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Ovarian cancer, especially high-grade serous type, is the most lethal

gynecological malignancy. The lack of screening programs and the scarcity of

symptomatology result in the late diagnosis in about 75% of affected women.

Despite very demanding and aggressive surgical treatment, multiple-line

chemotherapy regimens and both approved and clinically tested targeted

therapies, the overall survival of patients is still unsatisfactory and

disappointing. Research studies have recently brought some more

understanding of the molecular diversity of the ovarian cancer, its unique

intraperitoneal biology, the role of cancer stem cells, and the complexity of

tumor microenvironment. There is a growing body of evidence that

individualization of the treatment adjusted to the molecular and biochemical

signature of the tumor as well as to the medical status of the patient should

replace or supplement the foregoing therapy. In this review, we have proposed

the principles of the novel regimen of the therapy that we called the

“DEPHENCE” system, and we have extensively discussed the results of the

studies focused on the ovarian cancer stem cells, other components of cancer

metastatic niche, and, finally, clinical trials targeting these two environments.

Through this, we have tried to present the evolving landscape of treatment

options and put flesh on the experimental approach to attack the high-grade

serous ovarian cancer multidirectionally, corresponding to the “DEPHENCE”

system postulates.
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Introduction

Ovarian cancer, especially its type II according to the dualistic

model proposed by Kurman and Shih (1), represented mostly by the

high-grade serous ovarian cancer (HGSOC) is the most lethal

tumor of the female genital tract. The cumulative 5-year survival

in the population of patients with all clinical stages does not exceed

48% (2). Despite the fact that some cases of the HGSOC are

primarily chemo-refractory, the most of the cancers belonging to

this group are chemosensitive to first-line chemotherapy; however,

they quickly acquire the secondary chemoresistance that constitutes

the main problem in effective management. Moreover, the HGSOC

possesses unique behavior that allows spreading of the tumor cells,

mostly in the form of cellular spheroids, from the primary tumor

into the distant localizations in the peritoneal cavity. Therefore, the

HGSOC is a highly malignant, rapidly progressive tumor

characterized by poor prognosis and mortality reaching 90% of all

ovarian cancer cases (3).
Ovarian cancer stem cells

One of the main problems in the treatment of HGSOC is the

existence of ovarian cancer stem cells (OCSCs) that reside inside

tumor niches and cooperate with surrounding cells that compose

tumor microenvironment (TME). The character of this cooperation

shapes tumor behavior and influences several processes including

dormancy, proliferation, metastasis, and, most of all ,

chemoresistance (4). Cancer stem cells are a population of cells

capable of self-renewal and reproduction of the original phenotype

of the tumor and are enriched especially in the advanced,

disseminated, and recurrent tumors (5). There are two

functionally distinct populations of CSCs, proliferating and

quiescent, which occupy different niches inside the tumor. The

proliferative CSCs are chemoresistant but vulnerable to overdoses

of the chemotherapeutics; however, quiescent CSCs are in the

autophagic state and could survive even high doses of anti-cancer
Frontiers in Oncology 02
drugs, thus enabling tumor relapse (6). One of the key phenomena

responsible for regulation of stemness is epithelial–mesenchymal

transition (EMT) viewed as a continuum of phenotype cellular

states from complete epithelial and proliferative state, through

several intermediate hybrid states to complete mesenchymal and

invasive phenotype. Cancer stem cells could represent any of these

steps due to the outstanding plasticity (7). This plasticity of CSCs is

highly dependent on the patient’s immunosurveillance as well as on

epigenetic and environmental signals from the TME (6). The most

recognized stressors that could influence both phenotype and

function of CSCs are hypoxia, acidity, mechanical stress,

immunological response, epigenetic changes like DNA

methylation, histone and non-coding RNA modifications, and,

finally, activation of stemness signaling pathways (8–11).

The problem of the stemness is directly connected to the cancer

dormancy that is dependent on the presence of circulating tumor

cells (CTCs) and disseminated tumor cells (DTCs) that have

partially overlapping functions and are enriched by the

population of quiescent CSCs (12). CTCs, DTCs, and CSCs are

able to produce micrometastases that migrate and home inside the

target organs in the pre-metastatic niches composed from tumor

cells and recruited local stromal and immune cells from the

environment. Quiescent CSCs and dormant DTCs inside pre-

metastatic niche show overexpression of signaling pathways,

enabling them to survive in stressful conditions, including

chemotherapeutics (13–15).

Ovarian CSCs are characterized by cell surface CD44, CD117,

CD133, CD24, MyD88, epithelial cell adhesion molecule (EpCAM),

leucine-rich repeat containing G protein–coupled receptor-5

(LGR5), and LGR6] and intracellular [aldehyde dehydrogenase

(ALDH), sex determining region Y-box 2 (SOX2), octamer-

binding transcription factor-4 (OCT4), homeobox protein

NANOG transcription factor (NANOG), and forkhead box

protein M1 (FOXM1)] markers, as well as by their specific

behavior (“s ide-populat ion” ce l l s ) . The markers for

characterization of OCSCs, their function, and clinical

significance are presented in Table 1. The OCSC markers
TABLE 1 The markers for characterization of OCSCs, their function, and clinical significance.

OCSC
marker

Function Clinical significance Reference

CD44
CD44 spliced
variant 6
(CD44v6)

Cell-surface glycoprotein, receptor for the hyaluronic acid receptor
Activates EGFR/Ras/ERK and NANOG-dependent signaling pathways
Resulting NANOG/STAT3 interaction upregulates multi-drug resistance
CD44+ cells possess self-renewal, tumor-initiating and sphere-forming
capability

High number of CD44+ cells in early stage
HGSOC correlated with shorter PFS
Expression correlated with advanced HGSOC, p53
positivity, tumor grade, and chemoresistance
CD44+ cells are overrepresented in recurrent
compared to primary HGSOC
Increased CD44v6+ cell numbers in primary
ovarian tumors correlated with shorter OS
CD44v6+ cells are overrepresented in metastases
Distant metastases-free survival is better in
patients with CD44v6-low tumors
Population of CD44+CD166+ cells is abundant in
platinum-resistant ovarian cancer

(16–24)

CD117 Receptor tyrosine kinase coded by c-kit proto-oncogene
Regulates cell proliferation, differentiation, apoptosis, and adhesion

CD117+ cells correlate with chemoresistance
shorter OS, and shorter DFI

(25–30)

(Continued)
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TABLE 1 Continued

OCSC
marker

Function Clinical significance Reference

Binding CD117 to SCF is followed by activation of several pathways, including
Ras/ERK, PI3K/AKT, and Src/JAK/STAT
SCF produced by TAMs and CAFs is highly expressed in ascites of patients
with HGSOC
CD117+ cells are abundant in a sphere-forming non-adherent OCSCs and the
“side population” OCSCs with increased capacity of self-renewal,
tumorigenicity, and chemoresistance, as well as selective expression of ABC
transporters

CD117+ expression present in HGSOC and
correlated with chemoresistance
CD44+/CD117+ cells are abundant in
chemoresistant HGSOC and cell lines resistant to
paclitaxel-induced apoptosis

CD133 Prominin-1 is a transmembrane glycoprotein
Activates PI3K/AKT pathway
Is responsible for tumorigenicity, vascularization and chemoresistance
Cooperation between CD133 and ETRA augments sphere-forming capacity
and homing to peritoneal surface
NF-kB and p38/MAPK-dependent pathways enhance self-renewal of CD133+
cells

CD133+ cells are more abundant in recurrent
chemoresistant tumors
Expression of CD133+ correlated with the HGSOC
type, stage, ascites, and chemoresistance
CD133+ cells correlated with shorter PFS and OS
CD133+/CXCR4+ cells are more platinum-
resistant compared to CD133 negative cells

(31–37)

CD24 Heat-stable antigen CD24, a transmembrane adhesion molecule
Activates JAK/STAT3 signaling pathways and NANOG and OCT4 expression
Through stimulation of PI3K/AKT/MAPK pathway is able to stimulate EMT
Stimulates stemness, tumor growth, and chemoresistance
CD24+ cells form spheroid structures
Exosomes present in ascites contain CD24 and EpCAM, which regulate signals
between OCSCs and TME

CD24+ cells are abundant in peritoneal implants
compared to primary tumor
Inhibition of JAK/STAT3 pathway reduces OCSC
stemness and improves patient’s survival
CD24+ expression is a predictor of poor outcome
in patients with ovarian cancer
Expression of CD24+ correlates with cancer stage
and presence of peritoneal implants and
metastases

(29, 38–43)

EpCAM Epithelial cell adhesion molecule is a type I transmembrane glycoprotein
regulating intercellular adhesion
EpCAM+ cells show greater tumor-initiating potential
EpCAM/Bcl-2 pathway prevents platinum-dependent apoptosis of cancer cells
EpCAM+CD45+ cells constitute the chemoresistant phenotype in the ascitic
fluid of patients with ovarian cancer. These cells overexpress SIRT1, ABCA1,
and BCL2 genes. EpCAM+CD45+ population is highly invasive with signature
mesenchymal gene expression and also consists of CD133+ and CD117+CD44
+ OCSCs

EpCAM expression is increased in chemoresistant
tumors and correlated with poor outcome
EpCAM+ cells are a source of relapse after the
chemotherapy

(20, 44, 45)

MyD88 Myeloid differentiation primary response gene 88 is an adaptor protein for
signals generated from TLR-4 receptor
TLR-4/MyD88 pathway is responsible for chemoresistance and activates
inflammatory pathways in carcinogenesis

Expression of MyD88 is an unfavorable prognostic
factor in ovarian cancer
CD44+/MyD88+ cells show increased
tumorigenicity, sphere formation, and
chemoresistance

(28, 46)

LGR5 and
LGR6

Leucine-rich repeat containing G protein–coupled receptor-5 and receptor-6
are biomarkers of adult stem cells
Expression of LGR5 promotes proliferation and metastasis, and EMT in
ovarian cancer
LGR5- and LGR6-mediated signaling is responsible for activation of Wnt/b-
catenin pathway in OCSCs

LGR5 expression is correlated to ovarian tumor
stage and histologic grade
LGR6 expression and activation of Wnt/b-catenin
pathway are observed in tubal fimbria of patients
with HGSOC

(47, 48)

ALDH Aldehyde dehydrogenases are aldehyde-converting enzymes
ALDH1 subgroup of enzymes is engaged in protection of cancer cells against
chemotherapy and radiation
ALDH1A1 and ALDH1A2 are the most popular phenotypes found in OCSCs
ALDH1 activates the Wnt/b-catenin pathway and transmembrane transporters

Ovarian cancer cells pre-treated with growing
doses of platinum show increased number of
ALDH1+ cells
HGSOC cells showing ALDH1+/EGFR+
phenotype are correlated with the worse prognosis
High expression of ALDH1+ cells correlates with
chemoresistance
CD44+/CD133+/ALDH1A1+ cells are increased in
recurrent tumors
Expression of CD133+/ALDH1+ correlates with
shorter PFS and OS in HGSOC

(49–52)

NANOG Homeobox protein NANOG transcription factor
Regulates self-renewal and pluripotency of embryonic and CSCs cells, and
EMT
Through STAT3 signaling pathway upregulates chemoresistance

Expression of NANOG+ cells correlates with
clinical stage, histologic grade, and
chemoresistance

(17)

(Continued)
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unfortunately are not cancer stem cell specific, as they are also

present on normal stem cells. Another feature of OCSCs is

activation of signaling pathways upregulating their stemness,

cancer proliferative capability, and chemoresistance. The most

important and studied pathways for preservation of OCSC

function are Wnt/b-catenin, Hedgehog, Hippo/yes-associated

protein (YAP), neurogenic locus notch homolog (NOTCH),

nuclear factor-k-light chain enhancer of activated B cells (NF-

kB), hypoxia-induced factor-1a (HIF-1a), PI3K/protein kinase B

(AKT), Janus kinase (JAK)/signal transducer and activator of

transcription protein (STAT), transforming growth factor–b
(TGF-b), and Rho/Rho-associated protein kinase (Rho/ROCK)

pathways. The functional and clinical characterization of these

pathways is included in Table 2.
Tumor microenvironment in
ovarian cancer

Ascites is a unique microenvironment for OCSCs and is

responsible for exceptional biology of ovarian cancer, shaped by

the transcoelomic spread of peritoneal implants. The EMT process

enables the tumor cells from primary localization to seed in the

form of multiform cellular conglomerates, mostly adopting the

form of spheroids enriched in OCSCs. They are transported in

fluid into distant places of peritoneal cavity, with the predisposition

to home into the adipose tissue collections inside peritoneum, like

“milky spots”, omental fat, mesentery, or bowel appendices (125).
Frontiers in Oncology 04
Sphere-forming cells express OCSC markers CD44v6, CD117,

ALDH1, and NANOG and are resistant to anoikis despite lack of

anchorage to the surface (16, 126). The presence of cytokines

[interleukin-6 (IL-6), IL-8, IL-10, and vascular endothelial growth

factor (VEGF)], osteoprotegerin, and exosomes containing micro

RNAs (miRNAs), cytokines, and growth factors further enhances

stemness in the spheroids (38, 68, 127–129). Spheroids adhere to

and destroy the mesothelium, go through the mesenchymal/

epithelial transition, and start to proliferate (130, 131). TGF-b,
CD133, and CD44 from spheroids stimulate mesothelium to

produce fibronectin for cancer cells adhesion, enhance attachment

of floating cells to the epithelial surface, and stimulate secretion of

metalloproteinase-9 (MMP-9) that supports mesothelial invasion

(108, 132). The initial opinions on random transportation of

cellular conglomerates have been replaced by the theory of

collective invasion, according to that clusters of cancer cells

migrate in a directed and coordinated way (133). Collective

invasion is described by some characteristic features, mainly

preservation of cell-cell junctions, interaction with surface cells

and ECM on their way, cooperative cytoskeleton dynamics enabling

migration of clusters as a single unit, and multicellular polarity (120,

133–135). Despite a collective behavior, not all cells in the cluster

are invasion-competent, and the population of cells that rule

invasion is called “leader cells”. These cells delineate the way,

change cellular contractility, and grow invadopodia, as well as

respond to environmental signals (120, 136–138). Their presence

at the front of the cluster results in its polarization. The coordinated

movement requires rearrangement of the cytoskeleton,

actinomyosin contraction, and activation of PI3K and Rho/ROCK
TABLE 1 Continued

OCSC
marker

Function Clinical significance Reference

SOX2 Sex determining region Y-box 2 transcription factor
Regulates self-renewal and pluripotency of embryonic and CSCs cells
Overexpression of SOX2 enhances stemness by inhibition of PI3K/AKT
signaling pathway

Highly SOX2+ cells are present in epithelium of
tubal fimbriae in HGSOC and BRCA1/2+ patients

(53, 54)

