
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Junhong Liang,
Louisiana State University, United States

REVIEWED BY

Lei Zhang,
South China Sea Institute of Oceanology
(CAS), China
Nan Chen,
University of Wisconsin-Madison,
United States

*CORRESPONDENCE

Tong Hao

joyht2001@163.com

Wenhui Li

liwenhui@tju.edu.cn

RECEIVED 31 March 2023
ACCEPTED 05 June 2023

PUBLISHED 28 June 2023

CITATION

Song D, Ling Y, Hao T, Li W, Liu W, Ren T,
Wei Z and Liu A-a (2023) A residual
network with geographical and
meteorological attention for multi-year
ENSO forecasts.
Front. Mar. Sci. 10:1195445.
doi: 10.3389/fmars.2023.1195445

COPYRIGHT

© 2023 Song, Ling, Hao, Li, Liu, Ren, Wei
and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 June 2023

DOI 10.3389/fmars.2023.1195445
A residual network with
geographical and meteorological
attention for multi-year
ENSO forecasts

Dan Song1,2, Yuting Ling2, Tong Hao1*, Wenhui Li2*, Wen Liu3,
Tongwei Ren4, Zhiqiang Wei5 and An-an Liu2

1Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China,
2School of Electrical and Information Engineering, Tianjin University, Tianjin, China, 3Maritime
Information Perception and Computation, Wuhan University of Technology, Wuhan, China, 4Software
Institute, Nanjing University, Nanjing, China, 5College of Information Science and Engineering, Ocean
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Introduction: As global temperatures continue to rise, extreme weather

phenomena such as El Niño and the Southern Oscillation (ENSO) near the

equatorial Pacific Ocean are occurring more frequently and leading to tropical

cyclones, droughts, and a series of extreme weather disasters. Accurately

predicting ENSO in advance can greatly reduce the serious damage to human

society, economy, and ecological environment. However, existing methods

often neglect the data relation between geographical regions and

meteorological factors, hindering the accuracy of ENSO prediction.

Methods: To overcome this problem, we propose a residual network with

geographical and meteorological attention to capture important geographical

information and explore the spatio-temporal correlation of different

meteorological factors. Specifically, we propose two main attention modules: (1)

the Geographical Semantic Information Enhancement Module (GSIEM), which

selectively attends to important geographical regions and filters out irrelevant

noise through a spatial-axis attention map, and (2) the Meteorological Factors

Discriminating Enhancement Module (MFDEM), which aims to learn the spatio-

temporal dependency of differentmeteorological factors using a learnable channel-

axis weight map. We then integrate our proposed two attention modules into the

backbone using residual connection, enhancing the model's prediction ability.

Results: We conducted extensive experimental comparisons and ablation

studies to evaluate the performance of our proposed method. The results

show that our method outperforms existing state-of-the-art methods in ENSO

prediction, with a significant improvement in prediction accuracy.

Discussion: Our proposed method effectively captures geographical and

meteorological information, facilitating accurate ENSO prediction. The attention

modules we proposed can effectively filter out irrelevant noise and learn the spatio-

temporal dependency of different meteorological factors, contributing to the

superior performance of our model. Overall, our study provides a novel approach

for ENSO prediction and has great potential for practical applications.

KEYWORDS

EI Niño southern oscillation (ENSO), extreme weather event, deep learning, long-term
spatio-temporal forecasting, sea surface temperature forecasting
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1 Introduction

ENSO is a phenomenon characterized by a persistent rise in sea

surface temperature (SST) in the equatorial eastern Pacific Ocean,

representing an anomaly in the earth’s climate system. As the global

climate continues to warm, ENSO are becoming more frequent,

drawing increasing attention. These occurrences often cause

extreme weather disasters in most regions of the world, including

tropical cyclones (Timmermann et al., 2018), droughts (Cai et al.,

2020), floods (Takahashi and Martıńez, 2019) and heavy rains

(Wang, 2021). Therefore, there is a strong impetus to precisely

predict these events ahead of time.

