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Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders 
that share significant brain size reduction and mild to moderate intellectual 
disability, which may be accompanied by a large variety of more invalidating clinical 
signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are 
essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so 
far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle 
organization, centriole biogenesis, nuclear envelope, DNA replication and repair, 
underscoring that a wide variety of cellular processes is required for sustaining 
NPC expansion during development. Current models propose that altered 
balance between symmetric and asymmetric division, as well as premature 
differentiation, are the main mechanisms leading to MCPH. Although studies 
of cellular alterations in microcephaly models have constantly shown the co-
existence of high DNA damage and apoptosis levels, these mechanisms are less 
considered as primary factors. In this review we  highlight how the molecular 
and cellular events produced by mutation of the majority of MCPH genes 
may converge on apoptotic death of NPCs and neurons, via TP53 activation. 
We propose that these mechanisms should be more carefully considered in the 
alterations of the sophisticated equilibrium between proliferation, differentiation 
and death produced by MCPH gene mutations. In consideration of the potential 
druggability of cell apoptotic pathways, a better understanding of their role in 
MCPH may significantly facilitate the development of translational approaches.
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1. Introduction

Microcephaly is a rare condition in which an individual’s occipital-frontal head 
circumference (OFC) is reduced more than two (in microcephaly) or three (in severe 
microcephaly) standard deviations below the mean for a given sex, age, and ethnicity (Von der 
Hagen et al., 2014). Microcephaly occurs in 1.5 to 8.7 out of every 10,000 births in Europe and 
the United States, respectively (Cragan et al., 2016; Morris et al., 2016). However, it’s worth 
noting that 15 to 20% of children who experience developmental delay also have microcephaly 
(Watemberg et al., 2002; Aggarwal et al., 2013).

The effects of microcephaly can vary widely, ranging from mild to severe. The most frequent 
symptoms are intellectual disability, developmental delay, and neurological problems but 
children with microcephaly may also experience seizures, difficulties with balance and 
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coordination, and impaired vision or hearing (Woods and Parker, 
2013; Devakumar et al., 2018).

Microcephaly can be classified as primary or secondary based on 
the timing of its onset (Zaqout et al., 2017; Zaqout and Kaindl, 2021). 
Primary microcephaly is present at birth and is characterized by a 
decrease of neurons’ number. Conversely, secondary microcephaly 
arises after birth and impacts more on dendritic complexity, formation 
of synaptic contacts and myelination (Woods, 2004; Dupuis et al., 
2015; Zaqout and Kaindl, 2021). The causes of microcephaly can 
be  categorized into two main groups: genetic and environmental. 
Environmental factors leading to microcephaly include congenital 
infections affecting the brain, exposure to radiation, toxins or 
teratogenic agents during pregnancy (e.g., fetal alcohol syndrome), 
and hypoxic–ischemic injury that occurs either before or during birth 
(Mochida and Walsh, 2001). Many viral infections such as 
Cytomegalovirus, Influenza, Herpes Simplex and Zika, as well as 
parasitic infections like Toxoplasma gondii have been linked to 
primary microcephaly (Devakumar et  al., 2018). To differentiate 
between primary microcephaly caused by genetic defects and 
congenital microcephaly induced by environmental factors, primary 
hereditary microcephaly (MCPH) subclass was defined (Woods 
et al., 2005).

MCPH is a syndrome that occurs when single locus mutations 
lead to reduced brain size. To date, 30 different genes have been 
identified as causes of MCPH (Figure 1; Faheem et al., 2015; Zaqout 
et al., 2017). MCPH genes are expressed in all proliferating cell types 
and, during cortical neurogenesis, are expressed at high levels in the 
ventricular zone (VZ), the primary germinal zone of the cerebral 

cortex, which is the most affected structure in microcephaly patients 
(Bond and Woods, 2006; Manzini and Walsh, 2011).

