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An embarrassingly simple
approach for visual navigation of
forest environments

Chaoyue Niu*, Callum Newlands, Klaus-Peter Zauner and
Danesh Tarapore

School of Electronics and Computer Science, University of Southampton, Southampton, United
Kingdom

Navigation in forest environments is a challenging and open problem in the
area of field robotics. Rovers in forest environments are required to infer the
traversability of a priori unknown terrains, comprising a number of different types
of compliant and rigid obstacles, under varying lighting and weather conditions.
The challenges are further compounded for inexpensive small-sized (portable)
rovers. While such rovers may be useful for collaboratively monitoring large
tracts of forests as a swarm, with low environmental impact, their small-size
affords them only a low viewpoint of their proximal terrain. Moreover, their
limited viewmay frequently be partially occluded by compliant obstacles in close
proximity such as shrubs and tall grass. Perhaps, consequently, most studies
on off-road navigation typically use large-sized rovers equipped with expensive
exteroceptive navigation sensors. We design a low-cost navigation system
tailored for small-sized forest rovers. For navigation, a light-weight convolution
neural network is used to predict depth images from RGB input images from
a low-viewpoint monocular camera. Subsequently, a simple coarse-grained
navigation algorithm aggregates the predicted depth information to steer our
mobile platform towards open traversable areas in the forest while avoiding
obstacles. In this study, the steering commands output from our navigation
algorithm direct an operator pushing the mobile platform. Our navigation
algorithm has been extensively tested in high-fidelity forest simulations and in
field trials. Using no more than a 16 × 16 pixel depth prediction image from a
32 × 32 pixel RGB image, our algorithm running on a Raspberry Pi was able to
successfully navigate a total of over 750 mof real-world forest terrain comprising
shrubs, dense bushes, tall grass, fallen branches, fallen tree trunks, small ditches
andmounds, and standing trees, under five different weather conditions and four
different times of day. Furthermore, our algorithm exhibits robustness to changes
in themobile platform’s camera pitch angle,motion blur, low lighting at dusk, and
high-contrast lighting conditions.

KEYWORDS

low-viewpoint forest navigation, low-cost sensors, small-sized rovers, sparse swarms,
depth prediction, compliant obstacles, forest simulation, off-road navigation

1 Introduction

The United Nations Global Forest 2021 sustainability study estimates forests to cover
over 31% of landmass, an area of around 4 billion hectares (DESA, 2021). The management,
maintenance and conservation of our forests is an enormous operation and of substantial
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importance to the economy and the environment. A sparse swarm
of rovers could assist foresters in monitoring these ecosystems
from the ground (Tarapore et al., 2020), gathering spatio-temporal
environmental data across vast areas. For example, the swarm could
gather census data on healthy tree saplings. It could visually inspect
tree barks for symptoms of devastating invasive diseases, allowing
identified trees to be precisely managed (Karpyshev et al., 2021).
Importantly, to reduce their environmental impact, such as from soil
compaction (Batey, 2009), and to allow their large-scale deployment
as a swarm, the individual rovers have to be small-sized (portable)
and inexpensive.

Off-trail navigation in forest environments remains a difficult
task and an open problem in field robotics (Yang et al., 2018). Forest
terrain consists of a variety of different vegetation including leaves,
twigs, fallen branches, barks, stems, grass, bushes, and creeping
vegetation. Rovers are required to predict their traversability
over such a priori unknown terrains, relying solely on onboard
sensors, under varying lighting and weather conditions (Niu et al.,
2020; da Silva et al., 2021). Predicting rover-terrain interactions, is
consequent not only to the innate characteristics of the forest terrain
and the weather conditions (e.g., wet vs dry leaves), but also the
dynamics of the interaction between the rover and the terrain which
itself is susceptible to change (e.g., long grass tangled around axle
of rover, thick layer of mud stuck on rover’s wheels) (Ostafew et al.,
2016). The problem is further compounded for small-scale rovers,
such as that of a swarm: their small-size affords them only a
limited low perspective of their surrounding terrain. Furthermore,
consequent to their small size, almost all encountered vegetation is
an obstacle, and a small rover is prone to toppling over at obstacles.

Many studies have investigated terrain traversability for
navigation in off-road environments (reviewed in Papadakis
(2013); Borges et al. (2022)), pioneered by the DARPA PerceptOR
(Krotkov et al., 2007) and later the DARPA Learning Applied
to Ground Vehicles (Jackel et al., 2006; Huang et al., 2009a; b)
and Unmanned Ground Combat Vehicle Perceptor Integration
programs (Bagnell et al., 2010; Silver et al., 2010). The majority
of these studies discern geometry-based features of the terrain
to predict traversability (Santana and Correia, 2011; Santamaria-
Navarro et al., 2015; Tang et al., 2019; Haddeler et al., 2020; Lee
and Chung, 2021; Wellhausen and Hutter, 2021). For example,
Santamaria-Navarro et al. (2015) adopted a time-of-flight camera
to determine obstacles online by thresholding the locally estimated
normal orientation of queried planar patches of terrain.The authors
also trained a Gaussian process model to classify traversable regions
offline using terrain slope and roughness features from 3D point
cloud data. Similarly, in Lee and Chung (2021), a traversability
model was trained using slope, roughness, and curvature features,
inferred from eigenvectors and eigenvalues of the covariance matrix
of the terrain elevation map. In another example, a large-sized rover
in simulation used 3D point cloud data from LiDAR sensors to
estimate the gradient of uneven terrain, and consequently quantify
the mechanical effort in traversing the terrain Lourenço et al.
(2020); Carvalho et al. (2022). Importantly, while geometry-based
approaches for terrain traversability have demonstrated some
success in navigating rigid terrains such as on well paved paths in
structured urban environments (e.g., Bellone et al., 2017; Tang et al.,
2019; Liu L. et al., 2020; Lee and Chung, 2021; Lee et al., 2022),
they may face potential challenges on compliant terrains such as

a forest floor, at a low-viewpoint, with an abundance of grass and
other soft vegetation where geometry-based features are unreliable
(Haddeler et al., 2022). In such environments, these approaches
would potentially result in incomplete elevation maps due to the
limitations of the depth sensor hardware.

