., 2015). The goal of reconstruction in
this paper is to generate the control mesh that gives control
over the reconstructed mesh with few control points. In other
words, the reconstructed mesh not only is fitted to the input
mesh but also can be controlled by vertices of the control
mesh. Moulaeifard et al. (2023) investigate the reconstruc-
tion of geological structures by non-manifold subdivision
surfaces. However, they manually fit the smooth surfaces to
the input data, which is a time-consuming process in com-
plex geological structures. This paper presents the automatic
reconstruction of geological structures which is implemented
in the PySubdiv.

The structure of the control mesh is based on two critical
variables: (1) the position of the control points and (2) the
crease sharpness value of each edge. Therefore, for fitting
the smooth mesh to input data, the position of the control
points and crease sharpness values have to be set. Several
researchers have studied the simplification method to esti-
mate the control mesh from the input mesh (Hoppe et al.,
1994; Suzuki et al., 1999; Wu et al., 2017). However, Ma et
al. (2015) advise exploitation of the distinguished features
of the input mesh instead of the simplification method since
simplification would be time-consuming for structures with
complex topology. It is worth mentioning that extensive re-
search has been carried out on exploiting the key features
of the input mesh for generating the control mesh; Ma et
al. (2015) use the umbilics and ridges. Also, Marinov and
Kobbelt (2005) and Kälberer et al. (2007) consider the cur-
vatures for generating the control mesh.

After estimating the control mesh, we have to optimize
the control mesh to find the best fit to input mesh. Wu et al.
(2017) investigate automatic fitting to solve the optimization
problem by using the augmented Lagrangian method. They
show that their method provides significant gains over previ-
ous works, e.g., Marinov and Kobbelt (2005), by generating
the reconstructed mesh with fewer control points while con-
sisting of comparable errors. Therefore, for the sake of effi-
ciency, PySubdiv makes use of the automatic reconstruction
method proposed by Wu et al. (2017), which is explained in

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3567

Sect. 2.4. The final reconstructed structure is controllable by
control points, sealed (or watertight) and topologically simi-
lar to the input model.

To date, there is no practical software to generate and ma-
nipulate sealed geological models using subdivision surface
approaches. We attempt to close this gap with the approach
described in this paper and the implementation in the accom-
panying software package PySubdiv. This study investigates
the advantages and limitations of PySubdiv for the modeling
and reconstruction of geological and reservoir structures with
a case study. Also, PySubdiv can export the final files as 3D
objects based on common object formats, e.g., obj, which can
be read by most computer graphics and meshing software.

2 Methods

The core functionality of PySubdiv consists of four funda-
mental parts, which are investigated in the following sec-
tion: (1) subdivision surface algorithm, (2) modeling with
semi-sharp creases, (3) supporting non-manifold topology
and (4) automatic reconstruction.

2.1 Subdivision surface algorithm

The subdivision surface algorithm refines the input (control)
mesh to generate the final desirable mesh based on math-
ematical rules (Peters, 2015; Halstead et al., 1993; Stam,
1998; Reif, 1995). Subdivision surfaces follow two steps at
each refinement: (1) the splitting step, which includes imple-
menting the new vertices on the surface, and (2) the averag-
ing step for updating the location of the vertices. There are
several subdivision surface schemes based on different crite-
ria, e.g., type of input mesh (triangular or quad) and the ap-
proach for refinement. The Loop scheme (Loop, 1987) is one
of the common subdivision schemes for triangular meshes
and is already implemented in PySubdiv. In the following,
the Loop algorithm is explained.

2.1.1 Loop subdivision scheme

Loop (1987) defines the Loop algorithm to generate smooth
surfaces for triangular meshes by using splitting and averag-
ing steps in each refinement stage. In the splitting step, a new
vertex is inserted on the midpoint of each edge (blue vertex
in Fig. 2), which results in the splitting of each triangle of the
control mesh into four triangles.

Updating the position of the existing and midpoint vertices
(yellow and blue vertices) is the averaging step of the Loop
scheme (Fig. 3). To determine the new position of the existing
vertex (q) withm adjunct vertices (r1, r2, r3, . . . , rk) the Loop
scheme proposes (Fig. 3a)

qnew = q · (1−mβ)+β
m∑
1
rm, (1)

Figure 2. Splitting step of Loop scheme. (a) The control mesh.
(b) Splitting each triangle into four by inserting new vertices (yel-
low vertices) in the middle of each edge.

where

β =
1
m

(
5
8
−

(
3
8
+

1
4

cos
2π
m

)2
)
. (2)

Also, to compute the new location of the midpoint of an edge
(h) enclosed by four existing vertices (e1e2e3e4), the Loop
algorithm uses (Fig. 3b)

h=
1
8
(e1+ e3)+

3
8
(e2+ e4) . (3)

2.1.2 Piecewise smooth subdivision surfaces

Representation of the objects consisting of sharp features
by smooth subdivision algorithms leads to unsatisfactory re-
sults. Hoppe et al. (1994) propose to add new rules for the
representation of the creases and corners to the Loop sub-
division scheme in which the new location of the vertex v
depends on the number of connected sharp edges as repre-
sented in Table 1 (DeRose et al., 1998).

The piecewise subdivision surface method presents an ac-
ceptable solution for generating the sharp regions of the
model. However, in complex geological modeling, it is vital
to model the semi-sharp regions which are not quite sharp.