2. Normal corticogenesis

During the early stages of neurogenesis, neuroepithelial cells 
rapidly divide to increase the stem cell pool and densify the wall of the 
neural tube (Rakic, 1995). By the midstage of neurogenesis, NPCs can 
be divided into two types: apical and basal progenitors (Florio and 
Huttner, 2014). Apical progenitor cells lie in the VZ while basal 
progenitor cells are found in the subventricular zone (SVZ), which is 
adjacent to the VZ. The VZ contains several types of progenitors, 
including apical radial glial cells (aRGCs), apical intermediate 
progenitors, and subapical progenitors (Schultze and Korr, 1981; 
Malatesta et al., 2003; Götz and Huttner, 2005; Pilz et al., 2013; Tyler 
and Haydar, 2013). aRGCs are the predominant class of progenitors 
in the VZ (Noctor et al., 2002) and, at the beginning, undergo several 
rounds of symmetric or proliferative division to generate two identical 
daughter cells, thus expanding the number of progenitors. 
Subsequently aRGCs undergo asymmetric division, producing one 
stem cell and one fate-restricted daughter cell, i.e., basal progenitor or 
a postmitotic neuron (Götz and Huttner, 2005; Taverna et al., 2014).

In primates, basal progenitors include intermediate progenitors 
(IPs) and a second cell type called basal radial glial cells (bRGCs) 
(Fietz et al., 2010; Hansen et al., 2010). IPs can undergo one to two 
additional rounds of division to generate more IPs or commit to 
terminal division, generating two daughter neurons (Haubensak et al., 

FIGURE 1

MCPH cellular functions. MCPH-associated proteins are involved in many cellular functions throughout the cell cycle. Several proteins act across more 
than one functional pathway (i.e., mitotic spindle orientation and DNA repair).
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2004; Wu et al., 2005). bRGCs are highly neurogenic, arise from the 
division of aRGCs and are involved in development of cortical folds 
or gyri (Penisson et al., 2019). Lastly, toward the end of neurogenesis, 
RGCs participate in generation of glial cells, which are essential for 
proper neuronal function (Qian et al., 2000; Jäkel and Dimou, 2017). 
After neurogenic divisions, post-mitotic neurons migrate radially and 
progressively settle in the more superficial cortical layers (inside-out 
migration; Rakic, 1971; McConnell and Kaznowski, 1991). By the time 
of birth, all the neurons that contribute to cortical architecture and 
function have been produced and most NPCs have been depleted. 
Decreased proliferation, premature commitment to neurogenic 
division or the death of progenitors and/or their progeny may lead to 
a significantly depleted NPC pool, resulting in fewer neocortical cells 
(Phan and Holland, 2021).

3. Microcephaly genes are involved in 
cell cycle or cell division regulation

MCPH genes are expressed in all proliferating cell types but are 
selectively required in NPC. The biological basis of this functional 
specificity is only partially understood (Faheem et al., 2015; Zhou 
et  al., 2020). Due to their strong expression in proliferating cells, 
investigation of MCPH genes’ biological role first focused on the 
analysis of cell cycle or mitosis.

A set of MCPH genes (MCPH1, CEP152, PHC1) participate in 
control of the G2-M checkpoint (Morris-Rosendahl and Kaindl, 
2015), that prevents cells from entering mitosis in case of damaged or 
incomplete DNA replication. MCPH1 deficiency prevents the 
recruitment of checkpoint kinase 1 (Chk1) to centrosomes, leading to 
premature cyclin activation and early mitotic entry, uncoupled from 
centrosome cycle (Gruber et al., 2011). Cell cycle analysis in CEP152 
knockdown cells suggested that CEP152 deficiency delays S-phase 
entry. Furthermore, fewer cells progress to the G2/M phase and an 
increased proportion of cells stayed in G0/G1 (Kalay et al., 2011). 
PHC1 regulates cell cycle by interacting with geminin, which has an 
established role in cell cycle control (Luo and Kessel, 2004).

Another set of MCPH genes (ASPM, KIF14, MAP11, CENPE, 
CENPJ, KNL1, CDK5RAP2, CIT and BUB1) is involved in mitotic 
spindle organization and microtubule dynamics, important for proper 
segregation of chromosomes in daughter cells (Morris-Rosendahl and 
Kaindl, 2015; Pallavicini et al., 2019; Phan and Holland, 2021; Iegiani 
et al., 2021a,b). Mutations in these genes increase the frequency of 
cytokinesis failure and the generation of polyploid progeny (Moawia 
et al., 2017; Bianchi et al., 2017b).