Geometry-based exteroceptive information are often coupled
with proprioceptive information to improve the robustness of
terrain analysis (Borges et al., 2022). Here, data-driven near-to-far
learning approaches are typically employed to correlate geometry-
based features with proprioceptive features such as the rover’s
attitude (Murphy et al., 2012; Ho et al., 2013a; Bjelonic et al., 2018;
Wolf et al., 2018; Haddeler et al., 2020). The resultant mobility
prediction model is commonly used with optimization techniques,
such as dynamic programming, to select actions that maximize
stability (e.g., see Peynot et al. (2014)). In other studies, geometry-
based features are coupled with appearance-based visual features
for terrain segmentation and classification (Milella et al., 2015;
Schilling et al., 2017; Kragh and Underwood, 2020; Chen et al.,
2022; Haddeler et al., 2022). For example, Milella et al. (2015)
augmented terrain geometry information from a short-range radar
sensor with color and texture information from a long-range
monocular camera. The authors used terrain slope information to
automatically label traversable and untraversable areas in close-
range, that consequently serve as training labels for a long-range
visual classifier. In effect, using near-to-far learning, the short-range
narrow field-of-view of the radar sensor is extended to the long-
range wide field-of-view of a monocular camera.

The existing approaches to off-roadnavigation appear unsuitable
for inexpensive small-sized forest rovers. Large-sized rovers, typically
used in studies for off-road navigation, perceive the environment
from a high viewpoint of around 1 m (e.g., Ho et al. (2013a;
b); Ugenti et al. (2022); Fnadi et al. (2020); Baril et al. (2022);
Bagnell et al. (2010), also see comparison in Table 1 and Figure 1A).
In comparison, for small-sized forest rovers, discerning the forest
scene from a size-proportional low viewpoint on the order of
centimeters is relatively difficult due to the limited field-of-view in
the vertical direction. The field-of-view will frequently be partially
occluded by compliant obstacles in proximity, such as grass, leaves,
and low-hanging branches. In such scenarios, with large number of
proximal compliant obstacles, a fine-grained analysis of the terrain
to discern relevant geometric-features may be a waste of computing
power. Additionally, geometry-based approaches for traversability
analysis commonly use LiDAR or other expensive depth sensors
(see Table 1 and Figure 1B), which are not scalable for deployment
on large-scale swarms of rovers. Moreover, with appearance-based
approaches, environmental factors such as shadows and high-
contrast lighting severely affect the visual appearance of the terrain
and consequently place high computational demands for feature
discrimination (Corke et al., 2013; Ai et al., 2022). Reliable and
robust feature discrimination is also sensitive to motion blur, which
is more prominent in small-sized rovers due to the unintended
tilting and rolling from moving on uneven terrain.

We propose the design of a low-cost navigation system for small-
sized forest rovers, solely using low-resolution depth-prediction
images. Our research contribution lies in the uncharted bottom-
right region in Figure 1. In our study, a light-weight convolution
neural network is used to predict the depth image for the
rover from an RGB input image from a monocular camera. A
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TABLE 1 A comparison of terrain traversability studies in off-road environments, with the weight of the rover and the approximate cost of the sensors required
for navigation. Sensor costs were obtained from vendor sites, where available. Dashed lines indicate the corresponding data was unavailable.

Index Reference Approximate sensors cost (GBP) Weight of rovers (kg)

1 Ostafew et al. (2016) 3000 900

2 Peynot et al. (2014) 12000 30

3 Ho et al. (2013a), Ho et al. (2013b) 12000 30

4 Bjelonic et al. (2018) 5700 10

5 Krebs et al. (2010) 1600 35

6 Palazzo et al. (2020) 5400 -

7 Murphy et al. (2012) 3800 3

8 Santamaria-Navarro et al. (2015) 800 108

9 Milella et al. (2015) 2300 -

10 Gerdes et al. (2020) 5200 310

11 Mayuku et al. (2021) 2600 50

12 Wolf et al. (2018) 3000 740

13 Kragh and Underwood (2020) 60000 108

14 Ugenti et al. (2022) 2300 206

15 Tang et al. (2019) 4100 20

16 Lee and Chung (2021) 13000 -

17 Sebastian et al. (2019) 122 9

18 Haddeler et al. (2020) 4000 92

19 Wellhausen and Hutter (2021) 400 30

20 Ref in cf. Jackel et al. (2006); Huang et al. (2009a,Huang et al. (2009b) - 109

21 Hoeller et al. (2013) - 375

22 Liu et al. (2020a) 600 200

23 Braun et al. (2009) - 750

24 González et al. (2009); Gonzalez et al. (2013) 200 500

25 Fnadi et al. (2020) 35000 880

26 Chen et al. (2022) 4800 62

27 Schilling et al. (2017) 7000 50

28 Baril et al. (2022) 7600 590

29 Howard et al. (2008), Howard et al. (2010); Bagnell et al. (2010); Silver et al. (2010) - 6000

simple coarse-grained navigation algorithm is devised to steer the
rover towards open traversable areas in the forest, using mean
depth information. Due to additional challenges in designing a
high endurance locomotion system for a small-sized low-cost
rover, in this study we focus solely on the navigation system.
Therefore, our mobile platform is pushed manually by an operator,
guided by steering actions on an onboard display. Our developed
low-viewpoint navigation algorithm is robust to changes in the
camera pitch angle, motion blur, high-contrast lighting, and low-
lighting at dusk conditions. It uses a low-resolution 16 × 16 pixel
depth prediction image from a 32 × 32 pixel monocular RGB image,
and runs on a Raspberry Pi 4. Utilizing low-resolution input images
reduces the computational and energy requirements for the rover,

enabling efficient navigation for platforms with limited computing
capabilities. Our algorithm has been extensively tested in high-
fidelity forest simulations and in field trials, successfully navigating
a total of over 750 m of real-world forest terrain under five different
weather conditions and four different times of day.