2.2 Modeling with semi-sharp creases

The creases and corners can be made by considering the
crease sharpness values for the edges of the control mesh
(Fig. 4). This value can be between zero and one, which
indicates zero and infinite sharpness, respectively. Model-
ing different geometric objects becomes flexible by regulat-
ing crease sharpness. As mentioned in Sect. 2.1.2, Hoppe et
al. (1994) define the new rules for generating sharp regions
during the subdivision procedure. DeRose et al. (1998) gen-
eralize the method of Hoppe et al. (1994) for updating the
position of the vertices based on semi-sharp subdivision sur-
faces (Table 2).

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023



3568 M. Moulaeifard et al.: PySubdiv 1.0

Figure 3. Averaging step of generating the smooth surface by the Loop subdivision scheme. (a) Updating the position of the existing vertices.
(b) Updating the position of the new midpoint vertices.

Table 1. The rules for updating the positions of vertices connected to sharp edges based on piecewise smooth subdivision surfaces (DeRose
et al., 1998).

Number of sharp edges con-
nected to the vertex v

Name of vertex v The rule for updating the position of the vnew

One edge Dart Smooth subdivision rules (Sect. 2.1.1)

Two edges (vj v and vvk),
where the vj and vk are two ad-
jacent vertices connected to v

by sharp edges

Crease vnew =
vj+6v+vk

8 (crease rule)

Three or more edges Corner vnew = v (corner rule)

Figure 4a represents the control mesh with eight control
points (red vertices). Also, Fig. 4b shows the final smooth
mesh after applying the subdivision surfaces algorithm three
times when all edges of the control mesh have no crease
sharpness values. However, Fig. 4c represents the effect of
the resistance of three sharp edges to the smoothing proce-
dure (black edges, with crease sharpness values equal to one).

2.3 Supporting non-manifold topology

Non-manifold topologies are extensively observed in com-
plex geological and reservoir modeling. Figure 5 represents
the surface intersections as a common example of non-
manifold topology in geological modeling where multiple
faces are shared by one edge (e.g., the intersection of dif-
ferent faults or intersections between a horizon and a fault).

The classic subdivision surfaces cannot support non-
manifold topology since there is at least one irregular ver-
tex and/or edge. Ying and Zorin (2001) propose the non-
manifold subdivision surface algorithm, which supports a
wide variety of non-manifold topology problems. A full ex-
planation of this method is beyond the scope of this paper,
and in the following, we mention part of their work which

Figure 4. Generating creases on a mesh by applying the subdivision
surface algorithm three times (Moulaeifard et al., 2023). (a) Con-
trol mesh (b). All edges of the control mesh are smooth edges (red
edges). (c) Four edges are crease edges (blue edges), and nine edges
are smooth (red edges).

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3569

Table 2. The rules of the semi-sharp-crease scheme for updating the positions of vertices (DeRose et al., 1998).

Number of adjacent sharp edges The rule for updating the position of the vertex

0 or 1 Smooth subdivision rules (Sect. 2.1.1)
> 2 Corner rule of Table 1
2 Crease rule of Table 1

Figure 5. (a) A schematic representation of the intersection be-
tween a fault and a layer. (b) Mesh structure of the surface inter-
section includes the simple singular vertices (brown circles).

is practical in geological modeling. However, Moulaeifard et
al. (2023) extensively investigated non-manifold subdivision
surfaces for geological and reservoir modeling with multiple
examples.

Ying and Zorin (2001) categorize the vertices of the mesh
into three types and define the rule for updating the position
of vertices (Table 3): (1) regular vertices; (2) simple singular
non-manifold vertices that are connected to only two neigh-
borhood vertices by two shared non-manifold edges (Fig. 6);
and (3) complex singular non-manifold vertices, which are
the other non-manifold vertices. PySubdiv exploits the non-
manifold subdivision surfaces for geological modeling.

2.4 Automatic reconstruction

The geological model can be constructed by various meth-
ods, e.g., marching cube from the implicit model. As men-
tioned in Sect. 1, the goal of surface reconstruction in this
paper is to make the geological model manageable with a
few numbers of control points (of the control mesh). In order
to reconstruct the input mesh, the control mesh should be es-
timated first based on the salient features of the input mesh
(e.g., the location of minima, maxima and saddle points). Ex-
ploiting the salient features of the input mesh leads to pre-
serving the critical features of the input mesh (Ma et al.,
2015). Then, the location of the control points and crease

Figure 6. A representation of the simple singular vertex (v)
(Moulaeifard et al., 2023).

Table 3. The rules for updating the position of the vertices based on
the non-manifold subdivision surface algorithm (Ying and Zorin,
2001).

Vertex type The rule for updating the position of the
vertices, including non-manifold ver-
tices

Regular (manifold) Standard Loop algorithm

Simple singular Cubic B-spline subdivision algo-
rithm (for more details, please check
Moulaeifard et al., 2023)

Complex singular Corner rule of Table 1 (vertex remains
fixed)

sharpness values of the edges are optimized to find the best
fit of the reconstructed and input meshes.

It is worth mentioning that applying the subdivision sur-
face algorithm to the watertight control mesh results in a
watertight reconstructed mesh. Figure 7 represents the gen-
eral workflow of the reconstruction process of an anticlinal
structure. The input mesh contains two triangulated surfaces,
which are generated by GemPy software (De La Varga et al.,
2019). In order to obtain the initial control mesh, vertices on
the input mesh are extracted (purple spheres) to generate the
edges; faces; and, finally, a watertight initial control mesh.

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023



3570 M. Moulaeifard et al.: PySubdiv 1.0

Figure 7. General workflow of subdivision surface fitting with an
example of an anticlinal structure.

The initial control mesh runs through the optimization pro-
cess to be optimized. The reconstructed mesh is generated by
applying the subdivision surface algorithm to the optimized
control mesh.