In addition, some microcephaly genes are required for centriole 
duplication (CENPJ, STILL, WDR62) and centriole assembly 
(CEP152, CEP135, STIL, SASS6) (Zaqout and Kaindl, 2021). 
Production of the correct number of centrioles and their correct 
assembly is fundamental for proper distribution of chromosomes to 
daughter cells, avoiding spindle instability and mitotic delay or arrest 
at metaphase checkpoint (Lizarraga et al., 2010; Vitale et al., 2011; 
Novorol et al., 2013; Chen et al., 2014). Mutations in genes encoding 
MCPH centrosome proteins alter the maturation and the number of 
centrosomes (Rodrigues-Martins et  al., 2007; Yabe et  al., 2007; 
Megraw et al., 2011; Hussain et al., 2013), which may increase the ratio 
of asymmetric divisions (Pfaff et al., 2007; Vitale et al., 2011; McIntyre 
et al., 2012; Novorol et al., 2013). Enhanced NPC asymmetric division 

contributes to the microcephalic phenotype by depleting the neural 
stem cell pool (Pfaff et al., 2007; Gruber et al., 2011; Ding et al., 2019; 
Zhang et al., 2019).

Although dysregulation of the balance between symmetric and 
asymmetric division is commonly considered crucial for MCPH, it has 
been reported that cell fate alterations correlated with asymmetric 
divisions could be more dependent on cell cycle dysregulation than 
on morphological asymmetry (Taverna et al., 2014; Capecchi and 
Pozner, 2015). Timing of the cell cycle is fundamental for proper 
division (Calegari and Huttner, 2003; Calegari et al., 2005). G1-phase 
length defines if cells progress to S-phase, enter quiescence or 
differentiate (Capecchi and Pozner, 2015). Forced shortening of the 
NPC cell cycle promotes expansion of neural progenitors through 
symmetric proliferative cell divisions (Lange et al., 2009; Pilaz et al., 
2009; Artegiani et  al., 2011; Nonaka-Kinoshita et  al., 2013). 
Conversely, artificial lengthening of mitosis leads to increased 
frequency of asymmetric divisions and neural commitment (Pilaz 
et al., 2016).

Reduced proliferation, symmetric and asymmetric division 
dysregulation after MCPH genes loss may all decrease expansion rates 
in brain development but may only provide a partial explanation for 
the selective consequences of MCPH gene mutations and for the 
severity of the corresponding phenotypes.

4. Loss of MCPH genes leads to 
increased cell death in the developing 
CNS

Programmed cell death contributes to CNS development by 
regulating cell number, eliminating signaling centers, allowing 
proper spacing, positioning and avoiding mis-specification 
(Yamaguchi and Miura, 2015). However, most of the analyzed MCPH 
models are characterized by increased cell death, far exceeding 
physiological levels (Figure 2). For example, MCPH1-deficient mice 
show increased percentage of apoptotic cells, both under basal 
conditions and after ionizing radiation (Zhou et al., 2013). Similarly, 
ASPM deficiency increases apoptosis during development both in 
mouse and zebrafish models (Novorol et al., 2013; Williams et al., 
2015). CITK loss leads to massive apoptosis in rodents (Di Cunto 
et al., 2000; Sarkisian et al., 2002; Sgrò et al., 2016; Bianchi et al., 
2017b). Apoptosis is observed after KNL1 loss (Shi et al., 2019) and 
after CENPJ loss both in mice and human cerebral organoids (Lin 
et al., 2020; An et al., 2022). Mutations in LMNB1 and LMNB2 lead 
to increased apoptosis in the developing neocortex and neurons 
(Coffinier et al., 2011; Chen et al., 2019). Mutation of WDR62, whose 
product is functionally required for spindle pole organization, leads 
to apoptosis in the developing mouse neocortex and in human 
cerebral organoids (Chen et al., 2014; Zhang et al., 2019). Similarly, 
mutations in the CDK5RAP2, also involved in mitotic spindle 
orientation, lead to apoptosis in the developing neocortex (González-
Martínez et  al., 2021). Loss of centriolar proteins like STIL and 
CEP135 also leads to apoptosis in neural progenitors (Novorol et al., 
2013; González-Martínez et al., 2021); CENPE loss lead to apoptosis 
in cell lines related to neural progenitors (Iegiani et al., 2021a,b). 
Mutations in KIF14, encoding a microtubule motor protein, lead to 
apoptosis in mice (Fujikura et al., 2013) as well as in patient derived 
cells (Moawia et  al., 2017). Inactivation of transcription factor 
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ZNF335 induces cell death (Yang et al., 2012). In Drosophila models, 
loss of the orthologues of mitotic nuclear envelope reassembly 
regulator ANKLE2 (Yamamoto et al., 2014), as well as of the rRNA 
processing and ribosomal small subunit assembly protein RRP7A, 
have been associated to increased apoptosis (Farooq et al., 2020). 
Finally, loss of PDCD6IP, a multifunctional protein involved in 
endosomal trafficking, cytokinesis and maintenance of tight junction 
integrity, also leads to massive apoptosis in developing cortex 
(Trioulier et al., 2004; Laporte et al., 2017).