2 Materials and methods

Our algorithm for forest navigation comprises of two steps:
i) A prediction model is used to infer the depth image from a
low-viewpoint low-resolution RGB image input from a monocular
camera mounted on our mobile platform; and ii) The output depth
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FIGURE 1
The relationship between terrain difficulty and navigation sensor cost (A), and the weight of the rover (B). Terrains are categorized in ascending order of
difficulty as follows: 1. Paved road, short grass; 2. Sandy soil, paved trail; 3. Sparse bushes, tall grass; 4. Rubble, dense bushes, and gravel; and 5.
Mars-analogue environment, forest environment–dense bushes, tall grass, fallen branches, fallen tree trunks, standing trees, small mounds and ditches.
Importantly, to the best of our knowledge, references 1, 28 and 29 are the only studies investigating navigation in forest environments. All studies
referenced are indexed in Table 1.

image is utilised by our steering algorithm to provide direction
motion commands to the operator pushing the mobile platform, to
navigate it towards the goal while avoiding obstacles. An overview
of our approach for forest navigation is illustrated in Figure 2.

2.1 Depth prediction model

Inferring depth from low-resolution RGB images will allow us
to use geometric information for navigation, while avoiding the high
cost of depth sensors.The depth predictionmodel has to infer depth
in real-time, on an embedded computer, with sufficient accuracy
to facilitate navigation of the forest environment. We propose to
use a Densenet deep neural network (Huang et al., 2017) for depth
prediction, using Densenet as an encoder and following an auto-
encoder architecture through transfer learning. In previous studies,
Densenet models–Densenet-169 have been successfully used for
monocular depth prediction (e.g., see Alhashim and Wonka (2018)
trained on both indoor (Nathan Silberman et al., 2012) and outdoor
autonomous driving (Geiger et al., 2013) datasets). To the best of
our knowledge, no previous studies have validatedmonocular depth
prediction models on unstructured forest datasets.

For our study, the DenseNet encoder pre-trained on the
ImageNet dataset (Krizhevsky et al., 2017) was employed. The
DenseNet-121 auto-encoder network was then trained on our real-
world low-viewpoint forest dataset, comprising a total of 160,000
RGB-D image pairs at 640 × 480 resolution, with ground truth
depth in range [0.2 m, 10 m] (Niu et al., 2020). Hyperparameters
for training were selected by trial and error using a subset of this
dataset, consisting of 5,500 (training), 3,800 (validation), and 1,000

(testing) RGB-D image pairs. During hyperparameter selection, we
trained three DenseNet networks–DenseNet-121, DenseNet-169,
and DenseNet-201. Consequently, considering the runtime on a
Raspberry Pi 4, accuracy, and model size, the Densenet-121, trained
for 20 epochs, was selected. The selected model was trained on our
entire forest dataset, using 140,000, 10,000, and 8,450 RGB-D image
pairs for training, validation and testing, respectively. We ensured
that the images in the test set were of an entirely different segment
of the forest, compared to the training and validation sets.

The training was implemented using the TensorFlow Keras
(Abadi et al., 2016) library on a NVIDIA GTX 1080ti (11G) GPU.
An Adam optimizer (Kingma and Ba, 2014) was applied for loss
minimization with the default parameters of B1 = 0.9,B2 = 0.999,
learning rate λ = 0.001 and batch size of 8. The loss function was
composed of the following: i) Point-wise L1 loss; ii) L1 loss over
the image gradient; and iii) Structural similarity loss (for details see
Alhashim and Wonka (2018)). During training, data augmentation
was applied to reduce over-fitting, including geometric mirroring of
RGB images with a probability of 0.5, and photometric swapping of
G and R channels from the input RGB images with a probability
of 0.5. Note that with our DenseNet-121 model architecture, the
resolution of the output predicted depth image was half that of the
input RGB image in both dimensions.

We converted the trained Tensorflow model into a TensorFlow-
Litemodel (Louis et al., 2019), resulting in a three-fold improvement
in run-time performance. In estimating the required run-time for
our mobile platform, we assume the average speed of a small-
sized rover navigating over forest terrain as 0.2 m/s. Additionally,
considering the minimum depth range of our ground truth is
0.2 m (Niu et al., 2020), the depth prediction model implemented
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FIGURE 2
Overview of our approach to forest navigation. During the model training stage, a monocular depth prediction model is trained using RGB-Depth
image pairs obtained from the Intel Realsense D435i camera. The model architecture employs an encoder-decoder setup, with the encoder utilizing
the DenseNet-121 network and the decoder employing standard convolutional layers. For the subsequent field trials conducted in real-world forest
environments, the trained model was converted from an H5 file to a TFLITE file for faster inference. This TFLITE file was then deployed on a Raspberry
Pi 4. The deployed model takes input from a Logitech C270 webcam, processes the image, and generates steering actions using a coarse-grained
steering algorithm. These steering actions are displayed on LED boards. To execute the generated steering instructions, a human operator interacts
with the platform. The operator pushes the platform, following a fixed go-forward displacement and turning angle, and aligns it with the goal waypoint
at a fixed interval of every 10 control cycles. The approach combines model training using RGB-Depth images, model deployment on a Raspberry Pi
and human-in-the-loop with LED instructions.