Also, the following conceptualized approach can be men-
tioned for the reconstruction process (Fig. 8).

A noisy input mesh M (black curve), e.g., a rough ge-
ological interface, is generated from laser scanning or geo-
physical measurements. A coarse control mesh K (orange
curve) is generated based on the features of the input mesh
(e.g., minima and maxima), which contains the control points
vi . An unfitted subdivision surface SK is generated based on
the control mesh. On the subdivision surface, s(vi) indicates
the position of vertices vi after subdivision. Hence, the dis-
tances di between s(vi) and the input surface can be calcu-
lated by projecting the normal from the input mesh or finding
the closest vertices (Marinov and Kobbelt, 2005). Finally, the
distance is minimized by repositioning the control points vi
and setting the crease sharpness value to the edges.

Wu et al. (2017) investigate the automatic reconstruction
by solving an optimization problem. In their method, the po-
sitions of the control points and the crease sharpness value
of each edge repeatedly change until the best fit is achieved.
In both manual and automatic methods, the first step is the
estimation of the control points (c) with outstanding features
of the input geological mesh, e.g., local maxima and minima.
PySubdiv proposes some critical points of the input mesh as
suitable candidates for the generation of the control mesh.
However, it is always possible to arbitrarily select a set of
control points. Then PySubdiv used the Delaunay triangula-
tion approach to generate the initial control mesh. The second

Figure 8. Synthesized and conceptualized approach for surface fit-
ting with subdivision surfaces.

step is the reconstruction through optimization of the location
of control points and crease sharpness value for each edge of
the control mesh to find the best fit of the reconstructed mesh
to the input mesh.

Assume that the input geological mesh consists of m ver-
tices q = {q1,q2,q3, . . .qm}, the control mesh consists of
n vertices c = {c1,c2,c3, . . .cn}, and m edges have crease
sharpness values of h= {h1,h2,h3, . . .hm}. The goal is to
minimize the vector k, which indicates the difference be-
tween q and the projection of q onto the reconstructed (sub-
divided) mesh. Hoppe et al. (1994) mention that each vertex
of the reconstructed mesh can be approximated as an affine
combination of control points (c). Therefore the foot point
vector of the q on the reconstructed mesh can be approxi-
mated as f (h)c, where f (h) is a matrix dependent on h.
Therefore, the optimization problem can be represented by

min‖k‖ , (4)

subject to k = q−f (h)c. Wu et al. (2017) offer the following
augmented Lagrangian function for solving Eq. (4) by using
the augmented Lagrangian approach:

L(c,h,k;λ)= ‖k‖+ 〈λ,(k− (q − f (h)c))〉

+
b

2
‖k− (q − f (h)c)‖2 , (5)

where λ is the Lagrange multiplier, 〈 〉 is the vector dot prod-
uct operator, and b is a positive number. The following op-

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3571

timization algorithm (Table 4) is used for solving Eq. (5),
which includes solving three sub-problems respecting c, h
and k at each iteration.

1. Sub-problem with respect to c. The position of the con-
trol points c can be calculated in each iteration of opti-
mization by solving Eq. (6), which is a linear problem:

min
c

(
〈λ,(k− (q − f (h)c))〉+

b

2
‖k− (q − f (h)c)‖2

)
. (6)

2. Sub-problem with respect to h. The crease sharpness
values, h, in each iteration can be captured by adapt-
ing particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995):

min
h

(
〈λ,(k− (q − f (h) c)〉+

b

2
‖k− (q − f (h)c)‖2

)
. (7)

3. Sub-problem with respect to the k. In each iteration, k
can be calculated by

min
k

(
‖k‖+ 〈λ,(k− (q − f (h)c)〉+

b

2
‖k− (q − f (h)c)‖2

)
.

(8)

Calculating Eq. (8) results in the following:

1+ λ+ b (k− (q − (f (h)c)))= 0 . (9)

Finally, k can be computed by

k = q − f (h)c−
(1+ λ)
b

. (10)

3 Core of PySubdiv

As mentioned in Sect. 2, the core functionality of PySub-
div includes (1) subdivision surface algorithm, (2) modeling
with semi-sharp creases, (3) supporting non-manifold topol-
ogy and (4) automatic reconstruction. PySubdiv is written
with an object-oriented approach using the Python program-
ming language (Rossignac and Cardoze, 1999). Also, Py-
Subdiv exploits different varieties of open-source external li-
braries which are integrated into the core. Table 5 represents
the main external libraries implemented in PySubdiv.

Step-by-step workflow for the reconstruction of a
geological mesh by PySubdiv

(I) Generating the control mesh (semi-automatic)

PySubdiv accepts the structures with the triangle mesh, while
the input mesh can be generated by any arbitrary method
(e.g., implicit or explicit). Also, the input mesh can be either
watertight or non-watertight. If the input mesh is not trian-
gulated, PySubdiv can convert the input mesh to the triangle

mesh by using the triangulate function of the PyVista library
(Sullivan and Kaszynski, 2019).

The estimation of the position and number of control
points is the key stage in reconstruction which leads to the
generation of the watertight modeling by providing the con-
trol points at surface intersections. PySubdiv offers some
candidates to the user based on the features of the input
geological structure, e.g., minima, maxima and boundaries.
However, it is always possible for the user to select or gen-
erate the control points based on the requirements for the
interpretation. For example, the geological models gener-
ated based on real data may be associated with uncertain-
ties (Wellmann and Caumon, 2018). The user can consider
some control points at the suspicious locations regardless of
whether the locations are on the boundary or body part of the
layer.