All together, these data show that inactivation of MCPH genes is 
associated with sensible increase of NPC cell death regardless of 
molecular functions of the involved genes. Apoptosis has not been 
assessed in the developing CNS for MCPH genes CEP152, PHC1, 
CDK6, SASS6, MFSD2A, WDFY3, COPB2, NCAPD2, NCAPD3, 
NCAPH, NUP37, MAP11, BUB1, which are involved in centriole 
biogenesis, chromatin and transcriptional regulation, cell cycle 
progression and kinetochore assembly. Since apoptosis can result from 
defects in the cellular mechanisms in which these proteins are 

involved, it seems reasonable to predict that also these mutations can 
lead to increased cell death in the developing nervous system.

5. Cell death generated by loss of 
MCPH genes is mostly 
TP53-dependent

The nuclear transcription factor TP53 regulates several major 
cellular functions including gene transcription, DNA synthesis, DNA 
repair, cell cycle regulation, senescence, and cell death (Hafner et al., 
2019). Several genes associated with MCPH have been shown to 
induce activation of TP53 (Figure  2). For example, CDK5RAP2 
deficiency induces TP53 expression in mice neural progenitors 
(González-Martínez et al., 2021) and in patient derived cells (Wang 
et al., 2021). Mutations in KNL1 lead to activation of TP53 and TP53 
target genes in KNL1 conditional knock-out brain (Shi et al., 2019). 
Mutations in CENPJ lead to TP53 activation both in mice and human 

FIGURE 2

Altered neurodevelopment in MCPH. Scheme depicting the main types of progenitor cells and their lineage relationships during normal development 
of cerebral cortex and in MCPH. The table on the right shows for which MCPH genes there is evidence of apoptosis and TP53 activation (green dot). 
CP, cortical plate; iSVZ, inner subventricular zone; oSVZ, outer subventricular zone VZ, ventricular zone; NEC, neuroepithelial cells; aRGC, apical radial 
glia cells; bRGC, basal radial glia cells.
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cerebral organoids (Lin et al., 2020; An et al., 2022). Similarly, ASPM, 
STIL, WDR62 and CITK mutations have been shown to activate the 
TP53 pathway (Novorol et al., 2013; Williams et al., 2015; Bianchi 
et al., 2017b; Pallavicini et al., 2018). In addition, mutations in CENPJ 
and CDK5RAP2 can lead to centrosome abnormalities, which can in 
turn activate the TP53 pathway and contribute to the development of 
microcephaly (Phan et al., 2021).

TP53 is a major regulator of apoptosis (Aubrey et al., 2018) and is 
probably the main driver of this process in MCPH (Figure 2). This is 
supported by the fact that TP53 co-deletion largely rescues cell loss 
phenotypes, in mice and other pre-clinical models generated by 
MCPH genes loss. KNL1/TP53 conditional double mutant mice 
cortical size is partially restored and apoptosis occurred at significantly 
lower levels (Shi et  al., 2019), when compare with isolated KNL1 
knockout. Blocking TP53 activity in STIL, WDR62 or ASPM mutant 
zebrafish also led to reduced apoptosis (Novorol et  al., 2013). 
Co-deletion of TP53 with ASPM in mice restored cerebellar growth 
and reduced apoptosis (Williams et al., 2015). Similarly, co-deletion 
of TP53 rescues radial glia progenitors from apoptosis induced by 
CENPJ or CEP135 loss (Lin et al., 2020; González-Martínez et al., 
2021). Finally, in CITK/TP53 mutant mice, neural progenitors’ and 
neurons’ cell death is dramatically reduced; notably, the perinatal 
lethality that characterize this model was totally rescued, while clinical 
and neuroanatomical phenotypes were significantly improved, despite 
the persistence of a huge proportion of binucleated or polyploid cells 
(Bianchi et al., 2017b). These data highlight the crucial relevance of 
TP53 in contributing to neural cells’ loss that characterizes MCPH. The 
pathogenic effect of its activation in MCPH can be further potentiated 
by cell cycle arrest, the other prominent outcome of TP53 activation 
(Chen, 2016).