on an embedded computer with a runtime of about 1 s may be
sufficient to achieve real-time performance. Our original 640 ×
480 images resulted in a runtime of around 12 s per image on a
Raspberry Pi 4. To identify the necessary downscaling, runtimes
were tested across several RGB input image resolutions (see Table 2).
Since the resolution of 32 × 32 met our real-time requirement, we
downsampled the RGB image resolution of our real-world forest
dataset from 640 × 480 to 32 × 32, prior to training our Densenet-
121 depth prediction model using the same setup. The 32 × 32
Tensorflow-Lite model is 42 MB in size and has a runtime of
0.80± 0.02s (mean ± SD) on a Raspberry Pi 4.

We investigate the quality of depth prediction for navigation
with high and low resolution input RGB images. With high
resolution input RGB images (640 × 480), obstacles in the
foreground and background are clearly distinguishable (see example
in Figure 3) Despite employing low-resolution RGB images,
qualitative results indicate that the depth prediction model can still
distinguish between obstacles in the foreground and background
(Figure 4). The model appears to provide reasonable predictions in
high-contrast scenes (see Figure 4B, the bright and shadowed forest

ground in close vicinity have similar predicted depths). As one
would expect with the low resolution employed, the results are little
affected by motion blur (Figure 4C). Furthermore, obstacles in the
foreground and background remain distinguishable in low lighting
conditions such as at dusk (see uprooted tree trunk in Figure 4D).

2.2 Steering algorithm

Our steering algorithm receives a predicted depth image at every
control-cycle, and indicates one of four possible steering directions
to the human operator pushing the robot via an onboard LED
display.The steering directions are “Go-straight”, “Turn-left”, “Turn-
right”, “Go-back”, and (orientate towards) “Waypoint”.With the “Go-
straight” action the platform is moved straight approximately 50 cm
forward. Rotatory actions of “Turn-left” and “Turn-right” pivot the
platformby approximately 15° along the yaw axis. Similarly, the “Go-
back” action rotates the platform by approximately 180°. Finally,
with the “Waypoint” action the platform is rotated towards the
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TABLE 2 Mean ± SD runtime of depth prediction with the DenseNet-121model, aggregated across 100 randomly selected images, for different input RGB image
resolutions. The depth predictionmodel was executed on a Raspberry Pi 4 (4 GB RAM).

Image resolution 32 × 32 128 × 96 128 × 128 256 × 192 256 × 256 640 × 480

Runtime 0.80± 0.02 s 1.35± 0.02 s 1.66± 0.06 s 2.88± 0.02 s 3.60± 0.16 s 11.94± 0.72 s

FIGURE 3
Sample 320 × 240 predicted depth image of a low-viewpoint forest scene from a 640 × 480 input RGB image. Darker (lighter) pixels in the depth image
are closer (further away) from the camera. In the predicted depth image, the tree branch in the foreground is distinguishable from the standing trees in
the background. The displayed predicted depth image has been upsampled here by a factor of two for visual clarity. Red pixels in the ground truth
depth indicate that the depth could not be determined by the Intel RealSense D435i camera.

direction of the goal waypoint; this occurs here every 10 control-
cycles and in general could be based on GPS information.

For steering, a simple algorithm is used for obstacle avoidance,
to select the appropriate action from “Go-straight”, “Turn-left”
and “Turn-right” (see example in Figure 5). The predicted depth
image is first divided into three equal-sized vertical segments, each
corresponding to the “Turn-left”, “Go-straight”, and “Turn-right”
actions. Average depth across all the pixels in each column of the
depth image is then calculated. The robot is directed to move in the
direction associated to the segment with the highest mean depth
value. A higher average depth value indicates a region with none
or fewer obstacles, corresponding to a relatively more traversable
direction. Additionally, averaging over the entire vertical segment
allows the steering algorithm to be robust to inadvertent changes in
the camera pitch angle during motion.

The “Go-back” direction is used to avoid collisions with close-
range obstacles or to avoid encountering large untraversable areas
(e.g., a fallen tree trunk) in the distance. It is triggered when
the mean lower half of the predicted depth image is less than a
predefined threshold of 0.7 m, the LED display then warns the
operator of a potential collision. However, false-positives may occur,
such as when the robot is on an incline, or if the camera is pointing
down towards the ground.Therefore, following the first warning, the
operator rotates the robot along the pitch axis by approximately 5°,
so that the camera tilts upwards. If the collision warning continues
to be displayed, the “Go-back” action is executed. To avoid potential
collisions, the above procedure for the “Go-back” action takes
priority over all the other steering actions.

2.3 Mobile platform

The mobile platform for our real-world forest experiments
(see Figure 6) consists of a telescopic extension pole (1.21 m) and
a CamdenBoss X8 series enclosure (L × W × H: 185 × 135 ×

100 mm). A Logitech C270 HD webcam (diagonal 55° field of view)
is mounted inside the enclosure at 20 cm above the ground and
connected to a Raspberry Pi 4. Two black polyurethane scooter
wheels, 100 mm in diameter and 24 mm in width, were mounted
on the left and right sides underneath the enclosure, to facilitate
traversal over rough terrain. A stripboard (95 × 127 mm) was fixed
to two rectangular wooden blocks on the top of the enclosure,
alongside two concentric NeoPixel rings of addressable RGB LEDs
(Adafruit Industries, NY). The two NeoPixel rings were connected
to the Raspberry Pi 4 (4 GB RAM) via a twisted pair (data) and
a USB cable (power), and a Schmitt-trigger buffer (74LVC1G17
from Diodes Incorporated, TX) in the serial data line was used to
overcome the capacitance of the long twisted pair wire. A HERO
9 (GoPro, CA) action camera was also mounted on the telescopic
pole 50 cm from the top of the enclosure to allow for third-person
viewhigh-resolution video recording of the experiments.Theoverall
cost of our mobile platform was around 250 GBP, with the sensor
hardware for navigation—-a Logitech C270 camera and Raspberry
Pi 4 embedded computer—costing a total of 70 GBP.

