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This work is a case study in applying recent, high-level ethical guidelines,

specifically concerning transparency and anthropomorphisation, to Human-

Robot Interaction (HRI) design practice for a real-world Socially Assistive Robot

(SAR) application. We utilize an online study to investigate how the perception

and e�cacy of SARs might be influenced by this design practice, examining how

robot utterances and display manipulations influence perceptions of the robot

and the medical recommendations it gives. Our results suggest that applying

transparency policies can improve the SAR’s e�ectiveness without harming

its perceived anthropomorphism. However, our objective measures suggest

participant understanding of the robot’s decision-making process remained low

across conditions. Furthermore, verbal anthropomorphisation does not seem to

a�ect the perception or e�cacy of the robot.
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1. Introduction

An increasing amount of work within Human-Robot Interaction (HRI) is concerned

with the design and development of Socially Assistive Robots (SARs) for applications in

healthcare (Kyrarini et al., 2021). Many user studies look to examine the impact of particular

design choices in this context with regards to robot behavior (Agrigoroaie and Tapus,

2016) or appearance (Cresswell et al., 2018). Unsurprisingly, given the human-centered

nature of healthcare as a target application, and a tendency to design robots which aim to

emulate human-human interaction cues, SARs are often quite anthropomorphic in their

design. A number of scholarly works critique such anthropomorphisation (Wilks, 2010;

Yogeeswaran et al., 2016; Danaher, 2020), and an increasing number of ethical guidelines

for robot design/development similarly call for careful consideration, on the part of robot

designers and developers, as to if/how they responsibly leverage anthropomorphism while

also ensuring users understand the actual capabilities and limitations of their systems. Some

such guidelines call broadly for the avoidance of “unnecessary” anthropomorphisation, and

ensuring “transparency of [the robot’s] robotic nature” (BSI, 2016), raising the immediate

questions: when indeed may anthropomorphism be (un)necessary? and how can we

ensure transparency? Roesler et al. (2021) performed a meta-analysis suggesting that

anthropomorphism generally has positive effects on human-related outcomes, including

likeability, intelligence, trust and acceptance. Winkle et al. (2021) also suggested that

anthropomorphic behavior may increase the efficacy of SARs.
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With the prevalence of Artificial Intelligence (AI) in current

robotics and the fact that robots commonly require data to

function, the ethical guidelines for trustworthy AI and legislation

for data protection also become applicable (Felzmann et al., 2019).

Transparency is a recurrent theme in such guidelines. However,

similar to anthropomorphism, the effects of transparency can

vary across scenarios. Nesset et al. (2021) investigated dialogue-

based transparent manipulations and suggested transparent design

could lead to better-informed decisions on health. While Straten

et al. (2020) raised concerns that transparency could impair

the perceived anthropomorphism and trust in robots, leading to

reduced relationship formation in a child-robot interaction. As

such, it seems timely and valuable to examine:

1. How might robot developers design SAR behaviors and user

interactions which deliver on current ethical guidance?

2. What might the implications of such design choices be on

efficacy, i.e., how well the robot achieves the desired goal of

deployment, which includes e.g., being acceptable to users?

We explore these questions by providing a case study within

the context of Perinatal Depression (PND) screening. Based on

recent work studying automatic detection of PND in late pregnancy

and the application of Explainable Artificial Intelligence (XAI)

techniques (Lundberg and Lee, 2017; Zhong et al., 2022), we

consider a robot-patient interaction, in which a SAR automatically

evaluates if the patient is at risk of PND. Addressing question one,

we produce design speculations on what lower vs. higher levels of

designed anthropomorphism could “look like” in this context, in a

fixed, commercially available and commonly used robot platform,

while respecting laws and regulations. We do the same with

designed transparency, speculating on how data regulations and

XAI techniques might be integrated into SAR interactions. We

further investigate whether our more transparent design really

supports increased user understanding of the system, as called

for by the ethical guidelines (HLEG, 2020). Addressing question

two, we conduct an online, video-based study to examine how

each version of our SAR is perceived by a relevant participant

pool: women with children. Specifically, we examine the impacts

of our design manipulations on participants’ perceptions of

likability, anthropomorphism, and trust in our SAR, representing

typical evaluation measures commonly utilized within HRI user

studies. We further investigate the extent to which participants (i)

seemingly understood the SAR’s function, (ii) subjectively perceived

the SAR as deceptive or clear and appropriate, and (iii) would likely

act upon medical advice given by the SAR.

The video-based nature of our study puts participants in an

observing role with minimal “real world” risk. Early work in HRI

advocated for the value of such approaches during prototyping,

testing and developing HRI scenarios, finding high agreement

between live vs. online trials (Woods et al., 2006), and, even before

COVID-19 forced many studies online (Feil-Seifer et al., 2020),

video-based stimulus have been used to investigate perceptions

of robots within HRI research (Blow et al., 2006; Cramer et al.,

2009; Lee et al., 2011; Strait et al., 2015; Sanders et al., 2019; Kim

et al., 2020; Kwon et al., 2020), particularly when investigating high-

impact, ethically and/or morally fraught HRI scenarios (Rosenthal-

von der Pütten et al., 2013; Jackson and Williams, 2019; Winkle

et al., 2021). In line with these previous works, our work is intended

to provide initial insights on currently under-explored practicalities

and implications of designing for trustworthy HRI in a highly

sensitive-but-current SAR application.

In this work we do not consider the physical embodiment

of the robot, but rather variations in behavior design for one

specific robot platform—a realistic remit for many HRI designers

who work with (a limited number of) commercial platforms. We

use a Pepper robot for all manipulations, since its CE marking1

makes it a realistic option for deployment in-the-wild. We further

assume that the robot needs to behave lawfully and avoid actively

deceiving users in all experimental conditions. Therefore, we limit

designed anthropomorphism to conversational manipulations that

follow existing guidelines for ethical and trustworthy design. In

the low anthropomorphism condition, the robot reflects a strict

interpretation of the ethical guidelines, never referring to itself

as an independent agent, avoiding expressions that would imply

it has thoughts or emotions, and attributing agency over its

actions to the medical team and the interaction designers. In the

high anthropomorphism condition, the robot uses more “natural”

language and represents itself as a member of the medical team that

actively contributes to the decision-making process.

