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Objective: Post-hepatectomy liver failure (PHLF) remains clinical challenges 
after major hepatectomy. The aim of this study was to establish and validate a 
deep learning model to predict PHLF after hemihepatectomy using preoperative 
contrast-enhancedcomputed tomography with three phases (Non-contrast, 
arterial phase and venous phase).

Methods: 265 patients undergoing hemihepatectomy in Sir Run Run Shaw 
Hospital were enrolled in this study. The primary endpoint was PHLF, according 
to the International Study Group of Liver Surgery’s definition. In this study, to 
evaluate the proposed method, 5-fold cross-validation technique was used. The 
dataset was split into 5 folds of equal size, and each fold was used as a test set 
once, while the other folds were temporarily combined to form a training set. 
Performance metrics on the test set were then calculated and stored. At the 
end of the 5-fold cross-validation run, the accuracy, precision, sensitivity and 
specificity for predicting PHLF with the deep learning model and the area under 
receiver operating characteristic curve (AUC) were calculated.

Results: Of the 265 patients, 170 patients with left liver resection and 95 patients 
with right liver resection. The diagnosis had 6 types: hepatocellular carcinoma, 
intrahepatic cholangiocarcinoma, liver metastases, benign tumor, hepatolithiasis, 
and other liver diseases. Laparoscopic liver resection was performed in 187 
patients. The accuracy of prediction was 84.15%. The AUC was 0.7927. In 170 left 
hemihepatectomy cases, the accuracy was 89.41% (152/170), and the AUC was 
82.72%. The accuracy was 77.47% (141/182) with liver mass, 78.33% (47/60) with 
liver cirrhosis and 80.46% (70/87) with viral hepatitis.

Conclusion: The deep learning model showed excellent performance in 
prediction of PHLF and could be useful for identifying high-risk patients to modify 
the treatment planning.
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1. Introduction

Liver resections are performed for both benign and malignant liver 
diseases. Hemihepatectomy is one type of major liver resection for the 
treatment of liver disease (1–3). Posthepatectomy liver failure (PHLF) is 
the most worrisome complication after major hepatectomy and is the 
leading cause of postoperative mortality (4–8). Previous reports have 
shown that the incidence of PHLF after liver resection varies and ranges 
from 0.7 to 39.6% (9, 10). Moreover, PHLF is the major cause of 
prolonged hospitalization, increased costs, and poor long-term outcomes 
in patients undergoing hepatectomy. In 2011, the International Study 
Group of Liver Surgery (ISGLS) proposed a standardized definition and 
severity grading for PHLF. The grade A, B, and C definitions are 
associated with mortality rates of 0, 12 and 54%, respectively, (7, 11).

The prediction of PHLF before hemihepatectomy should be a major 
concern for hepatobiliary surgeons and patients. A tool to accurately 
predict the risk for PHLF preoperatively will assist with patient selection 
and earlier intervention to potential PHLF patients. Currently, there are 
several predictors of PHLF reported, such as indocyanine green (ICG) 
clearance (12, 13), “50–50 Criteria” (4, 14), model for end-stage liver 
disease (MELD) system (15), Child-Pugh grade (16) and Future liver 
remnant (FLR) volume (17, 18). In addition, multivariable models are 
created to predict the risk of PHLF. But, there is still no standard model 
for clinical application due to limitations of each current models.

Deep learning with convolutional neural networks (CNNs) has 
been proven to have clinical significance in various medical image 
interpretation tasks, such as identifying and grading diabetic 
retinopathy, classifying skin lesions, classifying liver masses as benign 
or malignant and grading breast nodules based on BI-RADS, with 
accuracy comparable to experts (19–23). Recently, a research showed 
that deep learning model, based on medical data, could be used for 
preoperative prediction of severe liver failure after hemihepatectomy 
in patients with hepatocellular carcinoma (24). But there was no study 
on deep learning for preoperative prediction of PHLF with liver images.

Contrast-enhanced computed tomography (CT) is a common 
examination for the assessment of liver disease, because the vascularity 
and contrast agent enhancement patterns of liver lesions provide 
useful information for evaluation. A previous study reported that a 
nomogram combining CT image, serum albumin (Alb) and serum 
total bilirubin (Tbil) showed a good performance for PHLF 
preoperative prediction in patients with resectable HCC (25).

In this study, we aimed to investigate the prediction performance 
of deep learning model for PHLF after hemihepatectomy on 
preoperative contrast-enhanced CT images.

