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Breast cancer has a high occurrence rate globally and its treatment has
demonstrated clinical efficacy with the use of systemic chemotherapy and
immune checkpoint blockade. Insufficient cytotoxic T lymphocyte infiltration
and the accumulation of immunosuppressive cells within tumours are the
primary factors responsible for the inadequate clinical effectiveness of breast
cancer treatment. The stimulator of interferon genes (STING) represents a pivotal
protein in the innate immune response. Upon activation, STING triggers the
activation and enhancement of innate and adaptive immune functions,
resulting in therapeutic benefits for malignant tumours. The STING signalling
pathway in breast cancer is influenced by various factors such as deoxyribonucleic
acid damage response, tumour immune microenvironment, and mitochondrial
function. The use of STING agonists is gaining momentum in breast cancer
research. This review provides a comprehensive overview of the cyclic
guanosine monophosphate-adenosine monophosphate synthase-STING
pathway, its agonists, and the latest findings related to their application in
breast cancer.
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1 Introduction

Breast cancer is a prevalent malignancy and ranks as the second leading cause of
mortality among women, following lung cancer (Sung et al., 2021; Siegel et al., 2022; Xia
et al., 2022). It poses a significant risk to women’s health and negatively affects their quality of
life. The increasing incidence and mortality rates associated with this disease exert a
substantial financial burden on the healthcare industry, highlighting the need for
innovative and effective therapeutic interventions. Current treatment modalities for
breast cancer include surgery, radiotherapy, chemotherapy, and endocrine therapy, with
paclitaxel, platinum, anthracyclines, and capecitabine being the primary chemotherapy
agents used (Kerr et al., 2022). Immunotherapy has also emerged as a valuable approach for
treating breast cancer, as it yields improved treatment outcomes (Emens, 2018).

The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP)
synthase (cGAS) and stimulator of interferon genes (STING) (cGAS-STING) signalling
pathway has become a prominent subject of interest in cancer immunotherapy. This
pathway detects deoxyribonucleic acid (DNA) in the cytoplasm and stimulates the
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production of immune factors such as type I interferon (IFN) (IFN-
I), initiating a cascade of immune responses with an anti-tumour
effect (Deng et al., 2014). Moreover, it enhances the immune
response when paclitaxel and platinum-based agents are
administered in oncological chemotherapy (Della Corte et al.,
2020; Hu Y. et al., 2021; Cao et al., 2022). Particularly, paclitaxel
has been closely associated with the activation of the cGAS-STING
pathway in breast cancer treatment (Zhu C. et al., 2022; Qiu et al.,
2022), suggesting that targeting this pathway offers a novel approach
for treating breast cancer. This review focuses on the cGAS-STING
pathway and its current implications in DNA repair, the tumour
microenvironment (TME), and mitochondrial function in breast
cancer. Additionally, it examines existing therapies and emerging
targets for treating this disease.

2 The cGAS-STING pathway

Innate immunity serves as the first line of defence against foreign
genetic material and plays a crucial role in tumour-induced immune
responses. The primary DNA sensor that triggers the innate
immune response is cGAS, a protein found throughout the cell
that plays crucial roles in anti-tumour immunity, autophagy, cellular
senescence, defence against microbial infection, and autoimmune
and inflammatory diseases (Zhang et al., 2020; Zhang et al., 2021).
Upon DNA recognition, cGAS activates STING protein, which
detects cyclic dinucleotides from the endoplasmic reticulum (ER)
membrane (Zhu Z. et al., 2022). The cGAS-STING signalling
pathway comprises three main phases: double-stranded DNA
detection, intracellular signalling, and immune response
activation (Yu et al., 2022). Through these stages, the cGAS-
STING pathway becomes a central link between immunity and
cancer. These details are discussed below.