Similarly, we seek to represent designed transparency in a

realistic manner that can be applied to in-the-wild interactions

today. We combine two approaches: (i) disclosure and clarification

of data collection and usage in one hand and (ii) explanation

of algorithmic processes in the other. In the low transparency

condition, the robot provides only minimal details about which

data is collected and how it is used, as might be required for

informed consent, but does not explain how it reaches conclusions.

In the high transparency condition, the robot is more explicit about

data usage. It also uses its display capabilities, combined with real-

world XAI techniques to explain certain why and how certain

decisions have been made.

The results indicate that our transparent manipulations

significantly affected the persuasiveness and perceived clearness of

the robot, without influencing its perceived anthropomorphism

or perceived ethical risk. However, this did not translate clearly

into the pattern of measured participant understanding of the

system. When ensuring enough anthropomorphism for smooth

interaction, modifying anthropomorphism had no significant

effects on the perception nor efficacy of the robot.

2. Related work

2.1. Designing trustworthy human-robot
interactions

As AI-driven robots become more prevalent in everyday

and professional contexts, where they directly interact with

human users, trustworthiness becomes an increasingly important

requirement in their design (Kraus et al., 2022). The European

Commission’s Ethics guidelines for trustworthy AI (HLEG, 2019)

define three key characteristics to enable trust in an automated

system: lawful, ethical, and robust. Many other guidelines,

1 https://www.aldebaran.com/sites/default/files/inline-files/declaration-

of-conformity-pepper-1.8.pdf
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principles, and legislation for AI and robots also impact the

design of trustworthy robots. Some examples include UNICEF’s

Policy guidance on AI for children (UNICEF, 2021), the European

Union’s General Data Protection Regulation (GDPR, 2018), and

British Standard BS8611—guide to the ethical design and application

of robots and robotic systems (BSI, 2016). However, when it

comes to real-life scenarios, clear and mature instructions for

the practical implementation of trustworthy HRI are still not in

place. Very recently, Kraus et al. (2022) attempted to draw a

more concrete and applicable checklist for trustworthy HRI. Zicari

et al. (2021a) focused on the assessment of trustworthy AI by

proposing a methodological framework, Z-Inspection. Later the

same year, Zicari et al. (2021b) demonstrated this approach in a case

study involving AI in healthcare, showing their interpretation of

the European Commission’s trustworthy AI guidelines. However,

to the best of our knowledge, there is no such evaluation of

trustworthiness available for HRI.

These high-level guidelines are often designed with a wider

context in mind, and do not necessarily translate well to HRI. Some

design practices implicate that the guidelines are not ideal for the

demanded functions of a social robot. Lemaignan et al. (2021, 2022)

applied UNICEF’s Policy Guidance on AI for Children (UNICEF,

2021) when designing Pepper robots for autistic children. They

appreciated the solid ethical framing, but questioned whether such

guidance would be appropriate and applicable to embodied AI

systems like SARs.

Winkle et al. (2021) evaluated the ethical risk of

anthropomorphism and deception, which is identified in BS8611

by suggesting to avoid “unnecessary anthropomorphization” and

“deception due to the behavior and/or appearance of the robot”, and

to ensure “transparency of its robotic nature” [page 3 of BS6811

(BSI, 2016)]. The study indicated that the kind of conversation-

based anthropomorphism we experiment with in this work is

likely important for overall SAR function and represents low

ethical risk to users, challenging the anti-anthropomorphisation

recommendations. Nevertheless, considering the non-human

“robotic nature” of the system needs to be transparent, this result

causes an interesting practical dilemma: how can we ensure

transparency of the system’s robotic nature without harming the

essential anthropomorphism? Or we can question one step further:

how does transparency affect the perception and efficacy of SARs?

2.2. Transparency and anthropomorphism
for trustworthy HRI

2.2.1. Meanings of transparency
Due to the inherent ambiguity of the word, transparency has

been interpreted differently by various guidelines. The Engineering

and Physical Sciences Research Council’s (EPSRC) Principles of

Robotics, which was first published online in 2011, include a

Principle of Transparency that requires a robot’s machine nature

to be transparent (Boden et al., 2011, 2017). The BS8611 poses

the same attitude: “ensure transparency of its robotic nature”. In

these documents, transparency is implemented as disclosure of the

machine-like nature of the robot. The EPSRC Principles further

state: “Robots are manufactured artefacts. They should not be

designed in a deceptive way to exploit vulnerable users; instead their

machine nature should be transparent.” (Boden et al., 2017). The

normative assertion makes the impression that non-transparency

and deception caused are generally unacceptable, as they would

lead to exploitation. In fact, the effect of transparency in real-

world applications is more complex than that, varying with the

application and purpose of the robot (Bryson, 2017; Wortham and

Theodorou, 2017).

A separate meaning emerges from legislation protecting the use

of personal data. In GDPR (2018), transparency is implemented

as disclosure of the collection and processing of personal data. This

creates new expectations of robot transparency, as robots often

function with data. Some general principles are provided in recital

39: “It should be transparent to natural persons that personal data

concerning them are collected, used, consulted or otherwise processed

and to what extent the personal data are or will be processed...”,

and recital 58: “The principle of transparency requires that any

information addressed to the public or to the data subject be

concise, easily accessible and easy to understand, and that clear and

plain language and, additionally, where appropriate, visualization

be used...This is of particular relevance in situations where the

proliferation of actors and the technological complexity of practice

make it difficult for the data subject to know and understand whether,

by whom and for what purpose personal data relating to him or her

are being collected...”

A final meaning of transparency is listed in the Assessment List

for Trustworthy Artificial Intelligence (HLEG, 2020). Specifically,

under the subheading of Transparency, the questions posed

include: “Did you assess to what extent the decisions and hence

the outcome made by the AI system can be understood?”, “Did

you communicate to (end-)users—through a disclaimer or any other

means—that they are interacting with an AI system and not with

another human?”, and “Did you clearly communicate characteristics,

limitations and potential shortcomings of the AI system?” The

second question follows the same ethos as the ESPRC Principles

and BS8611, while the first and third questions focus on the

explainability of the system, as well as promoting user awareness

of its limitations. We can understand this implementation of

transparency as allowing the end-user to correctly calibrate their

trust in the system.