In order to show the general workflow of generating a con-
trol mesh in PySubdiv, an anticlinal structure model is in-
vestigated. Figure 9 represents the graphical user interface
(GUI) window of PySubdiv containing the anticline model
(two non-watertight surfaces), which is generated by GemPy
(De La Varga et al., 2019). It is worth mentioning that water-
tight or non-watertight meshes can be imported as the input
mesh. All of the elements inside the GUI are explained in the
Appendix of this paper.

First, the top mesh is selected (the color changes from
green to red after selection). Then, the control points should
be chosen among the vertices of the selected mesh (Fig. 10a).
The individual points can be selected by pressing the “P” but-
ton on the keyboard while the mouse cursor hovers above
them. In this example, the maximal points on the anticline
axis have been chosen, as well as an additional point in the
center. Three points on the flanks have been sampled to sup-
port the control mesh at the turning point. Further important
points lie in the corner of the mesh. The next step is to trian-
gulate the selected points. Pressing the triangulation button
(12) starts the triangulation. The users are asked if they want
to define a polygon used as the “boundary” during the tri-
angulation. If declined, the Delaunay algorithm is executed
directly on the automatically detected boundaries. However,
unwanted orthogonal faces might appear. It is worth noting
that the polygon boundary for the Delaunay algorithm can be
defined by the user. Finally, the triangulated control mesh is
generated (Fig. 10b). Repeating the mentioned steps for the
second input surface yields the second simplified surface for
the control mesh.

In order to create a watertight mesh, four additional sides
should be created for the anticline model. Therefore, the
boundary vertices of the two simplified surfaces are selected
and triangulated. The vertices should be sampled from the
simplified surfaces to generate the watertight control mesh
(Fig. 11a). At the moment, the four sides must be meshed
individually and then merged together. When all four sides
are generated, the different meshes can be stitched together

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023



3572 M. Moulaeifard et al.: PySubdiv 1.0

Table 4. Reconstruction by semi-sharp subdivision surfaces based on Wu et al. (2017).

Input ε0 Error threshold

h(0) Initial crease sharpness value of the edges of the control mesh
c(0) Initial position of the estimated control points
λ(0) = 0 Initial value for Lagrangian multiplier
k(0) = 0 Initial value for k
i, b Iteration, coefficient

while ε > ε0 and i <max-iterations do
compute c(i+1),h(i+1),k(i+1)

(
assume c(i+1)

= c(i),h(i+1)
= h(i),k(i+1)

= k(i)
)

,

c(i+1)
= argminL

(
c,h(i+1),k(i+1)

;λ(i)
)
→ Eq. (6),

h(i+1)
= argminL

(
c(i+1),h,k(i+1)

;λ(i)
)
→ Eq. (7) ,

k(i+1)
= argminL

(
c(i+1),h(i+1),k;λ(i)

)
→ Eq. (10),

update the Lagrange multiplier:

λ(i+1)
= λ(i)+ b ·

(
k(i+1)−

(
q − f

(
h(i+1)

)
c(i+1)

))
ε <

∥∥∥c(i+1)
− c(i)

∥∥∥2

i = i+ 1
end while

Table 5. The main external libraries implemented in PySubdiv.

Library Explanation

1 PyVista Interactive 3D graphics application programming interface (Sullivan and Kaszynski, 2019)
2 NumPy Well-organized numerical computations (Van Der Walt et al., 2011)
3 PySwarms A toolkit for particle swarm optimization (PSO) (Miranda, 2018)
4 SciPy Scientific computing (Virtanen et al., 2020)

by merging. Finally, the sealed control mesh is generated and
shown in Fig. 11b.

(II) set the crease sharpness value to the edges
(automatically done by software)

The next step is to assign the crease sharpness value for each
edge of the initial control mesh (Fig. 11b). Wu et al. (2017)
and Hoppe et al. (1994) suggest a threshold angle (θ0) as a
criterion for tagging the edges of the initial control mesh. The
edge is tagged as sharp (i.e., crease sharpness value equal to
one) if the angle between the normal of two adjacent faces
(θe) is more than the threshold angle (θe > θ0). It is worth re-
minding that this value is just an initial estimation for crease
sharpness values.

(III) reconstruction (optimization) of control mesh
(automatically done by software)

In the first step of optimization, the generated (initial) con-
trol mesh and the original input meshes are imported as
the input data for the reconstruction algorithm (Table 4).
“MeshOptimizer” class instantiates an object based on the
input data, which can start the fitting process with the “op-

timize” method. It is worth mentioning that the final subdi-
vided (reconstructed) mesh can be exported by applying the
subdivision surface algorithm to the optimized control mesh.

4 Case study

As a case study, a part of the Upper Rhine Graben (URG)
is reconstructed by PySubdiv. The URG is a long geological
structure in the central part of the European Cenozoic Rift
System that contains geothermal energy resources. The data
set of the URG consists of several different geological units
(grid nodes) published by Freymark et al. (2020), which con-
sist of 616 464 individual nodes (Fig. 12). The dimensions of
the original model are 292 km in the x direction, 525 km in
the y direction and 130 km deep (z direction).

As mentioned in Sect. 3, the input data of PySubdiv should
consist of the triangular mesh, which can be generated by
any arbitrary method or software. In this case study, PyVista
generates the triangular mesh from the individual grid nodes,
resulting in 18 different surfaces and 10 volumes.

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3573

Figure 9. The GUI of PySubdiv allows the user to construct the control mesh for the (geological) model. The important GUI elements are
labeled and explained in the following.

Figure 10. (a) Control points are generated based on the vertices of the input mesh. (b) Triangulated control mesh is constructed based on
the control points and the Delaunay triangulation.