The DNA sensor cGAS, belonging to the nucleotidyl transferase
family, catalyses 2′3′-cyclic GMP-AMP (cGAMP) formation.
cGAMP induces conformational changes and oligomerisation of
the STING protein. As a result, the activated STING forms tetramers
and translocates from the ER to the Golgi apparatus (Dobbs et al.,
2015). Subsequently, the activated protein recruits and activates
TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3),
resulting in the expression of various antiviral genes (Zhang et al.,
2020). Among these genes are IFNs-I, which significantly influence
the therapeutic efficacy of several anti-cancer drugs, including
immunotherapies (Civril et al., 2013; Sun et al., 2013; Zitvogel
et al., 2015; Zhou et al., 2020). IFN-α and IFN-β are the most
common type I IFNs, promoting the activation and proliferation of
cytotoxic T lymphocytes, natural killer (NK) cells, dendritic cells
(DCs), and B cells, thereby bridging the innate and acquired
immune response (Zhou et al., 2022). The STING protein also
activates components of the nuclear factor kappa B (NF-κB)
signalling pathway; however, the specific activation mechanism
remains unresolved (Burdette et al., 2011; Hopfner and Hornung,
2020). Furthermore, the cGAS-STING signalling pathway induces
an anti-tumour immune response by sensing the DNA damage
response (DDR) and stimulating the innate immune response
within tumours (Jiang et al., 2021).

The STING gene is expressed in various cell types, and studies
focused on tumours, it is frequently observed that STING signalling

is suppressed. The inhibition is attributed to loss-of-function
mutations or epigenetic silencing of the cGAS/STING promoter
region (Konno et al., 2018). Apart from transcriptional regulation,
different types of modifications could also affect the function of
STING. The primary forms of modifications include
polyubiquitination and phosphorylation, followed by
palmitoylation, sumoylation, oxidation, nitro-alkylation,
carbonylation, and disulphide bond formation (Zhang et al.,
2022a). Within the cGAS-STING pathway, STING translocation
from the ER to the Golgi apparatus is crucial for the activation of the
STING signalling pathway. Additionally, it has been reported that
the binding of the ER calcium sensor stromal interaction molecule
1 to STING specifically retains STING in the ER, preventing its
translocation to the Golgi apparatus. This in turn prevents STING
activation and blocks the STING cascade response (Guerini, 2022).
Furthermore, the presence of a key factor that terminates STING
signalling at the Golgi apparatus, namely, articulin complex 1,
facilitates the sorting of phosphorylated STING into lattice-
protein-coated transport vesicles for delivery to the
endolysosomal system, resulting in its degradation and the
termination of STING-dependent immune activation (Liu Y.
et al., 2022).

Targeting the cGAS-STING pathway is an emerging therapeutic
approach for various cancers due to compelling evidence indicating
its activation in the TME elicits potent anti-cancer effects. However,
it is crucial to note that the activated cGAS-STING pathway might
also exhibit pro-cancer functions under specific conditions. For
instance, the cGAS-STING-mediated IFN-I response and the
IFN-I-associated senescence could promote tumour initiation by
producing various protumourigenic cytokines (Boukhaled et al.,
2021). Additionally, the STING protein induces interleukin (IL)-
35 production, which activates regulatory B cell functions but
simultaneously inhibits NK cell responses (Li et al., 2022). These
contrasting roles suggest that the STING pathway operates through
diverse mechanisms that require thorough investigation to develop
effective targeted therapies.

3 DDR and the cGAS-STING pathway in
breast cancer

Genomic instability is a prominent feature that promotes the
malignant transformation of cancer (Alhmoud et al., 2020). Defects
in DDR and increased replication stress are critical events that
promote the clonal evolution of cancer cells by promoting genetic
alterations such as gene copy number changes, chromosomal
rearrangements, and gene mutations, thereby facilitating tumour
progression (Pilié et al., 2019). Notably, DDR deficiency plays a
pivotal role in determining tumour immunogenicity, and growing
evidence support the notion that DDR-targeted therapy increases
anti-tumour immune response (Chabanon et al., 2021).
Additionally, cytotoxic drugs that target the DDR pathway are
employed as anti-cancer therapies, as this pathway governs many
mechanisms underlying tumour cell resistance and sensitivity to
cytotoxic radiotherapy (Jiang et al., 2021). For instance, cisplatin, a
first-line chemotherapeutic agent for various malignant tumours
including breast (Zhu Y. et al., 2022), ovarian (Yang et al., 2022),
head and neck (Kwon et al., 2021), lung (Fennell et al., 2016), and
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bladder (Herr and Soloway, 2022) cancers, exerts its anti-cancer
effects by inducing DDR in cancer cells (Dasari and Tchounwou,
2014; Tchounwou et al., 2021).