In the field of robotics, however, the competing notions of

transparency are still under-explored. Interpreting these high-level

expectations and applying the transparency principles is an open

challenge (Felzmann et al., 2019).

2.2.2. Transparency in practice
Empirical studies have applied the transparency principles

in robots through both verbal and non-verbal cues, showing

various effects on outcomes, including trust, utility, and robustness

(Wortham and Theodorou, 2017). Wang et al. (2021) designed

three levels of transparency in a robotic driving assistant, by

conveying different amounts of information in the auditory and

visual communication channels. Their results showed that the

same transparency level leads to different outcomes for different

tasks, even in the same driving context. Other studies suggest that

language-based explanation has positive effects on trust (Wang
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et al., 2015; Nesset et al., 2021). Nesset et al. (2021) found

transparency is beneficial for users to evaluate the competence of

the robot and calibrate trust. Although we could identify more use-

cases (e.g., companion robots) in which transparency could be at

odds with utility, the relationship between transparency, trust, and

utility still needs to be further explored (Wortham and Theodorou,

2017).

2.2.3. Expectations on anthropomorphism
In the realm of HRI, employing anthropomorphism is one of

the most prevalent design strategies to enhance people’s acceptance

of social robots (Fink, 2012; Dörrenbächer et al., 2020). Roesler

et al. (2021) suggest that task-relevant anthropomorphic features

can increase task performance. Winkle et al. (2021) also claims

that anthropomorphism is important for the robot function in

SARs. Yet, controversially, anthropomorphism is discouraged in

the realm of robot ethics. In Section 2.1 we have highlighted

the EPSRC Principles of Robotics (Boden et al., 2011) and

British Standard BS8611 (BSI, 2016). Similarly, the trustworthy

and acceptable HRI checklist (TA-HRI) (Kraus et al., 2022)

contains the following item: “The robot uses intuitive mechanisms

of interpersonal communication appropriately (without excessive

anthropomorphising or an inappropriate degree of attachment)”.

2.2.4. Anthropomorphism in practice
anthropomorphic design can be implemented by moderators

such as appearance, movement, interaction/communication, and

the context in which the robot is deployed and introduced to users

(DiSalvo et al., 2002, 2004; Onnasch and Roesler, 2021). Roesler

et al. (2021) note that, depending on the moderators used and other

contextual factors, anthropomorphic design is not always beneficial

and can lead to diverse and unintended outcomes. However,

their meta-analysis found overall positive effects on human-related

outcomes, including perceived likeability and intelligence, trust

and acceptance toward robots, activation, pleasure, and social

behavior. The anthropomorphic communicational features used in

Winkle et al. (2021)’s study have also shown significant positive

effects across studies (Roesler et al., 2021). Wang et al. (2021)

told a different story that for driving context, anthropomorphic

visual and audio communication can reduce usability as the

workload increases.

2.3. Appropriate trust in robots

The word “trust” gives a positive common feeling that it

should always be an important and good thing. Some argue that

it is a critical element of human–robot relationships. People’s

undertrust in robots can curb their willingness to accept robot-

produced information or follow a robot’s suggestions, thus limiting

the potential benefit of robotic systems and affecting the efficacy

of robots (Hancock et al., 2011; Schaefer et al., 2016). Whereas,

overtrusting can be equally problematic and engender ethical

issues like overinvesting in robots and deceptions, which are

issues the ethical guidelines intended to address by reducing

anthropomorphism. Instead of going too extreme, what is more

important might be to enable users to correctly calibrate their level

of trust appropriately and avoid over- or under-usage (Dzindolet

et al., 2003; Abbass et al., 2018; Hancock et al., 2021), and lead to

trustworthy design.

Although transparency (Lewis et al., 2018) and

anthropomorphism (Natarajan and Gombolay, 2020; Roesler

et al., 2021) are often considered boosters of trust (Hancock et al.,

2021), just like “trust”, these two ambiguous words can mean

different things to different people in different contexts and are not

necessarily beneficial for trustworthiness or efficacy (Weller, 2017;

Wortham and Theodorou, 2017).

3. Research questions

There is tension in the existing literature between the

potential advantages of a highly anthropomorphic robot, and

current recommendations to obtain trustworthiness bymaximizing

transparency and avoiding deception. While this discussion tends

to encompass anthropomorphism as a form of deception, these

two qualities might be separable. Given the design space afforded

by common interaction modalities for a social robot (speech,

movement, display) and previous literature, we explore separate

manipulation of the designed anthropomorphism level (low vs. high)

and the designed transparency level (low vs. high), with the goal

to design a trustworthy and effective assistant in the healthcare

domain. This leads us to evaluate our design through the following

research questions:

• RQ1 How do different levels of designed anthropomorphism

(low vs. high) and designed transparency (low vs. high) affect

the perception of a social robot as a healthcare assistant

screening for PND?

– RQ 1.1 How do the experimental conditions affect

responses to standardized questionnaire scales?

– RQ1.2Howdo the experimental conditions affect scenario-

specific measures related to ethical risk?

• RQ2 How do different levels of designed anthropomorphism

(low vs. high) and designed transparency (low vs. high) affect

the efficacy of a social robot as a healthcare assistant screening

for PND?

– RQ 2.1 How do the experimental conditions affect

agreement with the robot’s recommendations?

– RQ 2.2 How do the experimental conditions affect

understanding of the robot’s decision making process?

4. Methods

We constructed an online, video-based user study in which

participants watched a recorded interaction between a Pepper

robot and an actress playing the role of Mary, a pregnant woman.

In the recording, Pepper screens the woman for PND. The

study followed a 2×2 between-subjects design, corresponding

to the designed anthropomorphism level (low vs. high) and the
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designed transparency level (low vs. high). These manipulations

represent our exploration of the conversation design space, based

on the existing literature and ethical guidelines presented under

Section 2. Each participant was randomly assigned to one of four

versions of the recording, and answered a questionnaire based on

their observations.

4.1. Scenario

Our scenario is grounded in previous studies exploring PND

prediction through mobile phone data (Zhong et al., 2022), and

social robotics in PND (Zhong et al., 2021; Tanqueray et al., 2022).

Ultimately, the purpose of the robot is to encourage those predicted

to be most at risk of PND to accept a follow-up appointment with

a specialist clinician. To evaluate PND risk, we consider two real-

world tools: the Edinburgh Postnatal Depression Scale (EPDS), and

the Mom2B mobile app (Bilal et al., 2022).