RGB images captured by the Logitech camera every
4 seconds–one control-cycle–were input to the depth prediction
model deployed on the Raspberry Pi. Subsequently, the steering
algorithm was applied to the predicted depth image, to output a
steering direction, which was displayed on the NeoPixel rings (see
Figure 6 for details on direction indications). Following the direction
displayed, the operator directed the mobile platform to perform the
required motion.

3 Experiments

Due to the challenging nature of forest field experiments, our
navigation algorithm was first tested extensively in simulations
(Section 3.1), before investigating its performance on-trail and off-
trail in real-world forests (Section 3.2).
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FIGURE 4
Sample low-resolution 16 × 16 depth images predicted from 32 × 32 input RGB images. The corresponding high resolution (640 × 480) RGB images are
shown for context. The depth prediction model was assessed in cloudy (A), high-contrast lighting (B), motion blur (C) and low-lighting conditions at
dusk (D). RGB and ground truth depth images were captured with an Intel RealSense D435i camera.

FIGURE 5
An example steering direction for an input RGB image (640 × 480), the corresponding predicted depth image (320 × 240), and the mean depth
averaged across each column of the predicted depth image. As the peak mean depth lies in the central segment of the depth image, the mobile
platform is directed straight (towards the traversable region between the fallen tree trunk and the standing tree). The displayed predicted depth image
has been upsampled by a factor of two for visual clarity.
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FIGURE 6
The two-wheeled mobile platform is equipped with a Logitech C270
camera, two NeoPixel rings, a Raspberry Pi 4, a Raspberry Pi HDMI
display, a GoPro camera, and a portable power bank. RGB images
captured by the Logitech camera are transmitted to the Raspberry Pi
4, to predict depth images for the steering algorithm. Resulting
steering actions are displayed on the NeoPixel LED rings.

3.1 Navigating a simulated forest

A high-fidelity forest simulator, ForestGenerator (Newlands
and Zauner, 2022), was used for the simulation experiments.
ForestGenerator is a generalised, open-source tool for generating
and rendering interactive, realistic forest scenes using a specialised
L-systems, a custom ecosystem simulation algorithm and an
OpenGL-based render pipeline and can be controlled from the
command line (see Figure 7 for some example rendered scenes).
Our simulated rover had the same dimensions as our physical
platform.The simulation experiments were performed to investigate
the capability of our steering algorithm to navigate the forest
environment using low-resolution predicted depth images, in
particular discerning how low can we go.

As with our field experiments, for experiments in simulation,
a DenseNet-121 depth prediction model was used. The model was
trained on a dataset of RGB-D image pairs generated using the
ForestGenerator. The scenes comprised different tree species with
a cumulative density of around 1 tree/16 m2 (see above canopy
view in Figure 7). For these images, the simulated camera had a
maximum depth range of 10 m. It was positioned at pitch angles
of 0° and 30°. For each pitch angle, images were generated from
three different viewpoints (0.3 m, 0.5 m and 1 m), each under three
different lighting conditions (RGB luminance of 87± 22, 99± 16 and
118± 10 respectively, Mean ± SD across 1000 images). For depth
prediction, the DenseNet-121 auto-encoder network pre-trained on
the ImageNet dataset was further trained over 20 epochs using

36,000 (training), 2,000 (validation) and 750 (testing) simulated
RGB-D image pairs.

Our experiments in simulation were performed in a forest
of size 50 × 50 m2, with start and goal waypoints at (5 m, 5 m)
and (45 m, 45 m) respectively, and with around 150 randomly
distributed standing trees. Actions “Go-straight”, “Turn-left”, “Turn-
right”, and “Waypoint” (defined in Section 2) were used to navigate
the mobile platform towards the goal. For the experiments, the
simulated camera was positioned at a low-viewpoint of 30 cm with
a pitch angle of 0°, other parameters of the camera were the same as
used in the synthetic dataset creation. We assessed the performance
of the navigation algorithm using ground truth depth images and
predicted depth images in separate experiments for each of six depth
image resolutions of 16× 16, 64× 48, 64× 64, 128× 96, 128× 128 and
320 × 240, replicated twenty times for each resolution. Therefore, in
total 2 sensor-models × 6 image resolutions × 20 replicates = 240
experiments were performed in simulation.

Performance was assessed with the following metrics: i) Total
distance traversed by themobile platform to reach the goalwaypoint;
ii) The turning rate—the ratio of the number of “Turn-left” and
“Turn-right” steering actions over the total number of actions—is
zero for a straight-line trajectory and in general unbounded
(arbitrary long detours and arbitrary many turns without forward
progress); and iii) The number of collisions sustained. In case of a
collision, the platform was repositioned next to the obstacle.