2. Methods

2.1. Patients

This retrospective study was approved by the Institutional Review 
Board of Sir Run Run Shaw Hospital (SRRSH). Informed consent 
was waived.

Between January 2017 and December 2021, consecutive 
patients who underwent hemihepatectomy at SRRSH were 
reviewed retrospectively. A total of 266 patients who met the 
inclusion criteria were enrolled. The inclusion criteria were as 
follows: (1) patients who underwent hemihepatectomy, (2) Patients 
above the age of 14, and (3) patients who underwent contrast-
enhanced CT and serum liver function and coagulating function 
testing within 1 week before operation. The exclusion criteria were 
as follows: (1) patients with any antitumor therapy before surgery 
and (2) patients who had minor liver resections or more 
than hemihepatectomy.

2.2. Data collection and imaging quality 
control

Preoperative data were collected, including age, gender, the 
presence of viral hepatitis and liver cirrhosis, grade of Child-Pugh, 
pathological diagnosis, American Society of Anesthesiologists Score 
(ASA score) and preoperative contrast-enhanced CT image. 
Perioperative laboratory data were recorded, including total bilirubin 
(Tbil), international normalized ratio (INR) before operation and on 
or after postoperative day 5 (POD 5). Intraoperative variables, related 
to postoperative morbidity, were also collected. Blood loss was 
recorded as binary classification (≥ 400 or less). Besides, surgical 
approach (laparoscopy or laparotomy), extent of resection (left or 
right) and operation time were used in this study.

2.3. CT image

Preoperative contrast-enhanced CT images with three phases 
(Non-contrast, arterial phase and venous phase) were used for 
this model.

CT scans were performed from three manufacturers: Siemens, 
General Electric (GE) and United Imaging Healthcare (UIH).

The CT scans were acquired using a slice collimation of 5/7 mm, 
a matrix of 512 × 512 pixels, and an in-plane resolution of 0.516–
0.975 mm. Each multi-phase CT image consists of three phases before 
and after the injection of contrast agent. A Non-Contrast scan is 
performed before injecting the contrast agent. The post-injection 
phases include the arterial phase (25–40 s after the injection) and the 
portal venous phase (60–80 s after the injection). For each patient, all 
slices containing lesions were used to construct the image dataset.

2.4. Outcomes

The primary outcome was PHLF, as defined by the International 
Study Group of Liver Surgery (ISGLS) as an increased INR (or need 
of clotting factors to maintain normal INR) and hyperbilirubinemia 
(according to the normal cut-off levels defined by the local laboratory) 
on or after postoperative day 5 (POD 5) (7).

https://doi.org/10.3389/fmed.2023.1154314
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xu et al. 10.3389/fmed.2023.1154314

Frontiers in Medicine 03 frontiersin.org

2.5. Deep learning model development

2.5.1. Data pre-processing
In this study, we first extracted liver regions from input liver CT 

images using via an in-house trained liver segmentation model 
(Figure 1). This process can be replaced by manual region of interest 
(ROI) cropping using commercial image annotation tools. Then, the 
extracted image patches were resized to 16 × 128 × 128 due to different 
sizes of liver regions in the images. Finally, during training, 
we randomly cropped 12 × 112 × 112 from the resized image patches 
and mirrored the crop images to augment the data.

2.5.2. Model architecture framework
For each liver CT examination, there were three phases, including 

non-contrast phase, arterial phase, and venous phase. To leverage the 
multi-phase information, we developed a three-phase model framework 
that utilized the non-contrast, arterial and venous phases of the liver 
region as inputs. The framework consisted of three stages. The first stage 
was a feature extraction backbone, which aimed to generate feature maps 
for the liver region of each of the three-phases. In the second stage, 
phase-interaction feature fusion was performed by obtaining correlation 
features between different pairs of phases through the Hadamard 
product operation. The inputs for this stage were three feature maps with 
dimensions of 92(C) × 12(D) × 112(H) × 112(W). The resulting 
correlation feature maps were then passed through 3D average pooling 
layers, resulting in three one-dimensional feature vector of size 92. In the 
third stage, the pooled feature vectors were concatenated into a vector of 
size 276, which was then connected to a fully connected layer to obtain 
the final classification result, indicating whether the patient had liver 
failure or not. The overall pipeline of the proposed model framework is 
illustrated in Figure 2A. It is worth mentioning that precise registration 
of the three-phase 3D images of the liver region is not necessary.