cGAS activation can occur through two distinct mechanisms:
the accumulation of DNA in the cytoplasm and micronuclei or
prolonged auto-activation of the DDR signalling (Ragu et al., 2020).
For instance, cGAS detects fragmented DNA produced by DDR,
leading to changes in cGAMP, activating the cGAS-STING pathway
and initiating an immune response (Harding et al., 2017; Reisländer
et al., 2020). Consequently, DNA released into the cytoplasm after a
DDR event serves as a crucial cGAS trigger, and the absence of cGAS
decreases DDR signalling (Banerjee et al., 2021). Blocking DNA
replication and repair affects genome integrity and activates the
cGAS-STING signalling cascade (Chabanon et al., 2019). Moreover,
mutations in DDR-related genes, which impair their function, result
in increased expression of genes associated with the cGAS-STING
pathway in non-small cell lung cancer (Della Corte et al., 2022).
Similarly, pharmacological inhibition of polyadenosine
diphosphate-ribose polymerase (PARP) and checkpoint kinase 1
(CHK1) in small-cell lung cancer results in the inhibition of the
DDR pathway and activates the cGAS-STING pathway, evoking an
anti-tumour immune response (Sen et al., 2019). These findings
suggest the need for further investigation into the mechanisms by
which DDR activates the cGAS-STING pathway.

Patients with breast cancer often exhibit alterations in DDR
genes. For instance, approximately 10.7% of female patients carry
deleterious mutations in cancer susceptibility genes, with 6.1%
attributed to breast cancer gene (BRCA) 1/2% and 4.6%
involving other susceptibility genes such as checkpoint kinase 2,
ataxia-telangiectasia mutated (ATM), BRCA1 interacting helicase 1,
partner and localiser of BRCA2, phosphatase and tensin homolog,
nibrin, RAD51C, RAD51D, mutS homolog 6, and PMS1 homolog 2,
mismatch repair system component (Tung et al., 2016). BRCA1 and
BRCA2, in particular, play a crucial role in homologous
recombination-mediated DNA repair (Krishnan et al., 2021).
Germline defects in these genes can contribute to DDR
dysfunction in breast cancer, thereby activating the cGAS/STING
signalling pathway and eliciting an immune response (Parkes et al.,
2017). Therefore, inhibiting DNA repair and promoting DDR
progression, which activates the cGAS-STING pathway, present
promising avenues for cancer therapy.

DDR-targeted therapies are emerging as promising strategies for
treating breast cancer, particularly triple-negative breast cancer,
wherein overexpression of DNA repair proteins, such as
PARP1 and replication protein A, might alter the sensitivity to
chemotherapy and DDR inhibitors (Lee et al., 2020). For instance,
IFI16 has demonstrated anti-tumour effects in triple-negative breast
cancer by inducing STING-mediated IFN-I production (Ka et al.,
2021; Huang et al., 2022). However, the DDR-induced cGAS-
STING-mediated IL-6 -signal transducer and activator of
transcription 3 pathway in triple-negative breast cancer has been
associated with reduced patient survival (Vasiyani et al., 2022).
These contrasting findings suggest that the DDR-induced cGAS-
STING signalling pathway plays a bidirectional regulatory role in
breast cancer, highlighting the importance of investigating the
mechanisms that control its directionality in this disease.

Therefore, inhibiting DNA repair and promoting DDR
progression, which activates the cGAS-STING pathway,

represents a promising avenue for cancer therapy. Other drugs,
such as PARP1 inhibitors, have already gained approval for treating
breast and ovarian cancers, demonstrating remarkable efficacy
(Staniszewska et al., 2022; Tian et al., 2022). Similarly, inhibitors
targeting DDR-related genes, such as DNA-dependent protein
kinase, catalytic subunit, ATM, ataxia telangiectasia and Rad3-
related protein, CHK1, and WEE1, exhibit promising anti-cancer
effects (Wengner et al., 2020). Furthermore, paclitaxel activates
cGAS by affecting cell mitosis, inducing cGAS-STING pathway-
dependent IFN-I responses (Hu Y. et al., 2021).