In all simulation experiments, the mobile platform was able to
arrive at the goal waypoint. With the ground truth depth image,
the steering algorithm was able to efficiently navigate the platform
irrespective of the input image resolution, traversing ameandistance
of 59.95± 1.2 m to reach the goal (across all six input image
resolutions, see Figure 8A); the straight-line distance between start
and goal is 56.57 m. The performance of the steering algorithm was
almost constant across several different resolutions of the predicted
depth image 64 × 48, 64 × 64, 128 × 96, 128 × 128 and 320 ×
240 (mean traversed distance 59.45± 0.7 m). However, with the
lowest resolution predicted depth images of 16 × 16 steering was
less efficient, with the mobile platform traversing a distance of
63.68± 4.4 m to reach the goal.

Similar trends in performance were observed for the turning
rate of the mobile platform (see Figure 8B). With the ground truth
depth images, the turning rate was not influenced by the resolution,
at 0.75± 0.02 across all six input image resolutions.The performance
deteriorated to 0.85± 0.02 with predicted depth images.

The slightly poor performance in the distance traversed and the
turning rate for low-resolution predicted depth images is ascribed
to the coarse-grained prediction of depth of background obstacles.
When obstacles in the foreground appeared few to none, this
results in a higher uncertainty of steering action. Unable to discern
narrow traversable gaps between trees in the background, themobile
platform may be directed to a detour around instead of in between
the trees. In such scenarios, a potential solution may be to weigh the
inferred steering direction towards the direction of the waypoint.
Importantly, in navigating the simulated forest environment, the
mobile platform sustained no collisions in almost all the replicates.
In particular, at a 16 × 16 resolution, a single collision was
sustained in each of three replicates, with no collisions sustained
in the remaining 17 replicates (see Supplementary Table S1 in
Supplementary Material).
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FIGURE 7
The forest canopy and low-viewpoint RGB images of standing trees and other vegetation from an example forest synthesized by the ForestGenerator
(Newlands and Zauner, 2022).

FIGURE 8
The distance traversed (A) and the turning rate (B) from start-to-goal
for the mobile platform in simulated forests, across 20 replicates, in
each of the 12 combinations of sensor-models—ground truth (GT)
and predicted depth (DP)—and depth image resolutions—16 × 16, 64 ×
48, 64 × 64, 128 × 96, 128 × 128 and 320 × 240. On each box, the
mid-line marks the median, and the box extends from the lower to
upper quartile below and above the median. Whisker outside the box
indicate the maximum and minimum values, except in case of outliers,
which are shown as dots. Outliers are data points outside of 1.5 times
the interquartile range. Note that the y-axes do not start at zero.

In summary, rather than requiring a precise depth value for
each pixel, our steering algorithm relies only on whether the
foreground and nearby obstacles are visually distinguishable from
the background. As such, our navigation algorithm is largely
tolerant to inaccuracies in depth prediction. The somewhat lower
performance of the navigation algorithm with a 16 × 16 resolution

predicted depth image is largely offset by the high run-time
performance, thus supporting its use for our real-world forest
experiments.

3.2 Field experiments

Our field experiments were performed in the Southampton
Common (Hampshire, UK), a woodland area of approximately
1.48 km2. Experiments were performed in the following two sites of
theCommon: i) Following a long forest trail; and ii) Steering through
a smaller but more challenging off-trail forest environment.

For the field experiments, besides the trajectory length, turning
rate and number of collisions sustained, the following additional
metrics were used to assess the performance of the navigation
algorithm in navigating from start to goal waypoints: i) Time taken
to reach the goal; ii) Number of true-positive incidents—the “Go-
back” action is accurately triggered on encountering a large obstacle
(e.g., fallen tree trunk) blocking the path of the mobile platform;
iii) Number of false-positive incidents—the “Go-back” action is
unnecessarily triggered, i.e., there are no obstacles obstructing the
platform; and iv) Number of false-negative incidents—the “Go-
back” action is not triggered in the presence of a large obstacle
obstructing the platform, thus risking a potential collision. In
total, seven metrics were used to assess navigation performance
in our field experiments.Following a long forest trail. The mobile
platform was tested on a dried mud trail comprising various forest
obstacles. Obstacles included dense bushes, tall grass, leaf litter,
fallen branches, fallen tree trunks, standing trees and a ditch
formed at the roots of a large uprooted tree (see examples in
Figure 9A).

For our experiments, the start and goal waypoints were
positioned at (5056.2141 N, 124.0516 W) and (5056.1859 N,
124.1515 W), respectively (see Figure 10). The waypoints were
selected to encompass a high diversity of compliant and rigid forest
obstacles such as leaf litter, twigs, fallen branches, fallen tree trunks,
standing trees, grass, bushes, and creeping vegetation (see examples
in Figure 9A). The actions “Go-straight”, “Turn-left”, “Turn-right”,
“Go-back” and “Waypoint” (defined in Section 2) were used to
navigate the mobile platform towards the goal waypoint. As the goal
was 210° SW of the start location, this bearing was used to rotate
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FIGURE 9
Examples of obstacles encountered by the mobile platform both on the forest trail (A) and off-trail (B) in the Southampton Common woodland.

the mobile platform to face the goal when the “Waypoint” action
was triggered. The “Go-back” action was employed by the mobile
platform to turn around and attempt to find an alternative path to
circumvent large obstacles such as fallen tree trunks. If this action
was triggered five times consecutively for the same obstacle, we
assumed that there were no traversable paths around the obstacle;
consequently, the operator would lift the platform over the obstacle,
log the incident, and continue the experiment.