2.5.3. Model implementation details
As shown in Figure 2A, the feature extraction backbone of the first 

stage of the framework was based on 3D convolution layers. It was 
composed of three similar structures, consisting of one dense neural 
network block, one transition layer, and one SE layer. The dense neural 
network block origins from the DenseNet (26), inspired by the ResNet 

(27), which bypassed information from one layer to the next layer via 
identity connections. The DenseNet architecture distilled shortcut 
insights into a simple connectivity pattern: ensuring maximum 
information flow between layers within layers. In this mode, each layer 
obtained additional inputs from preceding layers and passed its own 
output to subsequent layers. The DenseNet improved information flow, 
alleviated the gradient-vanishing problem, enhanced feature reuse, and 
substantially reduced the number of parameters. The transition layers 
consisted of 1*1*1 3D convolution and max-pool layer, which reduced 
the feature map, including reducing the number of feature channels and 
the size of the feature map. The SE layer used the Squeeze-and-Excitation 
(SE) block (28), which explicitly modeled the inter-dependencies 
between channels. Using SE blocks, the network learned to selectively 
strengthen discriminative features and suppress less informative ones. 
Finally, the feature map outputs of the three sub-structures of the first 
stage were concatenated by average pooling to combine high-level and 
low-level features, thereby improving the feature representation.

2.5.4. Training and validation of the models
In this study, to evaluate the proposed method, we used a 5-fold 

cross-validation technique. In detail, the dataset was split into 5 folds 
of equal size, and each fold was used as a test set once, while the other 
folds were temporarily combined to form a training set. Performance 
metrics on the test set were then calculated and stored. The process 
was repeated for the number of folds that have been generated. In each 
iteration, a new model was trained and tested. At the end of the 5-fold 
cross-validation run, the collected metrics of the 5 generated DL 
models were summarized. Finally, the following metrics were 
calculated: sensitivity, specificity, precision and area under the curve 
receiver operator characteristic (AUC-ROC). The illustration of the 
5-fold cross validation is show in Figure 2B.

2.6. Statistical analysis

AUC are created by varying the threshold of the predicted 
probability and plotting the true positive rate (sensitivity) against the 
false positive rate (1-specificity). Accuracy, precision, sensitivity, and 
specificity are also used to evaluate the performance of DL model. All 

FIGURE 1

Liver segmentation images. Liver could be segmented automatically. Case 1: left hemihepatectomy; Case 2: right hemihepatectomy; Case 3: liver with 
cirrhosis. Green region: right liver lobe; Red region: left liver lobe.
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statistical tests use two-tailed tests and p-values less than or equal to 
0.05 will be considered statistically significant. Statistical analysis was 
conducted using Python version 3.7.6.

3. Results

3.1. Characteristics of patients

265 patients with liver CT examination who underwent 
hemihepatectomy from SRRSH were analyzed, including 170 patients 

with left liver and 95 patients with right liver. Mean age was 
60 ± 13 years. Liver function was evaluated, with only 14 patients 
(5.3%) classified as Child-Pugh B. 87 patients had viral hepatitis, and 
60 patients had liver cirrhosis. The diagnosis was divided into 6 types: 
92 (34.7%) hepatocellular carcinoma, 58 (21.9%) intrahepatic 
cholangiocarcinoma, 5 (1.9%) liver metastases, 27 (10.2%) benign 
tumor, 78 (29.4%) hepatolithiasis and 5 (1.9%) other liver diseases. 78 
(29.4%) patients received open liver resection, and 187 (70.6%) 
patients with laparoscopic liver resection. 83 (31.3%) patients had 
intraoperative blood loss more than 400 mL (Table 1). More data was 
showed in Supplementary Table S1.

FIGURE 2

The architecture of the deep learning model. (A) Model architecture framework and implementation details. (B) Training and validation of the models. A 
5-fold cross-validation technique was used.
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3.2. Posthepatectomy liver failure

Of all the patients, 91 (34.3%) patients developed PHLF (grade A: 
n = 38; grade B: n = 45; grade C: n = 8, Table 1). There was no significant 
difference between PHLF group and no PHLF group on age, ASA, 
Child-Pugh score and surgical approach. Sex, Viral hepatitis, liver 
cirrhosis, diagnosis, operation time, blood loss, and extent of resection 
were associated with PHLF (Table 1, p < 0 0.050 for all).

3.3. Performance of the DL model on 
prediction of PHLF

The performance of the DL model on prediction of PHLF was 
good, with an accuracy value of 84.15% and an AUC value of 
79.27% (Figure  3A). The sensitivity was 72.53% (66/91). The 
specificity was 90.23% (157/174). The precision was 79.52% (66/83) 
(Table 2).