4 Tumour immune microenvironment
and the cGAS-STING pathway in breast
cancer

The TME encompasses various components, including the
vasculature, extracellular matrix, and non-carcinoma cells, which
play crucial roles in tumour initiation, progression, invasion, and
metastasis (Bahrami et al., 2018). Significantly, the TME has
garnered substantial attention in cancer therapy research due to
the potential anti-cancer effects associated with activating the cGAS-
STING pathway in the TME (Li and Bakhoum, 2022). In breast
cancer, targeting the TME holds great promise and has
demonstrated excellent therapeutic outcomes (Mehraj et al., 2021;
Zheng et al., 2022). The TME in breast cancer exhibits variable
cellular composition and structural characteristics, serving as a
central regulator of tumour progression (Danenberg et al., 2022).
Immune-activating cells within the TME include tumour-
infiltrating lymphocytes, NK cells, and dendritic cells, while
immune-suppressing cells comprise T regulatory cells, tumour-
associated macrophages, and myeloid-derived suppressor cells.
The breast cancer stroma comprises cancer-associated fibroblasts,
vascular endothelial cells, and mesenchymal stromal cells (Wilson
et al., 2022). Targeting specific cells within the TME, such as
eosinophils, tumour-associated macrophages, cancer-associated
fibroblasts, tumour-infiltrating lymphocytes, and regulatory CD4+/
CD8+ T cells, can enhance anti-tumour immunity in breast cancer
(Li Y. et al., 2020; Li D. et al., 2020; Wu et al., 2020; Grisaru-Tal et al.,
2021; Soongsathitanon et al., 2021; Sun et al., 2021). Targeting
tumour-associated macrophages has demonstrated significant
alleviation of chemotherapy resistance in breast cancer.

Evidence suggests that elevated levels of tumour-infiltrating
lymphocytes within the TME play a crucial role in treating breast
cancer (Ahn et al., 2020). Differential analysis of tumour
compartments has revealed that patients with triple-negative
breast cancer responsive to chemotherapy exhibit high STING
protein levels (Kulasinghe et al., 2021), indicating its presence in
the TME of breast cancer and its potential as a treatment target.
While chimeric antigen receptor T (CAR-T) cells are a type of cell
treatments for treating haematological malignancies, their
effectiveness against solid tumours is limited (Tchou et al., 2017).
However, when the cGAS-STING pathway is activated within the
breast cancer TME, T helper/IL-17-producing CD8+ T -generated
CAR-T cells show increased persistence in the TME and enhanced
tumour control (Xu et al., 2021). The STING protein induces the
production of IFN-β by intra-tumoural DCs, which initiates and
recruits T cells into the TME (Foote et al., 2017). Nanoparticles
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loaded with STING agonists activate the cGAS-STING signalling
pathway within the TME, resulting in IFN-β production and the
activation of antigen-presenting cells, thereby stimulating the
activation of tumour-reactive cytotoxic T cells (Covarrubias et al.,
2022). Consequently, STING agonists hold significant promise as a
therapy for reshaping the immunosuppressive TME (Wehbe et al.,
2021), as they can reverse its immunosuppressive nature and
sensitise breast cancer to immunotherapy (Chen et al., 2020;
Zhang L. et al., 2022; Shen et al., 2022).

5Mitochondrial function and the cGAS-
STING pathway in breast cancer

Mitochondrial and nuclear DNA leaking into the cytoplasm
activate the cGAS-STING signalling in addition to foreign DNA
(Hopfner and Hornung, 2020). Due to its location in the ER,
particularly in the ER-mitochondria-associated membrane,
STING protein has an inherent advantage in detecting
mitochondrial stress responses (Smith, 2020). Mitochondria serve
as bioenergetic, biosynthetic, and signalling organelles with crucial
roles in regulating innate and adaptive immunity (Weinberg et al.,
2015), particularly in processes that lead to apoptosis. In
mitochondria-mediated apoptosis, activating pro-apoptotic
proteins B-cell leukaemia/lymphoma 2 protein (Bcl-2) antagonist
killer 1 (BAK)/Bcl-2-associated X protein (BAX) results in
mitochondrial outer membrane permeabilisation, thereby
inducing caspase activation and cell death (Lohard et al., 2020).
Since mitochondria possess their DNA, BAK/BAX-mediated
mitochondrial damage triggers the release of mitochondrial DNA
(mtDNA). Consequently, the cGAS-STING-mediated cytoplasmic
DNA sensing pathway identifies mtDNA and initiates apoptosis
(White et al., 2014; McArthur et al., 2018; Chang S. et al., 2022).
Mitochondrial inner membrane permeabilisation enables the release
of mtDNA into the cytoplasm and activates the cGAS-STING
signalling pathway (Riley et al., 2018).