The EPDS (Cox et al., 1987) is a 10-item questionnaire that

is widely used as a screening tool for PND in Sweden. Swedish

guidelines indicate that the questionnaire should be filled in by the

patient, and a health professional should follow up by discussing the

results with the patient.2 The Mom2B phone app (Bilal et al., 2022)

collects data monitoring the user’s depression-related symptoms

throughout their pregnancy, and up to one year postpartum. The

data collected includes e.g., sleeping hours, number of steps walked,

and survey answers collected via the app. This data can be used

to predict the future occurrence of PND. For instance, in late

pregnancy (Zhong et al., 2022), or after childbirth (Bilal et al., 2022).

In the fictional scenario presented to the participants, a Pepper

robot has been deployed in a health center to assist in screening for

PND. Mary, a pregnant woman, visits the center for her scheduled

screening, and has a short conversation with Pepper to assess

her mental wellbeing. The robot asks for permission to access

the patient’s app data (from Mom2B or a similar app), which

she accepts. Pepper then uses this data to perform a preliminary

assessment, determining that the patient is at risk of developing

PND. The robot complements its explanation of the assessment

with an informational graphic displayed on its screen. It asks the

patient to fill in a questionnaire and, after the patient agrees, it

shows the EPDS in its built-in screen. Once the patient finishes

responding, the robot asks Mary to verbally discuss and explain

some of her answers in an open-ended discussion (akin to the real-

world delivery of EPDS), noting that this will also be used to assess

the risk of PND. Finally, Pepper concludes that the patient is at high

risk of developing PND and suggests scheduling a follow-up visit

with a doctor. The patient refuses this suggestion.

4.2. Video stimulus

All four video stimuli used in the study were filmed in the same

static set-up, as shown in Figure 1: Pepper is centered in the frame

as the most important subject, with its front side fully visible. The

2 https://www.rikshandboken-bhv.se/metoder--riktlinjer/screening-

med-epds

actress (a member of the research team) occupies the space to the

right, and is only seen from the back. Whenever either character

speaks, color-coded and labeled subtitles are overlaid on the bottom

of the frame (see Figure 1A). The left side only contains background

furniture, and is used to overlay any images displayed on Pepper’s

screen, to facilitate viewing for the participants (see Figure 1B).

To ensure consistent delivery, we pre-recorded the utterances

spoken by the actress. During the recording of the videos, they

were played back from a speaker sitting under her chair. She was

further instructed to ensure her behavior was consistent across all

recordings, and stayedmostly static during the interaction. Pepper’s

utterances were recorded on-site. They were triggered whenever it

detected that the actress had finished speaking.

4.3. Experimental conditions

We created four versions of the video stimulus according

to the 2×2 experimental design. Two communication channels

were manipulated: the supporting graph on the display, and the

utterance content.

The supporting graph is shown by Pepper after using Mary’s

app data to assess her risk of developing PND. Two possible

images are displayed, depending on the designed transparency level.

Figure 2 shows the two graphs. In the high transparency condition

(Figure 2A), a real-world XAI technique is used to show the relative

importance of different survey responses toward the provided

assessment. The graph uses a waterfall plot to display the SHAP

values (Lundberg and Lee, 2017) attributed to each questionnaire

item. The displayed data is fictional, but it is based on a real

model presented in Zhong et al. (2022). In the low transparency

condition (Figure 2B), the stages of a normal pregnancy are

displayed by cartoon depictions of a woman from early pregnancy

until childbirth. Mary’s current week of pregnancy is highlighted in

the sequence.

The utterance content is the main avenue through which we

differentiated each experimental condition. Throughout the script,

we performed 23 manipulations according to the level of designed

anthropomorphism, and nine manipulations according to the level

of designed transparency. Table 1 lists the guidelines we established

to manipulate for designed anthropomorphism; Table 2 lists the

guidelines we used to manipulate for designed transparency.

In the high anthropomorphism condition, Pepper speaks as

if it was a human member of the medical team: utilising the

first person and an active voice (“I would like to recommend that

you meet with a specialist”), prefers human-like expressions like

“information” and “calculations”, and pretends do have emotions

(“I’m happy to see you today”). This contrasts with the low

anthropomorphism condition, in which the robot speaks as

a machine programmed by others: utilising the third person

and a passive voice (“It is recommended that you meet with a

specialist”), prefers technical terms like “data” and “algorithms”,

and does not pretend to have emotions (“it’s good that you came

today”).

In the high transparency condition, Pepper is explicit about

the data that is being used (“based on the guidelines for pregnancy

progression, I think it’s time to talk about how you’ve been feeling

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1152532
https://www.rikshandboken-bhv.se/metoder--riktlinjer/screening-med-epds
https://www.rikshandboken-bhv.se/metoder--riktlinjer/screening-med-epds
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Zhong et al. 10.3389/fcomp.2023.1152532

FIGURE 1

Selected video frames from the video stimulus presented to the participants. While Pepper’s utterances vary according to the experimental condition,

the same framing is used across all conditions. (A) Utterances by Mary and Pepper are supported with color-coded subtitles. (B) The empty space at

the left of the video is used to display the contents of Pepper’s screen when it is being used.

recently”), and the procedures that are being applied (“You scored

13 out of a maximum 30 points on the questionnaire. We usually

recommend moms who score 10 or higher to get evaluated by a

doctor. Based on this, combined with your tone of voice, I think you

might be suffering from depression.”). This contrasts with the low

transparency condition, in which Pepper prefers to focus on the

action being taken (“I think now would be a good time to talk about

how you’ve been feeling recently”), and the procedure outcomes

(“Based on your answers in the questionnaire and our conversation

just now, I think you might be suffering from depression. We usually

recommend moms in your situation to get evaluated by a doctor.”).

Note that the transparency manipulations tend to include a

significant amount of language affected by the anthropomorphism

manipulations, so the preceding examples were specifically taken

from high-anthropomorphism scripts.

4.4. Experimental measures

4.4.1. Perception (RQ 1)
The standardized scales (RQ 1.1) used tomeasure participants’

perceptions of the robot were taken from the Godspeed

questionnaire (Bartneck et al., 2009); as well as the latest version

of Multi-Dimensional Measures of Trust (MDMT)3 [originally

presented by Ullman and Malle (2018)].