6. Mechanisms of TP53 activation in 
MCPH: DNA damage and beyond

Tight maintenance of genomic integrity appears to be an essential 
prerequisite for the development and function of the central nervous 
system (McKinnon, 2013). During the expansion of neural progenitor 
cells, a large number of DNA breaks is produced during DNA 
synthesis and mitosis, probably as a result of DNA replication stress 
induced by the high proliferative activity (McKinnon, 2013). Proper 
repair of these lesions is fundamental (Hakem, 2008). A large body of 
evidence has highlighted TP53 as the toughest ‘guardian of the 
genome’, capable to prevent genome instability by halting proliferation, 
promoting DNA repair or inducing cell death in many situations of 
genome imbalance and/or DNA damage (Hernández Borrero and 
El-Deiry, 2021). Loss of proteins strongly involved in the DNA damage 
response leads to TP53-dependent apoptosis. For example, conditional 
INO80 deletion from cortical NPCs impairs DNA double-strand 
break repair, triggering TP53-dependent apoptosis and microcephaly. 
INO80 is involved in nucleosome remodeling and histone variant 
exchange, and TP53 co-deletion extensively rescues INO80 
conditional knockout phenotypes (Keil et al., 2020). Another example 
is BRCA2, a protein necessary for homologous recombination-
mediated DNA repair. Conditional BRCA2 knockout affects 
neurogenesis, particularly during embryonic and postnatal neural 
development, while TP53 co-deletion largely restores brain histology 
(Frappart et  al., 2007). One last case is represented by LIG4, that 

mediates DNA damage repair via non-homologous end joining. LIG4 
knockout leads to embryonic lethality and massive neuronal apoptosis 
in mice, which can be  recovered by TP53 co-deletion (Frank 
et al., 2000).

On this basis, it is not surprising that accumulation of DNA 
damage has been documented in many MCPH models and that the 
function of several MCPH genes is directly linked to DNA repair and 
genomic stability (Bianchi et al., 2018). The best example in this sense 
is probably MCPH1, encoding a centrosomal protein with three 
BRCA1 C-Terminus (BRCT) domains, involved in DNA repair, 
genomic stability, and chromatin remodeling (Liu et  al., 2016). 
MCPH1 is a mediator of ATM and ATR pathways in response to DNA 
damage and co-localizes with numerous proteins involved in the DNA 
damage response (DDR) such as γH2AX, MDC1, 53BP1, RAD17, and 
RPA34 upon ionizing radiation or UV treatment (Wood et al., 2007; 
Liang et al., 2010). Moreover, The N-terminal BRCT domain interacts 
with the chromatin remodeling complex SWI/SNF in DNA repair 
(Peng et  al., 2009). Consistent with its role in the DNA damage 
response, MCPH1-deficient neuronal progenitors are hypersensitive 
to ionizing radiation during neurogenesis. Moreover, deletion of 
MCPH1 compromises homologous recombination repair and induces 
genomic instability (Zhou et al., 2013). Some MCPH genes originally 
associated with other cellular functions have lately been involved in 
DNA repair processes. ASPM, the most frequently mutated among 
MPCH genes, is best known for its capability to focus microtubules 
minus ends at spindle pole bodies (Tungadi et al., 2017). However, 
ASPM levels are influenced by irradiation and, more importantly, 
ASPM knockdown impairs DNA double-strand break repair (Kato 
et al., 2011). Specifically, it has recently been found that ASPM can 
be  recruited to DNA damage sites and is required for efficient 
homologous recombination repair (Xu et al., 2021). Moreover, ASPM 
is involved in stabilization of stalled fork in response to replication 
stress (Wu et  al., 2022). Accordingly, ASPM disruption leads to 
increased DNA damage in cerebellar progenitor cells (Williams et al., 
2015). Another gene that has been linked in recent years to DNA 
repair is CITK, best known for its involvement in cytokinesis 
(Madaule et al., 2000; D’Avino, 2017; Bianchi et al., 2017a). CITK loss 
induces DNA damage accumulation and chromosomal instability in 
both mammals and Drosophila. CITK-deficient cells display increased 
sensitivity to ionizing radiation, and defective recovery from 
radiation-induced DNA lesions (Bianchi et al., 2017b; Pallavicini et al., 
2020; Boda et al., 2022). In particular, CITK binds RAD51 and is 
involved in its recruitment to DNA double-strand breaks (Bianchi 
et  al., 2017a,b; Pallavicini et  al., 2018), as well as in homologous 
recombination-dependent DNA repair (Pallavicini et al., 2020).