OCT4 Octamer-binding transcription factor-4 is engaged in self-renewal of
undifferentiated embryonic stem cells
Stabilizes structure of chromatin in the NANOG locus
Cytoplasmic expression of OCT4 regulates EMT
Mechanosensory signals in the peritoneum stimulate EMT; enhance stemness
by upregulation of OCT4, CD44, and CD117; and increase chemoresistance

Upregulation of OCT4 in ovarian cancer is
correlated to chemoresistance
Increased expression of OCT4 is observed in
CD24+ OCSC cells

(40, 55–57)

FOXM1 Forkhead box protein M1 is a member of the FOX family of transcription
factors
Regulates cell cycle and controls genomic stability
Upregulation of FOXM1 is followed by activation of Wnt/b-catenin signaling
pathway and enhances chemoresistance

Overexpression of FOXM1 is observed in OCSCs
exposed to LPA present in ascites
FOXM1 deactivation results in restoration of
chemosensitivity and loss of ability to spheroid
creation in peritoneum

(58–60)

MSH-1/MSH-2 MSH proteins regulate stemness of OCSCs and are aberrantly expressed in
tumors. MSH proteins activate the NOTCH signaling

High expression of MSH proteins is correlated to
shorter OS and enhances paclitaxel
chemoresistance

(61–64)
f

CD, cluster of differentiation; EGFR, epidermal growth factor receptor; Ras, Ras small GTPase protein; ERK, extracellular signal–regulated kinase; NANOG, homeobox protein NANOG
transcription factor; STAT3, signal transducer and activator of transcription 3; PFS, progression-free survival; OS, overall survival; SCF, stem cell factor; PI3K, phosphoinositide-3-kinase; AKT,
protein kinase B; Src, non-receptor tyrosine kinase Src; JAK, Janus kinase; TME, tumor microenvironment; TAMs, tumor-associated macrophages; CAFs, cancer-associated fibroblasts; ABC
transporters, ATP-binding cassette drug membrane transporters; DFI, disease-free interval; ETRA, endothelia receptor A; NF-kB, nuclear factor-k-light chain enhancer of activated B cells; p38/
MAPK, p38 mitogen-activated protein kinase; CXCR4, C-X-C chemokine receptor type-4; OCT4, octamer-binding transcription factor-4; EMT, epithelial–mesenchymal transition; Bcl-2, B-cell
lymphoma-2 molecule; TLR-4, Toll-like receptor type-4; LGR5, leucine-rich repeat containing G protein–coupled receptor-5; ALDH, aldehyde dehydrogenase; Wnt, wingless and Int-1; SOX2,
sex determining region Y-box 2; FOXM1, forkhead box protein M1; LPA, lysophosphatidic acid; SIRT1, sirtuin-1; BCL2, B-cell lymphoma-2; MSH, Musashi protein; NOTCH, neurogenic locus
notch homolog.
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Wilczyński et al. 10.3389/fonc.2023.1201497
TABLE 2 The functional and clinical characterization of ovarian cancer stem cell signaling pathways.

Pathway Function Clinical significance Reference

Wnt/b-
catenin
signaling

Activation of ABC transmembrane transporter
member-2 (ABCG2)
Cooperation with LGR5 and LGR6 stemness
markers for activation of the pathway in OCSCs
Regulation of EMT through increase of the
SNAIL/E-cadherin ratio and enhancement of
OCSC motility and chemoresistance
Promotion of pro-inflammatory and tumor-
supporting phenotype of CAFs

Knock-down of b-catenin restores chemosensitivity in ovarian cancer cells
Restoration of SFRP5 function inhibits Wnt/b-catenin signaling, EMT and re-
establishes chemosensitivity
Chemoresistant HGSOC tumors show the upregulation of Wnt/b-catenin-dependent
target genes and OCSC markers

(48, 59, 65–
67)

Hedgehog
signaling

Activation of this pathway in OCSCs stimulates
chemoresistance and spheroid formation
Proteins GLI1 and SMO are the downward
effectors of Hedgehog signaling
GLI1 upregulates function of ABCB1 and ABCG2
transporters, thus supporting chemoresistance
Hedgehog signaling is important for the
interaction between OCSCs and CAFs

Malignant and chemoresistant ovarian tumors show increased expression of GLI1
and SMO compared to benign and chemosensitive tumors

(68–70)

Hippo/
YAP
signaling

Pathway is activated by stiffness of ECM and
shear stress in OCSC environment
(mechanosensory signals)
Hippo/YAP pathway stimulates proliferation,
metastasis, and chemoresistance in ovarian cancer
Overexpression of YAP promotes EMT and
cancer cell migration while inhibiting cells’
anoikis
Increase in the OCSC pool results from the
activation of the Hippo pathway target genes
upon MYPT1 downregulation

YAP expression is an indicator of poor prognosis in ovarian cancer
Expression of the key genes related to Hippo/YAP signaling is correlated with PFS

(71–74)

NOTCH
signaling

The NOTCH receptors are a membrane receptor
proteins responsible for proliferation of cells and
angiogenesis of the tumor
NOTCH overexpression is observed in ovarian
cancer, together with the downstream
components of this pathway, like VEGF,
VEGFR1, DLL4, and JAG1
Tumor hypoxia enhances NOTCH signaling,
stemness, and migration of OCSCs
NOTCH pathway upregulates NANOG, OCT4,
and ABCB1 transporter, thus increasing
chemoresistance

High activity of NOTCH pathway is found in paclitaxel-resistant ALDH1+ OCSCs
High expression of NOTCH is correlated with poor OS and DFS, and advanced or
recurrent cancer
Inhibition of NOTCH signaling restores chemosensitivity

(75–77)

NF-kB
signaling

NF-kB is a protein complex functioning as a
transcription factor responsible for cellular
response towards stress, cytokines, reactive
oxygen species, antigens, and inflammation
Inhibition of NF-kB signaling induces apoptosis,
restores chemosensitivity, and decreases the
CD44+ OCSC population
Cooperation between CAFs and OCSCs results in
the upregulation of NF-kB signaling in OCSCs
Inflammatory signals from the tumor
environment enhance NF-kB pathway and
stemness of cancer cells
NF-kB over-activity characterizes CD44+MyD88
+ OCSCs
A matrix protein periostin expressed in highly
aggressive ovarian cancer is involved in NF-kB–
mediated over-activity of M2 macrophages and
CAFs that promote tumor growth
The TLR4/NF-kB/HIF-1a signaling loop
promotes progression of ovarian cancer

Overexpression of NF-kB is correlated with chemoresistance and poor prognosis in
HGSOC
Expression of NF-kB is correlated to high stage and grade of ovarian cancer
NF-kB mediates the BRCA1-induced chemoresistance
Signal transduction pathway activity analysis of HGSOC revealed that the low
activity of PI3K together with the high activity of NF-kB pathway has favorable
prognosis and indicates more active immune response, whereas the high PI3K and
the low NF-kB pathway activity has poor prognosis and indicates high cell
proliferation

(78–86)

HIF-1a
signaling

Hypoxic environment is followed by increased
expression of transcription factor HIF-1a
HIF-1a signaling activates EMT and stemness-
regulating pathways, like Wnt/b-catenin,

Patients with higher expression of HIF-1a have shorter OS
Patients with III stage of platinum-resistant HGSOC has overrepresentation of HIF-
1a signaling pathway

(87–90)

(Continued)
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TABLE 2 Continued

Pathway Function Clinical significance Reference

Hedgehog, and NOTCH while downregulating
NF-kB pathway
HIF-1a signaling upregulates OCSC markers
CD133, NANOG, and SOX2
SIRT1 is a downstream target gene for the HIF-
1a pathway, involved in promotion of OCSCs by
hypoxia, and NF-kB signaling cooperates with
HIF-1a in SIRT1 upregulation

PI3K/AKT
signaling

CAFs stimulate ovarian cancer invasiveness and
chemoresistance through the activation of HGFR/
PI3K/AKT signaling
Interaction with MSCs leads to activation of
PI3K/AKT pathway and MDR proteins in OCSCs
Defective function of CTNNB1, PTC, SMO,
NOTCH, k-Ras, and MEK genes disturbs between
others the function of PI3K/AKT pathway in
OCSCs
Loss of BRCA expression is also followed by
activation of PI3K/AKT pathway in OCSCs
PI3K/AKT/mTOR pathway is activated by
abundance of nutrients and growth factors in
TME that inhibits autophagy in cancer cells
Activation of PI3K/AKT/mTOR signaling results
in upregulation of CD44v6, CD117, and
ALDH1A1 OCSC markers as well as
enhancement of EMT in chemo resistant ovarian
cancer cell lines
Shear stress exerted by ascites together with HGF
stimulate stemness and chemoresistance by
HGFR/PI3K/AKT-miR-199a-3p pathway
Blocking CXCR4/PI3K/AKT/mTOR signaling
results in reduction of OCSCs and inhibition of
EMT
Circular RNA circ_0000745 upregulated by
IGF2BP2 stimulates stemness of ovarian cancer
cells through a miR-3187-3p/ERBB4/PI3K/AKT
pathway

High expression of PI3K or AKT is correlated to shorter OS in ovarian cancer
UBE2S is a potential oncogene that, through stimulation of PI3K/AKT/mTOR
pathway, enhances proliferation and migration of ovarian cancer. Its high expression
is a poor prognostic factor
Inhibition of PI3K in wild-type PI3KCA ovarian cancer induces BRCA
downregulation and with PARP inhibitors shows synergistic effect against ovarian
cancer

(91–103)

JAK/STAT
signaling

Inhibition of JAK2/STAT3 signaling results in
decrease of stemness and reduced tumor growth
Inhibition of JAK/STAT pathway in HGSOC cells
and CAFs has anti-tumor activity
OCT4 accelerates tumor growth and enhances
chemoresistance through activation of JAK/STAT
pathway in OCSCs represented by “side
population”
LIF and IL-6 secreted by MSCs promote OCSC
function by STAT3 signaling

Higher expression of STAT3 is correlated to poor prognosis in ovarian cancer (38, 104–
107)

TGF-b
signaling

TGF-b is one of the pro inflammatory cytokines
secreted by CAFs in the OCSC niche
Spheroid cancer cells through secretion of TGF-b
force mesothelial epithelium to home cancer
implants
TGF-b secreted by CAFs and TILs stimulates
epigenetic changes that promote EMT
Enrichment of OCSC population by MSCs is
mediated by TGF-b
Upregulation of TGF-b together with VEGF and
HIF-1a enhances angiogenesis and stemness
OCSCs convert the immature DCs into the TGF-
b–secreting cells, which support the expansion of
Treg lymphocytes defending the tumor
TGF-b induces the population of pro-angiogenic
N2-polarized TANs that support tumor growth
and vascularization
miR-33a-5p through the downregulation of

miR-506 prevents TGF-b–induced EMT. Ovarian tumors showing increased miR-
506 expression correlated with better prognosis for the patients
STMN2 and RAD51AP1 genes overexpression are correlated with poor prognosis in
HGSOC and associated with TGF-b signaling pathway
TGF-b–induced stimulation of CAF-derived periostin secretion is correlated with
reduced survival in HGSOC
Seven unfavorable genotypes associated with regulation of TGF-b–mediated signaling
are correlated to shorter OS and PFS in patients with ovarian cancer
NR2F1 that reveals a high correlation with poor prognosis and tumor stage regulates
EMT and immunosuppressive CAFs infiltration through
TGF-b signaling

(84, 108–
119)
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pathways (120, 135, 139). After adhesion to the mesothelial surface,

“leader cells” express proteolytic enzymes and penetrate the

basement membrane (120, 140). The phenotype of “leader cells”

is characterized by the keratin-14 (KRT14) expression. Their

functional phenotype resembles the OCSC phenotype but does

not correlate to EMT. The KRT14+ cells are able to re-establish

the epithelial cells, show clonogenicity, are abundant in metastases,

are enriched in response to chemotherapy, and promote the

chemoresistance (120, 140–143). Cancer-associated fibroblasts

(CAFs) present in TME play important role in collective invasion

by regulation of TME remodeling to “pave” the routs for migrating

cell clusters (120, 144). After exposition to chemotherapy, the

population of apoptosis-resistant “leader cells” increases and

shows expression of ALDH1 and CD44v6 stemness markers

together with chemoresistance. Functional impairment of the

“leader cells” restores chemosensitivity in vitro (145). After

homing into peritoneal environment, OCSCs reside inside the

“metastatic niche” composed of several cell populations, ECM

components, lipids, exosomes, regulatory RNAs, and hypoxia that

are orchestrated to support the OCSCs. Table 3 presents the

function and clinical significance of the main components of the

TME inside the “metastatic niche”.
Obstacles in the treatment
of the HGSOC

The treatment of ovarian cancer is based on debulking

cytoreductive surgery, platinum-taxane–based first line

chemotherapy, second-line chemotherapy, and targeted therapy

approved by the FDA (Food and Drug Administration) and EMA

(European Medicines Agency) using bevacizumab and poly-ADP-

ribose polymerase (PARP) inhibitors. Several others drugs are being

tested in clinical trials including programmed death-1 (PD-1)/

programmed death ligand-1 (PD-L1) inhibitors. HGSOC is

initially a chemosensitive tumor, especially in the cases of positive
Frontiers in Oncology 07
BRCA germinal or somatic mutations. However, recurrent tumors

are mostly chemoresistant due to activation of many mechanisms

associated with the exceptional function and proliferative activity of

OCSCs or reverse BRCAmutations occurring during the treatment.

Moreover, the unique pattern of cancer spread inside peritoneal

cavity that utilizes both collective invasion and sanguiferous route is

relatively early phenomena in the course of the disease. The

important obstacle in the effective treatment of HGSOC is also

tumor heterogeneity comprehended as spatial heterogeneity in the

different areas of the tumor, the inter-patient heterogeneity, and

temporal heterogeneity between primary tumors, metastases, and

recurrent disease. Even OCSCs themselves exhibit unexpected

phenotypic plasticity and may differ in the same patient or

among different patients depending on the cancer molecular type,

advancement of the disease, patient health, and treatment scheme.