Trail experiments were performed five times in the forenoon,
midday, and afternoon under weather conditions of cloudy,
scattered clouds, mostly clear, and sunny (see details in
Supplementary Table S2 of the Supplementary Material). Across
all experiments, the platform was able to reach the goal waypoint,
traversing a mean distance of 146± 3 m with a turning rate of
0.53± 0.05 in 20.7± 4.9 min (see Table 3). Our algorithmwas largely
able to steer the platform towards open spaces to avoid potential
collisions (see examples in Figures 11A,B; for additional examples
of steering by low-hanging tree branches, tall grass, and fallen tree
trunks see Supplementary Figure S1 and the demonstration video
of the Supplementary Material). In scenarios where the robot was
facing a close-range obstacle, or large untraversable areas in the
distance, the “Go-back” action was successfully triggered to avoid
potential collisions (see Figure 11C—a fallen tree trunk covered
in weeds and moss,; Figure 11D—dense bushes). The “Go-back”
action was unnecessarily triggered only once, i.e., a false-positive
incident, when the platform was facing uphill in a small ditch.
Importantly, across all five experiments, the robot navigated the

FIGURE 10
Trajectory from GPS metadata of the forest trail overlaid on an aerial
view of the Southampton Common woodland. The white scale bar in
the lower right corner corresponds to a distance of 10 m. Permitted
use: Imagery © 2022 Getmapping plc, Infoterra Ltd & Bluesky, Maxar
Technologies, The GeoInformation Group, Map data © 2022 Google.

forest trail without sustaining any collisions, or incurring any false-
negative incidents. Finally, once in each of the five experiments, due
to a large fallen tree blocking the forest trail, the platform had to be
lifted over it, as no traversable paths were found to circumvent the
obstacle.
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TABLE 3 The trajectory length, turning rate, traversal time and the number of true-positive incidents—the“Go-back”action is accurately triggered on
encountering an obstacle—in following a forest trail from start-to-goal in the Southampton Commonwoodland. The experiment weather conditions and times
of day are detailed in Supplementary Table S2 of the Supplementary Material.

Trajectory length m) Turning rate Traversal time (mins) True-positive “Go-back”actions

Run 1 146 0.55 23.9 7

Run 2 149 0.58 27.2 11

Run 3 150 0.54 18.7 9

Run 4 144 0.45 14.7 9

Run 5 143 0.54 18.9 10

FIGURE 11
Steering directions navigated by the mobile platform on the forest trail at the Southampton Common woodland, including for clear trails and the right
and left (A, B), a fallen tree trunk covered in weeds and moss (C), and dense vegetation (D). For steering, 16 × 16 depth images, predicted from 32 × 32
RGB input images, were utilized. The corresponding 1920 × 1080 RGB images (from the GoPro camera), display a third-person view of the forest scene
and the steering commands on the LED rings of the mobile platform. The steering directions are annotated on the predicted depth image. The
predicted depth images displayed here have been upsampled here by a factor of two for visual clarity.
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TABLE 4 The trajectory length, turning rate, traversal time and the number of true-positive incidents—the“Go-back”action is accurately triggered on
encountering an obstacle—when navigating from start-to-goal off-trail in the Southampton Commonwoodland. Experiments in site A and site B had start
waypoints at (5056.1906 N, 124.0071 W) and (5056.1814 N, 124.0148 W), respectively, and shared a common goal waypoint at (5056.1853 N, 124.0143 W). The
experiment weather conditions and times of day are detailed in Supplementary Table S3 of the Supplementary Material.

Trajectory length (m) Turning rate Traversal time (mins) True-positive “Go-back”actions

Site A

Run 1 8 0.76 2.6 0

Run 2 10 0.80 3.7 0

Run 3 13 0.62 2.5 0

Run 4 9 0.74 2.7 0

Run 5 10 0.75 3.9 2

Site B

Run 6 24 0.73 9.3 7

Run 7 17 0.74 6.3 6

Run 8 23 0.55 5.8 6

Run 9 11 0.82 5.2 5

Run 10 19 0.72 8.2 7

Off-trail forest navigation. Experiments were performed
in an unfrequented area of the woodland, spanning around
400 m2. Obstacles on the site included forest litter, small shrubs,
mounds, standing trees, fallen branches and fallen tree trunks
(see examples in Figure 9B); the site was more cluttered than
the forest trail environment. For our experiments, the start
waypoints were located at (5056.1906 N, 124.0071 W) in site A
and (5056.1814 N, 124.0148 W) in site B, in two separate and
independent setups, with a common goal waypoint at (5056.1853 N,
124.0143 W).

Experiments were performed ten times in the forenoon,
midday, afternoon, and near sunset, under weather conditions
of cloudy, scattered clouds, mostly clear and sunny (see details
in Supplementary Table S3 of the Supplementary Material). Across
all experiments, the mobile platform was able to reach the
goal-way point without sustaining any collisions and incurring
any false-negative incidents, irrespective of the time of day and
weather conditions. The platform traversed an average distance of
14± 6 m from start-to-goal, with a turning rate of 0.72± 0.08, in
5.0± 2.4 min (see Table 4); a higher turning rate, compared to the
forest trail environment, may be due to their being more obstacles
off-trail. Despite the higher density of obstacles, themobile platform
was able to avoid them with a sequence of turning actions (see
examples in Figures 12A,B of the platform avoiding a slender tree
and a fallen tree trunk). Moreover, as with the forest off-trail
experiments, the “Go-back” action was accurately triggered to avoid
potential collisions (see Figures 12C,D of a fallen tree trunk and
a large fallen branch). The “Go-back” action was unnecessarily
triggered only once—a false-positive incident—when the platform
was facing an incline. Finally, in all experiments in Site B (start
waypoint at (5056.1814 N, 124.0148 W)), the platform had to be
lifted over an obstacle once; dense bushes on either end of a
large fallen tree were blocking all traversable paths to reach the
goal.