Godspeed scales are 5-point semantic differential scales,

taking values 1–5. Each scale is composed of five items.

We used two (out of five) scales from the questionnaire:

anthropomorphism and likeability. Perceived anthropomorphism

was chosen as analogous to the designed anthropomorphism

3 https://research.clps.brown.edu/SocCogSci/Measures/MDMT_v2.pdf
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FIGURE 2

Variants of the supporting graphic shown by Pepper after assessing Mary’s risk of PND through her phone app data. The variant is chosen according

to the designed transparency manipulation. (A) Supporting graphic used in the high transparency condition. The relative importance of di�erent

survey answers toward the initial PND assessment is shown as a waterfall plot, according to each item’s SHAP value (Lundberg and Lee, 2017).

Fictional data based on Zhong et al. (2022). (B) Supporting graphic used in the low transparency condition. Mary’s current week of pregnancy is

highlighted. Image derived from the original by Freepik (https://www.freepik.com).

manipulation. Perceived likeability was chosen because previous

literature suggests links to anthropomorphism (Winkle et al., 2021).

MDMT scales are 8-point Likert scales, taking values

0 (not at all) to 7 (very), with an additional “does not

fit” option. Each scale is composed of four items. We

took all five scales from the questionnaire: reliable,

competent, ethical, transparent and benevolent. Notably,

one of the MDMT sub-scales specifically measures

perceived transparency, and so is analogous to the designed

transparencymanipulation.
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TABLE 1 Utterance content manipulations across levels of designed

anthropomorphism.

Low
anthropomorphism

High anthropomorphism

Prefers third person and passive

voice.

Prefers 1st person and active voice.

Pretends to feel emotions. Does not pretend to feel emotions.

Prefers the term “data”. Prefers the term “information”.

Describes its reasoning as

“algorithms”.

Describes its reasoning as “calculations”.

TABLE 2 Utterance content manipulations across levels of designed

transparency.

Low transparency High transparency

Is ambiguous about which data is

collected/used.

Is specific about which data is

collected/used.

Is ambiguous about how the data is

used.

Is specific about how the data is used.

Avoids describing its reasoning. Describes its reasoning (see Table 1).

TABLE 3 Scenario-specific measures related to ethical risk.

Measure Question Answers

Appropriateness Do you think the way the robot

presented its recommendation to

Mary was appropriate and

acceptable? Please provide a brief

explanation for your answer.

Appropriate and

acceptable.

Inappropriate

and unacceptable.

Not sure.

Clearness Was it clear to you how the robot

decided what recommendation to

give to Mary? Can you give a brief

explanation of what factors you

think the robot considered?

It was clear.

It was not clear.

Not sure.

Deception Would you consider the robot you

saw today to be deceptive, and/or

acceptable? Please give a brief

explanation for your answer.

Yes—deceptive

and unacceptable.

Yes—deceptive

but acceptable.

Not deceptive.

Not sure.

We also introduced three scenario-specific measures related

to ethical risk (RQ 1.2): appropriateness (did the robot present its

recommendation in an appropriate way?), clearness (was the robot’s

decision process clear?), and deception [was the robot deceptive?—

based on Winkle et al. (2021)]. Each of these measures was a

multiple-choice question, followed by a free-text field in which

participants were encouraged to explain their reasoning. Table 3

shows the exact phrasing used, as well as the available answers.

4.4.2. E�cacy (RQ 2)
Given the socially assistive nature of our scenario, it’s important

for the robot to achieve its goals effectively: identifying those most

at risk of suffering PND, and successfully encouraging them to

accept a follow-up appointment with a specialist. At the same

TABLE 4 Baseline sociodemographic characteristics of participants in the

study.

Measure Question Type

Recommendation

agreement

To what extent do you agree

with the patient’s decision not

to arrange a follow-up

appointment with a doctor?

(1: don’t agree at all; 5: totally

agree)

5-point Likert

scale

System understanding What do you think the robot

used for the prediction?

Free text

time, we want the robot to act in line with the established ethical

principles: communicating to the users the algorithmic nature of its

decision process, making clear which data is being used to reach an

outcome, and more generally avoiding deception. We incorporated

two case-specific measures of efficacy (RQ 2) to evaluate these

objectives: recommendation agreement and system understanding.

Table 4 shows the exact phrasings used for each measure, as well as

the type of data collected.

Recommendation agreement (RQ 2.1) is a 5-point Likert scale.

Participants selected how much they agreed with the patient’s

final decision to not seek further medical help, despite the

robot’s recommendation to schedule a follow-up assessment with

a clinician. Recommendation agreement is therefore a reverse scale:

a lower score indicates agreement with the robot. This measure

allowed us to verify if the manipulations affected the robot’s power

of persuasion.

System understanding (RQ 2.2) is an open-ended question.

Participants freely described what they thought the robot used for

its prediction. This allowed us to verify if themanipulations affected

the participants’ acquired knowledge of the system, independently

of their subjective impression.

4.5. Procedure

The study was conducted in the form of an online survey

consisting of: an introduction, a data processing statement

and a consent form; a pre-experiment questionnaire including

demographics and relevant experience; one video stimuli with

accompanying subjective measure questionnaires; and finally, a

debriefing to reveal the conditions and purposes of the experiment

setting, as well as contact details for any feedback or questions after

the experiment.

After the collection of consent forms and demographic data,

recruited participants were randomly assigned to one of the four

experimental conditions and watched the corresponding video.

When undertaking the subjective questionnaires, participants

would encounter three comprehension attention checks between

measures, as well as three leave-blank attention checks distributed

in the lengthy MDMT questionnaire.
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TABLE 5 Inclusion criteria for participants in Prolific.

Variable Value

Age 18–45

Sex Female

Gender Woman (including trans female/trans woman)

Fluent languages English

Mental

health/illness/condition -

ongoing

No

Children Yes

TABLE 6 Number of participants per experimental condition.

Transparency

Low High Total

Anthropomorphism Low 41 38 79

High 31 37 68

Total 72 75 147

4.6. Participants

We recruited participants on the crowd-sourcing platform

Prolific.4 We used the platform’s filters to recruit English-speaking

mothers aged 18–45 without ongoing mental health issues. The

specific inclusion criteria are listed in Table 5.