In recent years, several indicators have been proposed for

monitoring ENSO, such as Nino 3.4 index (Ye et al., 2021),

oceanic nino index (Glantz and Ramı ́rez, 2020), southern

oscillation index (Raj and Geetha, 2021) and SST index (Yan

et al., 2020). These indicators can be predicted using SST

anomalies or heat content (HC, vertical mean ocean temperature

above 300 m). Among these indicators, the Nino 3.4 index is the

most popular and important indicator, calculated as the three-

month sliding mean of the SST anomaly over 5 °S -5 °N and 170°W

-120°W on the global map. When the Nino3.4 index remains above

0.5 °C for a minimum of five months, it is considered that an ENSO

event has occurred.

Forecasting ENSO remains a challenging task due to the

nonlinear nature of ENSO and its interactions with other climate

modes (Ren et al., 2022). Existing ENSO forecasting methods can be

broadly categorized into two groups: traditional forecasting

methods and deep learning-based forecasting methods.

Traditional forecasting methods usually utilize the physics of

ocean-atmosphere interactions to forecast ENSO. Specially,

Zebiak and Cane (1987) proposed a coupled prediction model to

forecast ENSO by imitating perturbations in the average state of the

monthly climate specified from observed data. Based on this model

(Zebiak and Cane, 1987), various improved coupled models such as

the intermediate coupled model (Wang et al., 2017) and the coupled

general circulation model (Luo, 2007) have been proposed to solve

predictions of ENSO. There are other traditional works (Knaff and

Landsea, 1997; Xue and Leetmaa, 2000; Alexander et al., 2008) that

utilized statistical theory to infer the evolution of ENSO from a large

amount of historical data. These statistical methods can be roughly

divided into two categories (Ye et al., 2021): Holt-Winters (HW)

methods (Holt, 2004; So and Chung, 2014) and autoregressive

integrated moving average (ARIMA) methods (Siswanto, 2010;

Rosmiati et al., 2021). For example, Holt (2004) proposed a Holt-

Winters (HW) method to adapt the model parameters to the

variation of the observed data curve and predict Eino 3.4 index

by the exponential moving average (EMA). Based on HM methods,

So and Chung (2014) considered both the mean and variance in the

historical data and proposed a forecasting method to statistically

infers dynamic seasonality in heteroskedastic time series models.

Rosmiati et al. (2021) proposed an autoregressive integrated moving

average (ARIMA) model to complete the ocean climate prediction

and achieve the ideal prediction results of ENSO. However, these

traditional methods (So and Chung, 2014; Rosmiati et al., 2021) can

only achieve satisfactory prediction results in the short-term
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forecasting problem but perform poorly in long-term prediction

results due to the uncertainty of initial conditions and the cognitive

limitations of empirical models (Ye et al., 2021). Besides, ENSO

forecasts is a complex nonlinear problem involving several

meteorological factors, traditional methods using the physics of

ocean-atmosphere interaction or statistical theory cannot fully

understand the evolution of ENSO.

Recently, deep learning technology has advanced significantly,

and several deep neural networks have been proposed (Aguilar-

Martinez and Hsieh, 2009; Shukla et al., 2011; McDermott and

Wikle, 2017; Ham et al., 2019; Ye et al., 2021) for predicting ENSO

by exploring complex correlations with historical data. For instance,

Shukla et al. (2011) utilized artificial neural network (ANN) models

to study the correlation between Indian summer monsoon rainfall

and Nino indexes, and the results illustrated that the performance of

the ANN model far exceeded that of other nonlinear models.

Aguilar-Martinez and Hsieh (2009) were the first to use Bayesian

neural network (BNN) and support vector regression model (SVR)

to forecast the tropical Pacific SST anomalies at lead times ranging

from 3 to 15 months. Additionally, there are also some methods

(McDermott and Wikle, 2017; McDermott and Wikle, 2019) that

utilize recurrent neural networks (RNN) to achieve long-term

ENSO forecasts by taking into account short-term prediction

results. McDermott and Wikle (2017) introduced the quadratic

echo state network (QESN), which uses an embedded input and a

quadratic reservoir output interaction to make highly accurate

forecasts of SST in the tropical Pacific. Zhang et al. (2017) first

used long short-term memory (LSTM) to predict changes in SST in

the coastal seas of China. Broni-Bedaiko et al. (2019) used various

complex network metrics extracted from climate networks,

combined with LSTM, to forecast ENSO. To improve the spatial

correlation of SST, Shi et al. (2015) proposed the ConvLSTM

architecture for precipitation prediction, which incorporates

convolution layers into the LSTM model to capture spatial

features. However, RNN-based methods train a single model for

all prediction tasks from short-to-long term, which inevitably

encounters the problem of error accumulation, and consequently

the inaccuracy of long-term prediction. To address this issue, Ham

et al. (2019) proposed a CNN-based parallel model to avoid the

error accumulation by assigning data to different forecast periods,

or lead-months. Specifically, they trained multiple individual

prediction models, each related to a specific lead-month, which

can improve the accuracy of the predictions and can lead to more

reliable forecasts.