Targeting the cGAS-STING-associated mitochondrial apoptotic
pathway is emerging as a novel therapeutic approach for breast
cancer. For instance, cyclic di-AMP (c-di-AMP), an analogue of
cGAMP, activates the cGAS-STING pathway and induces
mitochondria-mediated apoptosis in oestrogen receptor-negative
breast cancer cells (Vasiyani et al., 2021). Eribulin, a
microtubule-targeting agent, promotes cGAS-STING signalling
expression in triple-negative breast cancer cells by facilitating the
cytoplasmic accumulation of mtDNA, IFN-β production, and
downstream interferon-stimulated genes (Fermaintt et al., 2021).
ATM inhibition enhances the effectiveness of immune checkpoint
blockade treatment in breast cancer by facilitating the cytoplasmic
leakage of mtDNA and the activation of the cGAS-STING pathway
(Hu M. et al., 2021).

Mitochondrial reactive oxygen species (ROS) are a vital source
of endogenous ROS. In malignant cells, mitochondria exhibit ROS
overproduction, which could promote cancer development by
altering gene expression and participating in signalling pathways
(Yang et al., 2016; Zhao et al., 2016). Thus, ROS has emerged as a
target for anti-tumour therapy. In colorectal cancer, SUMO-specific
proteinase 3 detects oxidative stress and promotes the STING-
mediated DC-initiated anti-tumour immune response (Hu Z.

et al., 2021). Mitochondrial lon, a chaperone protein, induces
ROS, which could lead to mtDNA damage, activate IFN
signalling via the cGAS-STING-TBK1 axis, and promote
programmed death ligand 1 -mediated immune escape (Cheng
et al., 2020). Sinularin differentially upregulates ROS and causes
oxidative DNA damage in breast cancer cells, potentially activating
the cGAS-STING pathway (Huang et al., 2018). STING protein
could also act as an upstream regulator of ROS and influence the
transcriptional program of ROS metabolism (Hayman et al., 2021).
However, the understanding of the relationship between ROS and
the cGAS-STING pathway in breast cancer is limited, and further
investigation is necessary to uncover new treatment options.

6 Anti-cancer effects of STING agonists

Given the significant potential of the cGAS-STING signalling
pathway in anti-tumour therapy, the development of STING
agonists has received considerable attention. One prominent drug
used as a STING agonist in preclinical studies is 5, 6-
dimethylxanthenone-4-acetic acid (DMXAA, ASA404,
Vadimezan), a flavonoid compound. Initially employed as a
tumour vascular disruptor for anti-cancer treatment, DMXAA
was later found to activate the cGAS-STING signalling in mouse
models (Baguley, 2003; Daei Farshchi Adli et al., 2018). In
combination with specific cancer treatment drugs, such as
paclitaxel, it has demonstrated favourable efficacy in patients
with intermediate to advanced non-small-cell lung cancer
(McKeage et al., 2009). However, when combined with others,
such as platinum-based drugs, it has demonstrated negligible
effect on the outcomes of patients with triple-negative breast
cancer (Lara et al., 2011). Despite its considerable potential in
mouse models, DMXAA has proven unsuccessful in human
clinical studies, possibly due to its inability to induce the STING
signalling pathway in humans (Conlon et al., 2013). Indeed,
molecular dynamics simulations revealed that dynamic structural
differences between human and mouse STING proteins cause
differential sensitivity to DMXAA (Shih et al., 2018). While
DMXAA has demonstrated promising performance in mouse
tumour models, it has laid a foundation for synthesising new
derivatives that hold greater promise for cancer treatment (Hou
et al., 2020; Gobbi et al., 2021).