4.1 Estimation of the control mesh

The initial watertight control mesh is prepared based on the
prominent features of the input mesh, such as (a) minimal
and maximal points and (b) surface intersections of different
layers to ensure that the final mesh is watertight. Figure 13
represents the control mesh consisting of 832 control points
distributed over 18 individual surfaces.

Also, the edges of the control mesh, which consist of a
threshold angle of 80◦ (Sect. 3.1), are considered sharp and
given the crease sharpness values equal to one. Other edges
are considered smooth and assigned crease sharpness values
equal to zero. From our experience, exploiting the angle of
80◦ as the threshold angle in this case study leads to accept-
able results. However, this angle can be different depending
on the complexity of the model.

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023



3574 M. Moulaeifard et al.: PySubdiv 1.0

Figure 11. (a) Stitching and merging the different parts of the control mesh to make it watertight. (b) Final watertight control mesh.

Figure 12. Grid-based representation of part of the URG model, which contains 616 464 individual nodes and 10 different volumes generated
based on the data of Freymark et al. (2020).

4.2 Optimization of the control mesh

The reconstructed mesh is generated after applying two sub-
divisions to the control mesh (Fig. 14). It consists of roughly
15 000 vertices. In order to evaluate the reconstructed struc-
ture, the distance metric between the points of the original

and the reconstruction model is computed. Red-colored ar-
eas imply high deviations of the subdivided surface from the
original model. The mean error for the whole domain is ap-
proximately 496± 362 m, which is around 0.6 % of the total
elevation height. Areas of high error concentrate mainly in

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3575

Figure 13. (a) Initial and unfitted control mesh of the URG model. Surfaces are colored concerning the different geological units. The
surfaces of the lower crystalline crust and the lithosphere mantle are hidden by the boundary surface. The 832 control points are colored in
red. (b) Approximate representation of the 3D side view of the model along the profile AA′.

regions where two individual geological units are connected
and further on the lower boundary of the lithospheric man-
tle (lower boundaries of Fig. 12). On the lithospheric mantle,
the highest errors are up to 5700 m, which is around 4.75 %
of the total elevation (approximately 120 km). Most parts of
the model consist of small deviations, indicated by the dark-
blue color, and the more highly elevated layers are especially
well fitted.

5 Discussion

The following section discusses the advantages and limita-
tions of PySubdiv in complex geological reconstruction.

5.1 User–PySubdiv interaction

PySubdiv provides a computational framework to generate
meshes with limited user interaction. The control points play
a key role in estimating, generating and exploiting the recon-
struction mesh. The position of the control points can be es-
timated based on three major criteria: (1) the goal of the user
for reconstruction, e.g., uncertainty analysis of the whole or a
specific part of the structure; (2) salient features of the input
mesh, e.g., maxima, minima and points with high curvature;
and (3) surface intersections. Since the goal of the user for
reconstruction, e.g. uncertainty analysis of the specific part
of the structure, cannot be automatically recognized by the
PySubdiv, the user is asked to interact with the software over
the GUI to indicate the desired important locations.

However, exploiting the GUI inside the PySubdiv leads to
several limitations. As mentioned in Sect. 3, PySubdiv uses
PyVista for graphical visualization, which exploits PyQt for
the GUI. Some of the PySubdiv users reported the crashes of
PyQt with or without any error, especially when using ma-
cOS or Windows systems. The current version of PySubdiv
suffers from this limitation, which we hope will be solved in
future versions.

5.2 Challenges in generating the reconstructed mesh

PySubdiv exploits semi-sharp subdivision surfaces for the
reconstruction algorithm which is used by several studies
(Lavoué et al., 2007; Wu et al., 2017). However, some stud-
ies, e.g., Marinov and Kobbelt (2005), use classic subdivision
surfaces for reconstruction. Although using semi-sharp sub-
division surfaces would reduce the number of control points,
the non-linear role of crease sharpness value in reconstruc-
tion optimization cannot be ignored since it is the most time-
consuming part of the reconstruction process. As a remedy,
the gradient-free method of Powell (1964) of the SciPy li-
brary (Virtanen et al., 2020) is implemented instead of PSO
in PySubdiv to optimize the non-linear part of the reconstruc-
tion. However, it could not significantly reduce the time of
this process.

Besides the crease sharpness values, it is worth mentioning
that finding suitable locations for the control points based on
the salient features of the input mesh is not always easy. For
example, assume the geological surface contains two adja-
cent and approximately flat parts which come close together

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023



3576 M. Moulaeifard et al.: PySubdiv 1.0

Figure 14. (a) Distance map of the subdivided surfaces compared to the input mesh (Fig. 12). Red areas indicate high deviation from the
original input mesh, while blue areas indicate low deviation. (b) Enlarged view of the distance map of the four extracted sub-horizontal
layers. Distances are scaled for each layer individually to emphasize the areas of high and low errors independent of the maximal global
error.

Figure 15. Distinguishing different parts of the surface by adding
control points to avoid failure in the reconstruction process.

(Fig. 15). At first glance, this surface has no outstanding fea-
tures (e.g., min, max, saddle points). However, it is necessary
to consider more control points on the boundaries to distin-
guish the different parts of the surface during the reconstruc-
tion process (otherwise, the two different surface parts may
be stitched together during reconstruction). This topic is be-
yond the scope of this paper, and we plan to investigate it in
future research.

5.3 External library limitation

From a computational point of view, the major goal of Py-
Subdiv is the calculation of the new location for the ver-
tices of the control mesh based on the subdivision algorithm.
Therefore, NumPy (Van Der Walt et al., 2011) and SciPy
(Virtanen et al., 2020) libraries play key roles in the core of
the software, which can be the source of problems when the
input mesh is large, e.g., limited memory.