4 Discussion

In this study, we have implemented a low-viewpoint navigation
algorithm for inexpensive small-sized mobile platforms navigating
forest environments. For navigation, a depth prediction model
was trained to predict depth images from RGB images of a
monocular camera mounted on the mobile platform. Subsequently,
a simple steering algorithm used predicted depth values to direct
the platform towards open traversable areas of the forest, while
avoiding obstacles. Our algorithm was extensively tested both in
high-fidelity simulated forests, and real-world forests under several
different weather conditions and times of day. In field experiments,
using no more than a 16 × 16 depth image predicted from a 32 × 32
monocular RGB image, ourmobile platformwas able to successfully
traverse a total of over 750 m of forest terrain comprising small
shrubs, dense bushes, tall grass, fallen branches, fallen tree trunks,
ditches, mounds and standing trees.

A computational bottleneck of our navigation algorithms is
depth prediction, requiring around 0.8 s per RGB image with
a DenseNet-121 network on a Raspberry Pi 4. The runtime for
depth prediction may be improved with alternative state-of-
the-art light-weight convolutional neural network architectures.
For instance, the MobileNet (Howard et al., 2017), MobileNet-v2
(Sandler et al., 2018), NASNetMobile (Zoph et al., 2018), ShuffleNet
(Zhang et al., 2018), ShuffleNet-v2 (Ma et al., 2018) and the
Pyramidal-Depth networks (Poggi et al., 2018) may potentially
improve runtime performance, consequent to their small size.
However, the performance of these encoders for depth prediction at
low viewpoints in forest environments remains to be investigated.

The runtime performance of our algorithms could also be
enhanced with marginally more expensive embedded platforms
such as the Jetson Nano, Jetson TX1 and Jetson TX2 computers,
instead of the Raspberry Pi 4 (Mancini et al., 2018; An et al., 2021;
Yang et al., 2021). Our results from a preliminary investigation
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FIGURE 12
Steering directions navigated by the mobile platform off-trail at the Southampton Common woodland to avoid a number of slender trees (A), and
fallen tree trunks and branches (B–D). The steering directions are annotated on the predicted depth image, upsampled here by a factor of two for
visual clarity.

suggests a three-time increase in average runtime performance
for depth prediction of forest scenes at low viewpoints with the
Jetson Nano. Finally, budget permitting, the depth predictionmodel
may bes altogether replaced with low-end RGB-D cameras, such
as Microsoft Kinect, Intel Realsense, and Orbbec Astra series,
thus providing high-resolution depth images, if needed, to our
computationally inexpensive steering algorithm.

In challenging forest terrain, the rover may be obstructed by
untraversable obstacles, such as dense vegetation, with no accessible
paths to reach the destination waypoint. It may therefore be crucial
to use strategies to navigate out of the local area. Integrating a robotic
arm (Haddeler et al., 2022) on the rover enhances its capabilities for
actively exploring such terrain. Equippedwith force sensors, the arm
may probe its surroundings to identify openings or traversable gaps
in the terrain.The additional information may consequently inform
the rover’s navigation decisions, improving its ability to maneuver
and find suitable paths through the obstacles.

In a few studies, aerial drones are being explored for the
monitoring of forest environments (Giusti et al., 2015; Dionisio-
Ortega et al., 2018; Iuzzolino et al., 2018; Sudhakar et al., 2020;
Zhou et al., 2022). Arguably, rovers capable of navigating forest
terrain could complement these technologies. A heterogeneous
UGV-UAV team of robots could leverage the strengths of both
platforms; the high vantage viewpoint afforded by the aerial drones
and the close access to the ground of the rovers. Forest roversmay be
adapted to provide a range of ground-based measurements such as
physical samples of the soil (Zaman et al., 2022). They could pause
to take reliable pollen or greenhouse gas samples close to the ground
(Grau Ruiz and O’Brolchain, 2022; Gupta et al., 2022). Moreover,
small-sized rovers could be operated quietly, being less intrusive to
wildlife than drones (Mulero-Pázmány et al., 2017). Finally, in using
drones, the end-user may face a number of hurdles in licensing the
vehicles, and be limited to line-of-sight operations (Hodgkinson and
Johnston, 2018).
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5 Concluding remarks

In our study, a mobile platform was pushed by a human
operator, following directions provided by the onboard navigation
algorithm. Such a platform enabled us to focus solely on the problem
of navigation in forest environments, allowing relatively rapid
algorithmic prototyping. However, our navigation algorithm has the
potential to successfully steer real small-sized rovers. Firstly, the
monocular camera mounted inside our mobile platform enclosure
is 20 cm off the ground, consistent with the low viewpoint of off-
road small-sized rovers (e.g., see rovers deployed in Sebastian et al.
(2019); Tang et al. (2019); Murphy et al. (2012), but with expensive
sensor hardware and navigating in urban and structured off-
road environments). Secondly, our navigation algorithm is robust
to motion blur in the RGB images from the movement of our
mobile platform, as well as high-contrast lighting, and low-lighting
conditions. Finally, our navigation algorithm is tolerant to naturally
occurring variations in steering angles and forward displacement
step-sizes; these variations are inadvertently caused by the human
operator pushing the platform, and from the platform-terrain
interactions. Here we report the performance values from the field
to give an orientation of how they compare to the simulations.
It is important to note that such an approach can only be used
to compare the performance of different algorithms if the human
operator is neutral or blind to which one is running during the
field experiment. The unavoidable bias then applies equally to the
techniques under study. In conclusion, the challenges in designing
high-endurance low-cost rover hardware capable of self-moving on
challenging forest terrain are immense, and are being tackled by us
in a separate study (Tarapore et al., 2020); in our future work, we
will investigate the performance of our navigation algorithm on real
rovers.
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