Inactivation of many other MPCH genes results in DNA damage 
accumulation even though they have not been implicated directly in 
DNA repair. KNL1, part of the KNL-1/Mis12/Ndc80 complex (KMN), 
is needed for proper kinetochore assembly, checkpoint functioning 
and spindle assembly checkpoint signaling (Caldas and DeLuca, 
2014). Loss of KNL1 leads to DNA damage accumulation in NPC 
located in VZ and SVZ (Shi et al., 2019). Disruption of CENPJ, a 
regulator of centriole biogenesis, leads to genomic instability without 
altering ATR and ATM-dependent DNA damage signaling (McIntyre 
et al., 2012). Similarly, CEP152, a regulator of centriole duplication, 
has been described as regulator of genomic integrity and cellular 
response to DNA damage (Kalay et  al., 2011). Impaired CEP152 
function leads to increased H2AX phosphorylation and genomic 
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instability (Kalay et al., 2011). The kinetochore motor protein CENPE, 
important in chromosome congression, spindle microtubule capture 
at kinetochores and spindle assembly checkpoint, also leads to DNA 
damage accumulation in in cell lines related to neural progenitors 
(Iegiani et  al., 2021a,b). Mutations in LMNB1 and LMNB2, 
components of the nuclear lamina, cause DNA damage in neurons 
(Chen et al., 2019). The high prevalence of DNA damage accumulation 
after MCPH genes’ mutation suggest that many of them could play a 
direct role in avoiding chromosomal breaks or facilitating DNA repair. 
This could be  reasonably predicted for PHC1, a gene involved in 
transcriptional regulation, whose loss leads not only to DNA damage 
accumulation, but also to decreased DNA repair after irradiation 
(Awad et al., 2013).

Besides DNA damage accumulation, other mechanisms may 
be  responsible for or may contribute to the activation of TP53  in 
MCPH. Cytokinesis failure, characteristic of some microcephaly 
models (Di Cunto et al., 2000; Higgins et al., 2010; Harding et al., 
2016; Perez et al., 2019; Reilly et al., 2019; Tedeschi et al., 2020; Little 
et al., 2021) has been reported to stabilize TP53 by engaging the Hippo 
pathway (Ganem et al., 2014). The unfolded protein response (UPR), 
which has been documented in specific genetic microcephaly 
syndromes (Laguesse et al., 2015; Passemard et al., 2019; Terabayashi 
and Hashimoto, 2021; Liu et al., 2023), and could be generally engaged 
by aneuploidy (Zanetti et al., 2016), may activate TP53 through NFkB 
engagement (Lin et  al., 2012). Finally, disruption of centrosomal 
function, which may be  produced by many MCPH mutations 
(Robinson et al., 2020), may stimulate P53 activity through the 53BP1-
USP28 axis (Cuella-Martin et al., 2016; Meitinger et al., 2016).

7. TP53-independent determinants of 
MCPH revealed by co-deletion 
experiments

The mentioned studies highlight TP53 as a crucial crossroad of 
the events activated by mutation of MCPH genes, raising the 
possibility that TP53 activation may be a necessary event in most 
cases. On the other hand, co-deletion experiments also show that 
TP53 engagement may not be sufficient to produce the MCPH full 
phenotypic spectrum.