Although numerous methods have been proposed to address

ENSO forecasts, they still suffer from weak performance due to the

following critical challenges: (1) ENSO exhibits intricate spatial and

temporal complexities (Timmermann et al., 2018; Fang and Chen,

2023), the predictors in different regions have varying degrees of

influence on it. For example, the SST anomalies in the western

North Atlantic and western South Atlantic, as well as western and

southern Pacific, have a more significant effect on ocean circulation

anomalies, which is one of the primary drivers of ENSO. However,

previous CNN-based methods treated all regions equally,

overlooking essential geographical information and introducing

irrelevant geographical noise. (2) Due to the characteristics of the
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fast change rate and high frequency noise in the meteorological

data, it is a challenging task to forecast ENSO based solely on SST

data. While some methods (Ham et al., 2019; Ye et al., 2021) have

utilized both SST and HC to predict ENSO and achieved effective

performance improvements, they considered SST and HC as two

independent variables and assigned equal importance in the

training process. We argue that SST and HC are correlated

variables with spatio-temporal associations and should have

different weights at different times.

To cope with above issues, we propose a residual network with

geographical and meteorological attention for multi-year ENSO

forecasts, which named GM-CNN. As illustrated in Figure 1, we

first concatenate three consecutive months of SST and HC data as

network inputs, and use the input layer with kernel size of 4 × 8 to

obtain the initial feature map. To capture important geographical

information and filter out irrelevant noise, we propose a

geographical semantic information enhancement module

(GSIEM) to output the geographical semantic weight map by the

attention mechanism consists of two channel-oriented pooling

layers and a convolutional layer. In addition, we also propose a

meteorological factors discriminating enhancement module

(MFDEM) to adaptively assign different weights to two

meteorological factors (SST and HC) by two pooling layers along

the spatial axis and two convolutional layers. Moreover, we fuse the

hierarchical attention mechanism into the backbone through the

residual connection to enhance the representative ability of the

encoder. In summary, the main contributions of this work can be

summarized as follows:
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• We propose a residual network with geographical and

meteorological attention for multi-year ENSO forecasts,

which can adaptively monitor the evolution of ENSO

based on two meteorological factors (SST and HC).

• We introduce two attention modules with distinct

dimensions: the geographical semantic information

enhancement module, which enables the model to

selectively attend to different geographical regions, and

the meteorological factors discriminating enhancement

module, which explores the interplay between SST and HC.

• The experimental results for the period between 1982 and

2017 indicate that our proposed method outperforms state-

of-the-art methods, highlighting the effectiveness of our

approach.
2 Method

We present a novel approach for multi-year ENSO forecasts, called

Residual Network with Geographical and Meteorological Attention, as

illustrated in Figure 1. In Sec. 2.1, we provide an overview of multi-year

ENSO forecasts. We then introduce the Geographical Semantic

Information Enhancement Module in Sec. 2.2, which enables the

network to assign attention to different geographical regions. Finally,

in Sec. 2.3, we describe the Meteorological Factors Discriminating

Enhancement Module, which enhances the representation of

meteorological properties in the input data.
FIGURE 1

Flowchart of the proposed GM-CNN. The model structure is shown on the left, and the two key module structures are shown on the right. Two
meteorological factors for three consecutive months are fed into the neural network, then the embeddings out from the input layer are assigned to
study a multi-layered attention relationship. Afterwards, this attention relationship are propagated to the original embeddings by the addition device.
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2.1 Preliminary
In recent works (Ham et al., 2019; Ye et al., 2021), multi-year EI

Nino forecasts have been defined as a spatio-temporal prediction

problem. Concretely, we aim to predict the Nino3.4 indexes for the

next l months using two types of meteorological data (SST and HC)

of three consecutive months, which can be formulated as:

Pt , Pt+1 … Pt+lf g = f( Xt ,Xt−1,Xt−2f g) (1)

where Xt ∈ RC0�W0�H0 , W0 = 24 and H0 = 72 represents 24*72

meteorological data in the 0∘ – 360∘ E and 55∘ S– 60∘ N, and C0 = 2

represents two types of meteorological data (SST and HC). f is the

predicted model. P = fPt , Pt+1 … Pt+lg is the predicted Niño3.4

indexes of the next l months and l ∈ f1, 2… 20g. In this work,

we adopt a CNN-based parallel network (Ham et al., 2019) as the

backbone for encoding input features and generating the predicted

indexes. To minimize the discrepancy between the predicted value

and ground truth, we employ the mean squared error (MSE) loss

function given below:

L(P,Y) =
1
no

n

i=1
pi − yi
�� ��2 (2)

The aforementioned operations serve as the general paradigm for

multi-year ENSO forecasts. However, there are two issues outlined in

the introduction that impede the effectiveness of this paradigm: 1)

ignoring the impact of distinct geographical regions. 2) ignoring the

influence of different meteorological factors over time. It is prone to

give trivial solutions when we equally treat both meteorological data

(SST and HC) and regions of all latitude and longitude. Therefore, we

propose geographical semantic information enhancement module to

adaptively focus on different geographical regions as described in Sec.

2.2 and a meteorological factors discriminating enhancement module

to explore the relationship between two types of meteorological data

(SST andHC) under different months in Sec. 2.3. Finally, we integrate

our proposed two attention modules into the original backbone using

the residual connection, which can enhance the representative ability

of the encoder and is formulated as follows:

X1
i,j,k = fin(Xi,j,k) + fin(Xi,j,k)⊙W1,j,k

geo ⊙Wi,1,1
met (3)

where X is the input data containing both SST and HC for three

consecutive months, fin is the input layer containing kernel size 4�
8 for obtaining the initial feature map. Wreg  represents the

geographical semantic weight map to tap the importance of

different geographical regions for ENSO prediction, Wmet is the

meteorological factors weight map to explore the relationship

between two types of meteorological data. ⊙ denotes the

multiplication of matrix elements, +denotes the matrix elements

wise addition. X1, the feature combining geographical attention and

meteorological attention, is further fed into the subsequent network

to extract high-dimensional features.

2.2 Geographical semantic information
enhancement module

To comprehensively explore the complex interactions among

spatial and temporal dependencies, we investigate the interplay
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between SST and HC for ENSO across various geographical

regions through an attention mechanism along the channel axis.

Generally, the shallow features of the input data carry more

original structural information, that is, spatio-temporal

information. As the network layers become deeper, more

abstract information is extracted, but the amount of raw

information is reduced. Therefore, we mine the initial features

after the input layer to capture significant geographical

information. Specifically, we utilize global average-pooling and

max-pooling operations along the channel to learn the feature

distribution and salient features related to SST and HC over three

consecutive months in different geographical regions. As shown in

Figure 2, the entire process is described as follows:

To extract meaningful spatial features from the input data X, we

employ an input layer with a kernel size of 4� 8 to obtain the initial

feature map fin(X). Next, we use a global average-pooling GAP(·)

and a global max-pooling GMP(·) operations along the channel axis

to obtain the average feature distribution GAP(fin(X)) and the

salient feature map GMP(fin(X)) in different geographical regions.

In order to fully consider the characteristics of both feature maps,

we then contact GAP(fin(X)) and GMP(fin(X)) along the channel

axis into the final geographical feature map Wc
geo ∈ R2�w�h.

Subsequently, a convolutional layer and a sigmoid d ( · ) function
are used to model the interaction between two types of feature maps

and quantify their contribution to the prediction of ENSO.

Formally,

Wgeo = d ½Cov2D(Wc
geo)� (4)

By incorporating the geographical semantic information

enhancement module, we propagate the learned geographical weight

to the global feature maps through the utilization of fin(Xi,j,k)⊙W1,j,k
geo ,

which allows for the dynamic allocation of attention to various

geographical regions.
2.3 Meteorological factors discriminating
enhancement module

Existing methods treat SST and HC equally, limiting the

prediction ability. However, it has been demonstrated that SST and

HC are two distinct variables with different variability characteristics

(Levitus et al., 2000; Trenberth and Fasullo, 2013). For exploring the

spatio-temporal associations between SST and HC, we propose a

meteorological factors discriminating enhancement module.