Cyclic dinucleotides, including cGAMP and bacterial
messengers c-di-AMP and cyclic di-GMP (c-di-GMP), represent
valuable STING agonists (Wang et al., 2020). These compounds
serve as natural ligands for the STING protein and play a crucial role
in activating STING protein after cGAS-mediated cytoplasmic DNA
recognition (Li and Chen, 2018). They exhibit high potential in
cancer therapy. For instance, c-di-AMP induces breast cancer cell
apoptosis via the cGAS-STING pathway activation and regulation
(Vasiyani et al., 2021). Moreover, in a mouse model of bladder
cancer, bacillus Calmette–Guérin overexpressing c-di-AMP
improves anti-tumour effects through a STING-dependent
pathway (Singh et al., 2022). Nanoparticles co-synthesised with
c-di-AMP and the immunomodulatory trace element manganese
significantly improved the therapeutic efficacy of STING-mediated
combined radioimmunotherapy (Wang et al., 2022). Furthermore,
c-di-GMP-activated STING demonstrates promising
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immunotherapeutic efficacy in breast cancer (Chandra et al., 2014),
whereas c-di-GMP-loaded peptide nanotubes enhance
immunotherapy for melanoma (Zhang et al., 2022c). As an
endogenous member of the cGAS-STING signalling pathway,
cGAMP exhibits significant potential as a STING agonist in anti-
tumour therapy, as CAR-T cells generated using cGAMP display
enhanced anti-tumour capacity in breast cancer (Xu et al., 2021; Su
et al., 2022). Similarly, cGAMP enhances the anti-tumour activity of
CAR-NK cells in pancreatic cancer (Da et al., 2022). These findings
suggest that the effects observed with these natural agonists are
dependent on the cGAS-STING pathway activation.

Clinical drug development of synthetic cyclic dinucleotides as
STING agonists is underway. For instance, ADU-S100 (MIW815)
activates the cGAS-STING pathway and demonstrates good
tolerability in patients with advanced/metastatic solid tumours or
lymphomas (Meric-Bernstam et al., 2022a). Combined treatment
with ADU-S100 and the programmed cell death protein 1 (PD-1)
inhibitor spartalizumab also shows a favourable safety profile in
patients with advanced/metastatic solid tumours or lymphoma
(Meric-Bernstam et al., 2022b). Additionally, ADU-S100 in
combination with PD-1/cyclooxygenase-2 blockade suppresses
peritoneal dissemination of colon cancer and elicits durable
tumour immunity in colon cancer (Lee et al., 2021). Another
synthetic STING agonist, MK-1454, demonstrates potent anti-
tumour activity in pre-clinical trials and is currently in clinical

development, showing encouraging efficacy (Harrington et al., 2018;
Chang W. et al., 2022). Several other synthetic agonists, including
SB11285, BMS-986301, MK-2118, GSK3745417, E7766, SNX281,
SYNB 1891, TAK-676, and BI-STING, are undergoing clinical trials
and studies (Challa et al., 2017; Amouzegar et al., 2021).
Furthermore, several synthetic agonists such as ML-RR-S2-
cGAMP, ML-RR-S2-CDG, 3′3′-cyclic AIMP, GSK532, and JNJ-
4412, although not yet in the clinical research stage, hold promise for
the field of cancer treatment (Corrales et al., 2015; Thomsen et al.,
2020; Amouzegar et al., 2021).

In addition to the aforementioned STING agonists, there is a
subset of drugs that could be used for cancer therapy by activating
the cGAS-STING pathway. For instance, E7766 is a macrocyclic
bridging STING agonist with high anti-tumour activity in a mouse
model of liver metastases and is also considered a clinical candidate
(Kim et al., 2021). Moreover, MSA-2 is a compound that binds
human and mouse STING proteins, and when combined with anti-
PD-1 antibodies, it inhibits tumour growth and improves survival
rates (Pan et al., 2020). A novel STING agonist, MSA-1, activates
STING proteins in humans andmice and can be combined with PD-
1-binding inhibitors to improve anti-PD-1 resistance (Perera et al.,
2022). Several other drugs, including SR-717, amidobenzimidazole,
STACT-TREX1, and MV-626, are currently under investigation as
STING agonists (Chin et al., 2020; Jiang et al., 2020; Liu X. et al.,
2022).