Two hundred five participants completed the survey. Of these,

32 did not pass the attention checks. Three more were discarded

because their completion time was too short to see the whole

video and fill in the questionnaire. Finally, 23 participants were

discarded during the analysis of the system understanding open-

ended answers, since it was deemed that their free-text responses

could not have been done in good faith.

In total, 147 participants were included in the final analysis.

They ranged in age from 20 to 48 years (M = 33.04 years, SD = 6.79

years) and resided in 14 different countries, with the biggest groups

being South African (95 women) and British (31 women). Table 6

shows the number of participants per experimental condition.

5. Results

5.1. Confirmatory statistical analysis

We analyzed each included scale from the Godspeed

questionnaire (anthropomorphism, likeability) and MDMT

(reliable, competent, ethical, benevolent) independently. To verify

their applicability to this scenario, we calculated Cronbach’s alpha.

Most scales obtained satisfactory values (0.84 ≤ α ≤ 0.92), with

one exception: MDMT’s reliable scale (α = 0.51). This was a

surprising result, which prompted further investigation.

Calculating the correlation coefficients between items in the

reliable scale, we identified that the predictable itemwas only weakly

4 https://www.prolific.co/

correlated with other items (|r| ≤ 0.06), while all other items

were strongly correlated (|r| ≥ 0.50). We hence chose to exclude

the predictable item from the scale, resulting in an acceptable

Cronbach’s alpha (α = 0.76). We speculate that our specific context

played an important role in this disagreement.

For each scale and for each experimental condition, a Shapiro-

Wilk normality test (null hypothesis: the data are normal) was

used to determine if we could use two-way ANOVA. Only the

anthropomorphism scale showed evidence of normality (0.95 ≤

W ≤ 0.99, 0.08 ≤ p ≤ 0.94). In all other scales, there was

significant evidence for non-normality (0.73 ≤ W ≤ 0.93,

p ≤ 0.024). Figure 3 shows the response distributions to all

included scales.

Due to the general lack of normality, we proceeded with

Kruskal-Wallis nonparametric tests. None of the scales showed

a statistically significant difference in scores between groups

(1.98 ≤ H ≤ 5.01, 0.17 ≤ p ≤ 0.58). Similarly, a two-

way ANOVA analysing the effect of designed anthropomorphism

and designed transparency on the anthropomorphism scale did

not find statistically significant differences between designed

anthropomorphism conditions [F(1, 143) = 0.50, p = 0.48], between

designed transparency conditions [F(1,143) = 2.15, p = 0.14], or in

the interaction between both variables [F(1, 143) = 1.99, p = 0.16].

However, considering the effect sizes and p-values, we anticipate

that a higher sample size might have shown an effect of designed

transparency on measured anthropomorphism.

We also analyzed our custom recommendation agreement

measure. Shapiro-Wilk tests on the experimental conditions

showed strong evidence against normality (0.79 ≤ W ≤

0.88, p ≤ 0.002). A Kruskal-Wallis test showed a statistically

significant difference between groups (H = 8.88, p = 0.03).

Dunn’s test was used as a post-hoc test. The results are shown in

Table 7. Although the results are not significant after applying the

Bonferroni correction, we can see that the effect size is smaller

(|z| ≤ 0.80, puncorrected ≥ 0.42) when we compare different

anthropomorphism levels under a fixed transparency level, without

a clear direction of change; while the effect size is larger (|z| ≥

1.69, puncorrected ≤ 0.09) when we compare different transparency

levels under a fixed anthropomorphism level, with a clear direction:

the low transparency level produces consistently higher scores.

Since recommendation agreement is a reverse scale, this means

that participants consistently agreed more with the robot in high

transparency scenarios, while the anthropomorphism level did not

have any measurable effect.

The categorical custom measures (clearness, appropriateness,

deception) were analyzed using a chi-squared test. Neither clearness

[χ2
(6,N=147)

= 8.29, p = 0.22], nor appropriateness [χ2
(6,N=147)

=

5.07, p = 0.54], nor deception [χ2
(9,N=147)

= 6.54, p = 0.69] were

significantly affected by the experimental condition.

5.2. Exploratory statistical analysis

Due to the lack of normality, we could not use two-way

ANOVA to properly study the interaction between our two

manipulations, and the individual effects of each manipulation

were lost in the subsequent nonparametric analysis. In this
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section, we perform an exploratory analysis showing what effects

we would expect to find if we performed each manipulation

separately.

Kruskal-Wallis tests show no significant effect of designed

anthropomorphism on the Godspeed and MDMT scales (0.04 ≤

H ≤ 0.33, 0.57 ≤ p ≤ 0.84). However, designed transparency

does have a significant effect on the MDMT benevolent scale

(H = 4.59, p = 0.03). The high transparency condition obtains

a higher benevolent score (d = 0.33). Figure 4A shows the effects

of each independent variable on the scale. Designed transparency

also shows consistently stronger effects on the remaining scales

(1.52 ≤ H ≤ 2.51, 0.11 ≤ p ≤ 0.22) when compared to

designed anthropomorphism. Similarly, designed anthropomorphism

shows no significant effect on the custommeasure recommendation

agreement (H = 0.10, p = 0.76), while designed transparency shows

a significant effect (H = 8.23, p = 0.004). Mirroring our analysis

in Section 5.1, the low transparency condition obtains a higher

score (d = 0.46). Figure 4B shows the effects of each independent

variable on the scale.

We obtain similar results when analysing the categorical

custom measures: designed anthropomorphism has no effect on

clearness [χ2
(2,N=147)

= 0.48, p = 0.79], while designed transparency

significantly affects it [χ2
(2,N=147)

= 6.31, p = 0.04]. Figure 5 shows

the shift in the frequency distribution: participants considered

that they had a better understanding in the high transparency

condition. Neither independent variable had a significant effect on

appropriateness nor deception.