The conclusion from those observations is that the use of the

uniform treatment for all patients or for all temporal stages of the

tumor is an oversimplification that results in observed

unsatisfactory results in the context of both OS and PFS. The

complexity of interaction between tumor cells, OCSCs, and TME in

metastatic niche is another factor of great importance for

supporting tumor growth, enhancing chemoresistance and the

immune attack defiance. Therefore, tumor environment with all

its components should also be treated as a target for anti-

cancer therapy.
Remarks on the targeting
of the OCSCs

Taking the abovementioned reflections into consideration, the

interesting targets for multidirectional treatment are OCSCs

themselves and the components of OCSC microenvironment,

particularly metastatic niche. One of the most explored areas of

anti-OCSCs therapy is drugs directed against OCSC markers,

signaling pathways, and epigenetic regulators. Targeting OCSC
TABLE 2 Continued

Pathway Function Clinical significance Reference

CROT and activation of TGF-b signaling
promotes tumor growth and paclitaxel resistance

Rho/
ROCK
signaling

ECM stiffness and tissue tension exerted by
ascites activate Rho/ROCK pathway and regulate
EMT
Rho/ROCK signaling is an important mediator in
tumor angiogenesis
Rho/ROCK pathway is used by invading cell
clusters and “leader cells”

Pharmacological inhibition of LPA-mediated stimulation of Rho/ROCK pathway
decreases tumor aggressiveness
Inhibition of Rho/ROCK pathway blocks HIF-1a signaling and restores platinum
sensitivity of ovarian cancer cells

(120–124)
f

SNAIL, zinc-finger transcription factor SNAI1; SFRP5, secreted frizzled-related protein-5; CAFs, cancer-associated fibroblasts; GLI1, zinc-finger protein GLI1; SMO, smoothened class frizzled G
protein–coupled receptor; YAP, yes-associated protein; ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; MYPT1, myosin phosphatase targeting protein-1; PFS, progression-
free survival; VEGF, vascular-endothelial growth factor; VEGFR1, VEGF receptor-1; DLL4, delta-like ligand-4; JAG1, protein Jagged 1; NANOG, homeobox protein NANOG transcription
factor; OCT4, octamer-binding transcription factor-4; ABC transporter, ATP-binding cassette drug membrane transporter; OS, overall survival; DFS, disease-free survival; NF-kB, nuclear factor-
k-light chain enhancer of activated B cells; TLR-4, Toll-like receptor type-4; HIF-1a, hypoxia-induced factor-1a; BRCA1, breast cancer type-1 susceptibility protein; SIRT1, sirtuin type-1; HGFR,
hepatocyte growth factor receptor; MSCs, mesenchymal stem cells; MDR, multi-drug resistance; CTNNB1, catenin beta-1; PTC, papillary thyroid cancer oncogene; SMO, smoothened protein-
coding gene; NOTCH, NOTCH receptor-coding gene; k-RAS, Kirsten rat sarcoma virus gene; MEK, mitogen-activated protein kinase kinase-1 coding gene; TME, tumor microenvironment;
HGF, hepatocyte growth factor; mTOR, mammalian target of rapamycin kinase; CXCR4, C-X-C chemokine receptor type-4; UBE2S, ubiquitin-conjugating enzyme E2S; PI3KCA,
phosphatidylinositol-3-kinase oncogene; PARP, poly-ADP ribose polymerase; TGF, transforming growth factor; TILs, tumor-infiltrating lymphocytes; DCs, dendritic cells; TANs, tumor-
associated neutrophils; STMN2, stathmin-2 gene; CROT, carnitine O-octanoyltransferase; RAD51AP1, RAD51-associated protein-1 gene; Rho/ROCK, Rho/Rho-associated protein kinase; LPA,
lysophosphatidic acid.
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TABLE 3 The function and clinical significance of the main components of the tumor microenvironment inside the “metastatic niche”.

TME component Function Clinical significance Reference

CAFs CAFs originate from peritoneal fibroblasts or MSCs
activated by inflammatory signals, hypoxia, and exosomes
produced by cancer cells
Activated CAFs secrete TGF-b that stimulates EMT and
metastases
Increased expression of DKK3 protein enhances Hippo/
YAP and Wnt/b-catenin signaling in CAFs thus supporting
OCSCs
CAFs enhance chemoresistance by activation of HGFR/
PI3K/AKT pathway
FGF secreted by CAFs stimulates VEGF secretion and
OCSC stemness
TME remodeling by secretion of ECM components and
MMPs
Suppression of cytotoxic TILs and enhancement of pro-
inflammatory signals
The existence of the functional loop between CAFs and
ovarian cancer cells is reported, in which CAFs induce
angiogenesis by secretion of IL-6, COX-2, and CXCL1,
whereas cancer cells induce CAFs to secrete CXCL12, IL-6,
and VEGF-A to further enhance angiogenesis

Four genes—AXL, GPR176, ITGBL1, and TIMP3—identified as
ovarian cancer CAF-specific genes allow to construct the
prognostic CAF signature. High CAF signature correlates to
chemoresistance and activation of signaling pathways
regulating tumor progression
Molecular CAF signature characterized by the expression of six
CAF-related genes (COL16A1, COL5A2, GREM1, LUM, SRPX,
and TIMP3) show that high-risk patients have worse prognosis,
ineffective immune response, and low tumor mutational
burden
CAF-score based on molecular characteristics of CAF-related
genes and signaling pathways allows classifying patients with
ovarian cancer to high- or low-risk population. Higher CAF
score is observed in advanced tumors and in patients with
worse OS. Patients with low CAF score have better efficacy of
immunotherapy
CAFs mediate chemoresistance of ovarian cancer to anti-
angiogenic therapy

(91, 110,
146–157)

CAAs Adipocytes are a source of lipids but also secrete
adipokines, growth factors, immune mediators, and
metabolic agents
Omental implants are an example of OCSC niche
supporting energetically and proliferatively stem cells
Recruitment of OCSCs into the adipose tissue depends on
IL-6, IL-8, MCP-1, and TIMP1
Interaction between IL-8 secreted by CAAs and CXCR1 on
cancer cells activates metastases through p38MAPK/STAT3
pathway
Lipid transfer from CAAs to cancer cells depends on
FABP4, which is upregulated especially in metastatic
tumors
ALDH+CD133+ OCSCs show high levels of desaturation of
lipids
Survival of OCSCs in adipose tissue TME depends on the
function of SCD1, and elimination of SCD1 is synonymous
with OCSC depletion
Fatty acids supply energy for EMT

High levels of fatty acids desaturation and oxidation in FABP4-
positive tumors correlate with poor prognosis
FASN expression correlates with stage and grade of ovarian
cancer, and patients showing high FASN expression have worse
prognosis and chemoresistant tumors

(158–164)

ADSCs ADSCs promote generation of OCSCs with use of
Hedgehog/BMP4 signaling. Through secretion of IL-6, IL-8,
VEGF, and TNF-a, ADSCs enhance chemoresistance. They
are capable to differentiate into CAFs and CAAs

(165–167)

MSCs MSCs are recruited from bone marrow, adipose tissue, and
endometrium and are able to differentiate into CAFs
MSCs stimulate proliferation, stemness, angiogenesis, and
platinum resistance
IL-6 and LIF secreted by MSCs enhance OCSC function in
the STAT-dependent way
MSC-derived TGF-b and VEGF/HIF-1a signals contribute
to OCSC support and angiogenesis
Bone marrow MSCs enhance chemoresistance of ovarian
cancer by releasing miR-1180 that activates Wnt/b-catenin
signaling

Interactions with MSCs activate PI3K/AKT pathway and MDR
in OCSCs followed by paclitaxel and platinum resistance

(94, 106,
111, 147,
166, 168–
171)

TAMs Conversion of monocytes into TAMs is triggered by LIF
and IL-6 present in ascites
TAMs residing inside “metastatic niche” show
immunosuppressive M2 phenotype and take part in
immune escape of the tumor, regulation of angiogenesis,
invasion, and stemness
Hypoxia in ovarian cancer TME shifts polarization of
TAMs into M2 phenotype through miR-222-3p and miR-
940 released from cancer cells and activation of STAT

Patients with higher M1/M2 TAMs ratio have better OS and
PFS
M2 TAM infiltration is correlated to worse OS

(32, 172–
182)
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TABLE 3 Continued

TME component Function Clinical significance Reference

pathway
Another signal for M2 differentiation of TAMs are
cytokines IL-4, IL-10, and IL-13 secreted from both cancer
and MSC cells
By secretion of pro-inflammatory IL-17, TAMs stimulate
p38MAPK and NF-kB pathways that induce self-renewal of
CD133+ OCSCs
TAMs secrete VEGF and EGF that induce spheroid
formation and peritoneal spread of cancer implants
M2-type TAMs create and support tumor tolerance by
inhibition of NK and cytotoxic T-cell activity and by
stimulation of Tregs

UBR5-mediated immunosuppressive TAM infiltration
augments tumor growth and metastases and, through
activation of p53/b-catenin/CCL2 pathway, stimulates
spheroid formation
CAPG gene expression is correlated with infiltration of
tumors by Tregs, M2 TAMs, and exhausted T cells
contributing to immunosuppression in HGSOC
TAMs exert pro-tumor and immunosuppressive effects
through secretion of IL10,TGFb, VEGF, and expression of
PD-1 and consumption of arginine to inhibit T-cell efficacy

CD4+CD25+FoxP3+
Tregs

Expression of suppressive molecule IDO by cancer and
dendritic cells contributes to recruitment of Tregs into the
tumors
Tregs from ovarian tumors show upregulation of TGF-b
that inhibits secretion of IL-2, IFN-g and TNF-a followed
by impairment of T CD4+ and T CD8+ effector cells
Ovarian OCSCs through CCL5–CCR5 interaction recruit
Tregs, which, upon culture with CD133+ OCSCs, secrete
high levels of IL-10 showing inhibitory immune function
and MMP-9 that enables invasion of cancer cells
Tregs infiltrating ovarian tumors show highly activated
phenotype (PD-1, 4-1BB, and ICOS) responsible for
immunosuppression

High numbers of Tregs in tumor immune infiltrates are
considered a sign of poor prognosis
T CD8+/Tregs and CD4+/Tregs ratio are a good predictors of
patient survival
Abundance of Tregs and increased VEGF in ascites are
observed in patients with poor prognosis
However, the prognostic value of Tregs depends on the tumor
type and stage, and, in HGSOC tumors, lower Th17/Tregs ratio
was correlated with better survival

(183–190)

mDCs and pDCs Tumor and ascites DCs originate from peripheral blood
mDCs express IDO and PD-1 and are associated with
mmunosuppression of anti-cancer T CD4+ helper and T
CD8+ cytotoxic effectors
Tumor growth is accompanied by increasing numbers of
mDCs, and tumor-derived PGE2 and TGF-b further
promote the function of mDCs

The correlation between higher concentration of tumor-
associated pDCs and shorter PFS was found
The presence of mature DCs correlates with improved
prognosis in HGSOC

(191–193)

Immature mDCs are capable to regulate angiogenesis in the
tumor
pDCs accumulate preferentially in ascites and their
chemoattraction depends on expression of CXCL12
pDCs stimulate the generation of IL-10+ T CD8+
suppressor cells and promote angiogenesis through the
secretion of IL-8 and TNF-a
The population of tumor-associated pDCs differs
functionally from ascitic pDCs and secretes lower levels of
pro-inflammatory cytokines

(187, 194–
197)

MDSCs MDSC cells possessing CD11b+/Gr-1+ phenotype are a cell
population regulating both chronic inflammation and
tumor progression
MDSCs are able to suppress maturation of DCs and
cytotoxic reactions against tumor mediated by T CD8+,
NK, and NKT cells
Recruitment and functional maturity of MDSCs in the
ascites depend on CXCL12/CXCR4 interactions and PGE2
secretion
IL-6 and IL10 in ascites increase the number of MDSCs
and, through upregulation of STAT3 signaling, promote
their suppressive activity by expression of ARG and iNOS

Blockade of a key cytokine for MDSCs function, IL10, restores
immunosurveillance and improves survival
Peripheral blood ARG/IDO/IL10+ MDSCs are especially
abundant in patients with advanced ovarian cancer and their
depletion is a good prognostic factor
BRCA-mutated patients have less MDSCs and more T CD*+
effectors than patients with wild BRCA copy in early stage
HGSOC, what could explain partly the survival benefit in this
group of patients

(198–205)
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TABLE 3 Continued

TME component Function Clinical significance Reference

Inhibition of mTOR activity decreases MDSC infiltration of
ovarian tumors and slows progression
PGE2 produced by MDSCs enhances expression of PD-L1
through mTOR pathway. PD-L1 expression is particularly
high in OCSCs having ALDH1+ phenotype

ECM Mechanosensory signals produced by ascites and tumor
expansion regulate EMT and interaction with EMC, as well
as enhance angiogenesis, stemness, and chemoresistance
Shear stress stimulates stemness by increase of CD44,
CD117, and OCT4 activity
ECM stiffness upregulates expression of stemness CD133
marker
Compression changes activity of the Wnt/b-catenin
pathway and regulates EMT
Expression of PAX8 links migratory and adhesive
properties of Fallopian tube epithelium, STIC, and HGSOC
cells. Inhibition of PAX8 reduces ability of cancer cells to
migrate and adhere to fibronectin and collagen

Chondroitin sulfate is upregulated in the ECM of more than
90% of HGSOC and linked to poor prognosis
Acquisition of mesothelial–mesenchymal phenotype by cancer
cells, characterized by expression of CALB2 and PDPN,
regulates adhesion to ECM and tumor progression and is
correlated to poor outcome

(55, 130,
206–212)

Exosomes Exosomes loaded with miRNAs miR-409-3p and miR-339-
5p are involved in Wnt/b-catenin signaling pathway and
stimulation of metastases in HGSOC
Ascites contain exosomes transferring cytokines, growth
factors, miRNAs, lipids, and OCSC markers CD44 and
EpCAM between tumor environment and OCSCs
Exosomes from cancer cells transfer CD44 into mesothelial
cells stimulating MMP-9, which supports adhesion and
invasion of spheroid cells to the peritoneal surface
Tumor cells stimulate conversion of omental fibroblasts
into CAFs by production of exosomes containing
deregulated miRNAs miR-31, miR-214, and miR-155
Hypoxic environment reprograms TAMs into M2
polarization through exosomes containing miR-222-3p and
miR-940
Omental CAFs and CAAs upregulate cancer cells’
chemoresistance and activate anti-apoptotic pathways
through miR-21–containing exosomes
MSCs enhance tumor growth producing exosomes loaded
with miR-21, miR-221, and miR-92a

Exosomal miR-146a secreted from MSCs reduces cancer
growth and chemoresistance to taxanes
Abundance of CD117-containing small extracellular vesicles in
ascites correlates with tumor grade, chemoresistance, and
recurrence
Higher concentration of exosomes containing miR-21, miR-
141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, and
miR-214 is found in serum of patients with ovarian cancer
compared to patients with benign ovarian tumors
Expression of LBP, FGG, FGA, and GSN genes in exosomes
isolated from plasma is involved in coagulation and apoptosis
related pathways and can be a potential diagnostic and
prognostic biomarker for OS and PFS
CAV1 gene, which is the direct target of miR-1246, is involved
in the process of exosomal transfer. Patients with high miR-
1246 and low Cav1 expression have a significantly worse
prognosis
Serum exosomal level of lncRNA MALAT1 predicts advanced
and metastatic ovarian cancer phenotype and correlates to OS

(43, 172,
173, 213–
226)