To obtain the data characteristics of differentmeteorological factors of

three consecutive months, we first embed the input data to the initial

feature map using the input layer. Then, we collect statistical information

by utilizing global average-pooling and global max-pooling operations

along the spatial axis. Specifically, we obtain Wavg
me   t = GAP(fin(X)) ∈

Rc�1�1 and Wmax
met = GMP(fin(X)) ∈ Rc�1�1 from all geographical

regions. Next, we propose a bottleneck structure with two

convolutional layers to explore the impact of different meteorological

factors in different months. Finally, we add the two statistical information

and obtain the final meteorological factor weight map Wmet using a

sigmoid function d ( · ). The entire process can be formulated as follows:
frontiersin.org
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Wmet = d (Bottleneck(GMP(fin(X))) + Bottleneck(GAP(fin(X)))) (5)

In a similar fashion to the geographical semantic weight map,

the acquired meteorological factors weight map is disseminated to

the c global feature maps through matrix multiplication o ̇, which
allows for the adaptive assignment of weights for both

meteorological factors across various months. By utilizing both

the geographical semantic weight mapWgeo and the meteorological

factor weight map Wmet, we can assess the significance of

meteorological factors at different months and locations for

accurate ENSO forecasts. Furthermore, this enables us to identify

the most relevant data and filter out redundant noise in the input

data, thereby improving the encoder’s representational capacity and

achieving higher precision predictions.
3 Experiment

To validate the performance of the proposed method, we

conduct comprehensive evaluations in this section. We start by

describing the dataset, implementation details, and evaluation

metrics used in our experiments. Next, we showcase the forecast

performance of the proposed framework and provide

visualizations of some predicted simulations. We also compare

the proposed method with several state-of-the-art methods for
Frontiers in Marine Science 05
ENSO forecasts. Additionally, we conduct ablation studies to

further explore the contribution of key modules to the

overall performance.
3.1 Dataset

We evaluate our approach using three widely-used datasets

presented in Figure 3: CMIP5 (Bellenger et al., 2014), SODA (Giese

and Ray, 2011) and GODAS (Behringer and Xue, 2004). The

CMIP5 dataset, which is the achievement of the Coupled Model

Intercomparison Project phase5, contains historical simulation data

from 1861 to 2004, with 21 different patterns per year, for a total of

2961 samples. Here, the “pattern” refers to the data provided by

various institutions and organizations in the CMIP5 program.

These data essentially represent different climate assumptions and

parameters used to study and simulate global climate and climate

change. Table 1 lists the patterns and specific members used for

training. The SODA dataset, provided by American Simple Ocean

Data Assimilation, contains 100 historical observation data samples

from 1871 to 1973. The GODAS dataset, collected by the Global

Ocean Data Assimilation System, includes 36 years of historical

observation data from 1982 to 2017. In line with previous research

(Ham et al., 2019; Ye et al., 2021), our approach begins by pre-

training the model on the CMIP5 dataset, fine-tuning it on the
FIGURE 2

The specific network structures to respectively congregate Wgeo and Wmet, which share the similar learning procedure while in the quite different
completion ways. Next to the line is marked the dimensional change throughout the process, and it is worth noting that “GMP” and “GAP” are
carried out on different dimensions for the computation of Wgeo and Wmet. During the processing of Wmet, the structure from “Cov2D” to the next
“Cov2D” is actually a multilayer perceptron for cross-communication, “r” is the channel compression ratio.
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SODA dataset, and finally testing it on the GODAS dataset. The

datasets include two types of data: SST anomalies and HC (Heat

Content) anomalies, where SST represents the ocean surface

temperature and HC here is the upper 300 meters of vertical
Frontiers in Marine Science 06
mean ocean temperature. Both the SST and HC inputs are three-

dimensional array x ∈ RM�la�lo, where xi,j,k represents the value of a

meteorological factor in the ith month, jth latitude and kth longitude.