Although the structure of the PySubdiv is planned to avoid
the generation of unnecessary big matrixes, the initial in-
put data can also help to tackle this problem. For example,
the suitable number of subdivisions is among the key input
data in reconstruction (the number of subdivisions controls
the smoothness of the final mesh, which is different from
the number of iterations of the optimization process). Ap-
plying a small number of subdivisions cannot guarantee the
acceptable generation of smooth and semi-sharp parts of a
reconstructed mesh. However, applying a large number of
subdivisions not only makes no significant differences in the
smoothness of the reconstructed mesh but also remarkably
increases the unnecessary calculation costs since more sub-
divisions mean dealing with more vertices.

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023



M. Moulaeifard et al.: PySubdiv 1.0 3577

6 Conclusion

This study illustrated the framework (PySubdiv) to generate
suitable control meshes and fitted reconstructed meshes for
complex geological structures and reservoir models based on
the non-manifold subdivision surface algorithm. The recon-
structed mesh is watertight and topologically similar to the
input mesh. Also, the control mesh consists of those control
points which play a key role in the flexibility and manage-
ment of the reconstructed mesh. Subdivision surfaces, unlike
spline surfaces, support arbitrary topology, which gives more
freedom to the user during generation of the control mesh.

Appendix A: Explanation of the elements inside the
GUI (Fig. 9) for generation of the control mesh

1. In the mesh area, any mesh resides that is imported or
created inside the GUI. The different meshes can be ac-
cessed here.

2. This button regulates the visibility of a mesh, helping to
keep the viewer clean by disabling unnecessary meshes.

3. This button selects a mesh allowing the user to sample
the mesh vertices or edges. Selected meshes are colored
red (7). More than one mesh can be selected at a time.

4. The two blue buttons can be toggled to constrain the
selection to vertices on the boundary and intersection
of two surfaces (left) or to minimal and maximal ver-
tices (right) on the mesh. Constrained points are ren-
dered white (8).

5. The red button deletes the mesh from the viewer.

6. Meshes that are not selected are colored green.

7. The selected mesh appears in red. Only vertices on the
selected mesh can be sampled.

8. When a constraint is selected, candidates are shown as
white points on the mesh, and only the candidates can
be selected.

9. Selected vertices are marked in purple.

10. This button toggles the edge selection and vertex selec-
tion. The current selection is cleared when the mode is
switched.

11. This button enables one to move the selected points. It
also creates a widget that can be moved in space, and the
direction is applied to the position of the vertices/edges
as a vector.

12. This button triangulates the selected mesh. In PySub-
div, a 2D Delaunay algorithm from PyVista (Sullivan
and Kaszynski, 2019) is implemented, which can be

bounded by a polygon. Delaunay triangulation is a com-
mon method to approximate geological surfaces (Cau-
mon et al., 2009). The polygon can be defined by the
user. The order of the polygon is important. If the or-
der is clockwise or counter-clockwise, define the inner
boundaries (holes) or the outer boundary.

13. This button removes the last selected vertex from the
selection.

14. Switch to deselection mode. Already-selected vertices
can be deselected by picking them again.

15. This button deselects all current selected vertices or
edges.

16. This button clears the selected vertices, edges and
meshes.

17. This button switches to face selection mode. Selected
faces can be deleted from the mesh, which is useful
when triangulation creates additional faces.

18. This button merges two surface meshes together to form
a watertight mesh. In order to form a watertight mesh,
vertices on the intersection must be the same on both
meshes.

19. This button starts the decimation of a selected mesh.
The reduction factor can be set by the user.

Code availability. PySubdiv is a free, open-source Python li-
brary licensed under the GNU Lesser General Public Li-
cense v3.0 (GPLv3). It is hosted on the GitHub repos-
itory at https://github.com/cgre-aachen/PySubdiv (last access:
19 June 2023; SimBe-hub and MohammadCGRE, 2022) and at
https://doi.org/10.5281/zenodo.6878051 (SimBe-hub and Moham-
madCGRE, 2022).

Data availability. 3D-URG is available at
https://doi.org/10.5880/GFZ.4.5.2020.004 (Freymark et al. 2020)).
The second source of data availability of this project can be
found at https://github.com/cgre-aachen/PySubdiv (last access:
19 June 2023) and at https://doi.org/10.5281/zenodo.6878051
(SimBe-hub and MohammadCGRE, 2022).

Author contributions. MM and FW contributed to project concep-
tualization and method development. SB wrote and maintained the
code with the help of MM. SB was also involved in visualizing the
results. MM prepared the manuscript with the contributions of both
co-authors. FW provided overall project supervision and funding.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023

https://github.com/cgre-aachen/PySubdiv
https://doi.org/10.5281/zenodo.6878051
https://doi.org/10.5880/GFZ.4.5.2020.004
https://github.com/cgre-aachen/PySubdiv
https://doi.org/10.5281/zenodo.6878051


3578 M. Moulaeifard et al.: PySubdiv 1.0

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank our colleagues for their
support. We thank the developers of the Blender project for the
open-source computer graphics software (http://www.blender.org/,
last access: 19 June 2023), which was used for rendering several
figures of this paper.

Financial support. This research has been supported by the EIT
RawMaterials (grant nos. 16258 and 19004).

This open-access publication was funded
by the RWTH Aachen University.

Review statement. This paper was edited by Mauro Cacace and re-
viewed by Guillaume Caumon and Eric de Kemp.