The prediction performance of PHLF in different grades was 
showed in Figure 3B. The accuracy was 71.05% in PHLF Grade A. In 
patients with severe PHLF (Grade B and Grade C), the accuracy was 
73.58% (Grade B: 75.56%, Grade C: 62.50%).

3.4. Subgroup analysis

3.4.1. Performance for different extent of 
resection (left or right hemihepatectomy)

In 170 left hemihepatectomy cases, the performance of the DL 
model was better than that in right hemihepatectomy cases (left vs. 
right: accuracy 89.41% (152/170)vs. 74.74% (71/95); AUC 82.72% vs. 
74.03%) (Figures  4A,B). The sensitivity was 78.79% (26/33) inleft 
hemihepatectomy cases, and 68.97% (40/58) in right hemihepatectomy 
cases. The specificity was 91.97% (126/137) in the left, 83.78% (31/37) 
in the right. The precision was 70.27% (26/37) in the left, 86.96% 
(40/46) in the right.

3.4.2. Performance for patients with liver mass
In 182 patients with liver mass (hepatocellular carcinoma, 

intrahepatic cholangiocarcinoma, liver metastases and benign tumor), 
the accuracy was 77.47% (141/182), and AUC was 75.11% (Figure 4C).

3.4.3. Performance for patients with liver cirrhosis 
or viral hepatitis

The accuracy was 78.33% (47/60) in patients with liver cirrhosis 
and 80.46% (70/87) with viral hepatitis.

TABLE 1 Baseline characteristics and Posthepatectomy liver failure.

Variables

PHLF grade

p
No (n = 174)

Yes (n = 91)

A (n = 38) B (n = 45) C (n = 8)

Age (years) 59.2 ± 12.6 59.6 ± 12.8 59.7 ± 12.6 58.4 ± 13.3 0.076

Gender, male/female 87/87 25/13 31/14 5/3 0.008

Viral hepatitis 40 20 22 5 <0.001

Cirrhosis 24 14 20 6 <0.001

Child-Pugh (A/B/C) 166/8/0 37/1/0 41/4/0 7/1/0 0.566

Diagnosis <0.001

  HCC 42 20 24 6

  ICC 32 11 13 2

  liver metastases 3 0 2 0

  Benign tumor 25 1 1 0

  Hepatolithiasis 67 6 5 0

  Others 5 0 0 0

ASA (1/2/3) 7/161/6 0/38/0 1/42/2 1/6/1 0.923

Surgical approach 0.105

  Laparoscopy 129 32 22 4

  Laparotomy 45 6 23 4

Extent of resection <0.001

  Left hemihepatectomy 137 17 15 1

  Right hemihepatectomy 37 21 30 7

Operation time (min) 244 (85–480) 246 (120–420) 281 (75–485) 281 (140–430) <0.001

Blood loss (ml) <0.001

  ≥400 41 10 28 4

  <400 133 28 17 4

PHLF, posthepatectomy liver failure; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; ASA, The American Society of Anesthesiologists. p value, PHLF group vs no 
PHLF group.
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FIGURE 4

The performance of DL model in subgroups. (A) Receiver-operating characteristic curves and AUC of the predictive models of PHLF for left 
hemihepatectomy patients. (B) Receiver-operating characteristic curves and AUC of the predictive models of PHLF for right hemihepatectomy 
patients. (C) Receiver-operating characteristic curves and AUC of the predictive models of PHLF for patients with liver mass (HCC, ICC, liver metastasis 
or benign tumor).

All the results were showed in Table 2.

4. Discussion

PHLF is responsible for more than 60% of mortalities after 
hepatectomy. There were several researches for development of PHLF 
predictors. Previous study reported that PLT count was related to 

postoperative liver regeneration, postoperative liver function recovery, 
and PHLF risk (29, 30). The“50–50 criteria,” an predictor of PHLF and 
mortality, predicts>50% mortality rate if prothrombin time < 50% and 
serum bilirubin ≥50 μmoL/L on POD 5 (4). Indocyanine green retention 
test at 15 min (ICG-R15) is another tool used to evaluate liver quality (12). 
Mathieu Prodeau et al. (6), reported an ordinal PHLF prediction model 
for patients with cirrhosis based on 3 variables (i.e., platelet count, RTLV 
and ITT laparoscopy). Yangling Peng et al. (25), showed a nomogram 

FIGURE 3

The performance of DL model for prediction of PHLF. (A) Receiver-operating characteristic curves and AUC of the predictive models of PHLF for all 
patients. (B) The accuracy for different PHLF grades.