It is noteworthy that the latitude range is 0∘ – 360∘ E and the
TABLE 1 The list of CMIP5 patterns used to train the GM-CNN model.

CMIP ID Modeling Group Number of

BCC-CSM 1.1-m Beijing Climate Center, China Meteorological Administration 1

CanESM2 Canadian Centre for Climate Modelling and Analysis 5

CCSM4 National Center for Atmospheric Research 1

CESM1-CAM5 Community Earth System Model Contributors 1

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1

CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de 5

Recherche et Formation Avancee en Calcul Scientifique

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in 5

collaboration with Queensland Climate Change Centre of Excellence

FIO-ESM The First Institute of Oceanography, SOA, China 1

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 1

GISS-E2-H NASA Goddard Institute for Space Studies 5

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological

Administration 1

HadCM3 1

HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by

Instituto Nacional de Pesquisas Espaciais) 1

HadGEM2-ES 4

IPSL-CM5A-MR Institut Pierre-Simon Laplace 1

Atmosphere and Ocean Research Institute

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo)

National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 1

MPI-ESM-LR Max-Planck-Institut fur Meteorologie

(Max Planck Institute for Meteorology) 3

(Continued)
FIGURE 3

The dataset for training and testing the model. CMIP5 and SODA are datasets used for training, while GODAS serves as the testing dataset to verify
performance.
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longitude range is 55∘ S– 60∘ N, with a spatial resolution of 5∘ � 5∘.

Therefore, the input shape is R6�72�24.
3.2 Implementation details

We adopt a CNN-based parallel network as our baseline

architecture, which comprises three convolution layers, two

pooling layers, and a fully connected layer. We use a 4� 8 kernel

size for the input layer with an output channel of 50. The kernel size

for the geographical semantic information enhancement module is

set to 6� 6, and the channel compression ratio for the bottleneck

structure in the meteorological factors discriminating enhancement

module is set to 2. We trained the entire framework in an end-to-

end manner using stochastic gradient descent (SGD) with a

momentum of 0.9, and a batch size of 400. We empirically set the

learning rate to 0.01. During the training phase, we first load the

CMIP5 dataset to pre-train the network and save the trained

weigtht parameters, then initialize these parameters when

importing the SODA dataset for further training.
3.3 Evaluation metrics

To evaluate the forecast performance of the proposed

framework, we employ two commonly used evaluation metrics:

Correlation Coefficient Skill (Corr) and Root Mean Square

Error (RMSE).

* Corr is a metric that evaluates the linear correlation between

the predicted indexes and ground truth. It can be computed using

the following equation:

Corr
l

=
1
12 o

12

m=1

oe
t=s Yt,m − Y

−

m

� �
Pt,m,l − P

−

m,l

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oe

t=s Yt,m − Y
−

m

� �2

oe
t=s Pt,m,l − P

−

m,l

� �2
r (6)

Here, P and Y represent the predicted and actual values,

respectively. Ymand Pm,l are temporal climatologies corresponding

to the calendar month m (from 1 to 12), and l denotes the forecast

month-ahead. The variable t represents the year being forecasted, s

and e indicate the earliest (1984) and latest year (2017) of the

validation dataset, and �Ym and �Pm,l indicate the multi-year average

of the corresponding variable. A higher Corr value indicates better

accuracy in predicting the evolution of the events.

* The Root Mean Square Error (RMSE) is a commonly used

evaluation metric that measures the prediction error in terms of the

standard deviation of the residual. It is calculated as follows:
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t=s(Yt,m − Pt,m,l)
2

e − sj j

s
(7)

A smaller value of RMSE indicates better predictive

performance of the model as it reflects the heterogeneity between

the predicted and actual values.
3.4 Results of the proposed GM-CNN

Figure 4 illustrates the all-season Corr and RMSE of the 3-

month moving-averaged Niño3.4 index from 1982 to 2017, with

forecasting conducted from 1 to 20 months in advance. The Corr

index decreases while RMSE increases as the forecast horizon

increases, indicating that the network’s predictive ability

deteriorates with longer forecast periods due to the complexity of

oscillation mechanisms and climate change chaos within ocean-

atmosphere systems. Nonetheless, we can observe that corrstill

remains above 0.5 with a lead time of 16 months, which

demonstrates the superior forecasting ability of our model.