Although co-deletion of TP53 rescued perinatal lethality the 
massive apoptosis in CITK null mice, brain size and architecture were 
only partially restored (Bianchi et  al., 2017a,b). Moreover, high 
throughput analysis of gene expression revealed a TP53-independent 
engagement of proliferation-suppressing pathways in the developing 
cerebellum of CITK/TP53 double knockouts (Bianchi et al., 2017a,b). 
Loss of centrosomal protein CEP135, responsible for MCPH8, results 
in centriole duplication defects, TP53 activation, and NPCs cell death 
(González-Martínez et al., 2021). TP53 ablation in a CEP135-deficient 
background prevents cell death but not MCPH, leading to subcortical 
heterotopias similar to those seen in MCPH8 patients (González-
Martínez et al., 2021). Homozygous CENPJ deletion in the central 
nervous system causes dramatic apoptosis that severely disrupts 
embryonic brains (Lin et al., 2020). Microcephalic brains with reduced 
apoptosis are detected in conditional CENPJ knockout mice that lose 
only one allele of TP53, while simultaneous removal of TP53 and 
CENPJ fully rescues RGP death. Nevertheless, TP53 deletion has no 
effects on the other phenotypes that characterize this model, including 

cilia loss, RGP mislocalization, junctional integrity disruption, 
massive heterotopia and severe cerebellar hypoplasia that (Lin et al., 
2020). Intriguingly, despite apoptosis elimination, conditional CENPJ/
TP53 double knock-out animals have smaller brain than conditional 
CENPJ knock-out mice. These results suggest that lack of TP53-
dependent adaptation to centriole defects in NPCs may lead to 
architectural defects if chromosomally unstable cells are not 
eliminated during brain development. Systematic analysis of STIL, 
ASPM and WDR62  in zebrafish through morpholino-induced 
ablation result in a marked reduction in head and eye size (Novorol 
et  al., 2013). Live imaging studies made possible by this model 
revealed a dramatic rise in the fraction of proliferating cells, caused by 
failure of progression through prometaphase, accompanied by 
strongly increased levels of apoptosis. Blocking TP53 in this context 
led to a partial rescue of apoptosis and cell number, but had no effect 
on the mitotic phenotype (Novorol et al., 2013). This implies that, 
especially in the retina, changes in the ratio between asymmetric and 
symmetric divisions may impact on eye size independently of 
apoptosis and cell cycle block derived from TP53 activation (Malicki, 
2004; Zigman et al., 2005). This is supported by the fact that several 
pathways are associated to the control of the mitotic spindle 
orientation and subsequent division angle in the retina, such as Notch 
signaling (Balenci and van der Kooy, 2014) and Laminin β2 Chain 
(Serjanov et  al., 2018). Changes in mitotic spindle orientation in 
retinal progenitors leads to defects in cell fate specification and 
proliferation (Zigman et al., 2005). All together, these findings and 
data from retina studies strongly suggest that other pathways activated 
in parallel with TP53 activation may contribute in decreasing neural 
cell generation and increase neural cell death in MCPH syndromes.

8. Conclusion

After identification and functional characterization of the first 
causal genes, MCPH has long been considered a disorder primarily 
caused by specific alterations of the delicate balance between 
symmetric and asymmetric divisions that characterize cell fate 
determination in normal brain development. The coexistence of DNA 
damage and apoptosis, revealed by more in depth analysis, has 
progressively underscored the crucial role of TP53. Not surprisingly, 
the many mechanisms that may trigger the activation of this 
fundamental protein, especially DNA damage accumulation, have 
turned out to be highly relevant in the context of genetic microcephaly. 
On this basis, it can be tempting to speculate that explaining the link 
between a particular MCPH gene loss and TP53 engagement may 
be one of the most critical aspects for understanding the pathogenesis 
of the different clinical syndromes. Understanding the subtleties of 
TP53 regulation and action in NPCs and neurons is also relevant to 
explain the strong tissue-specificity of MCPH genes’ loss.

Although double knockout studies clearly reveal that other 
pathways may cooperate with TP53 in the production of full-blown 
phenotypes, the constant involvement of this cellular hub highlights 
at least one common druggable player (Pani et al., 2002; Strom et al., 
2006). Several therapeutic strategies to inhibit TP53 have been 
described, such as Pifithrin-α (Sohn et al., 2009) and trifluoperazine 
(Taylor et al., 2020) that suppress TP53 mRNA transactivation and 
translation, respectively. Another option is represented by the use of 
short interfering RNA technology to silence TP53 (Ubby et al., 2019). 
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Finally, besides direct TP53 inhibition, other strategies could aim at 
targeting cellular process that are altered when TP53 is hyperactivated 
such as inhibition of TGF-β signaling or upregulation of mTOR 
signaling (Tsai et  al., 2021). The potential risks of developing 
translational strategies based on T53 inactivation underscore the 
relevance of better understanding the specificities of TP53 downstream 
pathways’ engagement in MCPH.
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