TABLE 2 Prediction performance for PHLF.

Datasets Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

All cases 71.43 (66/91) 89.66 (157/174) 79.52 (66/83) 84.15 (223/265)

Left hemihepatectomy 78.79 (26/33) 91.97 (126/137) 70.27 (26/37) 89.41 (152/170)

Right hemihepatectomy 67.24 (40/58) 81.08 (31/37) 86.96 (40/46) 74.74 (71/95)

Liver with mass 68.75 (55/80) 84.31 (86/102) 77.46 (55/71) 77.47 (141/182)

With liver cirrhosis 77.50 (31/40) 80.00 (16/20) 88.57 (31/35) 78.33 (47/60)

With viral hepatitis 76.60 (36/47) 85.00 (34/40) 85.71 (36/42) 80.46 (70/87)

PHLF, posthepatectomy liver failure; AUC, the area under receiver operating characteristic curve.
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based on CT–derived extracellular volume for the prediction of PHLF in 
patients with HCC. Rong-yun Mai et al. (24), developed and validated a 
multivariate deep learning model based on baseline characteristics, 
laboratory indicators and surgical situation for predicting the risk of 
severe PHLF in patients with HCC who underwent hemihepatectomy.

In this study, we  first investigated whether PHLF could 
be predicted by deep learning model based on preoperative enhanced 
CT. We successfully established a deep learning model and found that 
it was useful to predict PHLF after hemihepatectomy (precision: 
83.40%, AUC: 79.26%). Thus, our findings and the deep learning 
model may help to select patients who need hemihepatectomies and 
do a better preparation before operation. In addition, some 
preoperative characteristics including viral hepatitis, liver cirrhosis, 
diagnosis and extent of hemihepatectomy were important factors with 
PHLF. In patients with liver masses, the model showed a performance 
with AUC 75.10% and precision 77.47% (141/182), sensitivity 68.75% 
(55/80), specificity 84.31% (86/102). In China, there are many liver 
resection cases with chronic hepatitis or liver cirrhosis. So, we also 
evaluated the performance of this model in patients with hepatitis or 
liver cirrhosis and had a good performance with the precision (chronic 
hepatitis: 80.46% (70/87); liver cirrhosis: 78.33% (47/60)). In different 
extent of resection, the result showed that the predictive ability in left 
hemihepatectomy was better than that in right hemihepatectomy 
(precision: 89.41% vs. 72.63%; AUC: 82.72% vs. 74.03%). These results 
suggested that deep learning model could be useful for prediction of 
PHLF based on CT images, and multiple characteristics were related 
to the prediction performance of the model.

This model showed a good performance for prediction of PHLF 
after hemihepatectomy (precision: 83.40%), and it could help to 
improve the selection of patients with the best risk–benefit profiles 
for hemihepatectomy. The patients with high PHLF risk, which were 
selected by the model, could receive other options such as portal vein 
embolization (PVE), associating liver partition and portal vein 
ligation for staged hepatectomy (ALPPS), radiofrequency ablation 
(RFA) or transcatheter arterial chemoembolization (TACE) (31–33). 
Besides, the model could help surgeons modify the perioperative 
treatment plan for the high PHLF risk patients. Enhanced recovery 
after surgery (ERAS) and prehabilitation could be used for high risk 
patients who were selected by the model. Furthermore, the prediction 
data of the model could also help patients understand the risk–benefit 
before surgery, and be  useful for preoperative conversation and 
seeking informed consent.

There are some limitations in our study. First, the more cases from 
different centers were needed. Second, the precision and AUC in right 
hemihepatectomy were not as good as that in left hemihepatectomy. 
Possible reasons included small number of right hemihepatectomy 
cases and more complicated surgical situation. Third, this study was 
not designed to predict other outcomes such as 30-day, 90-day or 
1-year mortality. Forth, patients’ basic characteristics, laboratory 
indicators and surgical situation were not included in our model. 
Thus, multimodal algorithm based on more effective medical data, 
would be  developed to achieve adequate performance. Fifth, a 
prospective and multicenter study is required to clarify the reliability 
and adaptability of the deep learning model.

In conclusion, this preliminary study obtains a deep learning 
model for prediction of PHLF (as defined by the International Study 
Group of Liver Surgery (ISGLS)), which can be accomplished with a 
high precision based on preoperative contrast-enhanced CT images. 
However, further study would be necessary to improve performance 
for prediction of PHLF.
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