Exosomes containing miR-146b-5p produced by TAMs
activate TRAF6/NF-kB/MMP2 pathway that deregulates
endothelial cell migration inside tumor
Adipose tissue MSC-derived exosomes secreted into ascites
promote tumor growth and peritoneal implants by
activation of FOXM1 signaling
Small extracellular vesicles released from ascites OCSCs
upon cisplatin treatment are capable to activate the pro-
tumorigenic phenotype in MSCs
Exosomes secreted by expanded tumor-derived NK cells
containing cisplatin can reverse chemoresistance of cancer
cells and augment NK cytotoxic activity
CD163+ TAMs secrete exosomes containing miR-221-3p
that downregulates ADAMTS6 and activate EMT, thus
triggering the OCSC phenotype and chemoresistance
FasL and TRAIL are components in exosomes secreted by
cancer cells, responsible for apoptosis of immune cells of
cancer infiltrate
Ascite-derived exosomes transfer miR-6780b-5p to cancer
cells promoting EMT and metastasizing
CD47 is overexpressed in tumors and tumor-derived
exosomes and facilitates tumor immune evasion. Inhibition
of exosomal CD47 improves anti-cancer macrophage
activity and suppresses peritoneal dissemination
EXOSC4 is involved in RNA degradation. Knockdown of
EXOSC4 inhibits the proliferation, migration, and invasion

Plasma exosomal miR-1260a, miR-7977, and miR-192-5p are
significantly decreased in ovarian cancer compared with
healthy controls
Expression level of miR-205 in plasma exosomes of the ovarian
cancer group is significantly higher compared to the benign
and control groups and correlates with clinical stage and lymph
node metastases

(227–234)
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markers is important as chemotherapy, whereas decreasing tumor

burden simultaneously increases the number of OCSCs. After

exposition to chemotherapy, increased numbers of ascitic

EpCAM+, CD44+, and OCT4+ cells were noted (248). Similarly,

recurrent tumors contain more ALDHA1+, CD133+, and CD44+

OCSCs than primary tumors (49). These phenomena are observed

not only in standard platinum/taxol-based chemotherapy but also

in the tumors treated with PARP inhibitors (PARPis), where

increased numbers of CD133+ and CD117+ OCSCs precede the

acquired PARP resistance (249). However, targeting OCSC markers

has to overcome two problems. The first one is that OCSC markers

are not able to distinguish cancer stem cells exclusively, as about

75% of known cancer stem cell markers are also present on the

surface of embryonic and adult stem cells (250). For instance, CD44

is present on hematopoietic cells, MSCs, and adipose-derived stem

cells (251–253). CD117 is positive on 25% of embryonic stem cells

(254), whereas CD166 is also found on epithelial cells, MSCs, and

intestinal stem cells (255, 256). Intracellular cancer stem cell

markers, like NANOG, OCT4, and SOX2, are also present in
Frontiers in Oncology 11
normal stem cells (257, 258). The second problem is associated

with the fact that there is no universal cancer stem cell marker

known. Tumor heterogeneity, differentiation status, and

environment are reasons for OCSC different types. Therefore, the

more effective strategy of elimination of OCSCs relies on targeting

of at least two OCSC markers simultaneously. Targeting the

signaling pathways used by OCSCs is also reasoned by the fact

that many of them are likewise OCSC markers, activated after

exposition to chemotherapy (259). Epigenetic regulation in ovarian

cancer is associated with both hypermethylation and

hypomethylation of DNA, as well as with histone methylation

and acethylation. Hypermethylation of DNA contributes to

formation of OCSCs (260). The CpG islands of many onco-

suppressor genes were shown to be hypermethylated in ovarian

cancer, leading to the loss of DNA-repair function and cell cycle

control desynchronization (261). Upon chemotherapy,

hypermethylation of genes responsible for cell resistance to

apoptosis was detected (262). Gene hypomethylation is frequently

observed in advanced HGSOC and correlates with worse survival
TABLE 3 Continued

TME component Function Clinical significance Reference

ability of ovarian cancer cells by suppressing the Wnt/b-
catenin pathway

Hypoxia and acidosis Hypoxia and HIF-1a activation are capable of sustaining
the CD117 expression through Wnt/b-catenin signaling
Hypoxia and HIF-1a enhance stemness and EMT via
activation of Wnt/b-catenin, Hedgehog, and NOTCH
pathways, as well as CD133, SOX2, and NANOG markers
Hypoxia/NOTCH/SOX2 signaling is important for
maintaining OCSCs, as it enhances spheroid formation,
upregulation of ALDH and ABC proteins, and
chemoresistance
Hypoxia and HIF-1a promote MDSCs to secrete TGF-b,
IL-6, and IL-8 that enhance immunosuppressive conditions
Hypoxia activates MAPK pathway to induce autophagy in
OCSC cells
Hypoxia attracts TAMs that support immune tolerance
against tumor cells and predisposes mature DC cells to
apoptosis
Acidosis increases the expression of stemness markers
OCT4 and NANOG and secretion of VEGF and IL-8 in
OCSC niche
Increased aerobic glycolysis in cancer cells is a source of
lactate that strongly inhibits T and NK effectors, shifts
TAMs into M2 phenotype, and recruits Tregs

The signature of genes associated with regulation of hypoxia
and immune response allow to divide patients with ovarian
cancer into high- or low-risk groups
Higher ALOX5AP, ANXA1, PLK3, and SREBF1 mRNA levels
are significantly associated with shorter OS, whereas LAG3 and
IGFBP2 lower mRNA levels with better prognosis, respectively
Expression of seven hypoxia-related genes—UQCRFS1, KRAS,
KLF4, HOXA5, GMPR, ISG20, and SNRPD1—divides ovarian
cancer into two populations with different prognosis
Hypoxia-related miR-23a-3p is overexpressed in HGSOC
showing chemoresistance and shorter PFS

(96, 235–
247)
f

TME, tumor microenvironment; CAFs, cancer-associated fibroblasts; MSCs, mesenchymal stem cells; DKK3, dickopf-related protein-3; YAP, yes-associated protein; PI3K, phosphatidylinositol-
3-kinase; AKT, protein kinase B; HGFR, hepatocyte growth factor receptor; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; ECM, extracellular matrix; MMPs,
metalloproteinases; TILs, tumor-infiltrating lymphocytes; AXL, tyrosine-protein kinase receptor UFO coding gene; GPR176, G protein–coupled receptor 176 coding gene; ITGBL1, integrin
subunit beta–like 1 coding gene; TIMP3, TIMP metallopeptidase inhibitor-3 coding gene; COL16A1, alpha 1 chain type XVI collagen coding gene; COL5A2, alpha 2 chain type V collagen coding
gene; GREM1, Gremlin-1 protein coding gene; LUM, lumina protein coding gene; SRPX, sushi repeat containing protein X-linked coding gene; OS, overall survival; IL-6, interleukin-6; COX-2,
cyclooxygenase-2; CXCL1, C-X-C motif chemokine ligand 1; CXCL12, stromal cell-derived factor 1; CAAs, cancer-associated adipocytes; MCP-1, monocyte chemoattractant protein-1; TIMP1,
tissue inhibitor of metalloproteinase-1; CXCR1, C-X-C chemokine receptor type-1; FABP4, fatty acid binding protein-4; SCD1, stearoyl-CoA desaturase-1; FASN, fatty acid synthase; ADSCs,
adipose-derived stem cells; BMP4, bone morphogenetic protein-4; MSCs, mesenchymal stem cells; MDR, multi-drug resistance; LIF, leukemia inhibitory factor; HIF-1a, hypoxia-induced factor-
1a; TAMs, tumor-associated macrophages; p38/MAPK, p38 mitogen-activated protein kinase; EGF, epithelial growth factor; NK, natural killer; Tregs, T regulatory lymphocytes; OS, overall
survival; PFS, progression-free survival; UBR5, ubiquitin protein ligase E3 component n-recognin-5; CCL2, chemokine ligand-2; CAPG, capping actin protein gelsolin-like gene; PD-1,
programmed death-1; IDO, indoleamine 2,3-dioxygenase; TGF-b, transforming growth factor-b; PGE2, prostaglandin E2; CCL5, C-C motif chemokine ligand-5; CCR5, CCL5 receptor; MMP-9,
metalloproteinase-9; 4-1BB, CD137 or TNF factor receptor superfamily T-cell costimulatory receptor; ICOS, CD278 or inducible T-cell costimulator; mDCs, myeloid dendritic cells; pDCs,
plasmacytoid dendritic cells; MDSCs, myeloid-derived suppressor cells; NKT, natural killer T cells; ARG, arginine; iNOS, inducible nitric oxide synthase; PAX8, paired box gene 8 protein; CALB,
calretinin; PDPN, podoplanin; TRAF6, TNF receptor–associated factor protein-6; FOXM1, Forkhead box protein M1; ADAMTS6, ADAMmetallopeptidase With thrombospondin type 1 motif
6; FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; LBP, lipopolysaccharide binding protein; FGG, fibrinogen gamma chain; FGA, fibrinogen alpha chain; GSN, gelsolin; CAF1,
caveolin-1; lncRNA, long non-coding RNA; MALAT1, metastasis−associated lung adenocarcinoma transcript 1; EXOSC4, exosome component 4; ALOX5AP, arachidonate 5-lipoxygenase–
activating protein; ANXA1, annexin-A1; PLK3, Polo-like kinase-3; SREBF1, sterol regulatory element–binding transcription factor 1; LAG3, lymphocyte activation gene-3; IGFBP2, insulin-like
growth factor binding protein 2; UQCRFS1, ubiquinol-cytochrome C reductase, Rieske iron-sulfur polypeptide 1; KRAS, Kirsten rat sarcoma virus; KLF4, Kruppel-like factor 4; HOXA5,
homeobox protein Hox-A5; GMPR, guanosine 5′-monophosphate oxidoreductase; ISG20, interferon-stimulated gene 20-kDa protein; SNRPD1, small nuclear ribonucleoprotein D1 polypeptide.
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(263). Histone methylation is engaged in upregulation of ATP-

binding cassette drug membrane (ABC) transporters in

chemoresistant OCSCs (264). Disturbed function of histone

deacetylases promotes tumor progression (265). Table 4 contains

data on both the experimental and clinical trials of targeting OCSCs.
Remarks on the targeting of the
tumor microenvironment

One of the most important targets in TME is CAFs. However, the

past experience with anti-CAFs therapy has indicated that the aim in

this approach should be to revert CAFs functionally back to normal

fibroblasts, rather than eradicating them completely from the TME.

Eradication of CAFs has proved to change the tumor into more

aggressive phenotype, instead of eliminating tumor cells (350). It is

even more important taking into consideration that CAF populations

of different tumor-promoting abilities and phenotype (CD49e+,

fibroblast activation protein FAP-high or FAP-low) have been

identified (351). The reprogramming of M2 tumor-associated

macrophages (TAMs), another key population of tumor-supporting

cells, into M1 phenotype could be similarly to CAFs, which is a better

option than eliminating them completely (352). Another, recently

identified population of cells in TME is cancer-associated mesothelial

cells (CAMs) that originate from peritoneal normal mesothelial cells

activated by cancer-derived promoting factors that inducemesothelial–

mesenchymal transition and secretion of factors, enhancing peritoneal

metastases and chemoresistance (353). Hepatocyte growth factor

(HGF) released from ovarian cancer cells in hypoxic conditions

induces the senescence of mesothelial cells and downregulates the

expression of junctional proteins that results in disintegration of

mesothelial integrity and enables cancer invasion through the

mesothelial barrier (354, 355). Phenotypic changes of mesothelial

cells to CAMs are mediated by TGF-b and CD44 and annexin A2

secreted inside exosomes from cancer cells (356–358). In response to

those changes, CAMs secrete VEGF and upregulate fibronectin

expression in ECM, thus promoting tumor vascularization and

binding of tumor cells’ integrins to ECM to support metastases (108,

359). Moreover, CAMs increase secretion of IL-8 and CCL2 that

stimulate pyruvate dehydrogenase kinase-1 in cancer cells followed by

increased expression of integrins to enhance adhesion and migration

(360, 361). Interaction between intelectin-1 on CAMs and lipoprotein

receptor–related protein-1 on cancer cells also contributes to invasion

by upregulation ofMMP-1 (362). CAMs pre-stimulated by cancer cell–

derived TGF-b secret osteopontin, which, in turn, activates CD44/

PI3K/AKT pathway in OCSCs, leading to ABC transporters’

overexpression and chemoresistance (363). M2-shifted TAMs also

support CAMs activity by macrophage inflammatory protein-1b that

activates P-selectin secretion by CAMs, followed by stimulation of

CD24 on the cancer cells’ surface and increased adhesion (364). CAMs

are, in turn, able to polarize the TAM phenotype into M2 type (365).

CAMs are also capable to regulate the expression of glucose transporter

type 4, resulting in increased glucose intake by cancer cells and growth

promotion (362). Because of all above functions, CAMs are an

interesting target for anti-TME therapy in ovarian cancer.
Frontiers in Oncology 12
The next promising target for the therapy is metabolism of cancer

cells. Cancer cells use both aerobic glycolysis (theWarburg effect) and

oxidative phosphorylation (OXPHOS). Aerobic glycolysis protects

cells from oxydative stress and fuels proliferation. However,

OXPHOS and resistance to glucose deprivation in tumor

environment are a metabolic adaptation enabling chemoresistance.

Both ways of glucose metabolism are therefore used by cancer cells,

including OCSCs and are another sign of their plasticity (366–368).

The metabolic interactions between omental adipocytes and OCSCs

are another reason for cancer progression and chemoresistance. Fatty

acids could be very efficient source of energy that fuels the spread and

growth of peritoneal implants (369). Adipocytes are stimulated by

cancer cells to release fatty acids into metastatic niche, and, in turn,

adipocytes induce expression of fatty acid receptor CD36 on cancer

cells, thus enhancing uptake of fatty acids by cancer (370).

Colonization of omental tissue depends on expression of salt-

inducible kinase 2 (SIK2) in cancer cells. SIK2 kinase stimulates

cell proliferation in PI3K/AKT-mediated manner and enhances

paclitaxel resistance in HGSOC cells (371). Moreover, fatty acid

oxidase and fatty acid synthase (FASN) have been shown to sustain

survival of cancer cells in TME and increase resistance to anoikis and

chemotherapy and spheroid formation in HGSOC lines (347, 372).

Ovarian cancer CSCs indicate increased concentration of unsaturated

lipids and what enhances cell membrane fluidity and facilitates OCSC

plasticity and self-renewal. Inhibition of desaturases inhibits spheroid

formation and abrogates tumor growth and metastases (373).