To intuitively show the difference between the Nino 3.4 index

predicted by our trained model and the ground truth from 1982 to

2017, we visualize the predicted results for 1-,6-,12-, and 18-lead

month ahead in Figure 5. The forecast curve and the observation

curve exhibit a similar trend at 1-month and 6-month lead times,

indicating that the proposed network can effectively extrapolate the

evolution of ENSO for short-term forecasts. Despite the high

difficulties in long-term predictions, our model’s results maintain

an approximate trend with the observed values, demonstrating

its robustness.
3.5 Performance comparison with
previous methods

In this section, we compare the proposed GM-CNN with

existing representative deep learning-based approaches to validate

the superiority of our network.
• UNET (Ronneberger et al., 2015). UNET is well-known in

the field of image segmentation for its simplicity and

efficiency, utilizing a U-shaped structure composed of a

contracting path for context capture and a symmetric

expanding path for accurate localization.

• LSTM-FC (Zhao et al., 2019). LSTM-FC combines

an LSTM-based temporal simulator and a neural
TABLE 1 Continued

CMIP ID Modeling Group Number of

MPI-CGCM3 Meteorological Research Institute 1

NorESM1-M Norwegian Climate Centre 1

NorESM1-ME Norwegian Climate Centre 1
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network-based spatial module to effectively capture the

characteristics of historical data.

• ZG-PSDL (Zheng et al., 2020). ZG-PSDL is a DNN-based

network that utilizes four stacked composite layers to

deduce the evolution of SST.
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• HAM-CNN (Ham et al., 2019). The HAM-CNN

framework is a popular method for predicting ENSO,

which uses a parallel network of only three convolutional

layers, two pooling layers, and a fully connected layer to

prevent error accumulation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Lead Time(months)

0.5Sc
or

e
RMSE
Corr

FIGURE 4

The Corr and RMSE between the real observed value and the predicted value output by the trained model. The abscissa locates the leading months
from 1 to 20, and the ordinate indicates the prediction ability of the corresponding preceding month.
FIGURE 5

Prediction and observation curves of the Nino 3.4 index at different lead-months (1, 6, 12, 18). The abscissa represents specific interannual years, and
the ordinate depicts the DJF seasonal Niño 3.4 index (obtained from the calculation of 3 consecutive monthly changes) of the corresponding year.
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• MS-CNN (Ye et al., 2021). Based on HAM-CNN, MS-CNN

incorporates adaptive arrangement of different receptive

fields for distinct prediction terms in order to capture more

specific features.
The comparison work above was demonstrated in Ye et al.

(2021), where they replicated these methods using the same dataset

and experimental conditions. Figure 6 provides the all-season

correlation results of the proposed method and other state-of-the-

art methods on GODAS dataset, where “Ours” indicates the

approach proposed in this paper. It can be observed that the

proposed method outperforms other methods in most cases,

except slightly lower than MS-CNN for the lead time between 1

to 3 months. Based on the results of the comparative experiments,

the following observations and analyses can be made.
3.5.1 Comparison between Parallel-
network methods and Single-model
methods

The parallel-network methods, such as HAM-CNN, MS-CNN,

and our proposed method (OURS), exhibit superior performance

compared to the single-model methods (U-NET, LSTM-FC, ZG-

PSDL), particularly in long-term forecast settings. This result

indicates that the parallel framework is effective in preventing

cumulative errors that may arise when predicting different lead

times using a single model. Moreover, the indexes predicted by U-

NET and ZG-PSGL fluctuate continuously as the lead time

increases, indicating that deep networks with large parameters

may overfit the insufficient training data. In contrast, parallel

networks (HAM-CNN, MS-CNN, OURS) with shallow network

architectures and fewer parameters tend to maintain more stable

training and develop more robust models for meteorological data.
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3.5.2 Comparison between proposed
method and Parallel-network methods

The results show that our proposed method outperforms the

state-of-the-art HAM-CNN and MS-CNN, highlighting the

advantages of our approach. HAM-CNN and MS-CNN employ

parallel convolutional networks to capture spatio-temporal features

from input data, but overlook the enhancement of important

information as well as filtering noise. In contrast, our proposed

method, which incorporates two attention modules, can effectively

assign weights to meteorological factors at different months and

locations, leading to more accurate ENSO forecasts.