References

Börner, J. H., Bär, M., and Spitzer, K.: Electromagnetic meth-
ods for exploration and monitoring of enhanced geother-
mal systems – a virtual experiment, Geothermics, 55, 78–87,
https://doi.org/10.1016/j.geothermics.2015.01.011, 2015.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B.: Polygon
mesh processing, CRC press, https://doi.org/10.1201/b10688,
2010.

Cashman, T. J.: NURBS-compatible subdivision surfaces,
BCS Learning & Development Limited, ISBN 1906124825,
9781906124823, 2010.

Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud,
C., Viseur, S., and Sausse, J.: Surface-based 3D model-
ing of geological structures, Math. Geosci., 41, 927–945,
https://doi.org/10.1007/s11004-009-9244-2, 2009.

De Kemp, E. A.: Visualization of complex geological structures us-
ing 3-D Bézier construction tools, Comput. Geosci., 25, 581–
597, https://doi.org/10.1016/S0098-3004(98)00159-9, 1999.

de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: open-
source stochastic geological modeling and inversion, Geosci.
Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019,
2019.

De Paor, D. G.: Bézier curves and geological design, in:
Computer methods in the geosciences, Elsevier, 389–417,
https://doi.org/10.1016/S1874-561X(96)80031-9, 1996.

DeRose, T., Kass, M., and Truong, T.: Subdivision surfaces in
character animation, Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques, 19–24
July 1998, Orlando, Florida, United States of America, 85–94,
https://doi.org/10.1145/280814.280826, 1998.

Farin, G. and Hamann, B.: Current trends in geometric modeling
and selected computational applications, J. Comput. Phys., 138,
1–15, https://doi.org/10.1006/jcph.1996.5621, 1997.

Freymark, J., Scheck-Wenderoth, M., Bär, K., Stiller, M.,
Fritsche, J.-G., Kracht, M., and Gomez Dacal, M. L.:

3D-URG: 3D gravity constrained structural model of
the Upper Rhine Graben, GFZ Data Services [data set],
https://doi.org/10.5880/GFZ.4.5.2020.004, 2020.

Halstead, M., Kass, M., and DeRose, T.: Efficient, fair interpolation
using Catmull-Clark surfaces, Proceedings of the 20th annual
conference on Computer graphics and interactive techniques, 1–
6 August 1993, Anaheim, California, United States of America,
35–44, https://doi.org/10.1145/166117.166121, 1993.

Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., Mc-
Donald, J., Schweitzer, J., and Stuetzle, W.: Piecewise smooth
surface reconstruction, Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, 24–29
July 1994, Orlando, Florida, United States of America, 295–302,
https://doi.org/10.1145/192161.192233, 1994.

Jacquemyn, C., Jackson, M. D., and Hampson, G. J.: Surface-
based geological reservoir modelling using grid-free
NURBS curves and surfaces, Math. Geosci., 51, 1–28,
https://doi.org/10.1007/s11004-018-9764-8, 2019.

Kälberer, F., Nieser, M., and Polthier, K.: Quadcover-surface param-
eterization using branched coverings, Computer graphics forum,
26, 375–384, https://doi.org/10.1111/j.1467-8659.2007.01060.x,
2007.

Kennedy, J. and Eberhart, R.: Particle swarm optimization, Proceed-
ings of ICNN’95-international conference on neural networks,
27 November–1 December 1995, Perth, WA, Australia, 1942–
1948, https://doi.org/10.1109/ICNN.1995.488968, 1995.

Lavoué, G., Dupont, F., and Baskurt, A.: A framework for
quad/triangle subdivision surface fitting: Application to me-
chanical objects, Computer Graphics Forum, 26, 1–14,
https://doi.org/10.1111/j.1467-8659.2007.00930.x, 2007.

Lévy, B. and Mallet, J.-L.: Discrete smooth interpolation: Con-
strained discrete fairing for arbitrary meshes, ACM Transactions
on Graphics, 8, 121–144, https://doi.org/10.1145/62054.62057,
1999.

Loop, C.: Smooth subdivision surfaces based on triangles, Depart-
ment of Mathematics, University of Utah, 1987.

Ma, X., Keates, S., Jiang, Y., and Kosinka, J.: Subdivision surface
fitting to a dense mesh using ridges and umbilics, Comput. Aided
Geom. D., 32, 5–21, https://doi.org/10.1016/j.cagd.2014.10.001,
2015.

Mallet, J.-L.: Geomodeling, Oxford University Press, Oxford
University Press Inc, ISBN-10 0195144600, ISBN-13 978-
0195144604, 2002.

Marinov, M. and Kobbelt, L.: Optimization methods for scattered
data approximation with subdivision surfaces, Graphical Models,
67, 452-473, https://doi.org/10.1016/j.gmod.2005.01.003, 2005.

Miranda, L. J.: PySwarms: a research toolkit for Particle Swarm
Optimization in Python, J. Open Source Softw., 3, 433,
https://doi.org/10.21105/joss.00433, 2018.

Moulaeifard, M., Wellmann, F., Bernard, S., de la Varga, M., and
Bommes, D.: Subdivide and Conquer: Adapting Non-Manifold
Subdivision Surfaces to Surface-Based Representation and Re-
construction of Complex Geological Structures, Math. Geosci.,
55, 81–111, https://doi.org/10.1007/s11004-022-10017-x, 2023.

Paluszny, A., Matthäi, S. K., and Hohmeyer, M.: Hybrid finite
element–finite volume discretization of complex geologic struc-
tures and a new simulation workflow demonstrated on fractured
rocks, Geofluids, 7, 186–208, https://doi.org/10.1111/j.1468-
8123.2007.00180.x, 2007.