Another potential target for anti-TME therapy in HGSOC is

exosomes. The identification of their origin inside TME and the

recognition of their cargo have the key role in exosome-directed

therapy. Exosomes could be also used as potential vehicles for the

transportation of drugs into the tumor. It was also found that

exosomes secreted from untreated tumors have a significant

influence on the expression of many genes involved in functional

change of fibroblasts into CAFs and in stimulation of tumor

metastases. Such ability was less evident in exosomes secreted by

pre-treated tumors (374). The situation is, therefore, complicated, as

it seems that exosomes differ depending not only on the type of

secreting cell but also on its functional status and temporal changes

during therapy. Exosomes are able to influence several mechanisms

of tumor growth. Their cargo, including proteins, neoantigens,

cytokines, growth factors, and miRNAs, is responsible for cancer

progression, metastases, and chemoresistance. Exosomes contain also

modulators of immune response capable of inhibition of

macrophages: natural killer (NK) cells, dendritic cells (DCs), and B

and T lymphocytes (375, 376). Exosomes negatively regulate

immunosurveillance of the host against tumor, through inhibition

of T lymphocytes, NK cells, DCs, and monocytes in tumor

environment and ascites (227, 377–379). Exosomes stimulate

tumor angiogenesis affecting the VEGF and HIF-1a expression and

by activation of Wnt/b-catenin and NF-kB signaling pathways (380,

381). Exosomes influence also stroma remodeling by cooperation

with CAFs and adipocyte-derived stem cells (165). Recently, tumor-

derived exosomal miR-141 was identified as a regulator of stromal-

tumor interactions and inducer of tumor-promoting stromal niche by

activation of YAP/chemokine (C-X-C motif) ligand 1 (GROa)/
CXCR signaling pathway (382). One of the most interesting vectors
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TABLE 4 Data on both the experimental and clinical trials devoted to targeting the OCSCs.

Target Drug Mechanism of action Trial Reference

CD44

ALM201 ALM201 is a residue peptide of FKBPL, which targets angiogenesis and CD44+ OCSCs by
affecting the CD44/STAT3 pathway
ALM201 is safe and well-tolerated, with stabilization of the disease in 22% of patients

Experimental

Phase I dose-
escalation
human trial
EudraCT

(266)

(267)

CD117

Imatinib
mesylate
monotherapy

Imatinib
mesylate +
docetaxel

Inhibition of CD117/PDGF signaling pathway. Treatment was well-tolerated, but no complete or
partial responses were documented during a median follow-up of 6.6 months. However, 33% of
patients had stable disease lasting from 4 to 8+ months. There was no relationship between best
response (stable disease) and target expression
Treatment showed low toxicity but also unsatisfactory anti-tumor activity. There were no
objective responders. Median PFS was 2 months, and median OS was 10 months. Higher pre-
treatment plasma concentrations of PDGF and VEGF were associated with shorter PFS and
survival

Patients with heavily pre-treated recurrent ovarian cancer expressing CD117 or PDGFRa
showed ORR of 22%, which included one complete and four partial responses, and additional
three patients had stable disease for more than 4 months

Phase II
NCT00510653

Gynecologic
Oncology
Group study
Southwest
Oncology
Group
Protocol S0211
Hoosier
Oncology
Group trial

(268)

(269)

(270)

(271)

CD44/
CD117

Salinomycin
monotherapy

Salinomycin +
paclitaxel
Metformin +
bevacizumab +
cisplatin

Salinomycin is the mono carboxylic polyether antibiotic inhibiting ABC-transporter system and
promoting OCSC apoptosis.
Encapsulated salinomycin in the form of salinomycin-loaded high-density lipoprotein showed
effective cellular uptake and reduced the EMT, stemness, and angiogenesis mediated by OCSCs
Combined treatment reduced stemness and spheroid forming capability and enhanced apoptosis
of ascitic OCSCs
Combination of drugs reduced a significant number of CD44+CD117+ OCSCs and inhibited
tumor growth

Experimental

Experimental

Experimental

(272)
(273)
(274)

CD44/
MyD88

NV128 Isoflavone derivative causing depression of mitochondrial function and cellular starvation of
OCSCs

Experimental (275)

ALDH

673A

CM37
ATRA +
carboplatin
673A

Disulfiram

The result of ALDH1A inhibition is an accumulation of toxic aldehyde metabolites in OCSCs.
The effects are stronger in combination with ATR inhibitors
ALDH1A inhibitor that disturbed spheroid production by the OCT4 and SOX2 downregulation
A vitamin A derivative, in combination with carboplatin, suppresses ALDH1 expression and
downregulates functionality of OCSCs
The pan-ALDH1A inhibitor that preferentially kills CD133+ OCSCs through initiation of
necroptosis and sensitizes tumor to platinum-based chemotherapy
The anti-alcoholic medication, ALDH inhibitor, in combination with cisplatin, induced
apoptosis and necrosis in ALDH+ cisplatin-resistant OCSCs

Experimental

Experimental
Experimental
Experimental

Experimental

(276)

(277)
(278)
(279)

(280)

Selumetinib +
Saracatinib

PNA3 +
guadecitabine

Both Src and MEK signaling kinases are co-activated in 31% of HGSOC. Combined treatment
with Src inhibitor saracatinib and MEK inhibitor selumetinib decreased ALDH1+ cell sphere
formation and loss of ALDH1+ OCSCs
LncRNA HOTAIR is upregulated in HGSOC and especially in ALDH1+ OCSCs. Peptide nucleic
acid PNA3 inhibits HOTAIR, and enhancer of zeste homolog 2 (EZH2) interaction and when
combined with DNMT inhibitor guadecitabine abrogates ALDH1+ spheroid formation and
decreases their number and tumor-promoting ability

Experimental

Experimental

(281)

(282)

ALDH/
CD133

Salinomycin
monotherapy
Licofelone

Metformin

Graphene oxide–silver nanocomposite combined with salinomycin showed high toxicity against
ALDH+CD133+ OCSCs
COX/5-LOX inhibitor that reversed stem-like properties in spheroids and augmented paclitaxel
activity resulting in prolongation of mice survival
Ovarian cancer II-IV FIGO. Metformin in combination with standard chemotherapy in
neoadjuvant and adjuvant setting. Median PFS of 18 months, and median OS of 58 months.
Tumors treated with metformin had a 2.4-fold decrease in ALDH+CD133+ CSCs and showed
increased sensitivity to cisplatin

Experimental

Experimental

Phase II
NCT01579812

(283)

(284)

(285)

CD133

Salinomycin
monotherapy
dCD133KDEL

anti-CD133
CAR-NK cells +
cisplatin

Conjugates of salinomycin with anti-CD133 antibody and nanoparticles are effective in
transportation of the antibiotic into CD133+ OCSCs
Deimmunized Pseudomonas endotoxin conjugated to anti-CD133 antibody inhibits tumor
growth
Sequential treatment using CAR-NK cells and cisplatin eradicated CD133+ OCSCs from cell
lines and cell cultures obtained from ascites samples

Experimental

Experimental

Experimental

(286)

(287)

(288)

(Continued)
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TABLE 4 Continued

Target Drug Mechanism of action Trial Reference

EpCAM

EpCAM-specific
CAR-T cells
Catumaxomab

Infusion of CAR-T cells delayed tumor progression in xenograft mice model of peritoneal
carcinomatosis
Hybrid moAb against EpCAM/CD3. Intraperitoneal use of this moAb resulted in prolongation
of puncture-free interval (two-fold from 12 to 27.5 days) and time to first therapeutic puncture
(four-fold from 12 to 52 days) in heavily pre-treated patients with EpCAM+ recurrent tumors
complicated with malignant ascites. The median puncture-free survival and overall survival were
29.5 and 111 days, respectively

Deterioration of quality of life appeared earlier in control than in catumaxomab-treated group of
patients with ascites (19–26 days vs. 47–49 days)
In patients with malignant ascites, peritoneal catumaxomab infusion enhanced the expression of
the CD69 and CD38 activation molecules in T CD4+ and T CD8+, NK cells, and macrophages
and enhanced T CD8+ accumulation into the peritoneal cavity

Experimental

NCT00326885
Phase II
European
Medicines
Agency
approved
Phase II/III
NCT00836654
CASIMAS
Phase IIIb
NCT00822809

(289)

(290)

(291)

(292)

ATR

Ceralasertib
(AZD6738) +
olaparib
M6620 (VX-
970) +
carboplatin

ATR is a protein kinase involved in recognition of DNA damage and activation of DNA damage
checkpoint. Inhibitors of ATR combined with PARP inhibitors (PARPi) were able to overcome
PARPi and platinum resistance in BRCA and CCNE1 wild and mutated cell lines
Well-tolerated therapy with reduction in tumor burden, especially in BRCA-mutated patients
(median PFS was 4.2 months overall and 8.2 months for patients with BRCA1 mutations)

Partial response in platinum-resistant patients with BRCA1 mutation. A patient with advanced
germline BRCA1 ovarian cancer achieved RECIST partial response despite being platinum-
refractory and PARP inhibitor–resistant

Experimental

CAPRI phase
II

Phase I

(293)

(294)

(295)

FAK

Defactinib (VS-
6063) +
paclitaxel
VS-4718 +
platinum

APG-2449

FAK is a tyrosine kinase activated by matrix and integrin receptors controlling cell motility.
FAK inhibitor VS-6063 enhances chemosensitivity and decreases CD44 OCSC marker.
Combination with paclitaxel reduces >90% tumor weight.
Modest activity in advanced platinum-resistant ovarian cancer

FAK inhibitor combined with platinum triggered ovarian cancer cell apoptosis and restored
chemosensitivity
A multikinase inhibitor of FAK, ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and
anapestic lypmphoma kinase (ALK). Combination of APG-2449 and osimertinib (EGFR tyrosine
kinase inhibitor) and mitogen-activated extracellular signal–regulated kinase inhibitor trametinib
overcomes osimertinib resistance

Experimental

NCT01778803
Phase I
Experimental

Experimental

(296)

(297)
(298)

(299)

Calcium
channels

Manidipine
Lacipidine
Benidipine
Lomerizine
Manidipine +
paziotinib

Calcium channel blockers were found to target the OCSC function by decreasing steroid
formation, proliferation, and induction of apoptosis. Use of these drugs downregulated
expression of stemness markers OCT4, NANOG, SOX2, ALDH1, and CD133.

Combination of calcium channel blocker with pan-HER inhibitor paziotinib showed synergism
in reduction of OCSC spheroid formation, expression of stemness markers, and enhancement of
apoptosis

Experimental

Experimental

(300)

(301)

MSH-1/
MSH-2

siRNA Dual knockdown of MSH-1 and MSH-2 downregulated OCSC ALDH4A1 and Myc and
improved chemosensitivity

Experimental (302)

ERb receptor
LY5000307
(Erteberel)
monotherapy

Selective agonist of estrogen receptor ERb. Treatment with the agonist reduced the viability,
sphere formation capacity, self-renewal, and invasion of OCSCs while augmenting their
apoptosis

Experimental (303)

NAMPT
FK866 +
cisplatin

NAMPT is an enzyme for the NAD+ biosynthetic salvage pathway and is overexpressed in
cancers. Combination of NAMPT inhibitor and cisplatin inhibited expression of ALDH1 and
CD133 OCSCs and improved survival in the mouse model

Experimental (304)

Survivin

AS602801

CEP-1347

Inhibitor of c-Jun N-terminal kinase downregulates survivin. Chemo-sensitization of OCSCs to
carboplatin and paclitaxel
A small-molecule kinase inhibitor downregulates survivin and sensitizes OCSCs to standard
chemotherapy

Experimental

Experimental

(305)

(306)

Wnt
signaling
pathway

Ipafricept
(OMP54F28) +
carboplatin +
docetaxel
WNT974 +
carboplatin
Vantictumab
(OMP-18R5)

Inhibitor of Fc-Frizzled-8 receptor antagonizing Wnt signaling. Sequential combined treatment
is well-tolerated but has limited efficacy. The ORR was 76%. Median PFS was 10.3 months and
OS was 33 months

Inhibitor of PORCN that lowers secretion and binding of Wnt to its receptor. Combined
therapy caused cell cycle arrest and cytotoxicity of cells isolated from ascites of patients with
HGSOC
moAB that inhibits Wnt pathway by targeting the Frizzled receptors on cancer cells. Treatment
with vantictumab before paclitaxel therapy sensitizes cancer cells to death

NCT02050178
Phase I

Experimental

Experimental

(307)

(308)

(309)

(Continued)
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TABLE 4 Continued

Target Drug Mechanism of action Trial Reference

Hedgehog
signaling
pathway

Cyclopamine

Vismodegib
(GDC-0449)
monotherapy
Sonidegib
(LDE225) +
paclitaxel

Steroidal alkaloid isolated from poisonous plant Veratrum californicum that inhibits Hedgehog
signaling. Inhibition of spheroid-forming cells in the cell culture was observed upon treatment
with cyclopamine
The SMO receptor antagonist. Therapy was well-tolerated; however, the anticipated increase in
PFS was not achieved. Median PFS was 7.5 months the in treated group and 5.8 months in the
placebo group. Hedgehog expression was detected only in 13.5% of tissues
The SMO receptor antagonist. Combination of drugs was well-tolerated and showed partial
responses or stabilization of the disease in ovarian cancer

Experimental

NCT00739661
phase II

Phase I

(69)

(310)

(311)

NOTCH
signaling
pathway

LY900009
monotherapy
MK-0752 +
cisplatin
RO4929097
monotherapy

Enoticumab
(REGN421)
monotherapy
Enoticumab +
aflibercept
Demcizumab
(OMP-21M18)
+ paclitaxel
Navicixizumab
(OMP-305B83)
monotherapy
Navicixizumab
(OMP-305B83)
+ paclitaxel

Inhibitor of g-secretase protein. Therapy was well-tolerated, and five patients with solid tumors
including ovarian cancer had stabilization of the disease
Inhibitor of g-secretase protein. Combination effectively stimulated cancer cells apoptosis and
reduced growth of ovarian cancer xenografts in mice
Inhibitor of g-secretase protein. Monotherapy in recurrent ovarian cancer was well-tolerated but
had insufficient activity. Fifteen of the 40 patients had stabilization of the disease lasting with
median of 3 months. The results were better in HGSOC with high expression of intracellular
NOTCH protein

moAb against DLL4–NOTCH ligand involved in angiogenesis. Therapy had acceptable toxicity.
In the group of patients with solid tumors including ovarian cancer, two partial responses and
15 stabilizations of the disease were observed
Combination of anti-DLL4 and anti-VEGF therapy showed greater anti-tumor effects compared
to either monotherapy in murine model of ovarian cancer
moAb against DLL4. Combination showed ORR of 21% with manageable toxicity in the group
of patients with highly pre-treated HGSOC with platinum-resistant tumors

Combined dual moAb anti-DLL4/anti-VEGF. Showed acceptable toxicity profile and reduced the
tumors in seven of the 11 of patients with pre-treated ovarian cancer

Combination demonstrated manageable toxicity and ORR of 33% in bevacizumab pre-treated
patients, 64% in bevacizumab naive patients, and 62% in the biomarker (high angiogenesis and
suppressed immune response)–positive group

Phase I

Experimental

Princess
Margaret,
Chicago and
California
consortium
Phase II
Phase I

Experimental

SIERRA Phase
Ib

Phase Ia

Phase Ib

(312)

(313)

(314)

(315)

(316)

(317)

(318)

(319)