For a more detailed comparison with the best methods and to

study the effect of seasons on ENSO, we compared the seasonal

correlation coefficients with MS-CNN, which performs best among

the existing deep learning methods, as shown in Figure 7. The

results demonstrate that our proposed model achieves better

performance than MS-CNN (Ye et al., 2021) in most seasons,

validating the advantage of our approach. Both methods exhibit

weaker performance in three target months: May, June, and July,

which can be attributed to the Spring Predictability Barrier (Meng

et al., 2020). However, our proposed method outperforms MS-CNN

in the ‘JFM’, ‘FMA’, ‘MAM’, and ‘AMJ’ settings, with higher

relevance in short term forecasts and more robust performance in

long-term forecasts. This highlights that larger receptive fields can

capture more information but may introduce more noise. In

contrast, our method explores the contribution of data from

different meteorological factors and geographical regions,

effectively filtering out noise and improving performance.
3.6 Ablation studies

In order to comprehensively investigate the contribution and

effectiveness of the key modules, we conducted ablation studies on
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Lead Time(months)

0.2

0.5

0.8

1

LSTM-FC U-NET ZG-PSDL HAM-CNN MS-CNN ours

FIGURE 6

Comparison for the Corr of predictions and observations on Nino 3.4 index obtained using different deep learning based models. The ordinate
represents the correlation coefficient between the predicted values and the true values for each model on the test set.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1195445
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1195445
A B

FIGURE 7

Seasonal corr comparison between (A) ours GM_CNN and (B) the sates of the arts MS-CNN. Darker colors indicate higher relevance and results
marked by {black slashes} indicate that the correlation coefficient exceeds 0.5. “target season” denotes the month to be predicted, “JFM” denotes
the Nino 3.4 index which {is} obtained from the calculation of 3 consecutive monthly changes.
A

B

C

FIGURE 8

Ablation studies for the proposed two key modules. A and B show the effect of one single module, and the C compares the effects of separate
modules and the simultaneous use of two modules.
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the proposed two attention designs. As illustrated in Figure 8, the

‘Baseline’ represents the basic parallel-CNN network without the

hierarchical attention. ‘Baseline+GSIEM’ and ‘Baseline+MFDEM’

represent adding only one attention module to the basic model,

while ‘Baseline+GSIEM+MFDEM’ is the proposed design that

combines both modules. As observed from Figures 8A, B

‘Baseline+GSIEM’ outperforms ‘Baseline’ in all lead times,

indicating our geographical attention can capture the important

regions which plays an essential role in ENSO and suppresses noise

in irrelevant areas. ‘Baseline+MFDEM’ can enhance the model’s

ability to predict ENSO compared to the basic model,

demonstrating that our meteorological attention can explore the

interaction relation between SST and HC in different months,

improving the fitting ability of the model to meteorological

factors. Moreover, Figure 8C shows that ‘Baseline+GSIEM’ and

‘Baseline+MFDEM ’ achieve comparable scores, and the

combination of the two modules, ‘Baseline+GSIEM+MFDEM’,

yields the best performance in most cases, further verifying the

effectiveness of our proposed method.
4 Conclusion

ENSO is a powerful interannual climate indicator with global

significance, making precise forecasts of its occurrences can aid

individuals in gaining a better perception of and reacting to climate

changes. This paper presents an end to end residual network

with geographical and meteorological attention for multi-year

ENSO forecasts. The proposed design inovatively incorporates

two attention modes (from the geographical semantic information

enhancement module and the meteorological factors discriminating

enhancement module) to improve the accuracy of predictions. The

feasibility and superiority of the proposed design have been

confirmed through correlation coefficient experiments conducted

on historical observation and simulation datasets. Furthermore,

ablation experiments conducted on key modules reveal that various

regions and meteorological factors have distinct impacts on ENSO

predictions. Considering the intricacy of the ENSO event and its

variations, future research could leverage a combination of multiple

indicators to delve deeper into the multifaceted characteristics

(Chen et al., 2022) inherent in such phenomena. As the ENSO

event prediction network exhibits versatility, we also plan to

broaden its application in the future by exploring its potential for
Frontiers in Marine Science 11
predicting other meteorological factors, such as radar echoes,

tropical cyclones, and tropical unstable waves.
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