5.3. Quantitative text analysis

Two annotators inspected the written responses in the system

understanding question (RQ 2.2). Each participant was rated

based on their beliefs about what information is used by the

robot. Four pilots, consisting of five samples each, were done to

decide the annotation strategy. From these, it was determined

that each annotator would mark the following five labels as true

or false: phone data (does the participant mention the use of

survey data collected fromMary’s phone app?), questionnaire (does

the participant mention the use of the responses to the EPDS

questionnaire filled in by Mary on Pepper’s touchscreen?), tone

of voice (does the participant mention the use of Mary’s tone of

voice in the post-questionnaire discussion?), NO utterance content

(does the participant correctly ignore the word content in the

post-questionnaire discussion?), NO other false beliefs (does the

participant correctly ignore any other factors?). A final label,

NOT suspicious, indicated that the response could potentially

have been done in good faith. Participants who failed this

item were discarded from the dataset (as described in Section

4.6).

After annotation, we performed statistical analysis on the

five primary labels (phone data, questionnaire, tone of voice, NO

utterance content, NO other false beliefs). Due to relatively low

TABLE 7 Pairwise comparisons: recommendation agreement as a

function of the experimental condition (Dunn’s test).

Conditions
compared

z
score

p
(uncorrected)

p
(Bonferroni)

(A+,T−)− (A+,T+) 2.435 0.015 0.089

(A+,T−)− (A−,T+) 2.356 0.018 0.111

(A+,T+)− (A−,T−) −1.778 0.075 0.452

(A−,T−)− (A−,T+) 1.690 0.091 0.546

(A+,T−)− (A−,T−) 0.800 0.424 1.000

(A+,T+)− (A−,T+) −0.098 0.922 1.000

A+ and A− indicate high and low designed anthropomorphism, respectively. T+ and T−

indicate high and low designed transparency, respectively. P-values under 0.05 highlighted.

Results ordered in descending z score magnitude.

FIGURE 3

Response distributions for all numerical scales tested in the study (Godspeed, MDMT, and recommendation agreement). With the exception of

Godspeed’s anthropomorphism scale, which appeared to be normally distributed, all results were strongly biased toward the “positive” end of each

scale. (A) Response distribution for all 5-point scales: Godspeed likeability and anthropomorphism; as well as the custom measure recommendation

agreement. (B) Response distribution for the 8-point MDMT scales reliable, competent, ethical, transparent, and benevolent.
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FIGURE 4

Interaction plots showing the e�ects of designed anthropomorphism and designed transparency on MDMT’s benevolent scale and the

scenario-specific recommendation agreement scale. Under the assumption that we can analyze each independent variable separately, designed

transparency had a significant e�ect in both scales, while designed anthropomorphism did not have a significant e�ect in either scale. (A) E�ects of

designed anthropomorphism and designed transparency on MDMT’s benevolent scale. (B) E�ects of designed anthropomorphism and designed

transparency on the scenario-specific recommendation agreement scale.

FIGURE 5

E�ect of designed transparency on the custom measure clearness.

Under the assumption that we can analyze each independent

variable separately, designed transparency had a significant e�ect

on clearnes (p = 0.04).

agreement (Cronbach’s alpha: 0.46), we discarded the option to

create an average score, and analyzed each label independently.

A chi-squared test was used to analyze the effect of the

experimental condition on each label. Only tone of voice was

significantly affected [χ2
(3,N=147)

= 31.79, p < 0.001],

although the effect on questionnaire was close to significance

at 5% [χ2
(3,N=147)

= 7.69, p = 0.053]. The difference in

tone of voice is expected: only the high-transparency version of

the robot explicitly mentions it. Table 8 shows the frequency

distribution, confirming that understanding was higher in the

high-transparency condition. The difference in questionnaire is

unexpected. Table 9 shows that understanding was higher in the

high-anthropomorphism condition.

6. Discussion

6.1. Result summary and reflections

This study is an exercise in exploratory design toward

trustworthy robots, grounded in a real-life application: carrying

out screening tasks in a healthcare setting. Our design sought to

achieve transparency by modifying dual-channel communication

moderators, including verbal transparency and visual explanations

for AI. Previous literature suggests that anthropomorphism is

generally beneficial as evaluated by HRI practitioners, but is

considered unnecessary and potentially harmful by ethicists.

We investigated this conflict of opinions by identifying verbal

communication moderators with a design strategy similar to the

dialogue-based manipulation used in Winkle et al. (2021).

RQ1: How do different levels of designed anthropomorphism

(low vs. high) and designed transparency (low vs. high) affect the

perception of a social robot as a healthcare assistant screening

for PND?

Under strict non-parametric analysis, our communication

moderators for anthropomorphism and transparency had no

significant effects on standardized scales measuring perceived

likeability, anthropomorphism, and trust in the robot. Similarly, the

moderators had no significant effect on categorical measures of the

perceived scenario-specific ethical risks.

Further exploratory analysis suggests our transparency

moderators had an effect on several measures, while our

anthropomorphism moderators did not. In particular, designed

transparency showed a positive effect on the MDMT benevolent

scale, as well as the robot’s perceived clearness in communication.

RQ2: How do different levels of designed anthropomorphism

(low vs. high) and designed transparency (low vs. high) affect

the efficacy of a social robot as a healthcare assistant screening

for PND?

System understanding was measured by manually labelling

free text responses. Designed transparency strongly improved
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TABLE 8 Contingency table showing the e�ect of the experimental condition on the label tone of voice.

Label (tone of
voice)

Experimental condition

(A+,T−) (A+,T+) (A−,T−) (A−,T+) Total

Understood 1 10 1 18 30

Did not understand 30 27 40 20 117

Total 31 37 41 38 147

TABLE 9 Contingency table showing the e�ect of the experimental condition on the label questionnaire.

Label
(questionnaire)

Experimental condition

(A+,T−) (A+,T+) (A−,T−) (A−,T+) Total

Understood 25 28 26 20 99

Did not understand 6 9 15 18 48

Total 31 37 41 38 147

participant awareness that the robot used Mary’s tone of voice

for its prediction. This is to be expected, since Mary’s tone of

voice was only mentioned explicitly in the high transparency

condition. However, even in the high transparency condition, most

participants did not mention this fact. Designed anthropomorphism

showed near-significant improvement in participant awareness

that Mary’s responses to the EPDS questionnaire were taken into

account. Neither variable had a significant effect on the presence of

false beliefs in the responses.

High transparency conditions seemed to improve the

robot’s persuasiveness much more clearly, as measured by

recommendation agreement. Under non-parametric analysis, we

observed a significant difference between experimental conditions.