Geosci. Model Dev., 16, 3565–3579, 2023 https://doi.org/10.5194/gmd-16-3565-2023

http://www.blender.org/
https://doi.org/10.1016/j.geothermics.2015.01.011
https://doi.org/10.1201/b10688
https://doi.org/10.1007/s11004-009-9244-2
https://doi.org/10.1016/S0098-3004(98)00159-9
https://doi.org/10.5194/gmd-12-1-2019
https://doi.org/10.1016/S1874-561X(96)80031-9
https://doi.org/10.1145/280814.280826
https://doi.org/10.1006/jcph.1996.5621
https://doi.org/10.5880/GFZ.4.5.2020.004
https://doi.org/10.1145/166117.166121
https://doi.org/10.1145/192161.192233
https://doi.org/10.1007/s11004-018-9764-8
https://doi.org/10.1111/j.1467-8659.2007.01060.x
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1111/j.1467-8659.2007.00930.x
https://doi.org/10.1145/62054.62057
https://doi.org/10.1016/j.cagd.2014.10.001
https://doi.org/10.1016/j.gmod.2005.01.003
https://doi.org/10.21105/joss.00433
https://doi.org/10.1007/s11004-022-10017-x
https://doi.org/10.1111/j.1468-8123.2007.00180.x
https://doi.org/10.1111/j.1468-8123.2007.00180.x


M. Moulaeifard et al.: PySubdiv 1.0 3579

Peters, J.: Point-augmented biquadratic C1 subdi-
vision surfaces, Graphical models, 77, 18–26,
https://doi.org/10.1016/j.gmod.2014.10.003, 2015.

Powell, M. J.: An efficient method for finding the
minimum of a function of several variables with-
out calculating derivatives, Computer J., 7, 155–162,
https://doi.org/10.1093/comjnl/7.2.155, 1964.

Reif, U.: A unified approach to subdivision algorithms near ex-
traordinary vertices, Comput. Aided Geom. D., 12, 153–174,
https://doi.org/10.1016/0167-8396(94)00007-F, 1995.

Rossignac, J. and Cardoze, D.: Matchmaker: Manifold Breps for
non-manifold r-sets, Proceedings of the fifth ACM symposium
on Solid modeling and applications, 1 June 1999, Ann Arbor
Michigan USA, 31–41, https://doi.org/10.1145/304012.304016,
1999.

Sederberg, T. W., Finnigan, G. T., Li, X., Lin, H., and Ipson, H.:
Watertight trimmed NURBS, ACM Transactions on Graphics
(TOG), 27, 1–8, https://doi.org/10.1145/1360612.1360678 2008.

SimBe-hub and MohammadCGRE:SimBe-hub/PySubdiv:
PySubdiv (v1.0.0), Zenodo [code and data set],
https://doi.org/10.5281/zenodo.6878051, 2022.

Stam, J.: Evaluation of loop subdivision surfaces, SIGGRAPH’98
CDROM Proceedings, 19–24 July 1998, Orlando, Florida,
United States of America, Corpus ID: 8420692, 85–94, 1998.

Sullivan, C. and Kaszynski, A.: PyVista: 3D plotting and
mesh analysis through a streamlined interface for the Vi-
sualization Toolkit (VTK), J. Open Source Softw., 4, 1450,
https://doi.org/10.21105/joss.01450, 2019.

Suzuki, H., Takeuchi, S., and Kanai, T.: Subdivision surface fitting
to a range of points, Proceedings. Seventh Pacific Conference on
Computer Graphics and Applications (Cat. No. PR00293), 158–
167, https://doi.org/10.1109/PCCGA.1999.803359, 1999.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy ar-
ray: a structure for efficient numerical computation, Comput. Sci.
Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
and Bright, J.: SciPy 1.0: fundamental algorithms for sci-
entific computing in Python, Nature Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.

Wellmann, F. and Caumon, G.: 3-D Structural geological models:
Concepts, methods, and uncertainties, Adv. Geophys., 59, 1–121,
https://doi.org/10.1016/bs.agph.2018.09.001, 2018.

Wu, X., Zheng, J., Cai, Y., and Li, H.: Variational recon-
struction using subdivision surfaces with continuous sharp-
ness control, Computational Visual Media, 3, 217–228,
https://doi.org/10.1007/s41095-017-0088-2, 2017.

Ying, L. and Zorin, D.: Nonmanifold subdivision, Proceedings Vi-
sualization, VIS’01, 21–26 October 2001, San Diego California,
325–569, https://doi.org/10.1109/VISUAL.2001.964528, 2001.

https://doi.org/10.5194/gmd-16-3565-2023 Geosci. Model Dev., 16, 3565–3579, 2023

https://doi.org/10.1016/j.gmod.2014.10.003
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1016/0167-8396(94)00007-F
https://doi.org/10.1145/304012.304016
https://doi.org/10.1145/1360612.1360678
https://doi.org/10.5281/zenodo.6878051
https://doi.org/10.21105/joss.01450
https://doi.org/10.1109/PCCGA.1999.803359
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/bs.agph.2018.09.001
https://doi.org/10.1007/s41095-017-0088-2
https://doi.org/10.1109/VISUAL.2001.964528

	Abstract
	Introduction
	Methods
	Subdivision surface algorithm
	Loop subdivision scheme
	Piecewise smooth subdivision surfaces

	Modeling with semi-sharp creases
	Supporting non-manifold topology
	Automatic reconstruction

	Core of PySubdiv
	Case study
	Estimation of the control mesh
	Optimization of the control mesh

	Discussion
	User–PySubdiv interaction
	Challenges in generating the reconstructed mesh
	External library limitation

	Conclusion
	Appendix A: Explanation of the elements inside the GUI (Fig. 9) for generation of the control mesh
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