PI3K/AKT/
mTOR
signaling
pathway

Metformin
monotherapy

Metformin +
cisplatin/
paclitaxel

LY294002 +
carboplatin
Atorvastatin

Activation of AMPK followed by inhibition of signaling and reduction of energy consumption
by OCSCs. Metformin inhibited cell viability, invasion, and autophagy while promoting
apoptosis in paclitaxel-resistant ovarian cancer cell lines via downregulation of lncRNA SNHG—
a regulator of PI3K/AKT/mTOR pathway
Combination of Metformin with chemotherapy significantly reduced cell proliferation and
migration and increased chemosensitivity by reducing the OCSCs in treated cell lines
Addition of metformin to standard adjuvant or neo-adjuvant chemotherapy reduced two-fold
concentration of ALDH+CD133+ OCSCs and increased cisplatin sensitivity of tumors, resulting
in median OS of 58%
PI3K antagonist combined with carboplatin enhances its anti-cancer effect in mouse xenograft
model
Statin that, through inhibition of AKT/mTOR pathway, stimulates apoptosis of ovarian cancer
cells and inhibits cell invasion

Experimental

Experimental

NCT01579812
Phase II

Experimental

Experimental

(320)

(321)

(285)

(322)

(323)

NF-kB
signaling
pathway

Metformin +
cisplatin/
paclitaxel
MK-5108
monotherapy

Metformin through inhibition of NF-kB signaling pathway enhanced sensitivity to standard
chemotherapeutics in both sensitive and resistant cell lines

Aurora-A kinase inhibitor. Its use in ovarian cancer cell lines caused cell cycle arrest, inhibition
of NF-kB signaling, and cytokine secretion

Experimental

Experimental

(324)

(325)

Hippo/YAP
signaling

Verteporfin

Verteporfin +
carboplatin/taxol

Photosensitizer releases a singlet oxygen and ROS toxic to cancer cells upon exposure to light of
particular wavelength. Verteporfin-loaded lipid nanoparticles inhibited tumor xenografts in mice
upon laser light exposure
Combination was efficient in reducing proliferation, invasion, and clonogenic capacity of ovarian
cancer cell lines

Experimental

Experimental

(326)

(327)

JAK/STAT
signaling

Ruxolitinib +
paclitaxel
TG101209

CYT387 +
paclitaxel
JQ1

Inhibitor of JAK, thus inhibiting the JAK/STAT pathway. Synergic effects of combined therapy
on tumor growth in mouse model of advanced/ascites+ ovarian cancer
JAK2 inhibitor that induced cytotoxicity in spire-forming CD24+ cells, thus inhibiting migration
and metastasis of ovarian cancer in murine model
Combination of JAK2 inhibitor with chemotherapy inhibited paclitaxel-mediated OCSC
enrichment and reduced tumor burden in mouse xenografts
Selective small-molecule bromodomain inhibitor that inhibits JAK/STAT pathway. JQ1
resensitized ovarian cancer cells to platinum

Experimental

Experimental

Experimental

Experimental

(328)

(329)

(38)

(330)

(Continued)
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TABLE 4 Continued

Target Drug Mechanism of action Trial Reference

TGF-b
signaling

SB525334 TGF-b1 receptor inhibitor blocked ALDH1+ OCSCs self-renewal, invasion, and spheroid
formation

Experimental (331)

Src and
MAPK
signaling
kinases

Selumetinib +
Saracatinib

MAPK and Src inhibitors showed synergistic induction of apoptosis and tumor inhibition in
ovarian cancer mouse model. Treatment decreased spheroid formation and ALDH1 expression

Experimental (281)

DNA
methylation

Decitabine +
carboplatin

Decitabine is a DNMT1 inhibitor, a hypomethylating agent. In the group of pre-treated patients
with solid tumors, containing two ovarian HGSOC tumors, a partial response to combined
therapy was observed

NCT01799083
Phase II

(332)

Decitabine +
carboplatin/
paclitaxel +
cytokine-
induced killer
cells (CIK)
Guadecitabine +
carboplatin
Guadecitabine +
PNA3
Azacitidine +
carboplatin

The population of patients with chemoresistant recurrent ovarian cancer treated with combined
regimen showed ORR of 87.5% and prolongation of PFS to 8 months and OS to 19 months

This regimen combining DNMT1 inhibitor with chemotherapy, compared to second-line
chemotherapy alone, resulted in increased rate of patients having 6-months PFS (37% vs. 11%)
PNA3 is HOTAIR inhibitor. Combined with DNMT1 inhibitor showed reduction of spheroids
and ALDH1+ OCSCs
Combination of DNMT1 inhibitor with carboplatin caused stabilization of the disease > 4
months in three patients with refractory or resistant ovarian cancer
Sequential combined treatment significantly slowed platinum-resistant HGSOC growth and
activated immune-related pathways priming tumor for checkpoint inhibitor immunotherapy

Phase II

Phase II

Experimental

Phase II

Experimental

(333)

(334)

(282)

(335)

(336)

Histone
deacetylation

Vorinostat
monotherapy

Vorinostat +
carboplatin +
gemcytabine
Belinostat
(PXD-101) +
carboplatin +
paclitaxel
Belinostat
(PXD-101) +
carboplatin

Entinostat (MS-
275)
monotherapy

Entinostat (MS-
275) + olaparib

HDAC inhibitor that induces accumulation of acetylated histones and transcription factors that
arrest cell cycle. Monotherapy of platinum-resistant progressive HGSOC was well-tolerated;
however, clinical efficacy was minimal (two women had PFS over 6 months, with one having a
partial response)
Combination was effective (partial response in six of the 15 patients) in recurrent platinum-
sensitive ovarian cancer but was accompanied with hematological toxicity

HDAC inhibitor that induces apoptosis and sensitizes tumor for chemotherapy. Combination
had acceptable toxicity; in three of the 35 patients, complete response was obtained, and, in 12
of the 35 patients, partial response was obtained. ORR was 44% in platinum-resistant and 63%
in platinum-sensitive patients.
Combination was effective in 14 of the 27 patients with platinum-resistant ovarian cancer (one
complete and one partial response; 12 patients had disease stabilization)

Benzamide derivative of HDAC that inhibits selectively class I and IV HDAC. Entinostat was
effective in therapy of intraperitoneal tumors in mouse model; however, its activity depended on
immunocompetence represented by upregulation of MHCII and infiltration of T CD8+ cytotoxic
cells in the tumors
Combination potentiates the effect of olaparib in HR-proficient ovarian cancer and enhances
olaparib-induced DNA damage

Gynecologic
Oncology
Group Phase
II
Phase I

Phase II

Gynecologic
Oncology
Group Phase
II
Experimental

Experimental

(337)
(338)

(339)

(340)

(341)

(342)

Metabolism

2-deoxy-D-
glucose (2DG)
Devimistat
(CPI-613)
TVB-3166
USP13
knockdown
Etomoxir

Perhexiline

CAY-10566

Glycolysis inhibitor. In HGSOC tumors with reduced beta-F1-ATPase/oxidative
phosphorylation, it sensitized cancer cells for platinum
Mitochondrial metabolism inhibitor. Preferentially targets OCSCs and prevents acquired
chemoresistance into olaparib or carboplatin/paclitaxel therapy
Fatty acid synthase (FASN) inhibitor. Induced apoptosis in HGSOC model
Inhibits ATP citrate synthase (ACLY) followed by inhibition of ovarian HGSOC tumors in the
mouse xenograft model
An irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) in mitochondria. Targets
OCSCs and induces their apoptosis, and inhibits growth of tumor xenografts
Inhibitor of carnitine palmitoyltransferase-1 (CPT-1) in mitochondria. Sensitized NKX2-8-
deleted HGSOC lines to cisplatin
Selective inhibitor of stearoyl-CoA-desaturase-1 (SCD1). Induced apoptosis and ferroptosis in
HGSOC lines and eliminated OCSCs and spheroid formation

Experimental

Experimental

Experimental
Experimental

Experimental

Experimental

Experimental

(343)

(344)

(345)
(346)

(347)

(348)

(162, 349)
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FKBPL, FK506-binding protein–like; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; ALDH, aldehyde dehydrogenase; ATRA, all-trans retinoid acid;
COX, cyclooxygenase; 5-LOX, Arachidonate 5-lipooxygenase; NK, natural killer cells; CAR, chimeric antigen receptor; EpCAM, epithelial cell adhesion molecule; ATR, ataxia telangiectasia and
Rad3-related protein; OCT4, Octamer-binding transcription factor 4; SOX2, sex determining region Y-box 2; NANOG, homeobox protein NANOG; FAK, focal adhesion kinase; CCNE1, cyclin
E1; MSH, Musashi protein; siRNA, small interfering RNA; NAMPT, nicotinamide phosphoribosyltransferase; PORCN, porcupine acetyltransferase; SMO, smoothened receptor; moAb,
monoclonal antibody; DLL4, delta-like ligand-4; VEGF, vascular endothelial growth factor; ORR, overall response rate; AMPK, AMP-activated protein kinase; lncRNA, long non-coding RNA;
SNHG, small nucleolar RNA host gene 1; OS, overall survival; Src, Src non-receptor tyrosine kinase; MAPK, mitogen-activated protein kinase; JAK, Janus kinase; STAT, signal transducer and
activator of transcription protein; DNMT1, DNA-(cytosine-5)-methyltransferase-1; ORR, overall response rate; PNA, peptide nucleic acid; HOTAIR, lac RNA HOX antisense intergenic RNA;
PFS, progression-free survival; HDAC, histone deacetylase; MHC, major histocompatibility complex; HR, homologous recombination; USP13, ubiquitin specific peptidase 13; NKX2-8, NK2
Homeobox 8 protein.
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of information between cancer cells and TME is non-coding miRNAs

and long non-coding RNAs (lncRNAs). They were found in the

serum and ascites of patients with ovarian cancer (227, 228); however,

their presence in tumor-derived exosomes ensures safe and

undisturbed transportation to the target cells. Non-coding RNAs

play extremely important functions. Exosomes loaded withmiR-1246

are able to enhance pro-tumorigenic effects of M2-shifted TAMs and

to facilitate paclitaxel resistance (383). Cancer cell–derived miR-21-

3p, miR-222, miR-125b-5p, miR-181d-5p, and miR-940 target TAMs

and polarize them into M2 phenotype (172, 384). miR-99a-5p affects

human peritoneal mesothelial cells and enhances cancer cell invasion

(385). The Let-7a and miR-200a regulate tumor invasiveness (386).

Exosomes containing lncRNAs ENST00000444164 and

ENST0000043768 are responsible for activation of NF-kB signaling

in cancer cells (387). Table 5 presents data on targeting the

components of TME and OCSC niche.
A novel regimen of therapy

The urgent need for improvement of efficacy in the HGSOC

treatment is obvious, and many researchers have called attention to

the novel approaches in diagnosis, monitoring, and management of

patients with ovarian cancer. We have learned from the experience

from therapy of hematologic cancers and several solid tumors that

the individual approach to the treatment based on genetic,

molecular, or metabolic signatures of the patients and the cancer

itself usually results in better treatment efficacy and improved

outcome. However, such individualization of therapy is much

more difficult to be used in solid tumors, compared to

hematologic malignancies, and ovarian cancer due to its unique

biology is even more demanding and challenging target.

In the recent article devoted to OCSCs and OCSC-targeted

treatment (470), we proposed that the novel complex standard of

ovarian cancer therapy called the “DEPHENCE” system (“Dynamic

PHarmacologic survEillaNCE”) should be worked out. In our

opinion, it ought to be based on the following rules:
Fron
1) avoidance of monotherapy, as usually combination of

several drugs directed against different targets, is more

efficient and, if properly orchestrated, could be less toxic;

2) identification of the markers for pharmacologic compliance

or resistance of the tumor and stratification of the patients

according to the prognosis of treatment efficacy;

3) performing the sampling of the tumor (primary, metastatic,

and recurrent) repetitively for characterization of genetic

signature and TME features, which could change in the

course of the disease and in the response to the treatment;

4) using the repeated biopsy of the tumor, but preferentially

liquid biopsy, which enables to obtain more complex

picture of growing tumor, as compared to standard

biopsy the results of liquid biopsy do not depend on the

site of the harvest of the sample;

5) such approach and individualization of the therapy could

enable to restore the pharmacologic surveillance over the
tiers in Oncology 17
tumor that fits the actual status of both tumor and the

patient;

6) every line of treatment should simultaneously target cancer

cells, OCSCs, and elements of TME, as well as should

generate potentialization of the patient’s immune status;

7) HGSOC molecular types and different phases of the disease

need different approach to the therapy;

8) at the beginning, such therapy could allow for stabilization

of the disease, hopefully enabling prolongation of PFS and

OS; however, in a distant future the goal of this approach

should be complete curation.
We think that the necessary components incorporated into the

DEPHENCE system should also be
1) identification of the high-risk population of women (gene

mutations, single-nucleotide polymorphisms, metabolic

syndromes, and environmental factors);

2) searching for the techniques of early detection or even for

the screening tools both in the high-risk and general

populations;

3) searching for the infection factors responsible

potentially for ovarian cancer origin (viruses, microbiome

disturbances);

4) looking for prognosis biomarkers of ovarian cancer.
The practical implementation of the “DEPHENCE” system in the

diagnosis and therapy of ovarian cancer is still awaiting, although the

first signs of its use can be seen in the attempts to classify the

molecular signatures of the tumors and TME components (158,

458, 471–476), to personalize therapy according to the tumor origin,

histology, and most of all to genomic and epigenomic disturbances.

The first such studies grouped HGSOC tumors T into four subtypes:

C1, high stromal response; C2, high immune signature; C4, low

stromal response; and C5, mesenchymal, with low immune

signature. These subtypes differed in the extent of immune

infiltration, desmoplasia, and EMT predisposition, and what could

suggest different approach to the treatment, including

immunotherapy, and patients from the C1 and C5 subtypes showed

poor survival compared with other subtypes (3). Another genomic

classification was proposed by The Cancer Genome Atlas Research

Network, which, based on the genomic pattern, divided the ovarian

cancer into four subtypes: mesenchymal, immunoreactive,

proliferative, and differentiated. Mesenchymal and proliferative

subtypes showed profound desmoplasia and invasive gene

expression pattern, with limited immune infiltration and activation

of stemness markers. Both were characterized by unfavorable

prognosis. Immunoreactive subtype showed extensive immune

infiltration and, similar to differentiated more mature tumors, had

better prognosis (477–479). The next analysis of tumor genome

identified three novel ovarian cancer subtypes named tumor-

enriched, immune-enriched, and mixed. The meaning of these

subtypes for therapy implies that tumor-enriched tumors should be

treated with tumor killing therapy, whereas immune-enriched tumors

with immunotherapy or mixture of both approaches (480). Molecular
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TABLE 5 Data on the experimental and clinical trials of drugs targeting the tumor microenvironment and OCSC metastatic niche.