FIGURE 1
Schematic overview of the cyclic guanosine monophosphate-adenosinemonophosphate synthase and stimulator of interferon genes pathway and
its influencing factors.
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7 Conclusion

Breast cancer poses a significant threat to women’s lives;
however, the activation of the cGAS-STING pathway, which
triggers an immune response, offers promising prospects for its
treatment. Within the cytoplasm, the cGAS protein detects DNA
and activates the STING protein, resulting in the activation of TBK1,
IRF3, IFN-I, and NF-κB to produce a series of immune responses.
STING activation is closely associated with DDR, and breast cancer
often exhibits DDR-related gene alterations, particularly in
BRCA1 or BRCA2 genes. Targeted DDR therapy has emerged as
a potential therapeutic approach for breast cancer, with PARP-1
inhibitors serving as an approved example. The TME controls
tumour progression, and breast cancer TME exhibits distinct
characteristics. The presence of the STING protein in the breast
cancer TME has been observed, influencing tumour progression.
Consequently, activating the protein within the TME presents an
opportunity to reshape its immunosuppressive nature.
Mitochondria, which possess their DNA, are essential organelles
that can activate the cGAS-STING pathway under certain
conditions. Targeting the cGAS-STING-associated mitochondrial
apoptotic pathway and mitochondrial ROS provides a novel avenue
for breast cancer treatment. Given the promising potential of the
activated cGAS-STING signalling pathway in anti-tumour therapy,
various STING agonists are being developed as anti-cancer drugs.
Examples include DMXAA, c-di-AMP, c-di-GMP, cGAMP, ADU-
S100, MK-1454, SB11285, BMS-986301, E7766, MSA-1, and MSA-2
(Figure 1).

The activation of the STING signalling pathway serves as an
innate immune sensing mechanism that results in IFN-I production
within the TME. This stimulation activates immune cells within the
TME, initiating an anti-tumour immune response. Consequently,
STING agonists hold great promise as immunotherapeutic drugs.
However, STING agonists do not exhibit inhibitory effects on all
types of tumours. Currently, the STING signalling pathway is over-
activated in tumours with low antigenicity, tumours that release a
significant amount of DNA from the cytoplasm due to exposure to
potent carcinogens, and tumours with chromosomal instability
(CIN) phenotype, which might promote tumour growth and
metastasis. Therefore, when considering the use of STING
agonists in clinical settings, it is crucial to take into account
factors such as the tumour type, antigenicity, and inflammatory
microenvironment. It is necessary to understand the CIN status of
the tumour and the STING basic activation level.

Understanding the molecular mechanism of STING agonists, as
well as identifying and screening tumour-predictive biomarkers
suitable for predicting the response to STING agonists, are
critical aspects in elucidating the therapeutic potential of these
agents. Additionally, selecting appropriate tumour types and
optimising treatment dosages are essential for enhancing the
efficacy of STING agonists while minimising adverse reactions.
Therefore, the development of clinical applications for STING
agonists holds great promise. The side effects and indications of
STING agonists need to be further confirmed to ensure the safety
and efficacy of the treatment. This can be achieved through the
development of novel drug delivery systems, which can be combined
with other anti-tumour therapies, such as radiotherapy,

chemotherapy, targeted therapy, and immunotherapy. While
there might be challenges in the research and development of
drugs targeting the cGAS-STING pathway, further research on
the molecular mechanisms underlying the upstream and
downstream pathways and the development of drug delivery
systems will pave the way for new targets for anti-tumour research.

Research into the cGAS-STING pathway has undoubtedly
expanded the potential for cancer treatment. While the effects of
STING activation in combating cancer might vary, its ability to
stimulate the immune response holds significant promise for
novel therapeutic interventions. Therefore, further research is
warranted to fully comprehend the diverse effects of STING
activation in cancer. Particularly, the encouraging outcomes
observed in using the cGAS-STING pathway for breast cancer
treatment highlight its potential for further advancements.
Consequently, targeting the STING protein represents a viable
approach to potentially enhance future treatment outcomes in
this context. This article summarized the regulation of STING
and the influencing factors of cGAS-STING pathway. It further
enriched the molecular mechanisms of breast cancer. It can
provide some research ideas for the follow-up research on
STING, and also provide experimental basis for clinical
treatment of breast cancer.
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