The post-hoc test was not significant after p-value correction, but

suggested that high transparency conditions promoted agreement

with the robot, while different anthropomorphism levels had

no effect. The following exploratory analysis supported these

conclusions.

Limitations in Pepper’s Anthropomorphism. We speculate

that the level of anthropomorphism attributed to Pepper by

observers is mainly defined by its non-modifiable morphological

features. Thus, our verbal anthropomorphic design was insufficient

to affect user perception of the robot.

Limitations of Standardized Measures. It has been a

long-standing challenge whether standardized measures really

capture what we want to measure when applied to a variety

of robots in case-specific scenarios (Chita-Tegmark et al.,

2021). This is reflected in the observed inconsistency between

standardized and custom measures in this study: we find clear

significance in scenario-specific measures, but not in the equivalent

standardizedmeasures.We posit that the scenario-specific measure

recommendation agreement indicates people’s willingness to trust

the robot’s suggestions and, we posit, thus represents a significant

element of potential efficacy. We would argue that the standardized

trust measure we used, the MDMT questionnaire, does not catch

enough nuances in our use case. Besides, although MDMT is a

popular and recently developed measure, some ambiguities of its

items can be misleading within our context (Chita-Tegmark et al.,

2021). Notably, we observed that one item under the Reliable scale,

predictable, has a low correlation with other items in the scale.

6.2. Design implications

Anthropomorphism. As mentioned in Section 2, existing

ethical guidelines request we minimize anthropomorphism, with

some caveats. BS8611 allows exceptions “for well-defined, limited

and socially-accepted purposes” (BSI, 2016). This has been discussed

in Winkle et al. (2021), where the authors argued for the

necessity of anthropomorphism to support SAR functionality.

Their study suggested anthropomorphism is important to the

overall acceptance and impact of SARs, while representing low

ethical risk. When we designed the low anthropomorphism

condition in this work, we kept what we perceived to be

essential anthropomorphic language for a usable SAR. We further

avoided making either condition a caricature, ensuring that the

high anthropomorphism condition did not promote unnecessary

deception. The results show almost no significant differences

between high and low anthropomorphic robots on perception and

efficacy measures, including scenario-specific measures related to

ethical risks. Surprisingly, however, the anthropomorphic design

might lead to better system understanding. Given the limited design

space of currently available commercial robots like Pepper, we

propose that anthropomorphic dialogue design can be employed as

desired, with low ethical risk (including deception).

Transparency. When designing toward trustworthy robots,

one can attempt to achieve transparency by conveying information

and explanations throughout the interaction. Our study suggests

this is an effective strategy to improve the robot’s persuasiveness

and perceived good will, but may not be very effective at increasing

user understanding. Our transparent design was much more

explicit about its decision process, and managed to convey some
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important details (like the use of tone of voice), as well as improve

its perceived clearness, but we were surprised to find that system

understanding remained low across all experimental conditions.

This points to the need to further study the implementation and

evaluation of robot transparency design strategies. Interestingly,

designing for maximum transparency, such that the robot is

upfront about its machine nature and non-human usage of

algorithms, may not influence perceived anthropomorphism.

In short, we find no evidence of any tension between designing

SARs that are simultaneously acceptably and appropriately

anthropomorphic and transparent. More attention is needed on

how to effectively convey the information for the purpose of

transparent HRI.

6.3. Limitations and future work

First and foremost, the online and fictional narrative nature

of our study limits its applicability to real-world interactions,

providing only an indication of what we might expect to see in

a situated interaction. Despite some important advantages to this

approach, such as being able to quickly access a large cohort, and

avoiding excessive targeting of a vulnerable population (depressed

mothers), there is a risk that the results from this work might not

be replicable with physically embodied SARs.

Second, this work employed Pepper as the PND screening

agent. Using a fixed SAR platformmeant we could notmodulate the

robot’s embodiment, limiting our possibilities for manipulating its

perceived anthropomorphism. Further studies could be conducted

with other types of manipulations.

Finally, while this work focused on the potential to impact

would-be users, an obvious next step would be to consider the

impact on other stakeholders, namely clinicians, nurses, and

midwives, who would collaborate with SARs.

7. Conclusion

In this work, we investigated how to implement current

high-level design recommendations for trustworthy HRI in a

realistic healthcare scenario, and evaluated the performance of such

design. We specifically focused on the potential trade-off between

potential benefits and ethical risks of designing anthropomorphic

behavior; and whether we can apply transparency policies without

influencing perceived anthropomorphism.

Previous studies argued the necessity of anthropomorphic

behavior, and the low risk of such anthropomorphism. In this study,

we found that if we provide enough human-likeness to ensure

a functional interaction, increasing verbal anthropomorphism

further does not necessarily influence the perception of the SAR.

The only effect we found was a borderline significant increase in

user understanding, regarding the importance of a questionnaire

delivered by the robot. We also reaffirmed that the ethical risks of

such anthropomorphisation are seemingly low.

In comparison, designing for transparency seems likely to

have greater impact on resultant interactions. Our transparent

communication showed positive effects on the efficacy of the SAR

without influencing anthropomorphism, even though the robot

emphasized its machine-like nature. Therefore, it seems feasible

to apply transparent design guidelines on HRI design without

negatively affecting the robot’s efficacy. Nevertheless, we struggled

with generating system understanding. While participants in high

transparency conditions found the robot to be significantly clearer,

and were more likely to correctly report the robot’s use of tone-

of-voice analysis, their overall understanding remained low across

conditions. Our results support increased transparency in the

communication of a robot’s decision process. However, the evidence

is inconclusive on whether this improves user understanding

or not.

While our scenario-specific measures indicated increased

efficacy of the robot across conditions, the standardised measures

we deployed (selected scales from the Godspeed and MDMT

questionnaires) were ineffective at detecting any differences. This

experience adds to an ongoing debate on the effectiveness of

standardized measures in HRI. Our results further indicate the

need to implement scenario-specific measures to examine an

agent’s efficacy.

This study is one interpretation of how to apply the existing

guidelines, but more examples are needed to form a consensus

in the community. We hope other researchers will join us in

implementing and evaluating transparent design strategies. In

future work, we hope to conduct in-person user studies where

participants can interact directly with the robot, and explore other

strategies for the transparent design of SARs.
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