Target Drug Mechanism of action Trial Reference

MSCs Metformin

Letrozole + Ruxolitinib

Prevention of reprogramming of MSCs into active cancer-associated cells and decrease of
tumor Tregs. Clinical utility in early ovarian cancer and pre-treatment in immunotherapy
regimens
Combined therapy of anti-estrogen drug with inhibitor of JAK enables inhibition of LIF/
IL-6–mediated signals from cancer-associated MSCs, which is followed by sensitization of
ovarian cancer to anti-estrogen therapy

Experimental

Experimental

(388)

(389)

MDSCs Alemtuzumab moAb targeting CD52 expressed by vascular leukocytes and Tie2+ monocytes, thus
disturbing interactions with SIGLEC10. This moAb induces complement-dependent lysis of
CD52-positive cells in ascites and restricts angiogenesis

Experimental (390)

CAMs Rilotumumab (AMG102)
Oregovomab
monotherapy
Oregovomab +
carboplatin + paclitaxel

Anti-HGF moAb. Although well-tolerated, the treatment showed very limited efficacy
Anti-MUC16 moAb. While used in monotherapy, oregovomab did not show any benefit to
patients with persistent advanced ovarian cancer
moAb combined with first line standard chemotherapy in patients with advanced ovarian
cancer showed prolongation of both PFS and OS
In patients with optimally resected advanced ovarian cancer, combination of drugs resulted
in more than three times longer PFS compared to chemotherapy alone

Phase II
Phase II

Phase II

Phase II

(391)
(392)

(393)

(394)

REGN4018 monotherapy
Anetumab ravtansine +
pegylated liposomal
doxorubicin

Bispecific anti-MUC16/CD3 moAb inhibited the growth of murine peritoneal tumors
Conjugate of anti-MUC16 moAb with cytotoxic maytansinoid tubulin inhibitor DM4. In
recurrent ovarian cancer, this combination showed 28% response rate, mostly in the form
of partial response

Experimental
Phase Ib

(395)
(396)

Intetumumab
(CNTO-95) monotherapy
Volociximab
monotherapy

moAb targeting agb3 and agb5 integrins. In patients with solid tumors including ovarian
carcinosarcoma, it showed stabilization of the disease
moAb against a5b1 integrin. In advanced platinum-resistant ovarian cancer, it failed to
demonstrate efficacy

Phase I

Phase II

(397)

(398)

TAMs Anti-CD24 moAb
Hu5F9-G4 moAb
Celecoxib +
cyclophosphamide
Celecoxib + carboplatin
Celecoxib + carboplatin +
docetaxel
G5-MTX

CD24 is a “do not eat me” signal for macrophages. Disrupting the signal between CD24 on
cancer cells and SIGLEC-10 on TAMs enhanced phagocytosis of cancer cells and could be
a novel target for therapy
moAb blocking phagocytosis mediated by CD47.
Partial remission in two patients
COX-2 inhibitor that blocks M2 shift of TAMs mediated by OCSC-derived COX-2 activity.
Combination therapy did not show therapeutic benefit in recurrent ovarian cancer
The response rate to this combination in recurrent platinum-resistant ovarian cancer was
29%
In the group of Ic-IV stage ovarian cancer, addition of celecoxib to first-line standard
chemotherapy did not show any benefit
G5-methotrexate nanoparticles depleted TAMs in models of ovarian cancer and ascites and
were able to reverse anti-angiogenic therapy resistance

Experimental
NCT02216409

Phase I

Phase II
Phase II
DoCaCel study

Phase II

Experimental

(399)

(400)

(401)

(402)

(403)

(404)

Clodronate liposomes
(biphosphonate)
Trabectedin
Trabectedin monotherapy
Trabectedin + pegylated
liposomal doxorubicin
Trabectedin +
durvalumab

Trabectedin +
bevacizumab

Reduced metastases and ascites formation in HGSOC xenografts
Extract from the sea squirt Ecteinascidia turbinata selectively cytotoxic to macrophages and
reducing angiogenesis in mouse model of ovarian cancer
Sensitizes platinum-resistant tumors for the consecutive platinum treatment
Combination showed ORR of 28% in advanced recurrent ovarian cancer
Patients with germline BRCA1/2 mutations and platinum-free interval of 6–12 months had
survival benefit from this treatment
Combination with PD-1/PD-L1 inhibitor resulted in tumor shrinkage and 6-month PFS in
43% of patients with advanced ovarian cancer

Combination showed benefit; 75% of patients had PFS of 6 months

Experimental
Experimental

Phase II
Phase I
Phase III

TRAMUNE
Study
Phase Ib
Phase II

(405)
(406)

(407)
(408)
(409)

(410)

(411)

GW2580
ARRY-382 +
pembrolizumab
AC708 + anti-VEGF +
paclitaxel
Mannose receptor
(CD206)-targeted
nanocarrier of IRF5 and
IKKb mRNA

CSF1R inhibitor inhibits CSF1/CSF1R pathway responsible for TAMs survival. Reduction
of ascites in the mouse model of ovarian cancer
Combination with PD-1/PD-L1 inhibitor. One patient with ovarian cancer had partial
response
Partial restoration of sensitivity to anti-VEGF therapy in mouse xenograft model
Reversing TAM phenotype into M1. Reduces tumor growth in mouse model of ovarian
cancer

Experimental

NCT02880371
Phase Ib/II
Experimental
Experimental

(412)

(413)

(414)
(415)

CAAs Metformin Inhibits adipocyte-mediated cancer cell proliferation, migration, and bio-energetic changes Experimental (416)

CAFs A-83-01
LY2109761 + cisplatin

CAF-derived TGF-b promotes tumor supporting environment. Inhibitor of TGF-b
signaling pathway decreased peritoneal metastases and improved survival in mouse model
of ovarian cancer

Experimental (417)

(Continued)
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TABLE 5 Continued

Target Drug Mechanism of action Trial Reference

Sorafenib monotherapy
Sorafenib + bevacizumab

Combination of TGF-b type I/type II inhibitor with cisplatin increased significantly
cytotoxic activity of chemotherapeutic in chemoresistant cell line
In recurrent ovarian cancer and peritoneal carcinomatosis, therapy was effective in two of
the 59 patients with partial response and 20 of the 59 patients with disease stabilization but
showed substantial toxicity

CAFs secrete growth factors stimulating cancer proliferation. Combination of multi-kinase
inhibitor against PDGFR, VEGFR, Raf, and CD117 with anti-angiogenic therapy resulted
in partial response in 9 of the 35 patients and stabilization in 18 of the 35 of patients

Experimental

Gynecologic
Oncology
Group Phase
II
Phase II

(418)

(419)

(420)

Sorafenib + topotecan
Sorafenib + gemcitabine
Sorafenib + paclitaxel +
carboplatin

In recurrent ovarian cancer, therapy was effective in five of the 30 patients with partial
response, and 14 of the 30 patients with disease stabilization but showed substantial
toxicity

Oral sorafenib in combination with topotecan and continued as maintenance monotherapy
showed significant prolongation of PFS compared to placebo in recurrent ovarian cancer,
with acceptable toxicity
The combination was associated with encouraging rates of stable disease and CA-125
response, with manageable toxicity

The combination of sorafenib and standard therapy in the first-line treatment of advanced
ovarian cancer did not improve efficacy and substantially increased toxicity

Hoosier
Oncology
Group Phase
II
NCT01047891
Phase II

Princess
Margaret
Hospital Phase
II
Sarah Cannon
Research
Institute Phase
II

(421)

(422)

(423)

(402, 424)

Aflibercept monotherapy
Cediranib (AZD2171)
monotherapy

This recombinant fusion VEGFR1/2 protein extracellular domain is a decoy receptor that
inhibits pro-angiogenic signaling from CAFs. Aflibercept was effective in controlling of
malignant ascites in advanced ovarian cancer
Receptor tyrosine kinase inhibitor that inhibits VEGFR1/2/3 and PDGFR-a/-b and CD117,
thus blocking signals from CAFs; 17% of patients and 13% of patients had partial response
and stable disease, respectively
In platinum-sensitive group, there was partial response in 26% and stable disease in 51% of
patients. In the group of platinum-resistant patients, only stabilization of the disease in
66% was observed

Phase II

Phase II

Princess
Margaret,
Chicago and
California
consortium
Phase II

(425)

(426)

(427)

Cediranib + olaparib Combination of two drugs used in the group of patients with progressive HGSOC pre-
treated with platinum (both resistant and sensitive) and with acquired PARP inhibitors
resistance. Sixteen-week PFS varied from 39% to 55% and was dependent on genomic
alterations, being the shortest in the group with reverse BRCA1, BRCA2, and RAD51B
mutations and ABCB1 upregulation
In platinum-sensitive recurrent ovarian cancer, combination of drugs did not improve PFS,
compared to platinum-based chemotherapy. However, in patients with germinal BRCA
mutation, it was significantly effective
In patients with platinum-resistant recurrent BRCA germline mutation-negative ovarian
cancer pre-treated with a median of 4 lines of chemotherapy and bevacizumab, the ORR
with this drug combination was 15%, PFS was 5 months, and OS was 13 months

EVOLVE
Phase II

NRG-GY004
Phase III

CONCERTO
Phase III

(428)

(429)

(430)

Nintedanib (BIBF1120)
monotherapy
Nintedanib (BIBF1120) +
carboplatin + paclitaxel
Pazopanib (GW786034)
+ paclitaxel

Receptor tyrosine kinase inhibitor that inhibits VEGFR1/2/3 and FGFR1/2/3 and PDGFR-
a/-b. Maintenance therapy after completed chemotherapy for relapsed ovarian cancer
showed improvement of PFS (16% vs. 5%)
Combination of drugs compared to standard chemotherapy alone showed modest efficacy
(improved PFS) in the group of patients with advanced HGSOC and upfront debulking
surgery
Receptor tyrosine kinase inhibitor that inhibits VEGFR1/2/3, PDGFR-a/-b, and CD117.
Combination of drugs compared to paclitaxel alone showed improvement in PFS (6.3 vs.
3.5 months) and OS (18.7 vs. 14.8 months) in advanced platinum-resistant or platinum-
refractory ovarian cancer

Phase II

AGO-
OVAR12
Phase III
MITO-11
Phase II

(431)

(432)

(433)

Pazopanib (GW786034)
+ paclitax
el
Pazopanib (GW786034)
+ cyclophosphamide
Pazopanib (GW786034)
+ chemotherapy

In ovarian cancer relapse during maintenance therapy with bevacizumab, combination of
drugs compared to paclitaxel alone did not improve efficacy but increased toxicity
In the group of recurrent, platinum-resistant and pre-treated ovarian cancer combination
of drugs showed promising results (PFS of 8 months and OS of 25 months)
Meta-analysis of five studies indicated that pazopanib combined with chemotherapy
improved ORR, but without improvement in OS and with increase of toxicity

TAPAZ
Phase II
PACOVAR
Phase I

Experimental

(434)

(435)

(436)

(437)

(Continued)
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Wilczyński et al. 10.3389/fonc.2023.1201497
TABLE 5 Continued

Target Drug Mechanism of action Trial Reference

Calcitriol
Losartan + platinum +
taxol

Inhibits SMAD signaling in CAFs. Use of calcitriol improved survival of mice with
xenografted HGSOC tumors
Angiotensin inhibitor that showed activity against ovarian cancer in combination with
standard therapy—prolongation of OS and reduction of ascites

Observational (438)

Immune
cells

Atezolizumab+ platinum
+ bevacizumab
Atezolizumab +
bevacizumab
Avelumab + carboplatin
+ paclitaxel

Immune checkpoint inhibitor anti–PD-L1 moAb in combination with platinum-based
chemotherapy and anti-angiogenic therapy in patients with newly diagnosed advanced
ovarian cancer with residual disease after primary cytoreduction or in neo-adjuvant setting.
No benefit was observed in Atezolizumab therapy compared to placebo
In patients with platinum-resistant ovarian cancer, the partial responses were observed in
three of 20 and stabilization of the disease in 8 of the 20 patients, respectively
Immune checkpoint inhibitor anti–PD-L1 moAb addition to standard chemotherapy in
advanced ovarian cancer after primary cytoreduction or in neo-adjuvant setting did not
improve PFS

IMagyn050/
GOG3015/
ENGOT-OV39
Phase III
Phase Ib

JAVELIN
Ovarian 100
Phase III

(439)

(440)

(441)

Avelumab + pegylated
liposomal doxorubicin
Avelumab + Talazoparib
Durvalumab + TPIV200
Durvalumab + Olaparib

In the group of patients with recurrent ovarian cancer pre-treated with at least three cycles
for platinum-sensitive disease, combination did not improved either PFS or OS
significantly
Combination of PD-L1 and PARP inhibitor in solid tumors with BRCA1/2 or ATM
mutation (including ovarian cancer) did not reach the presumed PFS

Combination of this PD-L1 inhibitor with folate receptor-a vaccine in recurrent advanced
platinum-resistant ovarian cancer showed robust immune response but low response rate,
however with unexpected prolongation of survival (median OS 21 months)
In the group of patients with ovarian cancer with recurrent tumor, this combination
showed overall disease control rate of 71% (partial response + stabilization), as well as
switch into immunoreactive environment

JAVELIN
Ovarian 200
Phase III
JAVELIN
BRCA/ATM
Phase IIb
Phase II

Phase II

(442)

(443)

(444)

(445)

Durvalumab + Olaparib
or
Durvalumab + pegylated
liposomal doxorubicin/
topotecan/paclitaxel
or
Durvalumab +
Tremelimumab (anti-
CTLA-4 moAb) +
pegylated liposomal
doxorubicin/topotecan/
paclitaxel
Durvalumab + Olaparib
+ Cediranib
Nivolumab + Ipilimumab
Nivolumab +
Bevacizumab

Combinations were adjusted to the biosignature of the tumors in the context of PD-L1 and
homologous recombination deficiency (HRD) status. In the group of recurrent platinum-
resistant ovarian cancer, this therapy showed median ORR of 37% with manageable
toxicity
Combination of PD-L1 and PARP inhibitors with VEGFR1-3 inhibitor showed disease
control rate of 67% in the group of heavily pre-treated patients with gynecologic cancers
including seven of the nine ovarian cancers
Combined anti–PD-1 and CTLA-4 therapy compared to nivolumab monotherapy
indicated better 6-month ORR (31% vs. 12%) and PFS (4 vs. 2 months) in recurrent/
persistent ovarian cancer

Combined therapy in relapsed ovarian cancer showed ORR of 40% in platinum-sensitive
and ORR of 17% in platinum-resistant patients

AMBITION/
KGOG3045
Phase III

Phase I

NRG
Oncology
Study
Phase II
Phase II

(446)

(447)

(448)

(449)

Nivolumab monotherapy
Nivolumab +
Galinpepimut-S
Pembrolizumab +
Bevacizumab +
cyclophosphamid
Pembrolizumab
monotherapy

Monotherapy did not improve OS and PFS in patients with recurrent platinum-resistant
ovarian cancer, when compared to gemcytabine or pegylated liposomal doxorubicin
Combination with tetravalent Wilms’ Tumor 1 (WT1) peptide vaccine in patients with
ovarian cancer with second/third remission and tumors showing WT1 expression indicated
prolongation of PFS to 1 year in 70% of patients treated with more than two cycles
This combination gave clinical benefit in 95% and median PFS of 10 months in the group
of patients with mostly platinum-resistant recurrent ovarian cancer
In the group of pre-treated with standard chemotherapy patients, monotherapy showed
modest clinical efficacy (ORR not exceeding 10%) and better in tumor’s PD-L1 higher
positivity

NINJA
Phase III
Phase I

Phase II

KEYNOTE-
100
Phase II

(450)

(451)

(452)

(453)

Pembrolizumab +
cisplatin + gemcytabine
Pembrolizumab +
Niraparib
Pembrolizumab + low-
dose carboplatin
Pembrolizumab +
pegylated liposomal
doxorubicin

In recurrent platinum-resistant ovarian cancer, addition of pembrolizumab to
chemotherapy did not result in a benefit of the therapy
In recurrent platinum-resistant ovarian cancer, this combination showed disease control
rate of 65%
In recurrent platinum-resistant ovarian cancer, this combination showed ORR of 62% and
better OS in the group of patients with the higher CD8+PD-1+Ki67+ T cells to the tumor
burden ratio
Combination showed ORR of 26% in the group of patients with recurrent ovarian cancer,
and results were better compared to monotherapy using each drug separately

Phase II

Phase II

Phase II

Phase II

(454)

(455)

(456)

(457)

Exosomes Peptide-engineered
exosomes

Artificially generated exosomes with overexpression of miR-92b-3p could be used as an
anti-angiogenic therapy

Experimental (458)

(Continued)
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characterization of platinum-refractory and platinum-resistant

ovarian tumors identified three tumor clusters: cluster 1 with

overrepresentation of growth factor signaling pathways, cluster 2

with pathways regulating cell survival in hypoxic conditions and

senescence, and cluster 3 related to cellular senescence. A possible

treatment of choice for cluster 1 could be tyrosine kinase or

angiokinase inhibitors, cluster 2 could theoretically response to

mTOR inhibitors, whereas cluster 3 could be treated with the

deacetylase inhibitors (87, 481, 482). Another single-cell

transcriptome study revealed the heterogeneity of HGSOC, which

was found to be composed of several cell clusters. The first one called

EC1 showed gene enrichment for glycolysis/gluconeogenesis and

ECM-receptor interactions. The EC2 subtype expressed genes,

suggesting their origin from tube epithelium. The EC3 subtype

showed overexpression of genes associated with function of ABC

transporters, suggesting a potential to be a drug-resistant subtype. EC4

subtype was characterized by the immune response-related pathways

indicating the activity of EC4 cells in immune response. The

chemoresistance responsible genes were strongly represented in EC5

cell population (483).

Epigenomic analysis of immune-related lncRNAs revealed RNAs

having the potential to divide the population of patients with ovarian

cancer into high-risk and low-risk groups characterized by a shorter
Frontiers in Oncology 21
or longer overall survival (OS), respectively. High-risk score tumors

were positively correlated with abundant representation of

checkpoint and immunosuppressive molecules, indicating the

group of patients with compromised anti-tumor immune response

(484). The DNA methylation signatures represent another epigenetic

point of interest in ovarian tumors. The hypomethylated upregulated

tumor necrosis factor (TNF), estrogen receptor 1 (ESR1), mucin 1

(MUC1) genes, and hypermethylated downregulated forkhead box

O1 (FOXO1) gene could serve as targets for epigenetic therapy and

were correlated with patients’ prognosis (485).

According to the TME components, the four different CAF

subsets (S1 to S4) were identified in ovarian tumors. The HGSOC

of mesenchymal subtype, defined by stromal gene signatures and

poor survival, had high numbers of CAF-S1 cells, which attracted and

sustained immunosuppressive infiltration of Treg CD25+FoxP3+ T

lymphocytes (475). The study of immunological profile of HGSOC

showed the presence of activated‐immune and CAF‐immune

subtypes. Activated-immune subtype showed anti-tumor features

exemplified by active immune response and better prognosis. The

CAF‐immune subtype was characterized by tumor‐promoting signals

like, activated stroma, M2 macrophages, and a poor prognosis. The

activated‐immune subtype was more likely than the CAF‐immune

subtype to respond to checkpoint blockade immunotherapy (486).
TABLE 5 Continued

Target Drug Mechanism of action Trial Reference

Tumor suppressor
miRNA
Exosomes with Triptolide
Exosome-liposome
hybrid nanoparticle
delivery system
a-Mangostin +
cisplatin

MiR-199a-3p loaded to exosomes inhibited ovarian cancer proliferation and invasion and,
in xenograft mouse model, inhibited peritoneal dissemination of cancer
Diterpenoid epoxide packed into exosomes showed anti-proliferative effect on ovarian
cancer cell lines and xenografted tumors, however with considerable hepatic and splenic
toxicity
Hybrid transport system packed with Triptolide and miR-497 showed apoptotic effects and
enabled to overcome platinum resistance
Combination of natural plant derivative with cisplatin changed the number and activity of
CAF-derived exosomes

Experimental

Experimental

Experimental

Experimental

(459)

(460)

(461)

(374)

RNAs-
targeted
therapy

Circ_EXOC6B RNA
miR-671-5p
Icariside II
Circ_TYMP1 RNA
circ_0026123 RNA

Circ_EXOC6B RNA suppressed the progression and paclitaxel resistance of ovarian cancer
cells through sequestering miR-376c-3p
miR-671-5p reduces tumorigenicity of ovarian cancer through suppressing histone
deacetylase 5 (HDAC5) and HIF-1a expression
Herbal component from Epimedium brevicornum. Suppresses the tumorigenesis of ovarian
cancer by promoting autophagy by miR-144-3p/IGF2R axis
Downregulation of circ_TYMP1 decreased ovarian cell proliferation and invasion by miR-
182A-3p/TGF-b pathway
Downregulation of this circRNA inhibited proliferation and metastases of ovarian cancer
through miR-124-3p/enhancer of zeste homolog 2 (EZH2) pathway

Experimental

Experimental

Experimental

Experimental

Experimental

(462)

(463)

(464)

(465)

(466)

miR-146a
Follistatin mRNA
anti-PLXDC1 siRNA
miR-20c

MiR-146a secreted by MSCs increased the chemosensitivity of ovarian cancer resistant cell
lines to docetaxel
Lipid nanoparticles containing mRNA for follistatin injected intraperitonealy inhibited
cancer dissemination and prevented the onset of cachexia in the mouse model of ovarian
cancer
Chitosan nanoparticles containing anti-PLXDC1 siRNA decreased tumor proliferation and
microvessel density and increased apoptosis in murine model of ovarian cancer
MiR-200c was used as an inhibitor of NRP1 transmembrane receptor highly expressed by
ovarian cancer and connected to multi-drug resistance. Combination of miRNA with
olaparib enhanced its cytotoxicity

Experimental

Experimental

Experimental

Experimental

(220)

(467)

(468)

(469)
f

MSCs, mesenchymal stem cells; MDSCs, myeloid-derived stem cells; HGF, hepatocyte growth factor; MUC16, mesothelin; CD52, CAMPATH-1 antigen; SIGLEC-10, silica acid binding Ig–like
lectin-10; Tregs, T regulatory cells; CAAs, cancer-associated adipocytes; DNMT1, DNA-(cytosine-5)-methyltransferase-1; TAMs, tumor-associated macrophages; COX-2, cyclooxygenase-2;
ORR, overall response rate; CSF1, colony-stimulating factor-1; CSF1R, colony-stimulating factor-1 receptor; IFR5, Interferon regulatory factor; IKKb, IkappaB kinase beta; PDGFR, platelet-
derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; Raf, RAF proto-oncogene serine/threonine-protein kinase; PFS, progression-free survival; BRCA, breast
cancer type 1 susceptibility protein; RAD51B, RAD51 paralog B; ABCB1, ATP-binding cassette sub-family B member 1; FGFR, fibroblast growth factor receptor; ORR, overall response rate;
PARP, poly-(ADP-rybose) polymerase; CTLA-4, cytotoxic T-cell antigen 4; IGF2R, insulin-like growth factor-2 receptor; mRNA, messenger RNA; siRNA, small interfering RNA; PLXDC1,
plexin domain containing 1; NRP1, neuropilin-1.
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The most painful problem in ovarian cancer therapy is the

acquired chemoresistance following the initial good response to the

first-line chemotherapy. Therefore, identification of the biomarkers of

chemoresistance is one of the most important activities in ovarian

cancer surveillance. The classic biomarkers of platinum and PARP

chemosensitivity are the germinal and somatic mutations of BRCA1/2

genes (487). However, the reversion mutations in BRCA genes and in

other homologous recombination repair (HR) genes were found to be

responsible for secondary resistance to platinum- and PARPi–based

therapy (488, 489). On the basis of the homologous recombination

deficiency, insertions and deletions, copy number changes, and

mutational signatures, a combined predictor of platinum resistance,

named DRDscore, was established, and, when validated in a cohort of

patients with HGSOC, it reached sensitivity of 91% (490). FourmiRNA

biomarkers (miR-454-3p, miR-98-5p, miR-183-5p, and miR-22-3p)

identified in ovarian cancer tissues were able to discriminate between

platinum-sensitive and platinum-resistant patients with HGSOC (491).

Treatment using PARPis results in acquired PARPi resistance. The

reason for this is a promotion of STAT3 activity both in tumor cells

and populations of immune and CAF cells, followed by creation of an

immunosuppressive environment. Treatment of olaparib-resistant

ovarian cancer cell line with napabucasin, the STAT3 inhibitor,

improved PARPi sensitivity (492). Hypoxia and therapy-induced

senescence are the key drivers of primary chemo-refractoriness and

secondary chemoresistance of HGSOC (493). Hypoxic TME induces

the M2-phenotype in TAMs, which, in turn, secrete exosomes

containing miR-223 that, when transported into ovarian cancer cells,

makes them chemoresistant (494). To overcome chemoresistance,

there are plenty of different drug combinations tested in both

experimental and clinical settings (Tables 4, 5). Simultaneously,

identification of potentially resistant tumors is of the utmost

importance for successful therapy. Identification of ovarian cancer

cells with high-stress signature and disturbed drug responsiveness

could optimize the subsequent therapy to attenuate their function or

eliminate them from the tumor (493, 495, 496). Moreover, as HGSOC

tumors are characterized by temporal heterogeneity, the repetitive

circulating tumor DNA (ctDNA)/CTCs testing should be performed

to have the most actual picture of the disease.

The exploration of the infection factors in the origin or

predisposition to ovarian cancer is also being realized in the
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analysis of microbiome and viral infections (497–499). Another

field of intensive investigation is searching for prognostic

biomarkers (500–503). It is a lot of work to do to safely and

effectively combine different drugs, but the practical use of the

“DEPHENCE” system philosophy could, in our opinion, lead

doctors and researchers in proper direction.
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Oxidative stress contributes to hepatocyte growth factor-dependent pro-senescence
activity of ovarian cancer cells. Free Radic Biol Med (2017) 110:270–9. doi: 10.1016/
j.freeradbiomed.2017.06.015

355. Pakuła M, Witucka A, Uruski P, Radziemski A, Moszyński R, Szpurek D, et al.
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499. Haręża DA, Wilczyński JR, Paradowska E. Human papillomaviruses as
infectious agents in gynecological cancers. oncogenic properties of viral proteins. Int
J Mol Sci (2022) 23:1818. doi: 10.3390/ijms23031818

500. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian
cancer immunotherapy and personalized medicine. Int J Mol Sci (2021) 22:6532.
doi: 10.3390/ijms22126532

501. Bonifácio VDB. Ovarian cancer biomarkers: moving forward in early detection.
In: Serpa J, editor. Tumor microenvironment. advances in experimental medicine and
biology. Cham: Springer International Publishing (2020). p. 355–63. doi: 10.1007/978-
3-030-34025-4_18

502. Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in
ovarian cancer. Mol Cancer (2022) 21:114. doi: 10.1186/s12943-022-01588-8

503. Zhang R, Siu MKY, Ngan HYS, Chan KKL. Molecular biomarkers for the early
detection of ovarian cancer. Int J Mol Sci (2022) 23:12041. doi: 10.3390/ijms231912041
frontiersin.org

https://doi.org/10.1089/cbr.2020.3739
https://doi.org/10.1016/j.cbi.2021.109780
https://doi.org/10.1002/ddr.21967
https://doi.org/10.1155/2022/1032557
https://doi.org/10.3892/ijmm.2020.4804
https://doi.org/10.3892/ijmm.2020.4804
https://doi.org/10.1002/smll.202204436
https://doi.org/10.1080/10717544.2018.1480672
https://doi.org/10.1186/s13046-019-1490-7
https://doi.org/10.3390/ijms23052496
https://doi.org/10.3390/cancers14020416
https://doi.org/10.1002/ijc.33983
https://doi.org/10.1111/jcmm.16907
https://doi.org/10.1158/0008-5472.CAN-17-1492
https://doi.org/10.1038/s41467-018-03348-z
https://doi.org/10.3389/fimmu.2022.940801
https://doi.org/10.1038/nature10166
https://doi.org/10.22038/ijbms.2019.32786.7839
https://doi.org/10.1093/jnci/dju249
https://doi.org/10.1002/ctm2.1029
https://doi.org/10.1016/S0140-6736(15)01167-8
https://doi.org/10.1038/cdd.2011.71
https://doi.org/10.1002/ctm2.500
https://doi.org/10.1155/2022/3168408
https://doi.org/10.1186/s13048-020-00632-9
https://doi.org/10.1186/s13048-020-00632-9
https://doi.org/10.1111/cpr.12979
https://doi.org/10.1038/nature14410
https://doi.org/10.1158/2159-8290.CD-18-0715
https://doi.org/10.1158/2159-8290.CD-17-0419
https://doi.org/10.3389/fonc.2020.625866
https://doi.org/10.1186/s40169-019-0245-6
https://doi.org/10.3389/fonc.2021.724104
https://doi.org/10.3389/fonc.2021.724104
https://doi.org/10.3390/cancers14061418
https://doi.org/10.1186/s13046-019-1095-1
https://doi.org/10.1126/sciadv.abm1831
https://doi.org/10.1038/s41388-021-02139-z
https://doi.org/10.18632/oncotarget.16717
https://doi.org/10.3390/cells11193137
https://doi.org/10.3390/ijms23031818
https://doi.org/10.3390/ijms22126532
https://doi.org/10.1007/978-3-030-34025-4_18
https://doi.org/10.1007/978-3-030-34025-4_18
https://doi.org/10.1186/s12943-022-01588-8
https://doi.org/10.3390/ijms231912041
https://doi.org/10.3389/fonc.2023.1201497
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	“DEPHENCE” system—a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer—a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies
	Introduction
	Ovarian cancer stem cells
	Tumor microenvironment in ovarian cancer
	Obstacles in the treatment of the HGSOC
	Remarks on the targeting of the OCSCs
	Remarks on the targeting of the tumor microenvironment
	A novel regimen of therapy
	Author contributions
	Funding
	References


